TPL0401A-10-Q1 [TI]

具有 I2C 接口(地址 0101110)的汽车类 128 抽头单通道数字电位器;
TPL0401A-10-Q1
型号: TPL0401A-10-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 I2C 接口(地址 0101110)的汽车类 128 抽头单通道数字电位器

电位器
文件: 总32页 (文件大小:713K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPL0401A-10-Q1  
TPL0401B-10-Q1  
ZHCSFW3 NOVEMBER 2016  
TPL0401x-10-Q1 具有 I2C 接口的 128 抽头单通道数字电位计  
1 特性  
3 说明  
1
单通道 128 位置分辨率  
10kΩ 端到端电阻选项  
TPL0401x-10-Q1 器件是一款具有 128 个抽头位置的  
单通道线性抽头数字电位计。TPL0401x-10-Q1 的低电  
平端子内部连接至 GND。可使用 I2C 接口来调节抽头  
位置。TPL0401x-10-Q1 采用 6 引脚 SC70 封装,额  
定温度范围为 -40°C +125°C。此部件有一个 10kΩ  
端到端电阻,工作电源电压范围为 2.7V 5.5V。这  
类产品广泛用于为低功耗 DDR3 存储器设定电压基  
准。  
低温度系数:22ppm/°C  
I2C 串行接口  
2.7V 5.5V 单电源运行  
±20% 电阻容差  
A B 版本具有不同的 I2C 地址  
L 端子内部连接至 GND  
工作温度:-40°C +125°C  
采用行业标准 SC70 封装  
根据 JESD 22 测试得出的静电放电 (ESD) 性能  
TPL0401x-10-Q1 的低电平端子内部连接至 GND。  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
2000V 人体放电模型(A114-BII 类)  
TPL0401A-10-Q1  
TPL0401B-10-Q1  
SC70 (6)  
2.00mm × 1.25mm  
2 应用  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
机械电位计的替代产品  
可调电源  
可调增益放大器和偏移修剪  
设定点阈值精密校准  
传感器微调和校准  
简化电路原理图  
I
ë55  
Çt[0401!/.-10-v1  
{ꢀ[  
WIPER  
REGISTER  
I2C INTERFACE  
í
{5!  
Db5 Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLIS182  
 
 
 
TPL0401A-10-Q1  
TPL0401B-10-Q1  
ZHCSFW3 NOVEMBER 2016  
www.ti.com.cn  
目录  
9.6 Register Maps ........................................................ 19  
10 Application and Implementation........................ 21  
10.1 Application Information.......................................... 21  
10.2 Typical Application ............................................... 21  
11 Power Supply Recommendations ..................... 23  
11.1 Power Sequence................................................... 23  
11.2 Power-On Reset Requirements ........................... 23  
11.3 I2C Communication After Power Up ..................... 23  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information ................................................. 4  
7.5 Electrical Characteristics........................................... 4  
7.6 Timing Requirements................................................ 5  
7.7 Typical Characteristics.............................................. 7  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 11  
9.1 Overview ................................................................. 11  
9.2 Functional Block Diagram ....................................... 11  
9.3 Feature Description................................................. 11  
9.4 Device Functional Modes........................................ 11  
9.5 Programming........................................................... 15  
11.4 Wiper Position While Unpowered and After Power  
Up............................................................................. 24  
12 Layout................................................................... 25  
12.1 Layout Guidelines ................................................. 25  
12.2 Layout Example .................................................... 25  
13 器件和文档支持 ..................................................... 26  
13.1 文档支持................................................................ 26  
13.2 相关链接................................................................ 26  
13.3 接收文档更新通知 ................................................. 26  
13.4 社区资源................................................................ 26  
13.5 ....................................................................... 26  
13.6 静电放电警告......................................................... 26  
13.7 Glossary................................................................ 26  
14 机械、封装和可订购信息....................................... 27  
8
9
4 修订历史记录  
日期  
修订版本  
注释  
2016 11 月  
*
首次发布。  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPL0401A-10-Q1  
TPL0401B-10-Q1  
www.ti.com.cn  
ZHCSFW3 NOVEMBER 2016  
5 Device Comparison Table  
PART NUMBER  
TPL0401A-10-Q1  
TPL0401B-10-Q1  
END-TO-END RESISTANCE  
I2C ADDRESS  
010 1110 (0×2E)  
011 1110 (0×3E)  
10 k  
10 kΩ  
6 Pin Configuration and Functions  
DCK Package  
6-Pin SC70  
Top View  
1
2
6
VDD  
GND  
SCL  
H
5
W
SDA  
L
3
4
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
VDD  
GND  
SCL  
SDA  
W
1
Power  
Positive supply voltage  
2
Ground  
3
I
I2C Clock  
4
I/O  
I/O  
I/O  
I/O  
I2C Data  
5
Wiper terminal  
High terminal  
6
H
L
Low terminal (Internally connected to GND)  
Copyright © 2016, Texas Instruments Incorporated  
3
TPL0401A-10-Q1  
TPL0401B-10-Q1  
ZHCSFW3 NOVEMBER 2016  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
MAX  
7
UNIT  
V
VDD  
Supply voltage  
VDD to GND  
–0.3  
IH, IL, IW  
Continuous current  
±5  
mA  
Digital input pins (SDA, SCL)  
Potentiometer pins (H, W)  
Maximum junction temperature  
Storage temperature  
–0.3  
–0.3  
VDD + 0.3  
VDD + 0.3  
130  
VI  
V
TJ(MAX)  
Tstg  
°C  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2500  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
5.5  
UNIT  
VDD  
Supply voltage  
2.7  
V
V
VW,VH, SDA, SCL Terminal voltage  
0
VDD  
VIH  
VIL  
IW  
Voltage input high ( SCL, SDA )  
0.7 × VDD  
VDD  
V
Voltage input low ( SCL, SDA )  
Wiper current  
0
–2  
0.3 × VDD  
2
V
mA  
°C  
TA  
Ambient operating temperature  
–40  
125  
7.4 Thermal Information  
TPL0401x-10-Q1  
THERMAL METRIC(1)  
DCK (SC70)  
6 PINS  
234  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
110.5  
79  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
7.2  
ψJB  
77  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
Typical values are specified at 25°C and VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
10  
MAX  
12  
UNIT  
kΩ  
RTOTAL  
RH  
End-to-end resistance  
Terminal resistance  
Wiper resistance  
8
100  
35  
200  
100  
RW  
4
Copyright © 2016, Texas Instruments Incorporated  
TPL0401A-10-Q1  
TPL0401B-10-Q1  
www.ti.com.cn  
ZHCSFW3 NOVEMBER 2016  
Electrical Characteristics (continued)  
Typical values are specified at 25°C and VDD = 3.3 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
10  
MAX  
UNIT  
pF  
CH  
Terminal capacitance  
Wiper capacitance  
CW  
TCR  
11  
pF  
Resistance temperature coefficient  
22  
ppm/°C  
–40°C to +105°C  
0.5  
1.5  
IDD(STBY)  
IIN-DIG  
VDD standby current  
µA  
µA  
–40°C to +125°C  
Digital pins leakage current (SCL,  
SDA Inputs)  
–2.5  
2.5  
SERIAL INTERFACE SPECS (SDA, SCL)  
0.7 ×  
VDD  
VIH  
VIL  
Input high voltage  
Input low voltage  
VDD  
V
V
0.3 ×  
VDD  
0
VOL  
CIN  
Output low voltage  
Pin capacitance  
SDA Pin, IOL = 4 mA  
SCL, SDA Inputs  
0.4  
V
7
pF  
VOLTAGE DIVIDER MODE (VH = VDD, VW = Not Loaded)  
INL(1)(2)  
DNL(3)(2)  
ZSERROR  
FSERROR  
TCV  
Integral non-linearity  
–0.5  
–0.25  
0
0.5  
0.25  
1.5  
0
LSB  
LSB  
Differential non-linearity  
(4)(5)  
(6)(5)  
Zero-scale error  
0.75  
LSB  
Full-scale error  
–1.5 –0.75  
4
LSB  
Ratiometric temperature coefficient Wiper set at mid-scale  
ppm/°C  
Wiper set at mid-scale,  
CLOAD = 10 pF  
BW  
Bandwidth  
2862  
0.152  
0.03  
kHz  
µs  
TSW  
Wiper settling time  
See Figure 10  
VH = 1 VRMS at 1 kHz,  
measurement at W  
THD+N  
Total harmonic distortion  
%
RHEOSTAT MODE (VH = VDD, VW = Not Loaded)  
Rheostat mode integral non-  
linearity  
RINL(7)(8)  
–1  
1
0.5  
2
LSB  
LSB  
LSB  
Rheostat mode differential non-  
linearity  
RDNL(9)(8)  
0.5  
(10)(1  
ROFFSET  
Rheostat-mode zero-scale error  
0
0.75  
1)  
(1) INL = ((VMEAS[code x] – VMEAS[code 0]) / LSB) – [code x]  
(2) LSB = (VMEAS[code 127] – VMEAS[code 0]) / 127  
(3) DNL = ((VMEAS[code x] – VMEAS[code x-1]) / LSB) – 1  
(4) ZSERROR = VMEAS[code 0] / IDEAL_LSB  
(5) IDEAL_LSB = VH/ 128  
(6) FSERROR = [(VMEAS[code 127] – VH) / IDEAL_LSB] + 1  
(7) RINL = ( (RMEAS[code x] – RMEAS[code 0]) / RLSB) – [code x]  
(8) RLSB = (RMEAS[code 127] – RMEAS[code 0]) / 127  
(9) RDNL = ( (RMEAS[code x] – RMEAS[code x–1]) / RLSB ) – 1  
(10) ROFFSET = RMEAS[code 0] / IDEAL_RLSB  
(11) IDEAL_RLSB = RTOT / 128  
7.6 Timing Requirements  
MIN  
MAX  
UNIT  
STANDARD MODE  
I2C Clock frequency  
fSCL  
0
4
100  
50  
kHz  
µs  
I2C Clock high time  
tSCH  
I2C Clock low time  
tSCL  
4.7  
0
µs  
I2C Spike time  
tsp  
ns  
I2C Serial data setup time  
tSDS  
250  
ns  
Copyright © 2016, Texas Instruments Incorporated  
5
TPL0401A-10-Q1  
TPL0401B-10-Q1  
ZHCSFW3 NOVEMBER 2016  
www.ti.com.cn  
Timing Requirements (continued)  
MIN  
MAX  
UNIT  
ns  
I2C Serial data hold time  
tSDH  
0
I2C Input rise time  
tICR  
1000  
300  
ns  
I2C Input fall time  
tICF  
ns  
I2C Output fall time, 10 pF to 400 pF bus  
tOCF  
300  
ns  
I2C Bus free time between stop and start  
tBUF  
4.7  
4.7  
4
µs  
I2C Start or repeater start condition setup time  
tSTS  
µs  
I2C Start or repeater start condition hold time  
tSTH  
µs  
I2C Stop condition setup time  
tSPS  
4
µs  
tVD(DATA)  
tVD(ACK)  
FAST MODE  
fSCL  
Valid data time, SCL low to SDA output valid  
1
1
µs  
Valid data time of ACK condition, ACK signal from SCL low to SDA (out) low  
µs  
I2C Clock frequency  
0
400  
50  
kHz  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
I2C Clock high time  
tSCH  
0.6  
I2C Clock low time  
tSCL  
1.3  
I2C Spike time  
tsp  
0
I2C Serial data setup time  
tSDS  
100  
I2C Serial data hold time  
tSDH  
0
I2C Input rise time  
tICR  
20  
300  
300  
300  
I2C Input fall time  
tICF  
20 × (VDD / 5.5)  
I2C Output fall time, 10 pF to 400 pF bus  
I2C Bus free time between stop and start  
I2C Start or repeater start condition setup time  
I2C Start or repeater start condition hold time  
I2C Stop condition setup time  
Valid data time, SCL low to SDA output valid  
Valid data time of ACK condition, ACK signal from SCL low to SDA (out) low  
tOCF  
(VDD / 5.5) × 20  
tBUF  
1.3  
1.3  
0.6  
0.6  
tSTS  
tSTH  
tSPS  
tVD(DATA)  
tVD(ACK)  
1
1
6
Copyright © 2016, Texas Instruments Incorporated  
TPL0401A-10-Q1  
TPL0401B-10-Q1  
www.ti.com.cn  
ZHCSFW3 NOVEMBER 2016  
7.7 Typical Characteristics  
0.15  
0.1  
0.15  
0.1  
2.7 V  
3.3 V  
5.5 V  
2.7 V  
3.3 V  
5.5 V  
0.05  
0
0.05  
0
-0.05  
-0.1  
-0.15  
-0.05  
-0.1  
-0.15  
0
18  
36  
54  
72  
90  
108  
126  
0
18  
36  
54  
72  
90  
108  
126  
Digital Code  
Digital Code  
D001  
D002  
Figure 1. INL vs Tap Position (Potentiometer Mode)  
Figure 2. DNL vs Tap Position (Potentiometer Mode)  
1
0.5  
0
0
2.7 V  
3.3 V  
5.5 V  
2.7 V  
3.3 V  
5.5 V  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
-0.5  
-1  
0
16  
32  
48  
64  
80  
96  
112  
128  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Digital Code  
Temperature (èC)  
D003  
D004  
Figure 3. INL vs Tap Position (Rheostat Mode)  
Figure 4. Full Scale Error vs Temperature  
300  
270  
240  
210  
180  
150  
120  
90  
1
0.5  
0
2.7 V  
3.3 V  
5.5 V  
2.7 V  
3.3 V  
5.5 V  
-0.5  
60  
30  
-1  
0
-40  
-10  
20  
50  
80  
110  
130  
0
16  
32  
48  
64  
80  
96  
112  
128  
Temperature (èC)  
Digital Code  
D005  
D006  
Figure 5. End-to-End RTOTAL Change vs Temperature  
Figure 6. Temperature Coefficient vs TAP Position  
(Potentiometer Mode)  
Copyright © 2016, Texas Instruments Incorporated  
7
TPL0401A-10-Q1  
TPL0401B-10-Q1  
ZHCSFW3 NOVEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
300  
270  
240  
210  
180  
150  
120  
90  
0
-6  
2.7 V  
3.3 V  
5.5 V  
-12  
-18  
-24  
-30  
-36  
-42  
-48  
-54  
-60  
Code 08  
Code 10  
Code 20  
Code 40  
60  
30  
0
0
16  
32  
48  
64  
80  
96  
112  
128  
103  
104  
105  
106  
107  
Digital Code  
Frequency (Hz)  
D007  
D008  
Figure 7. Temperature Coefficient vs TAP Position  
(Rheostat Mode)  
Figure 8. Frequency Response  
8
Copyright © 2016, Texas Instruments Incorporated  
TPL0401A-10-Q1  
TPL0401B-10-Q1  
www.ti.com.cn  
ZHCSFW3 NOVEMBER 2016  
8 Parameter Measurement Information  
V
DD  
R
= 1 kΏ  
L
SDA  
DUT  
C
= 50 pF  
L
(see Note A)  
SDA LOAD CONFIGURATION  
Two Bytes for READ Wiper Position Register  
Stop  
Condition Condition  
(P) (S)  
Start  
Address  
Bit 7  
(MSB)  
Data  
Bit 7  
(MSB)  
Data  
Bit 0  
(LSB)  
Stop  
Condition  
(P)  
R/W  
Bit 0  
(LSB)  
ACK  
(A)  
Address  
Bit 1  
t
t
sch  
scl  
0.7 x V  
CCI  
SCL  
SDA  
0.3 x V  
CCI  
t
t
icr  
vd  
t
t
sts  
sp  
t
t
icf  
t
buf  
vd  
t
t
sps  
ocf  
0.7 x V  
0.3 x V  
CCI  
CCI  
t
t
vd(ack)  
icr  
t
sdh  
t
t
icf  
sds  
t
sth  
Repeat Start  
Condition  
Stop  
Condition  
VOLTAGE WAVEFORMS  
BYTE  
DESCRIPTION  
I2C address  
1
2
Wiper Position Data  
A. CL includes probe and jig capacitance. tocf is measured with CL of 10 pF or 400 pF.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. All parameters and waveforms are not applicable to all devices.  
Figure 9. I2C Interface Load Circuit and Voltage Waveforms  
Copyright © 2016, Texas Instruments Incorporated  
9
TPL0401A-10-Q1  
TPL0401B-10-Q1  
ZHCSFW3 NOVEMBER 2016  
www.ti.com.cn  
Parameter Measurement Information (continued)  
50% VDD  
SCL  
DATA  
ACK  
tswx  
VW  
5% VH  
A. Code change is from 0×40 to 0×00  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
Figure 10. Switch Time Waveform (tSW  
)
10  
Copyright © 2016, Texas Instruments Incorporated  
TPL0401A-10-Q1  
TPL0401B-10-Q1  
www.ti.com.cn  
ZHCSFW3 NOVEMBER 2016  
9 Detailed Description  
9.1 Overview  
The TPL0401x-10-Q1 has a single linear-taper digital potentiometer with 128 wiper positions and an end-to-end  
resistance of 10 kΩ. The potentiometer can be used as a three-terminal potentiometer. The main operation of  
TPL0401x-10-Q1 is in voltage divider mode.  
The low (L) terminal of the TPL0401x-10-Q1 is tied directly to GND. The high (H) and low (GND) terminals of  
TPL0401-10-Q1 are equivalent to the fixed terminals of a mechanical potentiometer. The H terminal must have a  
higher voltage than the low terminal (GND). The position of the wiper (W) terminal is controlled by the value in  
the Wiper Resistance (WR) 8-bit register. When the WR register contains all zeroes (zero-scale), the wiper  
terminal is closest to its L terminal. As the value of the WR register increases from all zeroes to all ones (full-  
scale), the wiper moves from the position closest to the GND terminal to the position closest to the H terminal. At  
the same time, the resistance between W and GND increases, whereas the resistance between W and H  
decreases.  
9.2 Functional Block Diagram  
I
ë55  
Çt[0401!/.-10-v1  
{ꢀ[  
WIPER  
REGISTER  
I2C INTERFACE  
í
{5!  
Db5 Copyright © 2016, Texas Instruments Incorporated  
9.3 Feature Description  
The TPL0401x-10-Q1 device is a single-channel, linear taper digital potentiometer with 128 wiper positions.  
Default power up state for the TPL0401x-10-Q1 is mid code (0×40). The TPL0401x-10-Q1 has the low terminal  
connected to GND internally. The position of the wiper can be adjusted using an I2C interface. The TPL0401x-10-  
Q1 is available in a 6-pin SOT package with a specified temperature range of –40°C to +125°C. The part has a  
10-kΩ end-to-end resistance and can operate with a supply voltage range of 2.7 V to 5.5 V. This kind of product  
is widely used in setting the voltage reference for low power DDR3 memory. The TPL0401x-10-Q1 has the low  
terminal internal and connected to GND.  
9.4 Device Functional Modes  
9.4.1 Voltage Divider Mode  
The digital potentiometer generates a voltage divider when all three terminals are used. The voltage divider at  
wiper-to-H and wiper-to-GND is proportional to the input voltage at H to L (see Figure 11).  
Copyright © 2016, Texas Instruments Incorporated  
11  
TPL0401A-10-Q1  
TPL0401B-10-Q1  
ZHCSFW3 NOVEMBER 2016  
www.ti.com.cn  
Device Functional Modes (continued)  
H
VHW  
VH - VL  
W
VWL  
L
Figure 11. Equivalent Circuit for Voltage Divider Mode  
For example, connecting terminal H to 5 V, the output voltage at terminal W can range from 0 V to 5 V.  
Equation 1 is the general equation defining the output voltage at terminal W for any valid input voltage applied to  
terminal H and terminal L (GND).  
D
VW = VWL = (VH - VL)ì  
128  
(1)  
The voltage difference between terminal H and terminal W can also be calculated in Equation 2.  
D
VHW = (VH - VL)ì 1-  
÷
«
÷
128  
«
where  
D is the decimal value of the wiper code  
(2)  
Table 1 shows the ideal values for DPOT with end-to end resistance of 10 k. The absolute values of resistance  
can vary significantly but the Ratio (RWL/RTOT) is extremely accurate.  
The linearity values are relative linearity values (that is, linearity after zero-scale and full-scale offset errors are  
removed). Consider this when expecting a certain absolute accuracy because some error is introduced when the  
device gets close in magnitude to the offset errors.  
Note that the MSB is always discarded during a write to the wiper position register. For example, if 0×80 is  
written to the wiper position register, a read returns 0×00. Another similar example is if 0×FF is written, then  
0×7F is read.  
Table 1. Resistance Values Table  
STEP  
HEX  
0×00  
0×01  
0×02  
0×03  
0×04  
0×05  
0×06  
0×07  
0×08  
0×09  
0×0A  
RWL (K)  
0.00  
RHW (K)  
10.00  
9.92  
RWL/RTOT  
0.0%  
0.8%  
1.6%  
2.3%  
3.1%  
3.9%  
4.7%  
5.5%  
6.3%  
7.0%  
7.8%  
0
1
0.08  
2
0.16  
9.84  
3
0.23  
9.77  
4
0.31  
9.69  
5
0.39  
9.61  
6
0.47  
9.53  
7
0.55  
9.45  
8
0.63  
9.38  
9
0.70  
9.30  
10  
0.78  
9.22  
12  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
TPL0401A-10-Q1  
TPL0401B-10-Q1  
www.ti.com.cn  
ZHCSFW3 NOVEMBER 2016  
Table 1. Resistance Values Table (continued)  
STEP  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
HEX  
0×0B  
0×0C  
0×0D  
0×0E  
0×0F  
0×10  
0×11  
0×12  
0×13  
0×14  
0×15  
0×16  
0×17  
0×18  
0×19  
0×1A  
0×1B  
0×1C  
0×1D  
0×1E  
0×1F  
0×20  
0×21  
0×22  
0×23  
0×24  
0×25  
0×26  
0×27  
0×28  
0×29  
0×2A  
0×2B  
0×2C  
0×2D  
0×2E  
0×2F  
0×30  
0×31  
0×32  
0×33  
0×34  
0×35  
0×36  
0×37  
0×38  
0×39  
RWL (K)  
0.86  
0.94  
1.02  
1.09  
1.17  
1.25  
1.33  
1.41  
1.48  
1.56  
1.64  
1.72  
1.80  
1.88  
1.95  
2.03  
2.11  
2.19  
2.27  
2.34  
2.42  
2.50  
2.58  
2.66  
2.73  
2.81  
2.89  
2.97  
3.05  
3.13  
3.20  
3.28  
3.36  
3.44  
3.52  
3.59  
3.67  
3.75  
3.83  
3.91  
3.98  
4.06  
4.14  
4.22  
4.30  
4.38  
4.45  
RHW (K)  
9.14  
9.06  
8.98  
8.91  
8.83  
8.75  
8.67  
8.59  
8.52  
8.44  
8.36  
8.28  
8.20  
8.13  
8.05  
7.97  
7.89  
7.81  
7.73  
7.66  
7.58  
7.50  
7.42  
7.34  
7.27  
7.19  
7.11  
7.03  
6.95  
6.88  
6.80  
6.72  
6.64  
6.56  
6.48  
6.41  
6.33  
6.25  
6.17  
6.09  
6.02  
5.94  
5.86  
5.78  
5.70  
5.63  
5.55  
RWL/RTOT  
8.6%  
9.4%  
10.2%  
10.9%  
11.7%  
12.5%  
13.3%  
14.1%  
14.8%  
15.6%  
16.4%  
17.2%  
18.0%  
18.8%  
19.5%  
20.3%  
21.1%  
21.9%  
22.7%  
23.4%  
24.2%  
25.0%  
25.8%  
26.6%  
27.3%  
28.1%  
28.9%  
29.7%  
30.5%  
31.3%  
32.0%  
32.8%  
33.6%  
34.4%  
35.2%  
35.9%  
36.7%  
37.5%  
38.3%  
39.1%  
39.8%  
40.6%  
41.4%  
42.2%  
43.0%  
43.8%  
44.5%  
Copyright © 2016, Texas Instruments Incorporated  
13  
TPL0401A-10-Q1  
TPL0401B-10-Q1  
ZHCSFW3 NOVEMBER 2016  
www.ti.com.cn  
Table 1. Resistance Values Table (continued)  
STEP  
HEX  
0×3A  
0×3B  
0×3C  
0×3D  
0×3E  
0×3F  
0×40  
0×41  
0×42  
0×43  
0×44  
0×45  
0×46  
0×47  
0×48  
0×49  
0×4A  
0×4B  
0×4C  
0×4D  
0×4E  
0×4F  
0×50  
0×51  
0×52  
0×53  
0×54  
0×55  
0×56  
0×57  
0×58  
0×59  
0×5A  
0×5B  
0×5C  
0×5D  
0×5E  
0×5F  
0×60  
0×61  
0×62  
0×63  
0×64  
0×65  
0×66  
0×67  
0×68  
RWL (K)  
4.53  
4.61  
4.69  
4.77  
4.84  
4.92  
5.00  
5.08  
5.16  
5.23  
5.31  
5.39  
5.47  
5.55  
5.63  
5.70  
5.78  
5.86  
5.94  
6.02  
6.09  
6.17  
6.25  
6.33  
6.41  
6.48  
6.56  
6.64  
6.72  
6.80  
6.88  
6.95  
7.03  
7.11  
7.19  
7.27  
7.34  
7.42  
7.50  
7.58  
7.66  
7.73  
7.81  
7.89  
7.97  
8.05  
8.13  
RHW (K)  
5.47  
5.39  
5.31  
5.23  
5.16  
5.08  
5.00  
4.92  
4.84  
4.77  
4.69  
4.61  
4.53  
4.45  
4.38  
4.30  
4.22  
4.14  
4.06  
3.98  
3.91  
3.83  
3.75  
3.67  
3.59  
3.52  
3.44  
3.36  
3.28  
3.20  
3.13  
3.05  
2.97  
2.89  
2.81  
2.73  
2.66  
2.58  
2.50  
2.42  
2.34  
2.27  
2.19  
2.11  
2.03  
1.95  
1.88  
RWL/RTOT  
45.3%  
46.1%  
46.9%  
47.7%  
48.4%  
49.2%  
50.0%  
50.8%  
51.6%  
52.3%  
53.1%  
53.9%  
54.7%  
55.5%  
56.3%  
57.0%  
57.8%  
58.6%  
59.4%  
60.2%  
60.9%  
61.7%  
62.5%  
63.3%  
64.1%  
64.8%  
65.6%  
66.4%  
67.2%  
68.0%  
68.8%  
69.5%  
70.3%  
71.1%  
71.9%  
72.7%  
73.4%  
74.2%  
75.0%  
75.8%  
76.6%  
77.3%  
78.1%  
78.9%  
79.7%  
80.5%  
81.3%  
58  
59  
60  
61  
62  
63  
64 (POR Default)  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
14  
Copyright © 2016, Texas Instruments Incorporated  
TPL0401A-10-Q1  
TPL0401B-10-Q1  
www.ti.com.cn  
ZHCSFW3 NOVEMBER 2016  
Table 1. Resistance Values Table (continued)  
STEP  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
HEX  
0×69  
0×6A  
0×6B  
0×6C  
0×6D  
0×6E  
0×6F  
0×70  
0×71  
0×72  
0×73  
0×74  
0×75  
0×76  
0×77  
0×78  
0×79  
0×7A  
0×7B  
0×7C  
0×7D  
0×7E  
0×7F  
RWL (K)  
8.20  
8.28  
8.36  
8.44  
8.52  
8.59  
8.67  
8.75  
8.83  
8.91  
8.98  
9.06  
9.14  
9.22  
9.30  
9.38  
9.45  
9.53  
9.61  
9.69  
9.77  
9.84  
9.92  
RHW (K)  
1.80  
1.72  
1.64  
1.56  
1.48  
1.41  
1.33  
1.25  
1.17  
1.09  
1.02  
0.94  
0.86  
0.78  
0.70  
0.63  
0.55  
0.47  
0.39  
0.31  
0.23  
0.16  
0.08  
RWL/RTOT  
82.0%  
82.8%  
83.6%  
84.4%  
85.2%  
85.9%  
86.7%  
87.5%  
88.3%  
89.1%  
89.8%  
90.6%  
91.4%  
92.2%  
93.0%  
93.8%  
94.5%  
95.3%  
96.1%  
96.9%  
97.7%  
98.4%  
99.2%  
9.5 Programming  
9.5.1 I2C General Operation and Overview  
9.5.1.1 START and STOP Conditions  
I2C communication with this device is initiated by the master sending a START condition and terminated by the  
master sending a STOP condition. A high-to-low transition on the SDA line while the SCL is high defines a  
START condition. A low-to-high transition on the SDA line while the SCL is high defines a STOP condition. See  
Figure 12.  
{/[  
{5!  
5ata Çransfer  
{Ç!wÇ  
/ondition  
{Çhꢀ  
/ondition  
Figure 12. Definition of START and STOP Conditions  
Copyright © 2016, Texas Instruments Incorporated  
15  
 
TPL0401A-10-Q1  
TPL0401B-10-Q1  
ZHCSFW3 NOVEMBER 2016  
www.ti.com.cn  
Programming (continued)  
9.5.1.2 Data Validity and Byte Formation  
One data bit is transferred during each clock pulse of the SCL. One byte is comprised of eight bits on the SDA  
line. See Figure 13. A byte may either be a device address, register address, or data written to or read from a  
slave.  
Data is transferred Most Significant Bit (MSB) first. Any number of data bytes can be transferred from the master  
to slave between the START and STOP conditions. Data on the SDA line must remain stable during the high  
phase of the clock period, as changes in the data line when the SCL is high are interpreted as control commands  
(START or STOP).  
SDA line stable while SCL line is high  
SCL  
1
0
1
1
1
ACK  
0
0
0
SDA  
MSB  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
LSB  
ACK  
Byte: 1010 1010 ( 0xAAh )  
Figure 13. Definition of Byte Formation  
9.5.1.3 Acknowledge (ACK) and Not Acknowledge (NACK)  
Each byte is followed by one ACK bit from the receiver. The ACK bit allows the receiver to communicate to the  
transmitter that the byte was successfully received and another byte may be sent.  
The transmitter must release the SDA line before the receiver can send the ACK bit. To send an ACK bit, the  
receiver shall pull down the SDA line during the low phase of the ACK/NACK-related clock period (period 9), so  
that the SDA line is stable low during the high phase of the ACK/NACK-related clock period. Consider setup and  
hold times. Figure 14 shows an example use of ACK.  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
TPL0401A-10-Q1  
TPL0401B-10-Q1  
www.ti.com.cn  
ZHCSFW3 NOVEMBER 2016  
Programming (continued)  
1
2
3
4
5
6
7
8
9
SCL  
SDA  
LSB  
R/W  
START  
Condition  
MSB  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
ACK  
Device Address  
Figure 14. Example Use of ACK  
When the SDA line remains high during the ACK/NACK-related clock period, this is a NACK signal. There are  
several conditions that lead to the generation of a NACK:  
The receiver is unable to receive or transmit because it is performing some real-time function and is not ready  
to start communication with the master.  
During the transfer, the receiver gets data or commands that it does not understand.  
During the transfer, the receiver cannot receive any more data bytes.  
A master-receiver is done reading data and indicates this to the slave through a NACK.  
Figure 15 shows an example use of NACK.  
1
2
3
4
5
6
7
8
9
SCL  
SDA  
LSB  
D0  
MSB  
D7  
STOP  
Condition  
D6  
D5  
D4  
D3  
D2  
D1  
NACK  
Data Byte N  
Figure 15. Example Use of NACK  
9.5.1.4 Repeated Start  
A repeated START condition may be used in place of a complete STOP condition follow by another START  
condition when performing a read function. The advantage of this is that the I2C bus does not become available  
after the stop and therefore prevents other devices from grabbing the bus between transfers.  
Copyright © 2016, Texas Instruments Incorporated  
17  
 
TPL0401A-10-Q1  
TPL0401B-10-Q1  
ZHCSFW3 NOVEMBER 2016  
www.ti.com.cn  
Programming (continued)  
9.5.2 Programing With I2C  
9.5.2.1 Write Operation  
To write on the I2C bus, the master sends a START condition on the bus with the address of the slave, as well  
as the last bit (the R/W bit) set to 0, which signifies a write. After the slave responds with an acknowledge, the  
master then sends the register address of the register to which it wishes to write. The slave acknowledges again,  
letting the master know that it is ready. After this, the master starts sending the register data to the slave until the  
master has sent all the data necessary (which is sometimes only a single byte), and the master terminates the  
transmission with a STOP condition. See Figure 16.  
ꢄaster controls {ꢀ! line  
{lave controls {ꢀ! line  
írite to one register in a device  
wegister !ddress ꢁ (8 bits)  
ꢀata .yte to wegister ꢁ (8 bits)  
ꢀevice ({lave) !ddress (7 bits)  
{
!6 !5 !4 !3 !2 !1 !0  
0
!
.7 .6 .5 .4 .3 .2 .1 .0  
!
ꢀ7 ꢀ6 ꢀ5 ꢀ4 ꢀ3 ꢀ2 ꢀ1 ꢀ0  
!
{Ç!wÇ  
w/í=0 !ꢃY  
!ꢃY  
!ꢃY {Çhꢂ  
Figure 16. Write Operation  
9.5.2.2 Read Operation  
Reading from a slave is very similar to writing, but requires some additional steps. in order to read from a slave,  
the master must first instruct the slave which register it wishes to read from. This is done by the master starting  
off the transmission in a similar fashion as the write, by sending the address with the R/W bit equal to 0  
(signifying a write), followed by the register address it wishes to read from. When the slave acknowledges this  
register address, the master sends a START condition again, followed by the slave address with the R/W bit set  
to 1 (Signifying a read). This time, the slave acknowledges the read request, and the master releases the SDA  
bus but continues supplying the clock to the slave. During this part of the transaction, the master becomes the  
master-receiver, and the slave becomes the slave-transmission.  
The master continues to send out the clock pulses, for each byte of data that it wishes to receive. At the end of  
every byte of data, the master sends an ACK to the slave, letting the slave know that it is ready for more data.  
When the master has received the number of bytes it was expecting (or needs to stop communication), it sends  
a NACK, signaling to the slave to halt communications and release the bus. The master follows this up with a  
STOP condition. Figure 17 shows the read operation from one register.  
18  
Copyright © 2016, Texas Instruments Incorporated  
 
TPL0401A-10-Q1  
TPL0401B-10-Q1  
www.ti.com.cn  
ZHCSFW3 NOVEMBER 2016  
Programming (continued)  
wead from one register in a device  
wegister !ddress ꢃ (8 bits)  
ꢀevice ({lave) !ddress (7 bits)  
!6 !5 !4 !3 !2 !1 !0  
ꢀata .yte from wegister ꢃ (8 bits)  
ꢀevice ({lave) !ddress (7 bits)  
!6 !5 !4 !3 !2 !1 !0  
{
0
!
.7 .6 .5 .4 .3 .2 .1 .0  
!
{
1
!
ꢀ7 ꢀ6 ꢀ5 ꢀ4 ꢀ3 ꢀ2 ꢀ1 ꢀ0 ꢃ!  
{Ç!wÇ  
w/í=0 !ꢁY  
!ꢁY {Çhꢂ {Ç!wÇ  
w/í=1 !ꢁY  
ꢃ!ꢁY {Çhꢂ  
wead from one register in a device (wepeated {tart)  
ꢀevice ({lave) !ddress (7 bits)  
!6 !5 !4 !3 !2 !1 !0  
wegister !ddress ꢃ (8 bits)  
ꢀevice ({lave) !ddress (7 bits)  
ꢀata .yte from wegister ꢃ (8 bits)  
{
0
!
.7 .6 .5 .4 .3 .2 .1 .0  
!
{r !6 !5 !4 !3 !2 !1 !0  
1
!
ꢀ7 ꢀ6 ꢀ5 ꢀ4 ꢀ3 ꢀ2 ꢀ1 ꢀ0 ꢃ!  
{Ç!wÇ  
w/í=0  
!ꢁY  
!ꢁY wepeated {Ç!wÇ  
!ꢁY  
w/í=1  
ꢃ!ꢁY {Çhꢂ  
Figure 17. Read Operation from One Register  
wead from one register in a device ꢀith single register  
ꢁevice ({lave) !ddress (7 bits)  
ꢁata .yte from wegister (8 bits)  
{
!6 !5 !4 !3 !2 !1 !0  
1
!
ꢁ7 ꢁ6 ꢁ5 ꢁ4 ꢁ3 ꢁ2 ꢁ1 ꢁ0 ꢂ!  
{Ç!wÇ  
wꢅí=1 !/Y  
ꢂ!/Y {Çꢄꢃ  
Figure 18. Short Read Operation  
The TPL0401x-10-Q1 has 1 register, and it is not a requirement that the register address be sent before a read.  
A shorter read allows the user to simply send a read request to the device address as shown in Figure 18.  
9.6 Register Maps  
9.6.1 Slave Address  
Table 2 and Table 3 show the TPL0401A-10-Q1 and TPL0401B-10-Q1 bit address repectively.  
Table 2. TPL0401A-10-Q1 Bit Address  
BIT 7  
(MSB)  
BIT 6  
1
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
0
BIT 0  
(LSB)  
0
0
1
1
1
R/W  
Table 3. TPL0401B-10-Q1 Bit Address  
BIT 7  
(MSB)  
BIT 6  
1
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
0
BIT 0  
(LSB)  
0
1
1
1
1
R/W  
Copyright © 2016, Texas Instruments Incorporated  
19  
 
 
 
TPL0401A-10-Q1  
TPL0401B-10-Q1  
ZHCSFW3 NOVEMBER 2016  
www.ti.com.cn  
9.6.2 Register Address  
Following the successful acknowledgment of the address byte, the bus master sends a command byte as shown  
in Figure 19, which is stored in the Control Register in the TPL0401x-10-Q1. The TPL0401x-10-Q1 has only 1  
register, but requires the command byte be sent during communication.  
B7 B6  
B5 B4 B3 B2 B1 B0  
Figure 19. Register Address Byte  
Table 4 shows the TPL0401x-10-Q1 register address byte.  
Table 4. Register Address Byte  
REGISTER ADDRESS BITS  
REGISTER  
ADDRESS  
(HEX)  
POWER-UP  
DEFAULT  
REGISTER  
PROTOCOL  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0100 0000  
(0×40)  
0
0
0
0
0
0
0
0
0×00  
Wiper Position  
Read/Write byte  
See Table 1 for more information on the wiper position register values. Note that the MSB is always discarded  
during a write to the wiper position register. For example, if 0×80 is written to the wiper position register, a read  
returns 0×00. Another similar example is if 0×FF is written, then 0×7F is read.  
20  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TPL0401A-10-Q1  
TPL0401B-10-Q1  
www.ti.com.cn  
ZHCSFW3 NOVEMBER 2016  
10 Application and Implementation  
10.1 Application Information  
There are many applications in which voltage division is needed through the use of a digital potentiometer such  
as the TPL0401x-10-Q1; this is one example of the many. In conjunction with many amplifiers, the TPL0401x-10-  
Q1 can effectively be used in voltage divider mode to create a buffer to adjust the reference voltage for DDR3  
DIMM1 Memory.  
10.2 Typical Application  
1.ꢀ ë  
+
1 k  
55w3 5Laa1  
VREF  
-
1 kΩ  
5thÇ  
ht-!at  
Çt[0401!/ꢁ-10-v1  
Copyright © 2016, Texas Instruments Incorporated  
Figure 20. DDR3 Voltage Reference Adjustment  
10.2.1 Design Requirements  
Table 5 lists the design parameters for this example.  
Table 5. Design Parameters  
PARAMETER  
Input voltage  
VREF  
EXAMPLE VALUE  
1.5 V  
0 V to 0.75 V  
10.2.2 Detailed Design Procedure  
The TPL0401x-10-Q1 can be used in voltage divider mode with a unity-gain op amp buffer to provide a clean  
voltage reference for DDR3 DIMM1 Memory. The analog output voltage, VREF1 is determined by the wiper setting  
programmed through the I2C bus.  
The op amp is required to buffer the high-impedance output of the TPL0401x-10-Q1 or else loading placed on  
the output of the voltage divider affects the output voltage.  
Copyright © 2016, Texas Instruments Incorporated  
21  
 
TPL0401A-10-Q1  
TPL0401B-10-Q1  
ZHCSFW3 NOVEMBER 2016  
www.ti.com.cn  
10.2.3 Application Curve  
The voltage, 1.5 V, applied to terminal H of TPL0401x-10-Q1 determines the voltage that is buffered by the unity-  
gain op amp and divided as the DDR3 DIMM1 voltage reference. By using the TPL0401x-10-Q1, and dividing the  
1.5 V, a maximum of 0.75 V is applied to the buffer and passed to the voltage divider. The output voltage then  
ranges from 0 V to 0.75 V.  
0.8  
0.6  
0.4  
0.2  
0
0
8
16  
24  
32  
40  
48  
56  
64  
72  
80  
88  
96  
104  
112  
120  
128  
TPL0401A/B Code (Digital Input)  
D001  
Figure 21. TPL0401-10-Q1 Digital Input vs Reference Voltage for DDR3 DIMM Memory  
22  
Copyright © 2016, Texas Instruments Incorporated  
TPL0401A-10-Q1  
TPL0401B-10-Q1  
www.ti.com.cn  
ZHCSFW3 NOVEMBER 2016  
11 Power Supply Recommendations  
11.1 Power Sequence  
Protection diodes limit the voltage compliance at SDA, SCL, terminal H, and terminal W, making it important to  
power up VDD first before applying any voltage to SDA, SCL, terminal H, and terminal W. The diodes are forward-  
biasing, meaning VDD can be powered unintentionally if VDD is not powered first. The ideal power-up sequence is  
VDD, digital inputs, and VW and VH. The order of powering digital inputs, VH and VW does not matter as long as  
they are powered after VDD  
.
11.2 Power-On Reset Requirements  
In the event of a glitch or data corruption, the TPL0401-10-Q1 can be reset to its default conditions by using the  
power-on reset feature. Power-on reset requires that the device go through a power cycle to be completely reset.  
This reset also happens when the device is powered on for the first time in an application.  
V
DD  
Ramp-Up  
Ramp-Down  
Re-Ramp-Up  
t
TRR_GND  
Time  
Time to Re-Ramp  
t
t
t
RT  
FT  
RT  
Figure 22. VDD is Lowered to 0 V and then Ramped Up to VDD  
Table 6 specifies the performance of the power-on reset feature for TCA6408A for both types of power-on reset.  
Table 6. Recommended Supply Sequencing and Ramp Rates at TA = 25°C(1)  
PARAMETER  
MIN  
0.0001  
0.0001  
1
MAX UNIT  
tFT  
Fall rate  
See Figure 22  
See Figure 22  
See Figure 22  
1000  
1000  
ms  
ms  
μs  
tRT  
Rise rate  
tRR_GND  
Time to re-ramp (when VDD drops to GND)  
(1) Not tested. Specified by design.  
11.3 I2C Communication After Power Up  
In order to ensure a complete device reset after a power up condition, the user must wait 120 µs after power up  
before initiating communication with the TPL0401x-10-Q1. See Figure 23 for an example waveform.  
VDD  
VDD MIN  
120 µsx  
SDA  
START  
ADDR  
Figure 23. Recommended Start Up Sequence  
Copyright © 2016, Texas Instruments Incorporated  
23  
 
 
 
TPL0401A-10-Q1  
TPL0401B-10-Q1  
ZHCSFW3 NOVEMBER 2016  
www.ti.com.cn  
11.4 Wiper Position While Unpowered and After Power Up  
When DPOT is powered off, the impedance of the device is undefined and not known.  
Upon power-up, the device returns to 0×40h code because this device does not contain non-volatile memory.  
24  
Copyright © 2016, Texas Instruments Incorporated  
TPL0401A-10-Q1  
TPL0401B-10-Q1  
www.ti.com.cn  
ZHCSFW3 NOVEMBER 2016  
12 Layout  
12.1 Layout Guidelines  
To ensure reliability of the device, follow common printed-circuit board (PCB) layout guidelines:  
Leads to the input must be as direct as possible with a minimum conductor length.  
The ground path must have low resistance and low inductance.  
Use short trace-lengths to avoid excessive loading.  
It is common to have a dedicated ground plane on an inner layer of the board.  
Terminals that are connected to ground must have a low-impedance path to the ground plane in the form of  
wide polygon pours and multiple vias.  
Use bypass capacitors on power supplies and placed them as close as possible to the VDD pin.  
Apply low equivalent series resistance (0.1-μF to 10-μF tantalum or electrolytic capacitors) at the supplies to  
minimize transient disturbances and to filter low-frequency ripple.  
To reduce the total I2C bus capacitance added by PCB parasitics, data lines (SCL and SDA) must be as short  
as possible and the widths of the traces must also be minimized (for example, 5 to 10 mils depending on  
copper weight).  
12.2 Layout Example  
ëia to ë55 ꢀower ꢀlane  
ëia to Db5 ꢀlane  
ë55  
Db5  
I
í
TPL0401A/B-10-Q1  
{5!  
{/[  
Figure 24. Layout Recommendation  
版权 © 2016, Texas Instruments Incorporated  
25  
TPL0401A-10-Q1  
TPL0401B-10-Q1  
ZHCSFW3 NOVEMBER 2016  
www.ti.com.cn  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档ꢀ  
相关文档如下:  
I2C 总线上拉电阻计算》  
《理解 I2C 总线》  
TPL0401 评估模块用户指南》  
13.2 相关链接  
下面的表格列出了快速访问链接。范围包括技术文档、支持和社区资源、工具和软件,以及样片或购买的快速访  
问。  
7. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TPL0401A-Q1  
TPL0401B-Q1  
13.3 接收文档更新通知  
如需接收文档更新通知,请访问 ti.com 上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册后,即可每周定  
期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
13.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
26  
版权 © 2016, Texas Instruments Incorporated  
TPL0401A-10-Q1  
TPL0401B-10-Q1  
www.ti.com.cn  
ZHCSFW3 NOVEMBER 2016  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPL0401A-10QDCKRQ1  
TPL0401B-10QDCKRQ1  
ACTIVE  
ACTIVE  
SC70  
SC70  
DCK  
DCK  
6
6
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
15N  
15O  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPL0401A-10DCKR

128 TAPS Single Channel Digital Potentiometer with I2C Interface
TI

TPL0401A-10QDCKRQ1

具有 I2C 接口(地址 0101110)的汽车类 128 抽头单通道数字电位器 | DCK | 6 | -40 to 125
TI

TPL0401A-10_15

128 TAPS Single Channel Digital Potentiometer with I2C Interface
TI

TPL0401ADCK

Works with low cost MSP430 based LaunchPad platform
TI

TPL0401B

128 TAPS Single Channel Digital Potentiometer with I2C Interface
TI

TPL0401B-10

具有 I2C 接口(地址 0111110)的 128 抽头单通道数字电位器
TI

TPL0401B-10-Q1

具有 I2C 接口(地址 0111110)的汽车类 128 抽头单通道数字电位器
TI

TPL0401B-10DCKR

128 TAPS Single Channel Digital Potentiometer with I2C Interface
TI

TPL0401B-10QDCKRQ1

具有 I2C 接口(地址 0111110)的汽车类 128 抽头单通道数字电位器 | DCK | 6 | -40 to 125
TI

TPL0401BDCK

Works with low cost MSP430 based LaunchPad platform
TI

TPL0401C

128 TAPS Single Channel Digital Potentiometer with I2C Interface
TI

TPL0401C-50DCKR

128 TAPS Single Channel Digital Potentiometer with I2C Interface
TI