TPS12110AQDGXRQ1 [TI]

具有保护和诊断功能的汽车用 3.5V 至 40V 高侧驱动器 | DGX | 19 | -40 to 125;
TPS12110AQDGXRQ1
型号: TPS12110AQDGXRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有保护和诊断功能的汽车用 3.5V 至 40V 高侧驱动器 | DGX | 19 | -40 to 125

驱动 驱动器
文件: 总42页 (文件大小:3532K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
TPS1211-Q1 具有保护和诊断功能45V 汽车智能高侧驱动器  
1 特性  
3 说明  
• 具有符AEC-Q100 标准的下列特性  
TPS1211-Q1 系列是一款具有保护和诊断功能的 45V  
智能高侧驱动器。该器件具3.5V 40V 的宽工作电  
压范围适用12V 系统设计。  
– 器件温度等1:  
40°C +125°C 环境工作温度范围  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C4B  
功能安全型  
它具有强大4A 灌电(PD) 和拉电(PU) 栅极驱动  
可在大电流系统设计中使用并联 FET 进行电源开  
关。INP 用作栅极驱动器控制输入。  
有助于进行功能安全系统设计的文档  
3.5V 40V 输入范围绝对最大45V)  
• 具100µA 容量的集12V 电荷泵  
1.7µA 低关断电流EN/UVLO = 低电平)  
• 强大的上拉和下拉栅极驱动器4A  
• 驱动外部背对N MOSFET  
• 具有集成预充电开关驱动(TPS12111-Q1) 以驱动  
容性负载的型号  
• 具有可调节响应时(TMR) 和故障标志输出  
(FLT_I) 的两级可调过流保护IWRNISCP)  
• 快速短路保护1.2µs (TPS12111-Q1)5µs  
(TPS12110-Q1)  
该器件具有精确的电流检测30mV 下为 ±2%输  
(IMON) 支持系统可用于能源管理。该器件集成了  
具有 FLT_I 输出的两级过流保护具有完全可调的阈  
值和响应时间。可以配置自动重试和锁存故障行为。该  
器件具有远程过热保护FLT_T 输出。  
TPS12111-Q1 预充电驱动器 (G) 控制输入  
(INP_G) 集成此功能支持必须驱动大容性负载的设  
计。在关断模式下 (EN/UVLO < 0.3V)控制器的 IQ  
1.7µA。  
TPS1211-Q1 可采19 VSSOP 封装。  
• 精确的模拟电流监测输(IMON) 30mV 下为  
±2% (Vsense)  
• 可调节欠压锁(UVLO) 和过压保(OV)  
• 具有故障标志输(FLT_T) 的远程过热检测  
(DIODE)  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPS12110-Q1、  
TPS12111-Q1  
DGXVSSOP、  
19)  
5.10mm × 3.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
TPS4811-Q1 引脚对引脚兼容  
2 应用  
配电盒  
车身控制模块  
直流/直流转换器  
Q2  
R
Q2  
Q1  
Q3  
Q1  
RSNS  
VBATT  
(12 V)  
VOUT  
RSET  
RISCP  
RSNS  
VOUT  
CBLK  
VBATT  
(12 V)  
CBST  
VS ISCP CS+ CS-  
EN/UVLO  
PU PD DIODE  
SRC  
BST  
RSET  
RISCP  
VS ISCP  
R1  
R2  
VCC  
R4  
CS+ CS-  
PU PD DIODE  
G
SRC  
BST  
TPS12110-Q1  
CBST  
VCC  
R1  
OFF  
ON  
OV  
EN/UVLO  
INP  
FLT_I  
VCC  
R5  
R3  
TPS12111-Q1  
ON OFF  
VCC  
R2  
FLT_T  
INP  
ON OFF  
IMON  
RIMON  
IWRN  
TMR  
GND  
OFF  
ON  
INP_G  
FLT_I  
FLT_T  
IMON  
RIWRN  
IWRN  
RIWRN  
TMR  
GND  
CTMR  
CTMR  
RIMON  
适用于加热器负载的智能高侧驱动器  
适用于直流/直流转换器的断路器  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSEQ9  
 
 
 
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Table of Contents  
9 Application and Implementation..................................20  
9.1 Application Information............................................. 20  
9.2 Typical Application: Driving Zonal Controller  
Loads on 12-V Line in Power Distribution Unit............20  
9.3 Typical Application: Reverse Polarity Protection  
with TPS12110-Q1...................................................... 27  
9.4 Power Supply Recommendations.............................28  
9.5 Layout....................................................................... 29  
10 Device and Documentation Support..........................31  
10.1 接收文档更新通知................................................... 31  
10.2 支持资源..................................................................31  
10.3 Trademarks.............................................................31  
10.4 Electrostatic Discharge Caution..............................31  
10.5 术语表..................................................................... 31  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................6  
7.6 Switching Characteristics............................................7  
8 Detailed Description........................................................9  
8.1 Overview.....................................................................9  
8.2 Functional Block Diagram...........................................9  
8.3 Feature Description...................................................10  
8.4 Device Functional Modes..........................................19  
Information.................................................................... 31  
11.1 Tape and Reel Information......................................32  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (July 2022) to Revision A (September 2022)  
Page  
• 进行了全面更新以包TPS12110-Q1 可订购产品............................................................................................. 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS1211-Q1  
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
5 Device Comparison Table  
TPS12110-Q1  
TPS12111-Q1  
Overvoltage protection  
Precharge driver  
Yes  
No  
No  
Yes  
Short-circuit protection  
response time  
5 µs  
1.2 µs  
Overtemperature fault  
Auto-retry with fixed 512-ms timer  
Latch-off  
response  
6 Pin Configuration and Functions  
1
EN/UVLO  
INP_G  
INP  
1
EN/UVLO  
VS  
VS  
20  
20  
ISCP  
OV  
2
3
2
3
ISCP  
CS+  
CS-  
19  
18  
17  
19  
18  
17  
CS+  
CS-  
INP  
FLT_T  
4
5
4
5
FLT_T  
FLT_I  
FLT_I  
6
6
PU  
PD  
GND  
GND  
15  
PU  
PD  
15  
7
8
IMON  
IMON  
7
8
14  
13  
14  
13  
IWRN  
TMR  
IWRN  
TMR  
SRC  
SRC  
BST  
12  
11  
9
12  
11  
9
BST  
G
10  
N.C  
10  
DIODE  
DIODE  
6-1. VSSOP 19-Pin DGX Top View  
6-1. Pin Functions  
PIN  
TPS12110-Q1  
TPS12111-Q1  
TYPE  
DESCRIPTION  
NAME  
DGX-19 (VSSOP)  
EN/UVLO input. A voltage on this pin above 1.21 V enables normal  
operation. Forcing this pin below 0.3 V shuts down the TPS1211x-  
Q1, reducing quiescent current to approximately 3 µA (typical).  
Optionally connect to the input supply through a resistive divider to  
set the undervoltage lockout. When EN/UVLO is left floating an  
internal pulldown of 100 nA pulls EN/UVLO low and keeps the  
device in OFF state.  
EN/UVLO  
1
1
I
Adjustable overvoltage threshold input. Connect a resistor ladder  
from input supply, OV to GND. When the voltage at OVP exceeds  
the over voltage cutoff threshold then the PD is pulled down to  
SRC turning OFF the external FET. When the voltage at OV goes  
below OV falling threshold then PU gets pulled up to BST, turning  
ON the external FET.  
OV  
2
I
OV must be connected to GND when not used. When OV is left  
floating an internal pulldown of 100 nA pulls OV low and keeps PU  
pulled up to BST.  
Input signal. CMOS compatible input reference to GND that sets  
the state of G pin. INP_G has an internal pulldown to GND to keep  
G pulled to SRC when INP_G is left floating.  
INP_G  
INP  
2
3
I
I
Input S=signal. CMOS compatible input reference to GND that sets  
the state of PD and PU pins. INP has an internal pulldown to GND  
to keep PD pulled to SRC when INP is left floating.  
3
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS1211-Q1  
 
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6-1. Pin Functions (continued)  
PIN  
TPS12110-Q1  
TPS12111-Q1  
TYPE  
DESCRIPTION  
NAME  
DGX-19 (VSSOP)  
Open drain fault output. This pin asserts low when overtemperature  
fault is detected.  
FLT_T  
4
5
4
O
Open drain fault output. This pin asserts low after the voltage on  
the TMR pin has reached the fault threshold of 1.1V. this pin  
indicates the pass transistor is about to turn off due to an  
overcurrent condition. The FLT_I pin does not go to a high-  
impedance state until the overcurrent condition and the auto-retry  
time expire.  
FLT_I  
5
O
GND  
6
7
6
7
G
O
Connect GND to system ground  
Analog current monitor output. This pin sources a scaled down  
ratio of current through the external current sense resistor RSNS. A  
resistor from this pin to GND converts current to proportional  
voltage. If unused, connect it to GND.  
IMON  
Overcurrent detection setting. A resistor across IWRN to GND sets  
the over current comparator threshold.  
Connect IWRN to GND if over current protection feature is not  
desired.  
IWRN  
TMR  
8
9
8
9
I
I
I
Fault timer input. A capacitor across TMR pin to GND sets the  
times for fault warning, fault turn-off (FLT_I) and retry periods.  
Leave it open for fastest setting. Connect TMR to GND to disable  
overcurrent protection.  
Diode connection for temperature sensing. Connect it to base and  
collector of an MMBT3904 NPN BJT. Connect DIODE to GND, if  
remote over temperature sensing and protection feature is not  
desired.  
DIODE  
10  
10  
GATE of external Precharge FET. Connect to the GATE of the  
external FET  
G
11  
O
N.C  
11  
No connect  
High-side bootstrapped supply. An external capacitor with a  
minimum value of > Qg(tot) of the external FET must be connected  
between this pin and SRC.  
BST  
SRC  
PD  
12  
13  
14  
12  
13  
14  
O
O
O
Source connection of the external FET  
High current gate driver pulldown. This pin pulls down to SRC. For  
the fastest turn-off, tie this pin directly to the gate of the external  
high side MOSFET.  
High current gate driver pullup. This pin pulls up to BST. Connect  
this pin to PD for maximum gate drive transition speed. A resistor  
can be connected between this pin and the gate of the external  
MOSFET to control the inrush current during turn-on.  
PU  
15  
15  
O
CS-  
17  
18  
17  
18  
I
I
Current sense negative input  
Current sense positive input. Connect a 100-Ωresistor across  
CS+ to the external current sense resistor.  
CS+  
I short-circuit detection threshold setting. Connect ISCP to CSif  
short-circuit protection is not desired.  
ISCP  
VS  
19  
20  
19  
20  
I
Power Supply pin of the controller  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS1211-Q1  
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
1  
MAX  
45  
UNIT  
VS, CS+, CS, ISCP to GND  
VS, CS+, CSto SRC  
SRC to GND  
45  
60  
30  
0.3  
0.3  
1  
45  
PU, PD, G, BST to SRC  
16  
V
Input Pins  
TMR, IWRN, DIODE to GND  
5.5  
20  
OV, EN/UVLO, INP, INP_G, FLT_I , FLT_T to GND  
0.3  
10  
CS+ to CS–  
0.3  
I(FLT_I), I(FLT_T)  
mA  
V
I(CS+) to I(CS) , 1ms  
PU, PD, G, BST to GND  
100  
60  
100  
30  
1  
Output Pins  
IMON to GND  
5.5  
150  
150  
(2)  
Operating junction temperature, Tj  
Storage temperature, Tstg  
40  
40  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
7.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
±750  
±500  
Corner pins (EN/UVLO, DIODE,  
V(ESD) Electrostatic discharge  
V
Charged device model (CDM), per  
AEC Q100-011  
G, VS)  
Other pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0
NOM  
MAX  
40  
15  
15  
5
UNIT  
VS, CS+, CS- to GND  
EN/UVLO, OV to GND  
FLT_I, FLT_T to GND  
IMON to GND  
Input Pins  
0
V
0
Output  
Pins  
0
VS, SRC to GND  
22  
0.1  
40  
nF  
µF  
°C  
External  
Capacitor  
BST to SRC  
Tj  
Operating Junction temperature(2)  
150  
(1) Recommended Operating Conditions are conditions under which the device is intended to be functional. For specifications and test  
conditions, see Electrical Characteristics.  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS1211-Q1  
 
 
 
 
 
 
 
 
 
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
UNIT  
7.4 Thermal Information  
TPS1211x-Q1  
DGX  
THERMAL METRIC(1)  
19 PINS  
87  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
26.5  
43.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.5  
43.3  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
TJ = 40 to +125. V(S) = V(CS+) = V(CS) = 12 V, V(BSTSRC) = 12 V, V(SRC) = 0 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY VOLTAGE  
VS  
Operating input voltage  
3.5  
40  
V
V
V(S_PORR)  
V(S_PORF)  
Input supply POR threshold, rising  
Input supply POR threshold, falling  
3
2.9  
500  
3
V
Total System Quiescent current, I(GND) V(EN/UVLO) = 2 V  
SHDN current, I(GND) V(EN/UVLO) = 0 V, V(SRC) = 0 V  
µA  
µA  
I(SHDN)  
ENABLE AND UNDERVOLTAGE LOCKOUT (EN/UVLO) INPUT  
V(UVLOR)  
V(UVLOF)  
UVLO threshold voltage, rising  
UVLO threshold voltage, falling  
1.16  
1.11  
1.18  
1.12  
1.2  
V
V
1.15  
Enable threshold voltage for low Iq  
shutdown, falling  
V(ENF)  
0.3  
V
OVER VOLTAGE PROTECTION (OV) INPUT TPS12110-Q1 Only  
V(OVR)  
V(OVF)  
Overvoltage threshold input, risIng  
Overvoltage threshold input, falling  
1.16  
1.11  
1.18  
1.12  
1.2  
V
V
TPS12110-Q1 Only  
1.15  
CHARGE PUMP (BST-SRC)  
I(BST)  
Charge Pump Supply current  
V(BST-SRC) = 10 V  
70  
11  
100  
µA  
V
Charge Pump Turn ON voltage  
Charge Pump Turnoff voltage  
V(BST-SRC)  
13  
8
V
V(BST-SRC) UVLO voltage threshold,  
rising  
V
V(BST UVLO)  
V(BST-SRC) UVLO voltage threshold,  
falling  
6
8
V
V
V(BST-SRC)  
Charge Pump Voltage at V(S) = 3.5 V  
GATE DRIVER OUTPUTS (PU, PD, G)  
I(PU)  
I(PD)  
Peak Source Current  
Peak Sink Current  
3.7  
4
A
A
Gate charge (sourcing) current, on  
state  
100  
135  
µA  
I(G)  
TPS12111-Q1 Only  
Gate discharge (sinking) current, off  
state  
mA  
CURRENT SENSE AND OVER CURRENT PROTECTION (CS+, CS-, IMON, ISCP, IWRN)  
RSET = 100, RIMON = 5k,  
10k(corresponds to VSNS = 6mV to  
30mV) Gain of 45 and 90 respectively.  
Input referred offset (VSNS to VIMON  
scaling)  
V(OS_SET)  
350  
µV  
350  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS1211-Q1  
 
 
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
TJ = 40 to +125. V(S) = V(CS+) = V(CS) = 12 V, V(BSTSRC) = 12 V, V(SRC) = 0 V  
PARAMETER  
TEST CONDITIONS  
RSET = 100R(IWRN) = 39.7 kΩ  
RSET = 100R(IWRN) = 120 kΩ  
MIN  
TYP  
30  
MAX UNIT  
OCP threshold threshold  
OCP threshold threshold  
SCP Input Bias current  
28  
32  
mV  
mV  
µA  
V(SNS_WRN)  
ISCP  
10  
13  
35  
15  
17  
45  
40  
mV  
mV  
R(ISCP) = 2.1 kΩ  
R(ISCP) = 750 Ω  
V(SNS_SCP)  
SCP threshold  
20  
DELAY TIMER (TMR)  
I(TMR_SRC_CB)  
I(TMR_SRC_FLT)  
I(TMR_SNK)  
TMR source current  
77  
2.5  
2.5  
µA  
µA  
µA  
TMR source current  
TMR sink current  
FAULT FLAG (FLT_I, FLT_T), INPUT CONTROLS (INP, INP_G)  
R(FLT_T)  
I(FLT_T)  
V(INP_H)  
V(INP_L)  
V(INP_G_H)  
V(INP_G_L)  
TEMPERATURE SENSING AND PROTECTION (DIODE)  
FLT Pull-down resistance  
70  
nA  
V
FLT Input leakage current  
400  
2
0 V V(FLT) 20 V  
0.8  
0.8  
V
2
V
TPS12111-Q1 Only  
V
High level  
Low level  
160  
10  
µA  
µA  
A/A  
I(DIODE)  
External diode current source  
Diode current ratio  
16  
T(DIODE_TSD_rising) DIODE sense TSD rising threshold  
155  
7.6 Switching Characteristics  
TJ = 40 to +125. V(CS+) = V(CS) = 12 V, V(BSTSRC) = 12 V, V(SRC) = 0 V  
PARAMETER  
TEST CONDITIONS  
INP to PU , CL = 47 nF  
INP to PD , CL = 47 nF  
MIN  
TYP  
2
MAX UNIT  
tPU(INP_H)  
tPD(INP_L)  
INP Turn ON propogation Delay  
INP Turn OFF propogation Delay  
µs  
µs  
1
INP_G to G , CL = 1  
nF, TPS12111-Q1 Only  
tG(INP_G_H)  
INP_G Turn ON propogation Delay  
25  
µs  
INP_G to G , CL = 1  
nF, TPS12111-Q1 Only  
tG(INP_G_L)  
INP_G Turn OFF propogation Delay  
UVLO Turn OFF Propogation Delay  
1
4
µs  
µs  
µs  
tPD(UVLO_OFF)  
tPD(VS_OFF)  
UVLO to PD , CL = 47 nF  
PD Turn OFF delay during input  
supply (Vs) interruption  
Vs V(SPOR_F) to PD , CL = 47 nF,  
INP = EN/UVLO = 2 V  
40  
VS V(SPOR_R) to PU , CL = 47 nF,  
INP = EN/UVLO = 2 V, V(BSTSRC)  
> V( BST UVLOR)  
PU Turn ON delay during input supply  
(Vs) recovery  
tPU(VS_ON)  
350  
350  
µs  
µs  
PU Turn ON delay during transition  
from shutdown mode to active mode  
with CBST pre-biased  
EN/UVLO to PU , CL = 47 nF,  
INP = 2 V, V(BSTSRC) > V( BST UVLOR)  
tPU(EN_ON)  
OV to PD , CL = 47  
nF, TPS12110-Q1 Only  
tPD(OV_OFF)  
OV Turn Off progopation Delay  
3
5
µs  
µs  
µs  
(VCS+ VCS) I(SC) to PD , CL =  
47 nF, TPS12110-Q1 Only  
Short Circuit Protection propogation  
Delay  
t(SC)  
(VCS+ VCS) I(SC) to PD , CL =  
47 nF, TPS12111-Q1 Only  
1.2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS1211-Q1  
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6 Switching Characteristics (continued)  
TJ = 40 to +125. V(CS+) = V(CS) = 12 V, V(BSTSRC) = 12 V, V(SRC) = 0 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
(VCS+ VCS) I(OC) to PD , CL =  
47 nF, C(TMR) = 0 nF  
24  
µs  
t(OC)  
Over current protection delay  
(VCS+ VCS) I(OC) to PD , CL =  
312  
290  
260  
512  
µs  
µs  
µs  
ms  
47 nF, C(TMR) = 18 nF  
tFLT_I(IFLT_ASSERT) FLT_I assertion delay  
tFLT_I(IFLT_DE_ASSER  
FLT_I de-assertion delay  
T)  
tFLT_T(AR)  
TSD Auto-retry  
TPS12110-Q1 Only  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS1211-Q1  
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS1211-Q1 family is a 45-V smart high-side drivers with protection and diagnostics. With wide operating  
voltage range of 3.5 V 40 V, the device is suitable for 12-V system designs.  
The device has a strong 4-A sink (PD) and source (PU) gate driver that enables power switching using parallel  
FETs in high current system designs. Use INP as the gate driver control input. MOSFET slew rate control (ON  
and OFF) is possible by placing external R-C components.  
The device has accurate current sensing (±2% at 30 mV) output (IMON) enabling systems for energy  
management. The device has integrated two-level, overcurrent protection with FLT_I output with complete  
adjustability of thresholds and response time. Auto-retry and latch-off fault behavior can be configured.  
The device features remote overtemperature protection with FLT_T output enabling robust system protection.  
TPS12110-Q1 has an accurate overvoltage protection (±3%), providing robust load protection.  
The TPS12111-Q1 integrates a precharge driver (G) with control input (INP_G). This feature enables system  
designs that must drive large capacitive loads by precharging first and then turning ON the main power FETs.  
TPS1211-Q1 has an accurate undervoltage protection (±3%) using the EN/UVLO pin. Pull EN/UVLO low (< 0.3  
V) to turn OFF the device and enter into shutdown mode. In shutdown mode, the controller draws a total IQ of 3  
µA (maximum) at 12-V supply input.  
8.2 Functional Block Diagram  
Q2  
RSNS  
Q1  
VOUT  
VBATT  
RISCP  
ISCP  
RSET  
CS+  
BST  
CS-  
DIODE  
VS  
PU  
PD  
SRC  
4 A  
3.7 A  
Remote  
Temp  
sense  
+
Internal  
Regulators  
EN  
14.5 µA  
EN  
3.1 V  
2.9 V  
EN  
R_Temp  
VINT  
POR  
PU/PD_ON/OFF  
+
PU/PD_ON/  
OFF  
CP (12 V)  
EN  
1V  
VS  
0.3V  
FLT_I  
100 µA  
+
+
UVLO  
EN/UVLO  
INP  
FLT_I  
FLT_T  
+
1.18 V  
1.11 V  
FLT_I  
70  
70  
CS-  
Gate Driver  
control  
logic  
EN  
Charge  
pump  
enable  
logic  
2 V  
+
VREF  
BST  
SRC  
0.8 V  
+
VINT  
FLT_T  
OV  
1.18 V  
1.11 V  
79 µA  
/ 2.5 µA  
FLT_T  
4.5 V  
6.5 V  
R_Temp  
TPS12110-Q1  
GND  
IMON  
RIMON  
IWRN  
RIWRN  
TMR  
CTMR  
8-1. TPS12110-Q1 Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS1211-Q1  
 
 
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
R
Q3  
V_Precharge  
Q2  
RSNS  
Q1  
VBATT  
VOUT  
RISCP  
ISCP  
RSET  
CS+  
BST  
CS-  
DIODE  
VS  
PU  
PD  
G
SRC  
4 A  
3.7 A  
0.14 A  
Remote  
Temp  
sense  
+
Internal  
Regulators  
EN  
14.5 µA  
EN  
3.1 V  
2.9 V  
G_ON/  
OFF  
EN  
VS  
R_Temp  
VINT  
POR  
100 µA  
PU/PD_ON/OFF  
+
PU/PD_ON/  
OFF  
G_ON/OFF  
EN  
BST  
CP (12 V)  
1 V  
0.3 V  
FLT_I  
+
+
UVLO  
EN/UVLO  
INP  
FLT_I  
100 µA  
FLT_T  
+
1.18 V  
1.11 V  
FLT_I  
70  
70  
CS-  
Gate Driver  
control  
logic  
EN  
2 V  
+
VREF  
Charge  
pump  
enable  
logic  
0.8 V  
BST  
+
FLT_T  
VINT  
INP_G  
SRC  
2 V  
79 µA  
/2.5 µA  
FLT_T  
0.8 V  
4.5 V  
6.5 V  
R_Temp  
TPS12111-Q1  
IMON  
RIMON  
GND  
IWRN  
RIWRN  
TMR  
CTMR  
8-2. TPS12111-Q1 Functional Block Diagram  
8.3 Feature Description  
8.3.1 Charge Pump and Gate Driver Output (VS, PU, PD, BST, SRC)  
8-3 shows a simplified diagram of the charge pump and gate driver circuit implementation. The device houses  
a strong 3.7-A source and 4-A sink gate drivers. The strong gate drivers enable paralleling of FETs in high power  
system designs ensuring minimum transition time in saturation region. A 12-V, 100-µA charge pump is derived  
from VS terminal and charges the external boot-strap capacitor, CBST that is placed across the gate driver (BST  
and SRC).  
In switching applications, if the charge pump supply demand is higher than 100 µA, then supply BST externally  
using a low leakage diode and 12-V supply as shown in the 8-3.  
VS is the supply pin to the controller. With VS applied and EN/UVLO pulled high, the charge pump turns ON and  
charges the CBST capacitor. After the voltage across CBST crosses V(BST_UVLOR), the GATE driver section is  
activated. The device has a 1-V (typical) UVLO hysteresis to ensure chattering less performance during initial  
GATE turn ON. Choose CBST based on the external FET QG and allowed dip during FET turn-ON. The charge  
pump remains enabled until the BST to SRC voltage reaches 12.3 V, typically, at which point the charge pump is  
disabled decreasing the current draw on the VS pin. The charge pump remains disabled until the BST to SRC  
voltage discharges to 11.7 V typically at which point the charge pump is enabled. The voltage between BST and  
SRC continue to charge and discharge between 12.3 V and 11.7 V as shown in the 8-4.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS1211-Q1  
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
VS  
12 V  
CS+  
To  
current  
sensing  
RSNS  
CS-  
Charge  
pump (12 V)  
12 V  
D1*  
100 µA  
BST  
CBST  
Q1  
PU  
PD  
INP  
Level Shifter  
Q2  
SRC  
TPS1211x-Q1  
RLOAD  
8-3. Gate Driver  
TON  
TDRV_EN  
TOFF  
VIN  
Vs  
0V  
VEN/UV LO  
12.3 V  
11.7 V  
VBST-SRC  
7.5 V  
V(BST UVLOR)  
GATE DRIVER  
ENABLE  
8-4. Charge Pump Operation  
Use the following equation to calculate the initial gate driver enable delay.  
CBST × V(BST_UVLOR)  
TDRV_EN  
Where,  
=
100 µA  
(1)  
C(BST) is the charge pump capacitance connected across BST and SRC pins.  
V(BST_UVLOR) = 7.5 V (typical).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS1211-Q1  
 
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
If TDRV_EN must be reduced, then pre-bias the BST terminal externally using an external 12-V supply through a  
low leakage diode D1 as shown in 8-3. With this connection, TDRV_EN reduces to 350 µs.  
8.3.2 Capacitive Load Driving  
Certain end equipments like automotive power distribution unit power different loads including other ECUs.  
These ECUs can have large input capacitances. If power to the ECUs is switched on in uncontrolled way, large  
inrush currents can occur potentially damaging the power FETs.  
To limit the inrush current during capacitive load switching, the following system design techniques can be used  
with TPS1211x-Q1 devices.  
8.3.2.1 FET Gate Slew Rate Control  
For limiting inrush current during turn-ON of the FET with capacitive loads, use R1, R2, C1 as shown in 8-5.  
The R1 and C1 components slow down the voltage ramp rate at the gate of the FET. The FET source follows the  
gate voltage resulting in a controlled voltage ramp across the output capacitors.  
BST  
CBST  
Q1  
R1  
PU  
PD  
INP  
Level Shifter  
R2  
C1  
SRC  
TPS1211x-Q1  
CLOAD  
8-5. Inrush Current Limiting with FET Gate Slew Rate Control  
Use the 方程2 to calculate the inrush current during turn-ON of the FET.  
VBATT  
IINRUSH  
=
CLOAD  
×
Tcharge  
(2)  
(3)  
0.63 × V(BST-SRC) × CLOAD  
R1 × C1  
IINRUSH  
=
Where,  
CLOAD is the load capacitance, VBATT is the input voltage and Tcharge is the charge time, V(BST-SRC) is the charge  
pump voltage (12 V),  
Use a damping resistor R2 (approximately 10 Ω) in series with C1. 方程3 can be used to compute required C1  
value for a target inrush current. A 100-kΩresistor for R1 can be a good starting point for calculations.  
Connecting PD pin of TPS1211x-Q1 directly to the gate of the external FET ensures fast turn-OFF without any  
impact of R1 and C1 components.  
C1 results in an additional loading on CBST to charge during turn-ON. Use 方程式 4 to calculate the required  
CBST value.  
CBST > Qg(total) + 10 × C1  
(4)  
Where, Qg(total) is the total gate charge of the FET.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS1211-Q1  
 
 
 
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3.2.2 Using Precharge FET - (with TPS12111-Q1 Only)  
In high-current applications where several FETs are connected in parallel, the gate slew rate control for the main  
FETs is not recommended due to unequal distribution of inrush currents among the FETs. This action makes  
FET selection complex and results in over sizing of the FETs.  
The TPS12111-Q1 integrates precharge gate driver (G) with a dedicated control input (INP_G). This feature can  
be used to drive a separate FET that can be used to precharge the capacitive load. 8-6 shows the precharge  
FET implementation for capacitive load charging using TPS12111-Q1. An external capacitor Cg reduces the gate  
turn-ON slew rate and controls the inrush current.  
VBATT  
BST  
CBST  
Q1  
PU  
PD  
INP  
Level Shifter  
Level Shifter  
Q2  
SRC  
G
INP_G  
Q3  
Rg  
Cg  
IG  
VOUT  
CLOAD  
BST  
TPS12111-Q1  
8-6. Capacitor Charging Using Gate Slew Rate Control of Precharge FET  
During power up with EN/UVLO high and C(BST) voltage above V(BST_UVLOR) threshold, INP and INP_G controls  
are active. For the precharge functionality, drive INP low to keep the main FETs OFF and drive INP_G high. G  
output gets pulled up to BST with IG. Use 方程5 to calculate the required Cg value.  
IINRUSH  
IG = Cg ×  
COUT  
(5)  
Where,  
IG is 100 µA (typical),  
Use 方程2 to calculate the IINRUSH  
.
A series resistor Rg must be used in conjunction with Cg to limit the discharge current from Cg during turn-off .  
The recommended value for Rg is between 220 to 470 . After the output capacitor is charged, turn OFF the  
precharge FET by driving INP_G low. G gets pulled low to SRC with an internal 135-mA pulldown switch. The  
main FETs can be turned ON by driving INP high.  
8-7 shows other system design approaches to charge large output capacitors in high current applications. The  
designs involve an additional power resistor in series in series with precharge FET. The back-to-back FET  
topology shown is typically used in bi-directional power control applications like battery management systems.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS1211-Q1  
 
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Q2  
R
Q3  
R
Q4  
Q3  
G
Q1  
Q2  
Q1  
RSNS  
VOUT  
CBLK  
RSNS  
VOUT  
CBLK  
VBATT  
(12 V)  
VBATT  
(12 V)  
RSET  
RISCP  
CBST  
BST  
RSET  
RISCP  
CS+ CS-  
ISCP  
PU PD DIODE  
G
VS  
VS ISCP CS+ CS-  
EN/UVLO  
SRC  
PU PD  
SRC  
BST  
CBST  
VCC  
R1  
DIODE  
OFF  
ON  
ON OFF  
OFF  
EN/UVLO  
INP  
OFF  
ON  
G
G
VCC  
TPS12111-Q1  
VCC  
R2  
TPS12111-Q1  
ON OFF  
INP  
VCC  
R2  
R1  
ON  
INP_G  
FLT_I  
OFF  
ON  
INP_G  
FLT_I  
FLT_T  
IMON  
IWRN  
RIWRN  
TMR  
GND  
FLT_T  
IMON  
IWRN  
RIWRN  
TMR  
GND  
CTMR  
RIMON  
CTMR  
RIMON  
8-7. TPS12111-Q1 application Circuits for Capacitive Load Driving Using Precharge FET and a Series  
Power Resistor  
8.3.3 Overcurrent and Short-Circuit Protection  
TPS1211x-Q1 has two-level current protection.  
Adjustable overcurrent protection (IOC) threshold and response time (TOC),  
Adjustable short-circuit threshold (ISC) with internally fixed fast response (TSC).  
8-8 shows the I-T characteristics.  
Time  
TOC  
Nominal current  
Over current  
No Shutdown  
Shutdown with  
adjustable delay  
Short circuit  
Immediate  
shutdown  
TSC  
Current  
IOC  
ISC  
8-8. Overcurrent and Short-Circuit Protection Characteristics  
The device senses the voltage across the external current sense resistor through CS+ and CS. Set the  
overcurrent protection threshold using an external resistor RIWRN across IWRN and GND. Use 方程式 6 to  
calculate the required RIWRN value.  
11.9 × RSET  
RIWRN ( ) =  
RSNS × IOC  
(6)  
Where, RSET is the resistor connected across CS+ and VS, RSNS is the current sense resistor, and IOC is the  
overcurrent level.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS1211-Q1  
 
 
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3.3.1 Overcurrent Protection with Auto-Retry  
The C(TMR) programs the over current protection delay (TOC) and auto-retry time (TRETRY). Once the voltage  
across CS+ and CSexceeds the set point, the C(TMR)starts charging with 77-µA pullup current. After the  
C(TMR)charges up to V(TMR_FLT), FLT_I asserts low providing warning on impending FET turn OFF. After C(TMR)  
charges to V(TMR_OC), PD pulls low to SRC turning OFF the FET. Post this event, the auto-retry behavior starts.  
The C(TMR) capacitor starts discharging with 2.5-uA pulldown current. After the voltage reaches V(TMR_Low) level,  
the capacitor starts charging with 2.5-uA pullup. After 32 charging, discharging cycles of C(TMR)the FET turns ON  
back and FLT_I de-asserts after de-assertion delay of 260 µs.  
Use 方程7 to calculate the TOC duration.  
1.2 × CTMR  
TOC  
=
77.5 µ  
(7)  
(8)  
Where, TOC is the delay to turn OFF the FET, CTMR is the capacitance across TMR to GND.  
Use 方程8 to calculate the TFLT duration.  
1.1 × CTMR  
TFLT  
=
77.5 µ  
Where, TFLT is the FLT_I assertion delay.  
The auto-retry time can be computed as, TRETRY = 22.7 × 106 × CTMR  
.
If the overcurrent pulse duration is below T(OC), then the FET remains ON and C(TMR) gets discharged using  
internal pulldown switch.  
IOC  
TPULSE  
0-A  
TOC  
VINT  
VTMR_OC  
77 µA  
/ 5 µA  
VTMR_FLT  
VTMR_Low  
TMR  
1st  
2nd  
32nd  
2.5 µA  
Vcc  
0-V  
TPS1211x-Q1  
TWRN  
TFLT_I = 0.9 x TOC  
12 V  
0-V  
8-9. Overcurrent Protection with Auto-Retry  
8.3.3.2 Overcurrent Protection with Latch-Off  
Connect an approximately 100-kresistor across C(TMR) as shown in the following figure. With this resistor,  
during the charging cycle, the voltage across C(TMR) gets clamped to a level below V(TMR_OC) resulting in a latch-  
off behavior.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS1211-Q1  
 
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Toggle INP or EN/UVLO (below ENF) or power cycle Vs below VSPORF to reset the latch. At low edge, the timer  
counter is reset and C(TMR) is discharged. PU pulls up to BST when INP is pulled high.  
IOC  
TPULSE  
0-A  
TOC  
VTMR_OC  
The resistor across TMR to GND prevents the VTMR to charge to upper threshold  
and the counter does not see next counts, resulting in FET to stay latch OFF  
VTMR_FLT  
VTMR_Low  
VINT  
77 µA  
/5 µA  
1st  
TMR  
Vcc  
0-V  
100 k  
2.5 µA  
TWRN  
TPS1211x-Q1  
TFLT_I = 0.9 x TOC  
12 V  
0-V  
When INP is pulled low, the timer counter is reset  
and TMR cap is discharged  
Starts a fresh turn ON cycle  
8-10. Overcurrent Protection with Latch-Off  
8.3.3.3 Short-Circuit Protection  
Connect a resistor, RISCP, as shown in 8-11.  
Use 方程9 to calculate the required RISCP value.  
ISC × RSNS  
600  
RISCP ( ) =  
14.5 µ  
(9)  
Where, RSNS is the current sense resistor, and ISC is the desired short-circuit protection level. After the current  
exceeds the ISC threshold then, PD pulls low to SRC within 1.2 µs in TPS12111-Q1 and 5 µs in TPS12110-Q1,  
protecting the FET. FLT_I asserts low at the same time. Subsequent to this event, the charge and discharge  
cycles of C(TMR) starts similar to the behavior post FET OFF event in the over current protection scheme.  
Latch-off can also achieved in the similar way as explained in the overcurrent protection scheme.  
8.3.4 Analog Current Monitor Output (IMON)  
TPS1211x-Q1 features an accurate analog load current monitor output (IMON) with adjustable gain. The current  
source at IMON terminal is configured to be proportional to the current flowing through the RSNS current sense  
resistor. This current can be converted to a voltage using a resistor RIMON from IMON terminal to GND terminal.  
This voltage, computed using 方程10 can be used as a means of monitoring current flow through the system.  
Use 方程10 to calculate the VIMON  
.
VIMON = (VSNS + VOS_SET) × Gain  
(10)  
Where VSNS = ILOAD × RSNS and VOS_SET is the input referred offset (± 350 µV) of the current sense amplifier  
(VSNS to VIMON scaling). Use the following equation to calculate gain.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS1211-Q1  
 
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
0.9 × RIMON  
Gain =  
RSET  
(11)  
Where 0.9 is the current mirror factor between the current sense amplifier and the IMON pass FET.  
The maximum voltage range for monitoring the current (V(IMONmax)) is limited to minimum([V(VS) 0.5V],  
5.5V) to ensure linear output. This puts limitation on maximum value of RIMON resistor. The IMON pin has an  
internal clamp of 6.5 V (typical).  
Accuracy of the current mirror factor is < ± 1%. Use the following equation to calculate the overall accuracy of  
VIMON  
.
VOS_SET  
× 100  
% VIMON  
=
VSNS  
(12)  
8-11 shows external connections and simplified block diagram of current sensing and overcurrent protection  
implementation.  
RSNS  
VIN  
RISCP  
ISCP  
RSET  
50  
100  
-
CS+  
CS-  
14.5 µA  
SC  
Comparator  
+
CS-  
To control Logic  
VREF  
+
OC  
Comparator  
4.5 V  
6.5 V  
TPS1211x-Q1  
IMON  
RIMON  
IWRN  
RIWRN  
8-11. Current Sensing and Overcurrent Protection  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS1211-Q1  
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3.5 Overvoltage (OV) and Undervoltage Protection (UVLO)  
VIN  
R1  
R1  
EN/UVLO  
EN/UVLO  
OV  
+
+
+
UVLOb  
UVLOb  
OVP  
1.18 V  
1.12 V  
1.18 V  
1.12 V  
R2  
R2  
R3  
1.18 V  
TPS12111-Q1  
1.12 V  
TPS12110-Q1  
8-12. Programming Overvoltage and Undervoltage Protection Threshold  
8.3.6 Remote Temperature Sensing and Protection (DIODE)  
The device features an integrated remote temperature sensing, protection and dedicated fault output. With a  
companion BJT, MMBT3904 as a remote temperature sense element, the controller gets the temperature  
information of the sense point. Connect the DIODE pin of TPS1211-Q1 to the collector, base of a MMBT3904  
BJT. After the sensed temperature reaches approximately 155ºC, the device pulls PD low to SRC, turning off the  
external FET and also asserts FLT_T low. After the temperature reduces to 125ºC (minimum), an internally fixed  
auto-retry cycle of 512 ms commences. FLT_T de-asserts and the external FET turns ON after the re-try  
duration of 512 ms is lapsed.  
In TPS12111-Q1, after the sensed temperature crosses 155°C, PD and G get pulled low to SRC. After the TSD  
hysteresis, PU and G stays latched OFF. The latch gets reset by toggling EN/UVLO below V(ENF) or by power  
cycling Vs below VSPORF  
.
8.3.7 TPS1211x-Q1 as a Simple Gate Driver  
8-13 shows application schematics of TPS1211x-Q1 as a simple gate driver in load disconnect switch as well  
as back-to-back FETs driving topologies. The protection features like two-level overcurrent protection,  
overvoltage protection, and overtemperature protection are disabled.  
Q2  
Q1  
Q1  
VOUT  
VOUT  
VIN  
VIN  
RSET  
RSET  
100  
100 Ω  
CBST  
CBST  
CS+ CS-  
CS+ CS-  
ISCP  
VS  
ISCP  
VS  
PU PD SRC  
PU PD SRC  
BST  
BST  
OFF  
OFF  
OFF  
ON  
ON  
ON  
ON  
EN/UVLO  
INP  
EN/UVLO  
INP  
TPS12110-Q1  
TPS12110-Q1  
FLT_I  
FLT_I  
OFF  
FLT_T  
IMON  
FLT_T  
IMON  
DIODE GND OV  
DIODE GND OV  
TMR  
IWRN  
IWRN  
TMR  
8-13. Connection Diagram of TPS12110-Q1 for Simple Gate Driver Design  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS1211-Q1  
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.4 Device Functional Modes  
The TPS1211-Q1 has two modes of operation. Active mode and low IQ shutdown mode. If the EN/UVLO pin  
voltage is greater than the rising threshold, then the device is in active mode. In active state the internal charge  
pump is enabled, gate drivers and all the protection and diagnostic features are enabled. If the EN/UVLO voltage  
is pulled < 0.3 V, the device enters into low IQ shutdown mode. In this mode, the charge pump, gate drivers and  
all the protection features are disabled. The external FETs turn OFF. The TPS1211-Q1 consumes low IQ of 1.7  
µA (typical) in this mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS1211-Q1  
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPS1211x-Q1 family is a 45-V smart high-side driver with protection and diagnostics. The TPS1211x-Q1  
device controls external N-channel MOSFETs and its drive architecture is suitable to drive back-to-back N-  
Channel MOSFETs. The strong gate 4-A source and sink capabilities enable switching parallel MOSFETs in high  
current applications such as circuit breaker in powertrain (DC/DC converter), driving loads in power distribution  
unit, electric power steering, driving PTC heater loads, and so forth. The TPS1211x-Q1 device provides two-  
level, adjustable, overcurrent protection with adjustable circuit breaker timer, fast short-circuit protection,  
accurate analog current monitor output, and remote overtemperature protection.  
The variant TPS12111-Q1 features a separate precharge driver (G) with independent control input (INP_G). This  
feature enables system designs that must precharge the large output capacitance before turning ON the main  
power path.  
The following design procedure can be used to select the supporting component values based on the application  
requirement.  
9.2 Typical Application: Driving Zonal Controller Loads on 12-V Line in Power Distribution Unit  
Q3  
DIODE  
G
Q2  
Rg  
Q4  
Cg  
G1  
Q1  
RSNS  
VOUT  
CBLK  
VBATT  
(12 V)  
G1  
PU PD  
RSET  
RISCP  
CBST  
BST  
R1  
VS ISCP CS+ CS-  
EN/UVLO  
SRC  
R2  
DIODE  
DIODE  
G
G
VCC  
TPS12111-Q1  
ON OFF  
INP  
VCC  
R2  
R1  
OFF  
ON  
INP_G  
FLT_I  
FLT_T  
IMON  
IWRN  
RIWRN  
TMR  
GND  
CTMR  
RIMON  
9-1. Typical Application Schematic: Driving Zonal Controller Loads with Precharging the Output  
Capacitance  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS1211-Q1  
 
 
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
9-1 shows the design parameters for this application example.  
9-1. Design Parameters  
PARAMETER  
VALUE  
12 V  
Typical input voltage, VIN  
Undervoltage lockout set point, VINUVLO  
Maximum load current, IOUT  
6.5 V  
25 A  
Overcurrent protection threshold, IOC  
30 A  
Short-circuit protection threshold, ISC  
35 A  
1 ms  
Fault timer period (TOC  
)
Fault response  
Auto-retry  
1 mF  
Load capacitance, COUT  
Charging time, Tstart  
10 ms  
9.2.2 Detailed Design Procedure  
Selection of Current Sense Resistor, RSNS  
The recommended range of the overcurrent protection threshold voltage, V(SNS_WRN), extends from 10 mV to 30  
mV. Values near the low threshold of 10 mV can be affected by the system noise. Values near the upper  
threshold of 30 mV can cause high power dissipation in the current sense resistor. To minimize both the  
concerns, 25 mV is selected as the overcurrent protection threshold voltage. Use the following equation to  
calculate the current sense resistor, RSNS  
.
V(SNS-WRN)  
25 mV  
30 A  
833 µΩ  
=
RSNS  
=
=
IOC  
(13)  
The next smaller available sense resistor 800 μ, 1% is chosen.  
To improve signal to noise ratio or for better overcurrent protection accuracy, higher overcurrent protection  
threshold voltage, V(SNS_WRN) can be selected. The maximum allowed V(SNS_WRN) voltage is 250 mV.  
Selection of Scaling Resistor, RSET  
RSET is the resistor connected between VS and CS+ pins. This resistor scales the overcurrent protection  
threshold voltage and coordinates with RIWRN and RIMON to determine the overcurrent protection threshold and  
current monitoring output. The recommended range of RSET is 50 100 .  
RSET is selected as 100 , 1% for this design example.  
Programming the Overcurrent Protection Threshold RIWRN Selection  
The RIWRN sets the overcurrent protection threshold, whose value can be calculated using 方程14.  
11.9 × RSET  
RIWRN ( ) =  
RSNS × IOC  
(14)  
To set 30 A as overcurrent protection threshold, RIWRN value is calculated to be 49.5 kΩ.  
Choose the closest available standard value: 49.9 k, 1%  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS1211-Q1  
 
 
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
.
Programming the Short-Circuit Protection Threshold RISCP Selection  
The RISCP sets the short-circuit protection threshold. Use the following equation to calculate the value.  
ISC × RSNS  
600  
RISCP ( ) =  
14.5 µ  
(15)  
To set 35 A as overcurrent protection threshold, RISCP value is calculated to be 1.33 kΩ.  
Choose the closest available standard value: 1.43 k, 1%.  
In case where large di/dt is involved, the system and layout parasitic inductances can generate large differential  
signal voltages between ISCP and CSpins. This action can trigger false short-circuit protection and nuisance  
trips in the system. To overcome such scenario, TI recommends to add filter capacitor of 1 nF across ISCP and  
CSpins close to the device. Because nuisance trips are dependent on the system and layout parasitics, TI  
recommends to test the design in a real system and tweaked as necessary.  
Programming the Fault timer Period CTMR Selection  
For the design example under discussion, overcurrent transients are allowed for 1-ms duration. This blanking  
interval, TOC can be set by selecting appropriate capacitor CTMR from TMR pin to ground. Use the following  
equation to calculate the value of CTMR to set 1 ms for TOC  
.
TOC × 77.5 µA  
64.58 nF  
CTMR  
=
=
1.2  
(16)  
Choose closest available standard value: 68 nF, 10%.  
Selection of MOSFETs, Q1 and Q2  
For selecting the MOSFET Q1, important electrical parameters are the maximum continuous drain current ID, the  
maximum drain-to-source voltage VDS(MAX), the maximum drain-to-source voltage VGS(MAX), and the drain-to-  
source ON-resistance RDSON  
.
The maximum continuous drain current, ID, rating must exceed the maximum continuous load current.  
The maximum drain-to-source voltage, VDS(MAX), must be high enough to withstand the highest voltage seen in  
the application. Considering 35 V as the maximum application voltage, MOSFETs with VDS voltage rating of 40 V  
is suitable for this application.  
The maximum VGS TPS1211-Q1 can drive is 13 V, so a MOSFET with 15-V minimum VGS rating must be  
selected.  
To reduce the MOSFET conduction losses, lowest possible RDS(ON) is preferred.  
Based on the design requirements, BUK7S0R5-40HJ is selected and its ratings are:  
40-V VDS(MAX) and 20-V VGS(MAX)  
RDS(ON) is 0.47-mΩtypical at 10-V VGS  
MOSFET Qg(total) is 190 nC  
Selection of Bootstrap Capacitor, CBST  
The internal charge pump charges the external bootstrap capacitor (connected between BST and SRC pins) with  
approximately 100 μA. Use the following equation to calculate the minimum required value of the bootstrap  
capacitor for driving two parallel BUK7S0R5-40HJ MOSFETs.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS1211-Q1  
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Qg(total)  
1 V  
380 nF  
CBST  
=
=
(17)  
Choose closest available standard value: 470 nF, 10 %.  
Setting the Undervoltage Lockout  
The undervoltage lockout (UVLO) can be adjusted using an external voltage divider network of R1 and R2  
connected between VS, EN/UVLO and GND pins of the device. The values required for setting the undervoltage  
and overvoltage are calculated by solving 方程18.  
R2  
V(UVLOR)  
=
× VINUVLO  
(R1 + R2)  
(18)  
For minimizing the input current drawn from the power supply, TI recommends to use higher values of resistance  
for R1 and R2. However, leakage currents due to external active components connected to the resistor string can  
add error to these calculations. So, the resistor string current, I(R12) must be chosen to be 20 times greater than  
the leakage current of UVLO pin.  
From the device electrical specifications, V(UVLOR) = 1.18 V. From the design requirements, VINUVLO is 6.5 V. To  
solve the equation, first choose the value of R1 = 470 kand use 方程18 to solve for R2 = 104.24 k. Choose  
the closest standard 1% resistor values: R1 = 470 k, and R2 = 105 k.  
Selection of Precharge Path Components, Cg and Rg  
For charging the large capacitors on output, the output slew rate can be controlled by using a capacitor on the  
gate (G) of the precharge FET Q3. The target inrush current to charge 1 mF of output capacitance to 12-V in 10  
ms can be estimated by 方程式 19. The required gate capacitance Cg to limit the inrush current to 1.2 A can be  
calculated by using 方程式 16, where Ig = 100 μA (typical) is the gate charging current of pin 'G'. By solving 方  
20, we get Cg as 83.33 nF.  
Choose the closest available standard value: 82 nF, 10%.  
VIN  
1.2 A  
IINRUSH  
=
COUT  
=
×
Tstart  
(19)  
(20)  
IINRUSH  
Ig = Cg ×  
COUT  
A series resistor Rg must be used in conjunction with Cg to limit the discharge current from Cg during turn-off and  
to stabilize the gate 'G' during slew rate control. The recommended value for Rg is between 220 to 470 .  
Choosing the Current Monitoring Resistor, RIMON  
Voltage at IMON pin VIMON is proportional to the output load current. This can be connected to an ADC of the  
downstream system for monitoring the operating condition and health of the system. The RIMON must be  
selected based on the maximum load current and the input voltage range of the ADC used. RIMON is set using 方  
21.  
0.9 × RIMON  
VIMON = (VSNS + VOS_SET) ×  
RSET  
(21)  
Where VSNS = IOC × RSNS and VOS_SET is the input referred offset (± 350 µV) of the current sense amplifier.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS1211-Q1  
 
 
 
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
The maximum voltage range for monitoring the current (V(IMONmax)) is limited to minimum([V(VS) 0.5V],  
5.5V) to ensure linear output. This puts a limitation on the maximum value of RIMON resistor. The IMON pin has  
an internal clamp of 6.5 V (typical).  
For IOC = 30 A and considering the operating range of ADC to be 0 V to 3.3 V (for example, VIMON = 3.3 V),  
RIMON can be calculated as  
VIMON × RSET  
16.52 k  
RIMON  
=
=
(VSNS + VOS_SET) × 0.9  
(22)  
Selecting RIMON value less than shown in 方程式 22 ensures that ADC limits are not exceeded for maximum  
value of load current. Choose the closest available standard value: 16.5 kΩ, 1%.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS1211-Q1  
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9.2.3 Application Curves  
9-2. Start-Up Profile of Bootstrap Voltage for INP 9-3. Start-Up Profile of Bootstrap Voltage for INP  
= GND = HIGH  
9-4. Turn-ON Response of TPS12111-Q1 for INP - 9-5. Turn-OFF Response of TPS12111-Q1 for INP  
> LOW to HIGH  
-> HIGH to LOW  
I_LOAD  
IMON  
9-6. IMON Response During 12-A Load Step  
9-7. Overcurrent Response of TPS12111-Q1 for a  
Load Step from 20 A to 32 A with 30-A Overcurrent  
Protection Setting  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS1211-Q1  
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9-8. Auto-Retry Response of TPS12111-Q1 for 9-9. Latch-Off Response of TPS12111-Q1 for an  
an Overcurrent Fault  
Overcurrent Fault  
9-10. Response During Coming out of Overload  
9-11. Precharge Profile of the Output  
Fault with INP Reset  
Capacitance (VIN = 12 V, COUT = 1 mF, No Load)  
9-12. Output Hot-Short Response of the TPS12111-Q1 Device  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS1211-Q1  
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9.3 Typical Application: Reverse Polarity Protection with TPS12110-Q1  
Q3  
GND  
Q2  
Q1  
RSNS  
VOUT  
VBATT  
(12 V)  
CBLK  
RSET  
RISCP  
CBST  
R1  
VS ISCP CS+ CS-  
EN/UVLO  
SRC  
BST  
DIODE  
PU PD  
R2  
R3  
VCC  
R1  
OV  
TPS12110-Q1  
VCC  
R2  
FLT_I  
GND  
ON  
INP  
IWRN  
RIWRN  
OFF  
FLT_T  
IMON  
GND  
TMR  
CTMR  
RIMON  
GND  
D1  
RBIAS  
VBATT  
(12 V)  
PGND  
9-13. Typical Application Schematic: TPS12110-Q1 High-Side Driver with Input Reverse Polarity  
Protection  
For applications such as powering electronic power steering (EPS) system, the input must be protected from any  
possible reverse polarity scenarios. The TPS12110-Q1 configured as shown in 9-13 meets the system  
requirements. The back-to-back FET (Q1 and Q2) configuration blocks reverse current flow and provides  
protection for the load against static input reverse polarity event. The N-MOSFET (Q4) in the ground path  
protects the TPS12110-Q1 controller, and Zener diode D1 is added for VGS protection of Q4.  
9.3.1 Design Requirements  
9-2 shows the design parameters for this application example.  
9-2. Design Parameters  
PARAMETER  
VALUE  
12 V  
Typical input voltage, VIN  
Undervoltage lockout set point, VINUVLO  
OV set point, VINOVP  
6.5 V  
36 V  
Maximum load current, IOUT  
20 A  
Overcurrent protection threshold, IOC  
Short-circuit protection threshold, ISC  
24 A  
30 A  
Fault timer period (TOC  
)
1 ms  
Fault response  
Auto-retry  
Yes  
Input reverse polarity protection  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS1211-Q1  
 
 
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9.3.2 External Component Selection  
By following similar design procedure as outlined in Detailed Design Procedure, the external component values  
are calculated as below:  
RSNS = 1 mΩ.  
RSET = 100 Ω.  
RIWRN = 49.9 kΩto set 24 A as overcurrent protection threshold.  
RISCP = 1.468 kΩto set 30 A as short-circuit protection threshold.  
CTMR = 68 nF to set 1-ms over current protection time.  
R1 , R2 and R3 are selected as 390 kΩ, 71.5 kΩand 15.8 kΩrespectively to set VIN undervoltage lockout  
threshold at 6.5 V and overvoltage cutoff threshold at 36 V.  
RIMON = 15 kΩto limit maximum V(IMON) voltage to 3.3 V at full-load current of 24 A.  
To reduce conduction losses, BUK7S0R5-40HJ MOSFET is selected. Two FETs are used in back-to-back  
configuration for reverse current blocking.  
40-V VDS(MAX) and 20-V VGS(MAX)  
.
RDS(ON) is 0.47-mΩtypical at 10-V VGS  
.
Qg of each MOSFET is 190 nC.  
CBST = (2 × Qg) / 1 V = 380 nF; Choose the closest available standard value: 470 nF, 10 %.  
Q4 selection: Any signal N-MOSFET with 40-V VDS support is sufficient. DMN601WKQ-7 is selected for the  
current design and a 12-V Zener diode SZMM3Z12VST1G is used for VGS protection.  
9.3.3 Application Curves  
9-14. Overvoltage Cutoff Response of  
9-15. Input Reverse Polarity Protection with  
TPS12110-Q1 at 36-V Level  
TPS12110-Q1  
9.4 Power Supply Recommendations  
When the external MOSFETs turn OFF during the conditions such as INP control, overvoltage cutoff, overcurrent  
protection causing an interruption of the current flow, the input parasitic line inductance generates a positive  
voltage spike on the input and output parasitic inductance generates a negative voltage spike on the output. The  
peak amplitude of voltage spikes (transients) depends on the value of inductance in series to the input or output  
of the device. These transients can exceed the Absolute Maximum Ratings of the device if steps are not taken to  
address the issue. Typical methods for addressing transients include:  
Use of a TVS diode and input capacitor filter combination across input to and GND to absorb the energy and  
dampen the positive transients.  
Use of a diode or a TVS diode across the output and GND to absorb negative spikes.  
The TPS1211-Q1 gets powered from the Vs pin. Voltage at this pin must be maintained above V(S_POR) level to  
ensure proper operation. If the input power supply source is noisy with transients, then TI recommends to place  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS1211-Q1  
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
a RVS-CVS filter between the input supply line and Vs pin to filter out the supply noise. TI recommends RVS value  
around 100 Ω.  
The following figure shows the circuit implementation with optional protection components.  
Parasitic  
inductance  
Parasitic  
inductance  
Q1  
RSNS  
RSET  
VBATT  
VOUT  
CBST  
RISCP  
RVS  
ISCP CS+ CS-  
VS  
PU PD SRC BST  
D2  
D1  
CVS  
TPS1211x-Q1  
GND  
9-16. Circuit Implementation with Optional Protection Components for TPS1211-Q1  
9.5 Layout  
9.5.1 Layout Guidelines  
The sense resistor (RSNS) must be placed close to the TPS1211x-Q1 and then connect RSNS using the Kelvin  
techniques. Refer to Choosing the Right Sense Resistor Layout for more information on the Kelvin  
techniques.  
For all the applications, TI recommends a 0.1 µF or higher value ceramic decoupling capacitor between VS  
terminal and GND. Consider adding RC network at the supply pin (VS) of the controller to improve decoupling  
against the power line disturbances.  
The high-current path from the board input to the load, and the return path, must be parallel and close to  
each other to minimize loop inductance.  
The external MOSFETs must be placed close to the controller such that the GATE of the MOSFETs are close  
to PU/PD pins to form short GATE loop. Consider adding a place holder for a resistor in series with the Gate  
of each external MOSFET to damp high frequency oscillations if need arises.  
Place a TVS diode at the input to clamp the voltage transients during hot-plug and fast turn-off events.  
The external boot-strap capacitor must be placed close to BST and SRC pins to form very short loop.  
The ground connections for the various components around the TPS1211x-Q1 must be connected directly to  
each other, and to the TPS1211x-Q1 GND, and then connected to the system ground at one point. Do not  
connect the various component grounds to each other through the high current ground line.  
The DIODE pin sources current to measure the temperature. TI recommends BJT MMBT3904 to use as a  
remote temperature sense element. Take care in the PCB layout to keep the parasitic resistance between the  
DIODE pin and the MMBT3904 low so as not to degrade the measurement. In addition, TI recommends to  
make a Kelvin connection from the emitter of the MMBT3904 to the GND of the part to ensure an accurate  
measurement. Additionally, a small 1000=pF bypass capacitor must be placed in parallel with the MMBT3904  
to reduce the effects of noise.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS1211-Q1  
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9.5.2 Layout Example  
Top Layer  
Inner Layer GND plane  
Inner Layer PGND plane  
Via to GND plane  
Via to PGND plane  
B
RG2  
C
Q3  
E
G
S
S
S
S
S
S
G
D
RSNS  
D
Q2  
Q1  
VIN  
SRC  
VOUT  
RG1  
RSET  
CBST  
RISCP  
CSCP  
* Optional  
TPS12110-Q1  
PGND  
PGND  
Inner Layer  
GND plane  
Inner Layer  
PGND plane  
GND  
9-17. Typical PCB Layout Example for TPS12110-Q1 with B2B MOSFETs  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS1211-Q1  
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS1211-Q1  
 
 
 
 
 
 
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
11.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
PTPS12110AQDGXRQ1 VSSOP  
PTPS12111LQDGXRQ1 VSSOP  
DGX  
DGX  
19  
19  
5000  
5000  
330  
330  
16.0  
16.0  
5.4  
5.4  
5.4  
5.4  
1.45  
1.45  
8
8
12  
12  
Q1  
Q1  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS1211-Q1  
 
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
SPQ  
5000  
5000  
Length (mm) Width (mm)  
Height (mm)  
PTPS12110AQDGXRQ1  
PTPS12111LQDGXRQ1  
VSSOP  
VSSOP  
DGX  
DGX  
19  
19  
853.0  
853.0  
449.0  
449.0  
35  
35  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS1211-Q1  
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
PACKAGE OUTLINE  
DGX0019A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
PIN 1 INDEX  
AREA  
C
SEATING  
PLANE  
5.1  
4.7  
TYP  
0.1 C  
A
18X 0.5  
20  
1
5.2  
5.0  
2X 4.5  
NOTE 3  
4X (0 -15 )  
10  
11  
0.275  
0.165  
20X  
3.1  
2.9  
B
0.1  
C A B  
SEE DETAIL A  
4X (7 -15 )  
(0.15) TYP  
0.25  
GAGE PLANE  
1.1 MAX  
0.7  
0.4  
0.15  
0.05  
0 -8  
A
20  
DETAIL A  
TYPICAL  
4226944/A 07/2021  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. No JEDEC registration as of July 2021.  
5. Features may differ or may not be present.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS1211-Q1  
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
DGX0019A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
20X (1.45)  
20  
1
20X (0.3)  
(R0.05) TYP  
18X (0.5)  
SYMM  
10  
11  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE: 16X  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
15.000  
SOLDER MASK DETAILS  
4226944/A 07/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS1211-Q1  
TPS1211-Q1  
ZHCSPB6A JULY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DGX0019A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
20X (1.45)  
20X (0.3)  
SYMM  
1
20  
(R0.05) TYP  
SYMM  
(18X 0.5)  
11  
10  
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 16X  
4226944/A 07/2021  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS1211-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS12110AQDGXRQ1  
TPS12111LQDGXRQ1  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGX  
DGX  
19  
19  
5000 RoHS & Green  
5000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
2ZAS  
2Z9S  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Mar-2023  
Addendum-Page 2  
PACKAGE OUTLINE  
DGX0019A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
PIN 1 INDEX  
AREA  
C
SEATING  
PLANE  
5.1  
4.7  
TYP  
0.1 C  
A
18X 0.5  
20  
1
5.2  
5.0  
2X 4.5  
NOTE 3  
4X (0 -15 )  
10  
11  
0.275  
0.165  
20X  
3.1  
2.9  
B
0.1  
C A B  
SEE DETAIL A  
4X (7 -15 )  
(0.15) TYP  
0.25  
GAGE PLANE  
1.1 MAX  
0.7  
0.4  
0.15  
0.05  
0 -8  
A
20  
DETAIL A  
TYPICAL  
4226944/A 07/2021  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. No JEDEC registration as of July 2021.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGX0019A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
20X (1.45)  
20  
1
20X (0.3)  
(R0.05) TYP  
18X (0.5)  
SYMM  
10  
11  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE: 16X  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
EXPOSED METAL  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
15.000  
SOLDER MASK DETAILS  
4226944/A 07/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGX0019A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
20X (1.45)  
SYMM  
20X (0.3)  
1
20  
(R0.05) TYP  
SYMM  
(18X 0.5)  
11  
10  
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 16X  
4226944/A 07/2021  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS12111LQDGXRQ1

具有保护和诊断功能的汽车用 3.5V 至 40V 高侧驱动器 | DGX | 19 | -40 to 125
TI

TPS1212

2W 6KVDC Isolated Dual Output DC/DC Converters
TOPPOWER

TPS1215

2W 6KVDC Isolated Dual Output DC/DC Converters
TOPPOWER

TPS1215A

2W 6KVDC Isolated Dual Output DC/DC Converters
TOPPOWER

TPS150

SWITCHING MODE 130W U CHANNEL POWER SUPPLIES
TOTAL-POWER

TPS150-10

SWITCHING MODE 130W U CHANNEL POWER SUPPLIES
TOTAL-POWER

TPS150-11

SWITCHING MODE 130W U CHANNEL POWER SUPPLIES
TOTAL-POWER

TPS150-12

SWITCHING MODE 130W U CHANNEL POWER SUPPLIES
TOTAL-POWER

TPS150-13

SWITCHING MODE 130W U CHANNEL POWER SUPPLIES
TOTAL-POWER

TPS150-14

SWITCHING MODE 130W U CHANNEL POWER SUPPLIES
TOTAL-POWER

TPS150-15

SWITCHING MODE 130W U CHANNEL POWER SUPPLIES
TOTAL-POWER

TPS150-16

SWITCHING MODE 130W U CHANNEL POWER SUPPLIES
TOTAL-POWER