TPS16632RGER [TI]

具有输出功率限制功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝 | RGE | 24 | -40 to 125;
TPS16632RGER
型号: TPS16632RGER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有输出功率限制功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝 | RGE | 24 | -40 to 125

电子
文件: 总41页 (文件大小:4429K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS1663  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
具有可调节输出功率限制功能TPS1663x 60V6A 电子保险丝  
1 特性  
3 说明  
• 工作电压4.5V 60V  
TPS1663x 是一款易于使用的正极 60V6A 电子保险  
具有一个 31mΩ 的集成式 FET。可提供对负载、  
电源和电子保险丝本身的保护以及可调特性例如精确  
的过流保护、快速短路保护、输出压摆率控制、过压保  
护和欠压锁定。TPS16332 器件集成了可调节输出功率  
限制 (PLIM) 功能可简化并实现对诸如 IEC61010-1  
UL1310 等标准的遵从。该器件还具有可调节过流  
保护功能。可以使用 PGOOD 来启用和禁用下游直流/  
直流转换器控制。  
绝对最大值67V  
• 集成60V31mΩRON 热插FET  
• 可调电流限制0.6A 6A (±7%)  
• 低静态电流关断时21µA  
• 可调节输出功率限制TPS16632(±6%)  
• 精度±2% 的可调UVLO OVP 切断  
39V 固定最大过压钳位TPS16632)  
• 可调节输出压摆率控制用于实现浪涌电流限制  
– 通过在器件加电期间进行热调节为大型及未知  
电容负载充电  
• 电源正常输(PGOOD)  
• 可选过流故障响应选项自动重试和闭锁模式)  
• 模拟电流监控(IMON) (±6%)  
• 通UL 2367 认证  
借助关断引脚可以从外部控制内部 FET 的启用和禁  
用以及将器件置于低电流关断模式。为实现系统状态监  
视和下游负载控制该器件提供了故障和精确的电流监  
视器输出。MODE 引脚可用于在两种限流故障响应  
闭锁自动重试之间灵活地对器件进行配置。  
这些器件采用 4mm × 4mm 24 引脚 VQFN 封装额定  
温度范围40°C +125°C。  
– 文件编E169910  
RILIM 3kΩ  
封装信息  
• 通IEC 62368-1 认证  
提供功能安全  
封装(1)  
VQFN (24)  
HTSSOP (20)  
封装尺寸标称值)  
4.00mm × 4.00mm  
6.50mm x 4.40mm  
器件型号  
TPS16630  
有助于进行功能安全系统设计的文档  
• 采用易于使用24 VQFN 封装  
TPS16632  
TPS16630  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 工厂自动化和控PLCDCSHMII/O 模  
块、传感器集线器  
• 电机驱动CNC、编码器电源  
• 电子断路器  
• 电信无线电  
• 工业打印机  
4.5 V - 60 V  
OUT  
IN  
COUT  
P_IN  
31 mΩ  
Protected supply  
To Load  
R1  
R2  
PGOOD  
FLT  
UVLO  
TPS16632  
ON/OFF Control  
SHDN  
PLIM  
IMON  
ILIM  
Load Monitor  
RIMON  
RPLIM  
GND  
dVdT  
MODE  
RILIM  
CdVdT  
TPS16632 的输出功率限制性能  
简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSET9  
 
 
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
Table of Contents  
9.3 Feature Description...................................................15  
9.4 Device Functional Modes..........................................23  
10 Application and Implementation................................24  
10.1 Application Information........................................... 24  
10.2 Typical Application.................................................. 24  
10.3 System Examples................................................... 27  
10.4 Power Supply Recommendations...........................27  
10.5 Layout..................................................................... 28  
11 Device and Documentation Support..........................32  
11.1 Documentation Support.......................................... 32  
11.2 接收文档更新通知................................................... 32  
11.3 支持资源..................................................................32  
11.4 Trademarks............................................................. 32  
11.5 静电放电警告...........................................................32  
11.6 术语表..................................................................... 32  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................6  
7.6 Timing Requirements..................................................7  
7.7 Typical Characteristics................................................9  
8 Parameter Measurement Information..........................12  
9 Detailed Description......................................................13  
9.1 Overview...................................................................13  
9.2 Functional Block Diagram.........................................14  
Information.................................................................... 32  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision E (March 2020) to Revision F (February 2023)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 向特性 部分添加了“提供功能安全型”要点......................................................................................................1  
Changes from Revision D (August 2019) to Revision E (March 2020)  
Page  
• 已将待定的 UL 2367 UL 60950 认证更改为通过 UL 2367 认证.....................................................................1  
• 向特性部分添加了“通IEC 62368-1 认证”...................................................................................................1  
Changes from Revision C (March 2019) to Revision D (August 2019)  
Page  
• 更改了特性 中的绝对最大电压............................................................................................................................1  
• 更改了特性 中的可调节输出功率限制功能..........................................................................................................1  
Changed the Absolute Maximum Ratings IN, P_IN, OUT, UVLO, FLT, PGOOD maximum input voltage......... 5  
Added TA = 25to the Absolute Maximum Ratings IN, P_IN (10ms transient) input voltage...........................5  
Changed the V(OVPF) maximum in Electrical Characteristics .............................................................................6  
Changed V(SEL_PLIM), I(PLIM), and I(dVdT) minimum and maximum.......................................................................6  
Changed the P(PLIM) minimum, typical, and maximum....................................................................................... 6  
Changes from Revision B (December 2018) to Revision C (March 2019)  
Page  
• 将“预告信息”更改为“量产数据”..................................................................................................................1  
Changes from Revision A (October 2018) to Revision B (December 2018)  
Page  
Updated the TPS16632 RGE Package VQFN................................................................................................... 3  
Updated Functional Block Diagram ................................................................................................................. 14  
Updated Layout Example ................................................................................................................................ 30  
Changes from Revision * (September 2018) to Revision A (October 2018)  
Page  
• 更改了封装信息.................................................................................................................................................. 1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSET9  
2
Submit Document Feedback  
Product Folder Links: TPS1663  
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
5 Device Comparison Table  
PART NUMBER  
TPS16630  
OVERVOLTAGE PROTECTION  
ADJUSTABLE OUTPUT POWER LIMITING  
Overvoltage cutoff, adjustable  
No  
TPS16632  
Overvoltage clamp, fixed (39-V maximum)  
Yes  
6 Pin Configuration and Functions  
IN  
IN  
1
2
3
4
OUT  
20  
OUT  
OUT  
19  
18  
17  
IN  
N.C  
N.C  
18  
17  
OUT  
OUT  
1
2
3
4
5
6
IN  
IN  
N.C  
PGOOD  
5
6
16  
15  
14  
PowerPAD™  
FLT  
N.C  
N.C  
P_IN  
P_IN  
16  
15  
PGOOD  
N.C  
PowerPadTM  
UVLO  
7
8
IMON  
OVP  
GND  
SHDN  
MODE  
13  
12  
14  
13  
FLT  
9
IMON  
UVLO  
10  
11  
dVdT  
ILIM  
6-2. TPS16630 PWP Package, 20-Pin HTSSOP  
(Top View)  
6-1. TPS16630 RGE Package, 24-Pin VQFN (Top  
View)  
18  
17  
OUT  
OUT  
1
2
3
4
5
6
IN  
IN  
N.C  
N.C  
P_IN  
16  
15  
PGOOD  
N.C  
PowerPadTM  
14  
13  
FLT  
IMON  
UVLO  
6-3. TPS16632 RGE Package, 24-Pin VQFN (Top View)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS1663  
English Data Sheet: SLVSET9  
 
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
6-1. Pin Functions  
PIN  
TYPE#  
none#  
TPS16630  
TPS16632  
DESCRIPTION  
NAME  
VQFN  
HTSSOP  
VQFN  
1
2
1
2
3
6
1
2
IN  
P
Power input. Connects to the DRAIN of the internal FET.  
P_IN  
5
5
P
I
Supply voltage of the device. Always connect P_IN to IN directly.  
Input for setting the programmable undervoltage lockout threshold.  
An undervoltage event turns off the internal FET and asserts FLT to  
indicate the power-failure.  
UVLO  
6
7
7
8
6
Input for setting the adjustable overvoltage protection threshold (for  
TPS16630 only). An overvoltage event turns off the internal FET and  
asserts FLT to indicate the overvoltage fault.  
OVP  
I
I
Input for setting the adjustable output power limiting threshold  
(TPS16632 Only). Connect a resistor across PLIM to GND to set the  
output power limit. Connect PLIM to GND if PLIM feature is not used.  
See Output Power Limiting, PLIM (TPS16632 Only) section.  
PLIM  
GND  
dVdT  
7
8
9
8
9
Connect GND to system ground.  
A capacitor from this pin to GND sets output voltage slew rate.  
Leaving this pin floating enables device power up in thermal  
regulation resulting in fast output charge. See the Hot Pug-In and In-  
Rush Current Control section.  
9
10  
I/O  
A resistor from this pin to GND sets the overload limit. See Overload  
and Short Circuit Protection section.  
ILIM  
10  
11  
11  
12  
10  
11  
I/O  
I
Mode selection pin for Overload fault response. See the Device  
Functional Modes section.  
MODE  
Shutdown pin. Pulling SHDN low makes the device to enter into low  
power shutdown mode. Cycling SHDN pin voltage resets the device  
that has latched off due to a fault condition.  
SHDN  
12  
13  
12  
I
Analog current monitor output. This pin sources a scaled down ratio  
of current through the internal FET. A resistor from this pin to GND  
converts current to proportional voltage. If unused, leave it floating.  
IMON  
FLT  
13  
14  
14  
15  
13  
14  
O
O
Fault event indicator. This pin is an open drain output. If unused,  
leave floating or connect to GND.  
Active High. A high indicates that the internal FET is enhanced.  
PGOOD goes low when the internal FET is turned OFF during a fault  
or when SHDN is pulled low. If PGOOD is unused, then connect to  
GND or leave it floating.  
PGOOD  
OUT  
16  
16  
16  
O
P
17  
18  
18  
19  
20  
4
17  
18  
Power output of the device.  
3
3
4
5
4
15  
19  
20  
21  
22  
23  
24  
17  
15  
19  
20  
21  
22  
23  
24  
N.C  
No connect.  
Connect PowerPAD to GND plane for heat sinking. Do not use  
PowerPAD as the only electrical connection to GND.  
PowerPAD™  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS1663  
English Data Sheet: SLVSET9  
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
MAX  
67  
UNIT  
V
IN, P_IN, OUT, UVLO, FLT, PGOOD  
75  
IN, P_IN (10-ms transient), TA = 25℃  
Input Voltage  
OVP, dVdT, IMON, MODE, SHDN,  
ILIM  
5.5  
10  
0.3  
IFLT, IdVdT, IPGOOD  
Sink current  
mA  
IdVdT, IILIM, IPLIM, IMODE, ISHDN  
Source current  
Internally limited  
Operating Junction temperature  
Transient junction temperature  
Storage temperature  
150  
T(TSD)  
150  
40  
65  
65  
TJ  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
0
NOM  
MAX  
60  
60  
4
UNIT  
IN, P_IN  
OUT, UVLO, PGOOD, FLT  
Input voltage  
Resistance  
V
OVP, dVdT, IMON, MODE  
0
SHDN  
ILIM  
0
5
3
30  
150  
PLIM  
60.4  
1
kΩ  
IMON  
IN, P_IN, OUT  
dVdT  
0.1  
10  
40  
µF  
nF  
°C  
External capacitance  
TJ  
Operating junction temperature  
25  
125  
7.4 Thermal Information  
TPS1663  
THERMAL METRIC(1)  
RGE (VSON)  
24 PINS  
31.4  
PWP (HTSSOP)  
UNIT  
20 PINS  
32.2  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
23.2  
23.4  
10.2  
10  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS1663  
English Data Sheet: SLVSET9  
 
 
 
 
 
 
 
 
 
TPS1663  
www.ti.com.cn  
UNIT  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
7.4 Thermal Information (continued)  
TPS1663  
THERMAL METRIC(1)  
RGE (VSON)  
24 PINS  
0.3  
PWP (HTSSOP)  
20 PINS  
0.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
°C/W  
°C/W  
°C/W  
ΨJT  
10.2  
9.9  
ΨJB  
RθJC(bot)  
2.8  
3.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
40°C TA = TJ +125°C, 4.5 V < V(IN) = V(P_IN) < 60 V, V( SHDN) = 2 V, R(ILIM) = 30 kΩ, IMON = PGOOD = FLT = OPEN,  
C(OUT) = 1 μF, C(dVdT) = OPEN. (All voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY VOLTAGE  
V(IN), V(P_IN)  
IQ(ON)  
Operating input voltage  
Supply current  
4.5  
60  
1.7  
60  
V
Enabled: V( SHDN) = 2 V  
1.38  
21  
mA  
µA  
IQ(OFF)  
V( SHDN) = 0 V  
TPS16632 only, V(IN) > 40 V, I(OUT) = 1  
mA  
V(OVC)  
Over voltage clamp  
35.7  
36.6  
39  
V
UNDERVOLTAGE LOCKOUT (UVLO) INPUT  
V(UVLOR)  
V(UVLOF)  
I(UVLO)  
UVLO threshold voltage, rising  
UVLO threshold voltage, falling  
UVLO Input leakage current  
1.176  
1.09  
1.2  
1.122  
8
1.224  
1.15  
150  
V
V
nA  
0 V V(UVLO) 60 V  
150  
OVERVOLTAGE PROTECTION (OVP) INPUT  
V(OVPR)  
V(OVPF)  
I(OVP)  
over-voltage threshold voltage, rising  
1.176  
1.09  
1.2  
1.122  
0
1.224  
1.15  
150  
V
V
over-voltage threshold voltage, falling  
OVP Input leakage current  
nA  
0 V V(OVP) 4 V  
150  
CURRENT LIMIT PROGRAMMING (ILIM)  
0.54  
1.84  
0.6  
2
0.66  
2.16  
A
A
A
A
A
A
R(ILIM) = 30 kΩ, V(IN) V(OUT) = 1 V  
R(ILIM) = 9 kΩ, V(IN) V(OUT) = 1 V  
R(ILIM) = 4.02 kΩ, V(IN) V(OUT) = 1 V  
R(ILIM) = 3 kΩ, V(IN) V(OUT) = 1 V  
I(OL)  
Over Load current limit  
4.185  
5.58  
4.5  
4.815  
6.42  
6
I(FASTRIP)  
I(SCP)  
Fast-trip comparator threshold  
Short Circuit Protect current  
2xI(OL)  
45  
OUTPUT POWER LIMITING CONTROL (PLIM) INPUT TPS16632 ONLY  
V(SEL_PLIM)  
I(PLIM)  
Power Limit Feature select threshold  
PLIM sourcing current  
180  
4.4  
210  
5.02  
100  
151  
240  
5.6  
mV  
µA  
W
V(PLIM) = 0 V  
94  
106  
R(PLIM) = 100 kΩ  
R(PLIM) = 150 kΩ  
P(PLIM)  
Max Output power  
(1)  
141.9  
160.1  
W
PASS FET OUTPUT (OUT)  
RON  
RON  
IN to OUT total ON resistance  
26  
33  
30.44  
34.5  
45  
0.6 A I(OUT) 6 A,TJ = 25°C  
0.6 A I(OUT) 6 A,TJ = 85°C  
mΩ  
mΩ  
IN to OUT total ON resistance  
IN to OUT total ON resistance  
0.6 A I(OUT) 6 A, 40°C TJ ≤  
+125°C  
RON  
19  
30.44  
2
53  
mΩ  
OUTPUT RAMP CONTROL (dVdT)  
I(dVdT) dVdT charging current  
V(dVdT) = 0 V  
1.775  
2.225  
µA  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSET9  
6
Submit Document Feedback  
Product Folder Links: TPS1663  
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
7.5 Electrical Characteristics (continued)  
40°C TA = TJ +125°C, 4.5 V < V(IN) = V(P_IN) < 60 V, V( SHDN) = 2 V, R(ILIM) = 30 kΩ, IMON = PGOOD = FLT = OPEN,  
C(OUT) = 1 μF, C(dVdT) = OPEN. (All voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
MIN  
23.5  
3.8  
TYP  
MAX UNIT  
GAIN(dVdT)  
V(dVdTmax)  
R(dVdT)  
dVdT to OUT gain  
V(OUT) /V(dVdT)  
25  
26  
4.75  
26.6  
V/V  
V
dVdT maximum capacitor voltage  
dVdT discharging resistance  
4.17  
16.6  
10  
Ω
CURRENT MONITOR OUTPUT (IMON)  
GAIN(IMON) Gain factor I(IMON):I(OUT)  
LOW IQ SHUTDOWN ( SHDN) INPUT  
25.66  
26.22  
27.9  
27.9  
30.14 µA/A  
29.58 µA/A  
0.6 A I(OUT) < 2 A  
2 A I(OUT) 6 A  
V( SHDN)  
V(SHUTF)  
Open circuit voltage  
I( SHDN) = 0.1 µA  
2.48  
0.8  
2.7  
3.3  
2
V
V
SHDN threshold voltage for low IQ  
shutdown, falling  
V(SHUTR)  
I( SHDN)  
SHDN threshold rising  
Leakage current  
V
V( SHDN) = 0 V  
µA  
10  
FAULT FLAG ( FLT): ACTIVE LOW  
R( FLT) FLT Pull-down resistance  
I( FLT) FLT Input leakage current  
POWER GOOD (PGOOD)  
R(PGOOD) PGOOD Pull-down resistance  
I(PGOOD) PGOOD Input leakage current  
THERMAL PROTECTION  
T(J_REG) Thermal regulation set point  
36  
70  
6
130  
150  
Ω
nA  
0 V V( FLT) 60 V  
150  
36  
70  
6
130  
150  
Ω
nA  
0 V V(PGOOD) 60 V  
150  
136  
145  
165  
11  
154  
°C  
°C  
°C  
Thermal shutdown (TSD) threshold,  
rising  
T(TSD)  
T(TSDhyst)  
TSD hysteresis  
Mode selection  
MODE  
MODE = Open  
Latch  
MODE_SEL  
Auto –  
Retry  
MODE = Short to GND  
(1) Parameter specified by design and characterization, not tested in production  
7.6 Timing Requirements  
40°C TA = TJ +125°C, 4.5 V < V(IN) = V(P_IN) < 60 V, V( SHDN) = 2 V, R(ILIM) = 30 kΩ, IMON = PGOOD = FLT = OPEN,  
C(OUT) = 1 μF, C(dVdT) = OPEN. (All voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
UVLO INPUT (UVLO)  
UVLO(100 mV above V(UVLOR)) to  
V(OUT) = 100 mV, C(dVdT) 10 nF,  
[C(dVdT) in nF]  
742 +  
49.5 x  
C(dVdT)  
UVLO_ton(dly)  
UVLO switch turnon delay  
µs  
UVLO(20 mV below V(UVLOF)) to FLT  
UVLO_toff(dly)  
tUVLO_FLT(dly)  
UVLO switch turnoff delay  
9
11  
16  
µs  
µs  
UVLO to Fault de-assertion delay  
500  
617  
700  
UVLOto FLT delay  
OVER VOLTAGE PROTECTION INPUT (OVP)  
OVP_toff(dly) OVP switch turnOFF delay  
OVP(20 mV above V(OVPR)) to FLT  
8.5  
11  
14  
µs  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS1663  
English Data Sheet: SLVSET9  
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
7.6 Timing Requirements (continued)  
40°C TA = TJ +125°C, 4.5 V < V(IN) = V(P_IN) < 60 V, V( SHDN) = 2 V, R(ILIM) = 30 kΩ, IMON = PGOOD = FLT = OPEN,  
C(OUT) = 1 μF, C(dVdT) = OPEN. (All voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
150 +  
49.5 x  
C(dVdT)  
OVP(100 mV below V(OVPF)) to FET  
ON , C(dVdT) 10 nF, [C(dVdT) in nF]  
OVP_ton(dly)  
OVP switch disable delay  
µs  
Maximum duration in over voltage  
clamp operation  
tOVC(dly)  
TPS16632 only  
TPS16632 only  
162  
617  
ms  
µs  
FLT assertion delay in over voltage  
clamp operation  
OVC_tFLT(dly)  
SHUTDOWN CONTROL INPUT ( SHDN)  
tSD(dly)  
SHUTDOWN entry delay  
0.8  
1
1.5  
µs  
SHDN(below V(SHUTF)) to FET OFF  
CURRENT LIMIT  
Hot-short response time  
Soft short response  
I(OUT) > I(SCP)  
1
µs  
µs  
tFASTTRIP(dly)  
I(FASTTRIP) < I(OUT) < I(SCP)  
2.2  
3.2  
4.5  
Maximum duration in current & (power  
limiting: TPS16632 Only)  
tCL_PLIM(dly)  
129  
162  
1.3  
202  
ms  
ms  
FLT delay in current & (power limiting:  
TPS16632 Only)  
tCL_PLIM_FLT(dly)  
1.09  
350  
1.6  
OUTPUT RAMP CONTROL (dVdT)  
t(FASTCHARGE) Output ramp time in fast charging  
t(dVdT) Output ramp time  
C(dVdT) = Open, 10% to 90%  
V(OUT), C(OUT) = 1 µF; V(IN) = 24V  
495  
700  
µs  
C(dVdT) = 22 nF, 10% to 90%  
V(OUT), V(IN) = 24 V  
8.35  
ms  
POWER GOOD (PGOOD)  
tPGOODR PGOOD delay (deglitch) time  
tPGOODF PGOOD delay (deglitch) time  
THERMAL PROTECTION  
Rising edge  
Falling edge  
8
8
11.5  
10  
13  
13  
ms  
ms  
t(TSD_retry)  
Retry delay in TSD  
Thermal Regulation Timeout  
MODE = GND  
500  
1.1  
648  
800  
1.5  
ms  
s
t(Treg_timeout)  
1.25  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSET9  
8
Submit Document Feedback  
Product Folder Links: TPS1663  
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
7.7 Typical Characteristics  
40°C TA = TJ +125°C, V(IN) = V(P_IN) = 24 V, V( SHDN) = 2 V, R(ILIM) = 30 kΩ, IMON = PGOOD = FLT = OPEN, C(OUT)  
= 1 μF, C(dVdT) = OPEN (unless stated otherwise)  
75  
60  
45  
30  
15  
0
40  
38  
36  
34  
32  
30  
ILOAD = 0.6 A  
ILOAD = 6 A  
-60  
-30  
0
30  
60  
90  
120  
150  
-50  
0
50  
Temperature (èC)  
100  
150  
Temperature (èC)  
D002  
D006  
7-1. On-Resistance vs Temperature Across Load Current  
TPS16632  
7-2. Overvoltage Clamp Threshold vs Temperature  
48  
1600  
TA = 125èC  
TA = 85èC  
TA = 25èC  
TA = -40èC  
45  
42  
39  
36  
33  
30  
27  
24  
21  
18  
15  
12  
9
1400  
1200  
1000  
800  
600  
TA = -40 èC  
TA = 25 èC  
TA = 85 èC  
TA = 125 èC  
400  
200  
0
6
0
5
10 15 20 25 30 35 40 45 50 55 60  
Supply Voltage (V)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
Supply Voltage (V)  
D023  
D026  
7-3. Input Supply Current vs Supply Voltage in Shutdown  
7-4. Input Supply Current vs Supply Voltage During Normal  
Operation  
10  
1.25  
R(ILIM) = 9 kW  
R(ILIM) = 4.02 kW  
R(ILIM) = 3 kW  
R(ILIM) = 30 kW  
R(ILIM) = 18 kW  
7.5  
5
1
0.75  
0.5  
2.5  
0
-50  
0
50  
Temperature (èC)  
100  
150  
-50  
0
50  
Temperature (èC)  
100  
150  
D020  
D025  
7-5. Overload Current Limit vs Temperature  
7-6. Overload Current Limit vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS1663  
English Data Sheet: SLVSET9  
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
7.7 Typical Characteristics (continued)  
40°C TA = TJ +125°C, V(IN) = V(P_IN) = 24 V, V( SHDN) = 2 V, R(ILIM) = 30 kΩ, IMON = PGOOD = FLT = OPEN, C(OUT)  
= 1 μF, C(dVdT) = OPEN (unless stated otherwise)  
7
6
5
4
3
2
1
150  
125  
100  
75  
8
7
6
5
CURRENT LIMIT  
POWER LIMIT  
50  
25  
0
60  
0
10  
20  
30  
Supply Voltage (V)  
40  
50  
60  
80  
100  
120  
140  
160  
D052  
PLIM (W)  
D042  
TPS16632  
R(PLIM) = 100 kΩ  
R(ILIM) = 3 kΩ  
7-7. Output Power Limiting Accuracy vs PLIM  
7-8. Power Limit, Current Limit vs Supply Voltage  
160  
160  
140  
120  
100  
80  
TA = 125èC  
TA = 85èC  
TA = 25èC  
TA = -40èC  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
0
0.6 1.2 1.8 2.4  
3
Output Current (A)  
3.6 4.2 4.8 5.4  
6
6.6  
0
0.1  
0.2  
0.3  
Output Current (A)  
0.4  
0.5  
0.6  
D021  
D033  
7-9. Current Monitor Output vs Output Current  
190  
7-10. IMON Gain Accuracy at Low Output Current Levels  
13  
tPGOODR  
tPGOODF  
180  
170  
160  
150  
140  
12  
11  
10  
9
-50  
0
50  
Temperature (èC)  
100  
150  
-50  
0
50  
Temperature (èC)  
100  
150  
D029  
D031  
7-11. Maximum Duration in Current and Power Limiting vs  
7-12. PGOOD Rising and Falling Delay vs Temperature  
Temperature  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS1663  
English Data Sheet: SLVSET9  
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
7.7 Typical Characteristics (continued)  
40°C TA = TJ +125°C, V(IN) = V(P_IN) = 24 V, V( SHDN) = 2 V, R(ILIM) = 30 kΩ, IMON = PGOOD = FLT = OPEN, C(OUT)  
= 1 μF, C(dVdT) = OPEN (unless stated otherwise)  
3000  
2000  
TA = -40èC  
1000  
TA = 0èC  
500  
TA = 25èC  
TA = 85èC  
200  
TA = 125èC  
100  
50  
20  
10  
5
2
1
0.5  
0.2  
0.1  
3
4
5 6 7 8 10  
20 30 4050 70 100  
Power Dissipation (W)  
200 300400  
D040  
Taken on VQFN device on EVM Board  
7-13. Thermal Shutdown Time vs Power Dissipation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS1663  
English Data Sheet: SLVSET9  
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
8 Parameter Measurement Information  
V(OUT)  
VUVLO  
V(UVLOF)-0.02 V  
0.1 V  
VUVLO  
FLT  
V(UVLOR)+0.1V  
10%  
time  
0
time  
0
UVLO_tON(dly)  
UVLO_toff(dly)  
V(OVPR)+0.02V  
V(OVP)  
V(OUT)  
0.1 V  
FLT  
VOVP  
V(OVPF)-0.02 V  
10%  
0
0
time  
time  
OVP_tOFF(dly)  
OVP_tON(dly)  
P(PLIM)  
P(OUT)  
I(FASTRIP)  
V(OUT)  
I(OL)  
I(OUT)  
I(OUT)  
0
tCL_PLIM(dly)  
time  
tCL_PLIM(dly)  
0
time  
tFASTRIP(dly)  
8-1. Timing Waveforms  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSET9  
12  
Submit Document Feedback  
Product Folder Links: TPS1663  
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
9 Detailed Description  
9.1 Overview  
The TPS1663x is a family of 60-V industrial eFuses. The device provides robust protection for all systems and  
applications powered from 4.5 V to 60 V. For hot-pluggable boards, the device provides hot-swap power  
management with in-rush current control and programmable output voltage slew rate features using the dVdT  
pin. Load, source, and device protections are provided with many programmable features including overcurrent,  
overvoltage and undervoltage. The 60-V maximum DC operating and 62-V absolute maximum voltage rating  
enables system protection from 60-V DC input supply faults from industrial SELV power supplies. The precision  
overcurrent limit (±7% at 6 A) helps to minimize over design of the input power supply, while the fast response  
short circuit protection 1 µs (typical) immediately isolates the faulty load from the input supply when a short  
circuit is detected.  
The TPS16632 device integrate adjustable output power limiting (PLIM) functionality that simplifies the system  
design requiring compliance in accordance to standards like IEC61010-1 and UL1310.  
The device provides precise monitoring of voltage bus for brown-out and overvoltage conditions and asserts fault  
signal for the downstream system. The device's overall threshold accuracy of 2% ensures tight supervision of  
bus, eliminating the need for a separate supply voltage supervisor chip.  
Additional features of the TPS1663x include:  
±6% current monitor output (IMON) for health monitoring of the system  
A choice of latch off or automatic restart mode response during current limit, power limit, and thermal fault  
using MODE pin  
PGOOD indicator output  
Overtemperature protection to safely shutdown in the event of an overcurrent event  
De-glitched fault reporting for supply brown-out and overvoltage faults  
Enable and Disable control from an MCU using SHDN pin  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS1663  
English Data Sheet: SLVSET9  
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
9.2 Functional Block Diagram  
OUT  
IN  
P_IN  
31 mΩ  
Charge  
Pump  
Current  
Sense  
P_IN  
+
+
PORb  
X27.9 µ  
4.3 V  
4.2 V  
IMON  
CP  
UVLO  
5 V  
Gate Control Logic  
UVLOb  
1.2 V  
Current Limit Amp  
1.12 V  
SWEN  
I(OUT) = I(OL)  
Fast-Trip Comp  
(Threshold= 45A)  
162 msec  
timer  
Timeout  
ILIM  
TSD  
Thermal  
Shutdown  
OLR  
Open/ Short  
detect  
OVP  
+
OVP  
SHDNb  
1.2V  
1.12V  
4.17V  
Ramp Control  
2µA  
SWEN  
FLT  
25x  
* Only for Latch Mode  
dVdT  
70 Ω  
SET  
UVLOb  
PORb  
S
Q
16Ω  
TSD  
CLR  
R
Q
SHDNb  
GND  
PORb  
Fault Latch  
Gate Enhanced  
(HS_FET)  
PGOOD  
11.5 ms  
10 ms  
1.2 Meg  
SET  
S
R
Q
Q
MODE  
3V  
2.7V  
Overload fault response  
(Auto-Retry/Latch-off)  
select detection  
65 Ω  
OLR  
10 µsec  
0.8V  
CLR  
UVLOb  
SHDNb  
+
SHDNb  
TPS16630  
SHDN  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSET9  
14  
Submit Document Feedback  
Product Folder Links: TPS1663  
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
9.3 Feature Description  
9.3.1 Hot Plug-In and In-Rush Current Control  
The devices are designed to control the in-rush current upon insertion of a card into a live backplane or other hot  
power source. This design limits the voltage sag on the backplanes supply voltage and prevents unintended  
resets of the system power. The controlled start-up also helps to eliminate conductive and radiative  
interferences. An external capacitor connected from the dVdT pin to GND defines the slew rate of the output  
voltage at power-on. The fastest output slew rate of 24 V/500 µs can be achieved by leaving dVdT pin floating.  
The inrush current can be calculated using 方程1.  
dV  
dT  
V(IN)  
tdVdT  
I = Cì  
where  
í I(INRUSH) = C(OUT) ì  
(1)  
(2)  
tdVdT = 20.8 × 103 × V(IN) × C(dVdT)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS1663  
English Data Sheet: SLVSET9  
 
 
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
9-1 illustrates in-rush current control performance of the device during Hot Plug-In.  
VIN  
VOUT  
PGOOD  
IIN  
CdVdT = 100 nF  
COUT = 1000 µF  
RILIM = 4.02 kΩ  
9-1. Hot Plug In and In-Rush Current Control at 24-V Input  
9.3.1.1 Thermal Regulation Loop  
The average power dissipation within the eFuse during power up with a capacitive load can be calculated using  
方程3.  
PD(INRUSH) = 0.5ì V(IN) ìI(INRUSH)  
(3)  
System designs requiring to charge large output capacitors rapidly can result in an operating point that exceeds  
the power dissipation versus time boundary limits of the device defined by 7-13 characteristic curve. This  
event can result in increase in junction temperature beyond the device's maximum allowed junction temperature.  
To keep the junction temperature within the operating range, the thermal regulation control loop regulates the  
junction temperature at T(J_REG) , 145°C (typical) by controlling the inrush current profile and thereby limiting the  
power dissipation within the device automatically. An internal 1.25 sec (typical), t(Treg_timeout) timer starts from the  
instance the thermal regulation operation kicks in. If the output does not power up within this time then the  
internal FET is turned OFF. Subsequent operation of the device depends on the MODE configuration (auto-retry  
or latch OFF) setting as per the 9-1. The maximum time-out of 1.25 sec (typical) in thermal regulation loop  
operation ensures that the device and the system board does not heat up during steady fault conditions such as  
wake up with output short-circuit. This scheme ensures reliable power-up operation.  
Thermal regulation control loop is internally enabled during power up by V(IN), UVLO cycling and turn ON using  
SHDN control. 9-2 illustrates performance of the device operating in thermal regulation loop during power up  
by V(IN) with a large output capacitor. The thermal regulation loop gets disabled internally after the power up  
sequence when the internal FET's gate gets fully enhanced or when the t(Treg_timeout) of 1.25 sec (typical) time is  
elapsed.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSET9  
16  
Submit Document Feedback  
Product Folder Links: TPS1663  
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
VIN  
VOUT  
PGOOD  
IIN  
CdVdT = Open  
COUT = 15 mF  
RILIM = 4.02 kΩ  
9-2. Thermal Regulation Loop Response During Power Up With Large Capacitive Load  
9.3.2 Undervoltage Lockout (UVLO)  
The TPS1663x devices feature an accurate ± 2% adjustable undervoltage lockout functionality. When the  
voltage at UVLO pin falls below V(UVLOF) during input undervoltage fault, the internal FET quickly turns off and  
FLT is asserted. The UVLO comparator has a hysteresis of 78 mV (typical). To set the input UVLO threshold,  
connect a resistor divider network from IN supply to UVLO terminal to GND as shown in 9-3. If the  
Undervoltage Lockout function is not needed, the UVLO terminal must be connected to the IN terminal. UVLO  
terminal must not be left floating.  
V(IN)  
IN  
P_IN  
R1  
UVLO  
+
UVLOb  
1.2 V  
R2  
1.12 V  
OVP  
+
OVP  
1.2 V  
1.12 V  
R3  
GND  
9-3. UVLO and OVP Thresholds Set by R1 , R2 and R3  
9.3.3 Overvoltage Protection (OVP)  
The TPS1663x incorporate circuitry to protect the system during overvoltage conditions. The TPS16630 features  
an accurate ± 2% adjustable overvoltage cut off functionality. A voltage more than V(OVPR) on OVP pin turns off  
the internal FET and protects the downstream load. To program the OVP threshold externally, connect a resistor  
divider from IN supply to OVP terminal to GND as shown in 9-3. The TPS16632 features an internally fixed  
39-V maximum overvoltage clamp V(OVC) functionality. The TPS16632 clamps the output voltage to V(OVC), when  
the input voltage exceeds 40 V. During the output voltage clamp operation, the power dissipation in the internal  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS1663  
English Data Sheet: SLVSET9  
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
MOSFET is PD = (V(IN) V(OVC)) × I(OUT). Excess power dissipation for a prolonged period can increase the  
device temperature. To avoid this, the internal FET is operated in overvoltage clamp for a maximum duration of  
tOVC(dly), 162 msec (typical). After this duration, the internal FET is turned OFF and the subsequent operation of  
the device depends on the MODE configuration (auto-retry or latch off) setting as per the 9-1.  
9-4 illustrates the overvoltage cut-off functionality and 9-5 illustrates the overvoltage clamp functionality.  
FLT is asserted after a delay of 617 µs (typical) after entering in overvoltage clamp mode and remains asserted  
until the overvoltage fault is removed.  
VIN  
VIN  
VOUT  
VOUT  
FLTb  
FLTb  
IIN  
TPS16630  
OVP Setting at 33 V  
TPS16632  
COUT = 10 µF, FLT  
connected to VOUT  
RLOAD = 30 Ω  
9-4. Overvoltage Cut-Off Response at 33-V Level  
9-5. Overvoltage Clamp Response  
9.3.4 Overload and Short Circuit Protection  
The device monitors the load current by sensing the voltage across the internal sense resistor. The FET current  
is monitored during start-up and normal operation.  
9.3.4.1 Overload Protection  
The TPS1663x devices feature accurate overload current limiting and fast short circuit protection feature. If the  
load current exceeds the programmed current limit IOL, the device regulates the current through it at IOL  
eventually reducing the output voltage. The power dissipation across the device during this operation is (VIN –  
VOUT) × IOL and this can heat up the device and eventually enter into thermal shutdown. The maximum duration  
for the overcurrent through the FET is tCL_PLIM(dly), 162 msec (typical). If the thermal shutdown occurs before this  
time the internal FET turns OFF and the device operates either in auto-retry or latch off mode based on MODE  
pin configuration in 9-1. Set the current limit using 方程4.  
18  
IOL  
=
R(ILIM  
)
(4)  
where  
I(OL) is the overload current limit in Ampere  
R(ILIM) is the current limit resistor in kΩ  
During the overload current limiting if the overload condition exists for more than tCL_PLIM_FLT(dly), 1.3 msec  
(typical), the FLT asserts to warn of impending turnoff of the internal FETs due to the subsequent thermal  
shutdown event or due to tCL_PLIM(dly) timer expiry. The FLT signal remains asserted until the fault condition is  
removed and the device resumes normal operation. 9-6 and 9-7 illustrate overload current limiting  
performance.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSET9  
18  
Submit Document Feedback  
Product Folder Links: TPS1663  
 
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
VOUT  
VOUT  
IIN  
IIN  
IMON  
FLTb  
IMON  
FLTb  
VIN = 50 V  
MODE = GND  
VIN = 50 V  
MODE = GND  
RILIM = 18 kΩ  
RILIM = 18 kΩ  
9-6. Overload Performance During Load Step  
from 140 Ωto 40 Ω  
9-7. Coming Out of Overload With Load Step  
from 40 Ωto 140 Ω  
The TPS1663x devices features ILIM pin short and open fault detection and protection. The internal FET is  
turned OFF when ILIM pin is detected short or open to GND and it remains OFF till the ILIM pin fault is removed.  
9.3.4.2 Short Circuit Protection  
During a transient output short circuit event, the current through the device increases rapidly. As the current-limit  
amplifier cannot respond quickly to this event due to its limited bandwidth, the device incorporates a fast-trip  
comparator. The fast-trip comparator architecture is designed for fast turn OFF tFASTTRIP(dly) = 1 µs (typical) with  
I(SCP) = 45 A of the internal FET during an output short circuit event. The fast-trip threshold is internally set to  
I(FASTTRIP). The fast-trip circuit holds the internal FET off for only a few microseconds, after which the device  
turns back on slowly, allowing the current-limit loop to regulate the output current to I(OL). Then the device  
functions similar to the overload condition. 9-8 illustrates output hot-short performance of the device.  
VOUT  
IIN  
IMON  
FLTb  
VIN = 50 V  
RILIM = 18 kΩ  
9-8. Output Hot-Short Response  
The fast-trip comparator architecture has a supply line noise immunity resulting in a robust performance in noisy  
environments. This supply line noise immunity is achieved by controlling the turn OFF time of the internal FET  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS1663  
English Data Sheet: SLVSET9  
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
based on the overcurrent level, I(FASTTRIP), through the device. The higher the overcurrent, the faster the turn  
OFF time, tFASTTRIP(dly). At Overload current level in the range of IFASTTRIP < IOUT < ISCP, the fast-trip comparator  
response is 3.2 µs (typical).  
9.3.4.2.1 Start-Up With Short-Circuit On Output  
When the device is started with short-circuit on the output, the current begins to limit at I(OL). Due to high power  
dissipation of VIN x I(OL) within the device the junction temperature increases. Subsequently, the thermal  
regulation control loop limits the load current to regulate the junction temperature at T(J_REG), 145°C (typical) for  
a duration of t(Treg_timeout), 1.25 sec (typical). Subsequent operation of the device depends on the MODE  
configuration (auto-retry or latch off) setting as per the 9-1. FLT gets asserted after t(Treg_timeout) and remains  
asserted till the output short-circuit is removed. 9-9 illustrates the behavior of the device in this condition.  
VIN  
FLTb  
IIN  
VIN = 24 V  
RILIM = 3 kΩ  
9-9. Start-Up With Short on Output  
9.3.5 Output Power Limiting, PLIM (TPS16632 Only)  
In TPS16630, with a fixed overcurrent limit threshold the maximum output power limit increases linearly with  
supply input. Electrical Industrial process control equipment such as PLC CPU must comply with standards like  
IEC61010-1 and UL1310 for fire safety which require limited energy and power circuits. Limiting the output  
power becomes a challenge in such high power applications where the operating supply voltage range is wide.  
The TPS16632 integrate adjustable output power limiting functionality that simplifies the system design requiring  
compliance in accordance to this standard.  
Connect a resistor from PLIM to GND as shown in 9-10 to set the output power limiting value. If output power  
limiting is not required, then connect PLIM to GND directly. This connection disables the PLIM functionality.  
During an over-power load event, the TPS16632 limits the output power at the programmed value set by PLIM  
resistor. This limit indirectly results in the device operation in current limiting mode with steady state output  
voltage and current set by the load characteristics and PLIM = VOUT × IOUT. 7-8 shows the output power limit  
and current limit characteristics of TPS16632 with 100-W power limit setting. The maximum duration for the  
device in power limiting mode is 162 msec (typical), tCL_PLIM(dly). After this time, the device operates either in  
auto-retry or latch off mode based on MODE pin configuration in 9-1.  
P(PLIM) = 1 × R(PLIM)  
(5)  
Here, P(PLIM) is output power limit in watts, and R(PLIM) is the power limit setting resistor in kΩ.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSET9  
20  
Submit Document Feedback  
Product Folder Links: TPS1663  
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
During the output power limiting operation, FLT asserts after a delay of tCL_PLIM_FLT(dly). The FLT signal remains  
asserted until the over power load condition is removed and the device resumes normal operation.  
9-11 illustrates output power limiting performance of TPS16632 with 100-W setting for class-2 power supply  
designs .  
4.5 V - 60 V  
OUT  
IN  
COUT  
P_IN  
31 mΩ  
Protected supply  
To Load  
R1  
R2  
PGOOD  
FLT  
UVLO  
TPS16632  
ON/OFF Control  
SHDN  
PLIM  
IMON  
ILIM  
Load Monitor  
RIMON  
RPLIM  
GND  
dVdT  
MODE  
RILIM  
CdVdT  
9-10. TPS16632 Typical Application Schematic  
RPLIM = 100 kΩ  
RILIM = 3 kΩ  
9-11. 100 W class 2, Output Power Limiting Response of TPS16632  
9.3.6 Current Monitoring Output (IMON)  
The TPS1663x devices feature an accurate analog current monitoring output. A current source at IMON terminal  
is internally configured to be proportional to the current flowing from IN to OUT. This current can be converted  
into a voltage using a resistor R(IMON) from IMON terminal to GND terminal. The IMON voltage can be used as a  
means of monitoring current flow through the system. The maximum voltage (V(IMONmax) for monitoring the  
current is limited to 4 V. This limitation puts a limitation on maximum value of R(IMON) resistor and is determined  
by 方程6.  
V
(
IMON  
)
= I  
[
(
OUT  
)
ìGAIN  
(
IMON  
)
ìR  
(
IMON  
)
]
(6)  
Where,  
GAIN(IMON) is the gain factor I(IMON):I(OUT) = 27.9μA/A (typical)  
I(OUT) is the load current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS1663  
English Data Sheet: SLVSET9  
 
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
Refer to 7-9 for IMON output versus load current plot. 9-12 illustrates IMON performance.  
VIN  
VOUT  
IMON  
IIN  
9-12. IMON Response During a Load Step  
The IMON pin must not have a bypass capacitor to avoid delay in the current monitoring information.  
9.3.7 FAULT Response (FLT)  
The FLT open-drain output asserts (active low) under the faults events such as undervoltage, overvoltage,  
overload, power limiting, ILIM pin short, and thermal shutdown conditions. The device is designed to eliminate  
false reporting by using an internal de-glitch circuit for fault conditions without the need for an external circuitry.  
FLT can be left open or connected to GND when not used.  
9.3.8 Power Good Output (PGOOD)  
The devices feature an open drain Power Good (PGOOD) indicator output. PGOOD can be used for enable-  
disable control of the downstream loads like DC/DC converters. PGOOD goes high when the internal FETs  
gate is enhanced. PGOOD goes low when the internal FET turns OFF during a fault event or when SHDN is  
pulled low. There is a deglitch of 11.5 msec (typical), tPGOODR, at the rising edge and 10 msec (typical), tPGOODF  
on falling edge. PGOOD is a rated for 60 V and can be pulled to IN or OUT through a resistor.  
,
9.3.9 IN, P_IN, OUT and GND Pins  
Connect a minimum of a 0.1-µF capacitor across IN and GND. Connect P_IN and IN together. Do not leave any  
of the IN and OUT pins un-connected.  
9.3.10 Thermal Shutdown  
The device has a built-in overtemperature shutdown circuitry designed to protect the internal FET if the junction  
temperature exceeds T(TSD), 165°C (typical). After the thermal shutdown event, depending upon the mode of  
fault response configured as shown in 9-1, the device either latches off or commences an auto-retry cycle of  
648 msec (typical), t(TSD_retry) after TJ < ((TSD) 11°C). During the thermal shutdown, the fault pin FLT pulls low  
to indicate a fault condition.  
9.3.11 Low Current Shutdown Control (SHDN)  
The internal and the external FET and hence the load current can be switched off by pulling the SHDN pin below  
0.8-V threshold with a micro-controller GPIO pin or can be controlled remotely with an opto-isolator device. The  
device quiescent current reduces to 21 μA (typical) in shutdown state. To assert SHDN low, the pull down must  
have sinking capability of at least 10 µA. To enable the device, SHDN must be pulled up to at least 2 V. Once the  
device is enabled, the internal FET turns on with dVdT mode.9-13 and 9-14 illustrate the performance of  
SHDN control.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSET9  
22  
Submit Document Feedback  
Product Folder Links: TPS1663  
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
SHDN  
VOUT  
SHDN  
VOUT  
PGOOD  
PGOOD  
IIN  
IIN  
VIN = 24 V  
C(dVdT) = 22 nF  
VIN = 24 V  
C(dVdT) = 22 nF  
RLOAD = 24 Ω  
RLOAD = 24 Ω  
9-13. Turnon Control With SHDN  
9-14. Turnoff Control With SHDN  
9.4 Device Functional Modes  
The TPS1663x devices respond differently to overload with MODE pin configurations. 9-1 lists the operational  
differences.  
9-1. Device Operational Differences Under Different MODE Configurations  
MODE Pin Configuration  
Power Limiting, Over Current fault and Thermal Shutdown Operation  
Active Current limiting for a maximum duration of tCL_PLIM(dly). There after Latches OFF.  
Latch reset by toggling SHDN or UVLO low to high or power cycling IN.  
Open  
Active current limiting for a maximum duration of tCL_PLIM(dly). There after auto-retries after a  
Shorted to GND  
delay of t(TSD_retry)  
.
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS1663  
English Data Sheet: SLVSET9  
 
 
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
The TPS1663x is a 60-V eFuse, typically used for hot-swap and power rail protection applications. The device  
operates from 4.5 V to 60 V with programmable current limit, overvoltage, and undervoltage protections. The  
device aids in controlling in-rush current and provides output power limiting for systems such as PLCs, Telecom  
radios, and industrial printers. The device also provides robust protection for multiple faults on the system rail.  
The Detailed Design Procedure section can be used to select component values for the device. Additionally, a  
spreadsheet design tool, TPS1663 Design Calculator, is available in the web product folder.  
10.2 Typical Application  
VIN: 20 V œ 50 V  
VOUT  
COUT  
IN  
OUT  
P_IN  
31mΩ  
100 µF  
R1  
887 k  
PGOOD  
FLT  
UVLO  
OVP  
TPS16630  
R2  
43 k  
ON/OFF Control  
SHDN  
IMON  
ILIM  
R3  
20.5 k  
RIMON  
30 k  
dVdT  
22 nF  
RILIM  
18 k  
MODE  
GND  
10-1. 20 V 50 V, 1-A eFuse Protection Circuit for Telecom Radios  
10.2.1 Design Requirements  
10-1 shows the design requirements for TPS16630.  
10-1. Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
20 V50 V  
18 V  
V(IN)  
Input voltage range  
V(UV)  
V(OV)  
I(LIM)  
Undervoltage lockout set point  
Overvoltage cutoff set point  
Overload current limit  
Output capacitor  
55 V  
1 A  
COUT  
I(INRUSH)  
100 µF  
Inrush current limit  
300 mA  
10.2.2 Detailed Design Procedure  
10.2.2.1 Programming the Current-Limit Threshold R(ILIM) Selection  
The R(ILIM) resistor at the ILIM pin sets the overload current limit. The overload current limit can be set using 方  
7.  
18  
R(ILIM  
=
= 18kW  
)
IOL  
(7)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSET9  
24  
Submit Document Feedback  
Product Folder Links: TPS1663  
 
 
 
 
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
where  
ILIM = 1 A  
Choose the closest standard 1% resistor value: R(ILIM) = 18 kΩ  
10.2.2.2 Undervoltage Lockout and Overvoltage Set Point  
The undervoltage lockout (UVLO) and overvoltage trip point are adjusted using an external voltage divider  
network of R1, R2 and R3 connected between IN, UVLO, OVP and GND pins of the device. The values required  
for setting the undervoltage and overvoltage are calculated by solving 方程8 and 方程9.  
R3  
V(OVPR) =  
ì V(OV)  
R1+ R2 + R3  
(8)  
R2 + R3  
R1+ R2 + R3  
V(UVLOR) =  
ì V(UV)  
(9)  
For minimizing the input current drawn from the power supply [I(R123) = V(IN) / (R1 + R2 + R3)], TI recommends to  
use higher value resistance for R1, R2 and R3.  
However, the leakage current due to external active components connected at resistor string can add error to  
these calculations. So, the resistor string current, I(R123), must be chosen to be 20 times greater than the  
leakage current of UVLO and OVP pins.  
From the device electrical specifications, V(OVPR) = 1.2 V and V(UVLOR) = 1.2 V. From the design requirements,  
V(OV) is 55 V and V(UV) is 18 V. To solve the equation, first choose the value of R3 = 20.5 kand use 方程式 8 to  
solve for (R1 + R2) = 930 k. Use 方程式 9 and value of (R1 + R2) to solve for R2 = 43 kand finally R1 = 887  
k.  
Choose the closest standard 1% resistor values: R1 = 887 k, R2 = 43 k, and R3 = 20.5 k.  
10.2.2.3 Setting Output Voltage Ramp Time (tdVdT  
)
Use 方程式 1 and 方程式 2 to calculate required C(dVdT) for achieving an inrush current of 300 mA. C(dVdT) = 22  
nF. 10-2 and 10-3 illustrate the inrush current limiting performance during 50-V hot-plug in condition.  
10.2.2.3.1 Support Component Selections RPGOOD and C(IN)  
The RPGOOD serves as pull-up for the open-drain output. The current sink by this pin must not exceed 10 mA  
(see the Absolute Maximum Ratings table). TI recommends typical resistance value in the range of 10 kΩto 100  
kΩ for RPGOOD. 10-5 and 10-7 illustrate the power up and power down performance of the system  
respectively. The CIN is a local bypass capacitor to suppress noise at the input. TI recommends a minimum of  
0.1 µF for C(IN)  
.
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS1663  
English Data Sheet: SLVSET9  
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
10.2.3 Application Curves  
VIN  
VIN  
VOUT  
VOUT  
PGOOD  
PGOOD  
IIN  
IIN  
10-2. Hot-Plug In at 50-V Supply With No Load 10-3. Hot-Plug In at 50-V Supply With 60-ΩLoad  
VOUT  
VOUT  
IIN  
IIN  
IMON  
FLTb  
IMON  
FLTb  
10-4. Overload Performance During Load Step  
From 140 Ωto 40 Ω  
10-5. Coming Out of Overload With Load Step  
From 40 Ωto 140 Ω  
SHDNb  
VOUT  
VOUT  
IIN  
IMON  
FLTb  
PGOOD  
IIN  
10-6. Output Hot-short Performance With 50-V  
10-7. Turn ON Using SHDN Control  
Input Supply  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS1663  
English Data Sheet: SLVSET9  
 
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
SHDNb  
VOUT  
PGOOD  
IIN  
10-8. Turn OFF Using SHDN Control  
10.3 System Examples  
10.3.1 Simple 24-V Power Supply Path Protection  
With the TPS1663x, a simple 24-V power supply path protection can be realized using a minimum of three  
external components, as shown in the schematic diagram in 10-9. The external components required are a  
R(ILIM) resistor to program the current limit and C(IN) and C(OUT) capacitors.  
VOUT  
COUT  
VIN  
CIN  
IN  
OUT  
P_IN  
31 mΩ  
PGOOD  
FLT  
UVLO  
PLIM  
TPS16632  
ON/OFF Control  
SHDN  
IMON  
dVdT  
ILIM  
MODE  
RILIM  
GND  
10-9. TPS16630 Configured for a Simple Power Supply Path Protection  
Protection features with this configuration include:  
39-V (maximum) overvoltage clamp output  
Inrush current control with 24-V/500-µs output voltage slew rate  
Accurate current limiting with auto-retry  
10.4 Power Supply Recommendations  
The TPS1663x eFuse is designed for the supply voltage range of 4.5 V VIN 60 V. If the input supply is  
located more than a few inches from the device, TI recommends an input ceramic bypass capacitor higher than  
0.1 μF. Power supply must be rated higher than the current limit set to avoid voltage droops during overcurrent  
and short circuit conditions.  
10.4.1 Transient Protection  
In case of short circuit and overload current limit, when the device interrupts current flow, input inductance  
generates a positive voltage spike on the input and output inductance generates a negative voltage spike on the  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS1663  
English Data Sheet: SLVSET9  
 
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
output. The peak amplitude of voltage spikes (transients) depends on the value of inductance in series to the  
input or output of the device. These transients can exceed the Absolute Maximum Ratings of the device if steps  
are not taken to address the issue.  
Typical methods for addressing transients include:  
Minimizing lead length and inductance into and out of the device  
Using large PCB GND plane  
Using a Schottky diode across the output and GND to absorb negative spikes  
Using low value ceramic capacitor (C(IN) to approximately 0.1 μF) to absorb the energy and dampen the  
transients.  
The approximate value of input capacitance can be estimated with 方程10.  
L IN  
( )  
Vspike Absolute = V IN + I Load  
( ) )  
´
(
)
(
C IN  
( )  
(10)  
where  
V(IN) is the nominal supply voltage  
I(LOAD) is the load current  
L(IN) equals the effective inductance seen looking into the source  
C(IN) is the capacitance present at the input  
Some applications can require additional Transient Voltage Suppressor (TVS) to prevent transients from  
exceeding the Absolute Maximum Ratings of the device. These transients can occur during positive and  
negative surge tests on the supply lines. In such applications, TI recommends to place at least 1 µF of input  
capacitor.  
The circuit implementation with optional protection components (a ceramic capacitor, TVS and Schottky diode) is  
shown in 10-10  
Input  
Output  
COUT  
IN  
OUT  
P_IN  
*
31 mΩ  
*
R1  
R2  
PGOOD  
FLT  
UVLO  
OVP  
TPS16633x  
SHDN  
IMON  
ILIM  
R3  
dVdT  
CdVdT  
MODE  
RILIM  
GND  
* Optional components needed for suppression of transients  
10-10. Circuit Implementation With Optional Protection Components for TPS1663x  
10.5 Layout  
10.5.1 Layout Guidelines  
For all the applications, TI recommends a 0.1 µF or higher value ceramic decoupling capacitor between IN  
terminal and GND.  
High current carrying power path connections must be as short as possible and must be sized to carry at  
least twice the full-load current. See 10-11 and 10-12 for a typical PCB layout example.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSET9  
28  
Submit Document Feedback  
Product Folder Links: TPS1663  
 
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
Locate all the TPS1663x family support components R(ILIM), R(PLIM), C(dVdT), R(IMON), UVLO, OVP resistors  
close to their connection pin. Connect the other end of the component to the GND with shortest trace length.  
The trace routing for the R(ILIM), R(PLIM) component to the device must be as short as possible to reduce  
parasitic effects on the current limit and power limit accuracy. These traces must not have any coupling to  
switching signals on the board.  
Protection devices such as TVS, snubbers, capacitors, or diodes must be placed physically close to the  
device they are intended to protect, and routed with short traces to reduce inductance. For example, TI  
recommends a protection Schottky diode to address negative transients due to switching of inductive loads,  
and it must be physically close to the OUT and GND pins.  
Thermal Considerations: when properly mounted, the PowerPAD package provides significantly greater  
cooling ability. To operate at rated power, the PowerPAD must be soldered directly to the board GND plane  
directly under the device. Other planes, such as the bottom side of the circuit board, can be used to increase  
heat sinking in higher current applications.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS1663  
English Data Sheet: SLVSET9  
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
10.5.2 Layout Example  
Top Layer  
Bottom layer GND plane  
Top Layer GND Plane  
Via to Bottom Layer  
BOTTOM Layer GND Plane  
High  
Frequency  
Bypass cap  
D2  
D1  
VOUT PLANE  
OUT  
OUT  
IN  
IN  
N.C  
PGOOD  
N.C  
P_IN  
N.C  
FLT  
UVLO  
IMON  
TOP Layer  
GND Plane  
BOTTOM Layer GND Plane  
10-11. PCB Layout Example With QFN Package With a 2-Layer PCB  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSET9  
30  
Submit Document Feedback  
Product Folder Links: TPS1663  
 
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
Top Layer  
Bottom layer GND plane  
Top Layer GND Plane  
Via to Bottom Layer  
BOTTOM Layer GND Plane  
High  
Frequency  
Bypass cap  
D2  
D1  
VIN PLANE  
VOUT PLANE  
IN  
OUT  
OUT  
OUT  
IN  
IN  
N.C  
N.C  
N.C  
P_IN  
UVLO  
PGOOD  
FLT  
IMON  
OVP  
GND  
SHDN  
MODE  
dVdT  
ILIM  
TOP Layer  
GND Plane  
BOTTOM Layer GND Plane  
10-12. Typical PCB Layout Example With HTSSOP Package With a 2-Layer PCB  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS1663  
English Data Sheet: SLVSET9  
 
TPS1663  
www.ti.com.cn  
ZHCSIV1F SEPTEMBER 2018 REVISED FEBRUARY 2023  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
TPS1663 Design Calculator  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSET9  
32  
Submit Document Feedback  
Product Folder Links: TPS1663  
 
 
 
 
 
 
 
 
PACKAGE OUTLINE  
PWP0020T  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
3
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
0.1 C  
A
PIN 1 INDEX  
AREA  
18X 0.65  
SEATING  
20  
PLANE  
1
2X  
6.6  
6.4  
5.85  
NOTE 3  
10  
11  
0.30  
20X  
4.5  
4.3  
0.19  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 1.15 MAX  
NOTE 5  
11  
10  
2X 0.3 MAX  
NOTE 5  
0.25  
1.2 MAX  
GAGE PLANE  
21  
2.96  
2.21  
0.15  
0.05  
0.75  
0.50  
THERMAL  
PAD  
0 -8  
A
15  
DETAIL A  
TYPICAL  
1
20  
2.96  
2.16  
4224598/A 10/2018  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0020T  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(2.96)  
METAL COVERED  
BY SOLDER MASK  
20X (1.5)  
SYMM  
1
20  
20X (0.45)  
(R0.05) TYP  
(1.3)  
TYP  
(6.5)  
NOTE 9  
21  
SYMM  
(2.96)  
SOLDER MASK  
DEFINED PAD  
18X (0.65)  
10  
11  
(1.3) TYP  
SEE DETAILS  
(
0.2) TYP  
VIA  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
15.000  
SOLDER MASK DETAILS  
4224598/A 10/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0020T  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.96)  
BASED ON  
0.125 THICK  
STENCIL  
METAL COVERED  
BY SOLDER MASK  
20X (1.5)  
1
20  
20X (0.45)  
(R0.05) TYP  
SYMM  
21  
(2.96)  
BASED ON  
0.125 THICK  
STENCIL  
18X (0.65)  
11  
10  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.31 X 3.31  
2.96 X 2.96 (SHOWN)  
2.70 X 2.70  
0.125  
0.15  
0.175  
2.50 X 2.50  
4224598/A 10/2018  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
A
4.1  
3.9  
B
4.1  
3.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
ꢀꢀꢀꢀꢁꢂꢃ“ꢄꢂꢅ  
(0.2) TYP  
2X 2.5  
12  
7
20X 0.5  
6
13  
25  
2X  
SYMM  
2.5  
1
18  
0.30  
PIN 1 ID  
(OPTIONAL)  
24X  
0.18  
24  
19  
0.1  
0.05  
C A B  
C
SYMM  
0.48  
0.28  
24X  
4219016 / A 08/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
2.7)  
(
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
25  
SYMM  
(3.825)  
2X  
(1.1)  
ꢆ‘ꢄꢂꢁꢇꢀ9,$  
TYP  
6
13  
(R0.05)  
7
12  
2X(1.1)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219016 / A 08/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
4X ( 1.188)  
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
SYMM  
(3.825)  
(0.694)  
TYP  
6
13  
25  
(R0.05) TYP  
METAL  
TYP  
7
12  
(0.694)  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
78% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219016 / A 08/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS16632RGET

具有输出功率限制功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝 | RGE | 24 | -40 to 125
TI

TPS180

SWITCHING MODE 180W U CHANNEL POWER SUPPLY
TOTAL-POWER

TPS180-10

SWITCHING MODE 180W U CHANNEL POWER SUPPLY
TOTAL-POWER

TPS180-11

SWITCHING MODE 180W U CHANNEL POWER SUPPLY
TOTAL-POWER

TPS180-12

SWITCHING MODE 180W U CHANNEL POWER SUPPLY
TOTAL-POWER

TPS180-13

SWITCHING MODE 180W U CHANNEL POWER SUPPLY
TOTAL-POWER

TPS180-14

SWITCHING MODE 180W U CHANNEL POWER SUPPLY
TOTAL-POWER

TPS180-15

SWITCHING MODE 180W U CHANNEL POWER SUPPLY
TOTAL-POWER

TPS180-16

SWITCHING MODE 180W U CHANNEL POWER SUPPLY
TOTAL-POWER

TPS180-17

SWITCHING MODE 180W U CHANNEL POWER SUPPLY
TOTAL-POWER

TPS180-18

SWITCHING MODE 180W U CHANNEL POWER SUPPLY
TOTAL-POWER

TPS180-20

SWITCHING MODE 180W U CHANNEL POWER SUPPLY
TOTAL-POWER