TPS1HB16-Q1 [TI]

具有可调节电流限制的 40V、16mΩ、汽车类单通道智能高侧开关;
TPS1HB16-Q1
型号: TPS1HB16-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节电流限制的 40V、16mΩ、汽车类单通道智能高侧开关

开关
文件: 总56页 (文件大小:2399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
TPS1HB16-Q1 40V16mΩ 单通道汽车类智能高边开关  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
TPS1HB16-Q1 器件是一款适用于 12V 汽车系统的智  
能高边开关。该器件集成了强大的保护和诊断功能可  
确保即使在汽车系统发生短路等不利事件时也能提供输  
出端口保护。该器件通过可靠的电流限制来防止故障,  
根据器件型号不同流限制可调范围为 4.4A 至  
49A。凭借较高的电流限制范围该器件可用于需要大  
瞬态电流的负载而低电流限制范围可为不需要高峰值  
电流的负载提供更好的保护。该器件能够可靠地驱动各  
负载分布。  
– 温度等140°C 125°C  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C4B  
– 可承40V 负载突降  
提供功能安全  
可提供用于功能安全系统设计的文档  
• 单通道智能高边开关16mΩRON (TJ =  
25°C)  
• 可通过可调电流限制提高系统级可靠性  
– 电流限制设定点范围4.4A 49A  
• 强大的集成输出保护:  
TPS1HB16-Q1 还能够提供可改进负载诊断的高精度模  
拟电流检测。通过向系统 MCU 报告负载电流和器件温  
该器件可实现预测性维护和负载诊断从而延长系  
统寿命。  
– 集成热保护  
– 接地短路和电池短路保护  
反向电池事件保护包FET 通过反向电压自动  
开启  
TPS1HB16-Q1 采用 HTSSOP 封装可减小 PCB 尺  
寸。  
– 在失电和接地失效时自动关闭  
– 集成输出钳位对电感负载进行消磁  
– 可配置故障处理  
封装信息  
器件型号(1)  
封装尺寸标称值)  
封装  
TPS1HB16-Q1  
HTSSOP (16)  
5.00 mm x 4.40 mm  
• 可对模拟检测输出进行配置以精确测量:  
– 负载电流  
– 器件温度  
• 通SNS 引脚提供故障指示  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VBAT  
– 开路负载和电池短路检测  
DIA_EN  
SEL1  
VBB  
2 应用  
Bulbs  
汽车显示模块  
ADAS 模块  
SNS  
ILIM  
µC  
Relays/Motors  
VOUT  
座椅舒适模块  
变速器控制单元  
HVAC 控制模块  
车身控制模块  
白炽灯LED 照明  
LATCH  
EN  
Power Module:  
Cameras, Sensors  
General Resistive, Capacitive,  
Inductive Loads  
GND  
简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSE17  
 
 
 
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
Table of Contents  
9.2 Functional Block Diagram.........................................19  
9.3 Feature Description...................................................19  
9.4 Device Functional Modes..........................................31  
10 Application and Implementation................................33  
10.1 Application Information........................................... 33  
10.2 Typical Application.................................................. 36  
10.3 Typical Application.................................................. 42  
10.4 Power Supply Recommendations...........................45  
10.5 Layout..................................................................... 45  
11 Device and Documentation Support..........................47  
11.1 Documentation Support.......................................... 47  
11.2 接收文档更新通知................................................... 47  
11.3 支持资源..................................................................47  
11.4 Trademarks............................................................. 47  
11.5 静电放电警告...........................................................47  
11.6 术语表..................................................................... 47  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
6.1 Recommended Connections for Unused Pins............5  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................7  
7.5 Electrical Characteristics.............................................7  
7.6 SNS Timing Characteristics........................................ 9  
7.7 Switching Characteristics..........................................10  
7.8 Typical Characteristics.............................................. 11  
8 Parameter Measurement Information..........................16  
9 Detailed Description......................................................18  
9.1 Overview...................................................................18  
Information.................................................................... 47  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (April 2020) to Revision B (February 2023)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Addition of VSC parameter to the Specifications section.....................................................................................6  
Changes from Revision * (May 2019) to Revision A (April 2020)  
Page  
• 将状态从“预告信息”更改为“量产数据”....................................................................................................... 1  
Added device variant F to the data sheet .......................................................................................................... 3  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSE17  
2
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
5 Device Comparison Table  
5-1. Device Options  
DEVICE  
PART NUMBER  
VERSION  
CURRENT LIMIT  
CURRENT LIMIT RANGE  
OVERCURRENT BEHAVIOR  
A
B
F
TPS1HB16A-Q1  
TPS1HB16B-Q1  
TPS1HB16F-Q1  
Resistor Programmable  
Resistor Programmable  
Internally set  
4.4 A to 22 A  
9.8 A to 49 A  
60 A  
Disable switch immediately  
Disable switch immediately  
Disable switch immediately  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
6 Pin Configuration and Functions  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
DIA_EN  
NC  
SNS  
LATCH  
EN  
SEL1  
NC  
VBB  
ILIM (Version A/B)  
FLT (Version F)  
NC  
VOUT  
VOUT  
VOUT  
NC  
NC  
NC  
6-1. PWP Package 16-Pin HTSSOP Top View  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
VERSION VERSION  
NAME  
A/B  
F
GND  
SNS  
LATCH  
EN  
1
1
Device ground  
Sense output  
O
I
2
2
3
3
Sets fault handling behavior (latched or auto-retry)  
Control input, active high  
4
5
4
-
I
ILIM  
O
O
O
I
Connect resistor to set current-limit threshold  
Open drain output with pulldown to signal fault.  
Channel output  
FLT  
-
5
VOUT  
NC  
6 - 8  
6 - 8  
9 - 13, 15 9 - 13, 15  
No Connect, leave floating  
Diagnostics select. No functionality on device version F; connect to IC GND  
through RPROT resistor  
SEL1  
DIA_EN  
VBB  
14  
16  
14  
16  
I
I
I
Diagnostic enable, active high  
Power supply input  
Exposed  
pad  
Exposed  
pad  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
6.1 Recommended Connections for Unused Pins  
The TPS1HB16-Q1 is designed to provide an enhanced set of diagnostic and protection features. However, if  
the system design only allows for a limited number of I/O connections, some pins can be considered as optional.  
6-2. Connections For Optional Pins  
PIN NAME  
CONNECTION IF NOT USED  
IMPACT IF NOT USED  
SNS  
Analog sense is not available.  
Ground through 1-kΩresistor  
With LATCH unused, the device auto-retries after a fault. If latched  
Float or ground through RPROT behavior is desired, but the system describes limited I/O, it is possible to  
LATCH  
resistor  
use one microcontroller output to control the latch function of several high-  
side channels.  
If the ILIM pin is left floating, the device is set to the default internal current-  
limit threshold.  
ILIM (Version A/B)  
FAULT (Version F)  
Float  
Float  
Open drain FAULT signal is not able to be used  
SEL1 selects the TJ sensing feature. With SEL1 unused, only current  
sensing and open load detection are available. If unused, must be  
grounded through a resistor to engage FET turn-on during reverse battery.  
SEL1  
Ground through RPROT  
Float or ground through RPROT With DIA_EN unused, the analog sense, open-load, and short-to-battery  
DIA_EN  
resistor  
diagnostics are not available.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Maximum continuous supply voltage, VBB  
36  
40  
Load dump voltage, VLD  
ISO16750-2:2010(E)  
V
V
Reverse battery voltage, VRev, t 3 minutes  
Enable pin voltage, VEN  
18  
1  
1  
1  
1  
1  
7
7
V
LATCH pin voltage, VLATCH  
V
Diagnostic Enable pin voltage, VDIA_EN  
Sense pin voltage, VSNS  
7
V
18  
7
V
Select pin voltage, VSEL1  
V
Reverse ground current, IGND  
Energy dissipation during turnoff, ETOFF  
Energy dissipation during turnoff, ETOFF  
Maximum junction temperature, TJ  
Storage temperature, Tstg  
VBB < 0 V  
mA  
mJ  
mJ  
°C  
°C  
50  
34(2)  
14(2)  
150  
Single pulse, LOUT = 5 mH, TJ,start = 125°C  
Repetitive pulse, LOUT = 5 mH, TJ,start = 125°C  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute maximum rated conditions for extended periods may affect device  
reliability.  
(2) For further details, see the section regarding switch-off of an inductive load.  
7.2 ESD Ratings  
VALUE  
UNIT  
All pins except VBB and  
VOUT  
±2000  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
V
VBB and VOUT  
All pins  
±4000  
±750  
(1) AEC-Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specifications.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
6
MAX  
18  
UNIT  
VBB  
Nominal supply voltage (1)  
Extended lower supply voltage  
Extended higher supply voltage((2))  
Enable voltage  
V
V
V
V
V
V
V
V
VBB  
3
6
VBB  
18  
28  
VEN  
5.5  
5.5  
5.5  
5.5  
7
1  
1  
1  
1  
1  
VLATCH  
VDIA_EN  
VSEL1  
VSNS  
LATCH voltage  
Diagnostic Enable voltage  
Select voltage  
Sense voltage  
(1) All operating voltage conditions are measured with respect to device GND  
(2) All parameters specified are still valid, short circuit protection valide to value specified by VSC parameter  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSE17  
6
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
 
 
 
 
 
 
 
 
 
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
7.4 Thermal Information  
TPS1HB16-Q1  
THERMAL METRIC (1) (2)  
PWP (HTSSOP)  
UNIT  
16 PINS  
34.3  
31.2  
10.8  
2.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJT  
10.8  
1.6  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The thermal parameters are based on a 4-layer PCB according to the JESD51-5 and JESD51-7 standards.  
7.5 Electrical Characteristics  
VBB = 6 V to 18 V, TJ = -40°C to 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT VOLTAGE AND CURRENT  
VDSCLAMP VDS clamp voltage  
VBBCLAMP VBB clamp voltage  
40  
58  
46  
76  
V
V
VBB undervoltage lockout  
VUVLOF  
falling  
Measured with respect to the GND pin of the device  
Measured with respect to the GND pin of the device  
2.0  
2.2  
3
3
V
V
VBB undervoltage lockout  
VUVLOR  
rising  
VBB = 13.5 V, TJ = 25°C  
VEN = VDIA_EN = 0 V, VOUT = 0 V  
0.1  
0.5  
µA  
Standby current (total  
device leakage including  
MOSFET channel)  
ISB  
VBB = 13.5 V, TJ = 85°C,  
VEN = VDIA_EN = 0 V, VOUT = 0 V  
µA  
A
ILNOM  
Continuous load current TAMB = 70°C  
7
VBB = 13.5 V, TJ = 25°C  
VEN = VDIA_EN = 0 V, VOUT = 0 V  
0.01  
0.1  
1.5  
6
µA  
IOUT(standby) Output leakage current  
VBB = 13.5 V, TJ = 125°C  
VEN = VDIA_EN = 0 V, VOUT = 0 V  
µA  
Current consumption in  
diagnostic mode  
VBB = 13.5 V, ISNS = 0 mA  
VEN = 0 V, VDIA_EN = 5 V, VOUT = 0V  
IDIA  
3
mA  
VBB = 13.5 V  
VEN = VDIA_EN = 5 V, IOUT = 0 A  
IQ  
Quiescent current  
3
6
mA  
ms  
tSTBY  
Standby mode delay time VEN = VDIA_EN = 0 V to standby  
12  
17  
22  
RON CHARACTERISTICS  
16  
16  
TJ = 25°C, 6 V VBB 28 V  
TJ = 150°C, 6 V VBB 28 V  
TJ = 25°C, 3 V VBB 6 V  
TJ = 25°C, -18 V VBB -8 V  
TJ = 105°C, -18 V VBB -8 V  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
On-resistance  
(Includes MOSFET and  
package)  
RON  
32  
30  
On-resistance during  
reverse polarity  
RON(REV)  
39  
CURRENT SENSE CHARACTERISTICS  
Current sense ratio  
IOUT / ISNS  
KSNS  
IOUT = 1 A  
3000  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
 
 
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
VBB = 6 V to 18 V, TJ = -40°C to 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
5  
5  
5  
-6  
TYP  
MAX  
UNIT  
mA  
%
2.6  
IOUT = 8 A  
5
5
1.000  
0.333  
mA  
%
IOUT = 3 A  
mA  
%
IOUT = 1 A  
5
0.101  
mA  
%
Current sense current  
and accuracy  
VEN = VDIA_EN = 5 V,  
SEL1 = 0 V  
ISNSI  
IOUT = 300 mA  
IOUT = 100 mA  
IOUT = 50 mA  
IOUT = 20 mA  
V
6
0.03438  
0.0174  
0.00737  
mA  
%
-11  
-18  
-38  
11  
18  
38  
mA  
%
mA  
%
TJ SENSE CHARACTERISTICS  
TJ = -40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
TJ = 150°C  
0.01  
0.72  
1.25  
1.61  
1.80  
0.12  
0.85  
0.38  
0.98  
1.79  
2.31  
2.70  
mA  
mA  
Temperature sense  
current  
VDIA_EN = 5 V, VSEL1 = 5  
V
ISNST  
1.52  
mA  
1.96  
mA  
2.25  
mA  
dISNST/dT Coefficient  
0.0112  
mA/°C  
SNS CHARACTERISTICS  
ISNSFH  
ISNS fault high-level  
ISNS leakage  
VDIA_EN = 5 V, VSEL1 = 0 V  
VDIA_EN = 0 V  
4
4.5  
5.3  
1
mA  
µA  
ISNSleak  
CURRENT LIMIT CHARACTERISTICS  
Version A  
Version B  
Version F  
18  
18  
18  
V
V
V
Short Circuit Maximum  
Supply Voltage  
VSC  
RILIM = GND, open, or  
out of range  
28.6  
A
Device Version A, TJ =  
-40°C to 150°C  
18.16  
2.62  
22  
28  
A
A
RILIM = 5 kΩ  
RILIM = 25 kΩ  
4.4  
5.7  
RILIM = GND, open, or  
out of range  
70  
A
ICL  
Current limit threshold  
Device Version B, TJ =  
-40°C to 150°C  
40.44  
8
49  
9.8  
60  
62.4  
11.76  
72  
A
RILIM = 5 kΩ  
RILIM = 25 kΩ  
TJ = 25°C  
A
A
53  
Device Version F  
TJ = 150°C  
42  
47  
56  
A
Version A  
Version B  
110  
245  
A * kΩ  
A * kΩ  
KCL  
Current Limit Ratio  
FAULT CHARACTERISTICS  
Open-load (OL) detection  
VOL  
VEN = 0 V, VDIA_EN = 5 V, VSEL1 = 0 V  
2
3
4
V
voltage  
OL and STB indication-  
time from EN falling  
VEN = 5 V to 0 V, VDIA_EN = 5 V, VSEL1 = 0 V  
IOUT = 0 mA, VOUT = 4 V  
tOL1  
300  
500  
700  
µs  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSE17  
8
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
VBB = 6 V to 18 V, TJ = -40°C to 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OL and STB indication-  
time from DIA_EN rising IOUT = 0 mA, VOUT = 4 V  
VEN = 0 V, VDIA_EN = 0 V to 5 V, VSEL1 = 0 V  
tOL2  
2
20  
50  
µs  
OL and STB indication-  
time from VOUT rising  
VEN = 0 V, VDIA_EN = 5 V, VSEL1 = 0 V  
IOUT = 0 mA, VOUT = 0 V to 4 V  
tOL3  
2
150  
20  
20  
25  
50  
µs  
°C  
°C  
TABS  
THYS  
Thermal shutdown  
Thermal shutdown  
hysteresis  
30  
50  
3
VDIA_EN = 5 V  
Time between switch shutdown and ISNS settling at  
ISNSFH  
Fault shutdown  
indication-time  
tFAULT  
µs  
Time from fault shutdown until switch re-enable  
(thermal shutdown or current limit).  
tRETRY  
Retry time  
1
2
ms  
EN PIN CHARACTERISTICS  
VIL, EN  
VIH, EN  
VIHYS, EN  
REN  
Input voltage low-level  
Input voltage high-level  
Input voltage hysteresis  
Internal pulldown resistor  
Input current low-level  
Input current high-level  
No GND network diode  
No GND network diode  
0.8  
2
V
V
2.0  
0.5  
350  
1
mV  
MΩ  
µA  
µA  
IIL, EN  
VEN = 0.8 V  
VEN = 5 V  
0.8  
5.0  
IIH, EN  
DIA_EN PIN CHARACTERISTICS  
VIL, DIA_EN Input voltage low-level  
VIH, DIA_EN Input voltage high-level  
No GND network diode  
No GND network diode  
0.8  
2
V
V
2.0  
0.5  
VIHYS,  
Input voltage hysteresis  
350  
mV  
DIA_EN  
RDIA_EN  
Internal pulldown resistor  
Input current low-level  
Input current high-level  
1
0.8  
5.0  
MΩ  
µA  
IIL, DIA_EN  
IIH, DIA_EN  
VDIA_EN = 0.8 V  
VDIA_EN = 5 V  
µA  
SEL1 PIN CHARACTERISTICS  
VIL, SEL1  
VIH, SEL1  
Input voltage low-level  
Input voltage high-level  
No GND network diode  
No GND network diode  
0.8  
2
V
V
2.0  
0.5  
VIHYS, SEL1 Input voltage hysteresis  
350  
1
mV  
MΩ  
µA  
µA  
RSEL1  
Internal pulldown resistor  
Input current low-level  
Input current high-level  
IIL, SEL1  
IIH, SEL1  
VSEL1 = 0.8 V  
VSEL1 = 5 V  
0.8  
5.0  
LATCH PIN CHARACTERISTICS  
VIL, LATCH Input voltage low-level  
No GND network diode  
No GND network diode  
0.8  
2
V
V
VIH, LATCH Input voltage high-level  
2.0  
0.5  
VIHYS,  
Input voltage hysteresis  
350  
mV  
LATCH  
RLATCH  
Internal pulldown resistor  
Input current low-level  
Input current high-level  
1
0.8  
5
MΩ  
µA  
IIL, LATCH  
IIH, LATCH  
VLATCH = 0.8 V  
VLATCH = 5 V  
µA  
7.6 SNS Timing Characteristics  
VBB = 6 V to 18 V, TJ = -40°C to +150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SNS TIMING - CURRENT SENSE  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
7.6 SNS Timing Characteristics (continued)  
VBB = 6 V to 18 V, TJ = -40°C to +150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VEN = 5 V, VDIA_EN = 0 V to 5 V  
RSNS = 1 kΩ, RL 4 Ω  
tSNSION1  
tSNSION2  
tSNSION3  
Settling time from rising edge of DIA_EN  
40  
200  
165  
20  
µs  
VEN = VDIA_EN = 0 V to 5 V  
RSNS = 1 kΩ, RL 4 Ω  
Settling time from rising edge of EN and  
DIA_EN  
µs  
µs  
µs  
µs  
µs  
VEN = 0 V to 5 V, VDIA_EN = 5 V  
RSNS = 1 kΩ, RL 4 Ω  
Settling time from rising edge of EN  
VEN = 5 V, VDIA_EN = 5 V to 0 V  
RSNS = 1 kΩ, RL 4 Ω  
tSNSIOFF1 Settling time from falling edge of DIA_EN  
VEN = 5 V, VDIA_EN = 5 V  
RSNS = 1 kΩ, IOUT = 1 A to 5 A  
tSETTLEH  
tSETTLEL  
Settling time from rising edge of load step  
Settling time from falling edge of load step  
20  
VEN = 5 V, VDIA_EN = 5 V  
RSNS = 1 kΩ, IOUT = 5 A to 1 A  
20  
SNS TIMING - TEMPERATURE SENSE  
VEN = 5 V, VDIA_EN = 0 V to 5 V  
RSNS = 1 kΩ  
tSNSTON1  
tSNSTON2  
tSNSTOFF  
Settling time from rising edge of DIA_EN  
40  
70  
20  
µs  
µs  
µs  
VEN = 0 V, VDIA_EN = 0 V to 5 V  
RSNS = 1 kΩ  
Settling time from rising edge of DIA_EN  
Settling time from falling edge of DIA_EN  
VEN = X, VDIA_EN = 5 V to 0 V  
RSNS = 1 kΩ  
SNS TIMING - MULTIPLEXER  
VEN = 5 V, VDIA_EN = 5 V  
VSEL1 = 5 V to 0 V  
RSNS = 1 kΩ, RL 4 Ω  
Settling time from temperature sense to  
current sense  
60  
60  
µs  
µs  
tMUX  
VEN = 5 V, VDIA_EN = 5 V  
VSEL1 = 0 V to 5 V  
RSNS = 1 kΩ, RL 4 Ω  
Settling time from current sense to  
temperature sense  
7.7 Switching Characteristics  
VBB = 13.5 V, TJ = -40°C to +150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VBB = 13.5 V, RL 4 Ω, 50% EN  
rising to 10% VOUT rising  
tDR  
Turnon delay time (from Active)  
20  
60  
60  
100  
100  
0.7  
0.7  
µs  
VBB = 13.5 V, RL 4 Ω, 50% EN  
falling to 90% VOUT Falling  
tDF  
Turnoff delay time  
20  
0.1  
0.1  
µs  
VBB = 13.5 V, 20% to 80% of VOUT  
RL 4 Ω  
,
,
SRR  
SRF  
VOUT rising slew rate  
VOUT falling slew rate  
0.4  
0.4  
V/µs  
V/µs  
VBB = 13.5 V, 80% to 20% of VOUT  
RL 4 Ω  
VBB = 13.5 V, RL 4 Ω, 50% EN  
rising to 80% VOUT rising  
tON  
Turnon time (active)  
Turnoff time  
39  
39  
94  
94  
0
235  
235  
25  
µs  
µs  
%
tOFF  
VBB = 13.5 V, RL 4 Ω  
200-µs enable pulse, VS = 13.5 V, RL  
= 4 Ω  
PWM accuracy - average load  
current  
ΔPWM  
tON - tOFF  
EON  
25  
85  
Turnon and turnoff matching  
200-us enable pulse  
0
85  
µs  
mJ  
Switching energy losses during  
turnon  
0.7  
VBB = 13.5 V, RL 4 Ω  
Switching energy losses during  
turnoff  
EOFF  
0.7  
mJ  
VBB = 13.5 V, RL 4 Ω  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSE17  
10  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
7.8 Typical Characteristics  
35  
30  
25  
20  
15  
10  
5
4.5  
4
6 V  
8 V  
13.5 V  
18 V  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
1E-6 1E-5 0.0001  
0.01 0.1  
Time (s)  
1 2 510  
100 1000  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (èC)  
7-1. Transient Thermal Impedance  
VOUT = 0 V  
VEN = 0 V  
VDIAG_EN = 0 V  
7-2. Standby Current (ISB) vs Temperature  
4.35  
4.3  
28  
6 V  
8 V  
13.5 V  
18 V  
6 V  
8 V  
13.5 V  
18 V  
26  
24  
22  
20  
18  
16  
14  
12  
4.25  
4.2  
4.15  
4.1  
4.05  
4
3.95  
3.9  
3.85  
3.8  
3.75  
3.7  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
IOUT = 0 A  
VEN = 5 V  
VSEL1 = 0 V  
VDIAG_EN = 5 V  
IOUT = 200 mA  
VEN = 5 V  
VDIAG_EN = 0 V  
RSNS = 1 kΩ  
RSNS = 1 kΩ  
7-3. Quiescent Current (IQ) vs Temperature  
7-4. On Resistance (RON) vs Temperature  
30  
27.5  
25  
80  
6 V  
8 V  
13.5 V  
18 V  
76  
72  
68  
22.5  
20  
64  
60  
56  
52  
48  
44  
40  
17.5  
15  
12.5  
10  
-40èC  
25èC  
65èC  
85èC  
105èC  
125èC  
7.5  
5
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25 27.5 30  
VBB (V)  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
IOUT = 200 mA  
VEN = 5 V  
VDIAG_EN = 0 V  
VEN = 0 V to 5 V  
VBB = 13.5 V  
VDIAG_EN = 0 V  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
VBB = 13.5 V  
RSNS = 1 kΩ  
7-5. On Resistance (RON) vs VBB  
7-6. Turn-on Delay Time (tDR) vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
60  
0.4  
0.375  
0.35  
6 V  
8 V  
13.5 V  
18 V  
6 V  
8 V  
13.5 V  
18 V  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
0.325  
0.3  
0.275  
0.25  
0.225  
0.2  
0.175  
0.15  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
VEN = 5 V to 0 V  
VBB = 13.5 V  
VDIAG_EN = 0 V  
VEN = 0 V to 5 V  
VBB = 13.5 V  
VDIAG_EN = 0 V  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
7-7. Turn-off Delay Time (tDF) vs Temperature  
7-8. VOUT Slew Rate Rising (SRR) vs Temperature  
0.4  
150  
140  
130  
120  
6 V  
8 V  
6 V  
8 V  
13.5 V  
18 V  
0.375  
13.5 V  
0.35  
18 V  
0.325  
0.3  
0.275  
0.25  
110  
100  
90  
0.225  
0.2  
80  
70  
0.175  
0.15  
60  
50  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
VEN = 5 V to 0 V  
VBB = 13.5 V  
VDIAG_EN = 0 V  
VEN = 0 V to 5 V  
VBB = 13.5 V  
VDIAG_EN = 0 V  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
7-9. VOUT Slew Rate Falling (SRF) vs Temperature  
7-10. Turn-on Time (tON) vs Temperature  
150  
140  
130  
120  
40  
38  
36  
34  
32  
30  
28  
6 V  
8 V  
13.5 V  
18 V  
110  
100  
90  
80  
6 V  
8 V  
26  
70  
13.5 V  
18 V  
24  
22  
60  
50  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
VEN = 5 V to 0 V  
VBB = 13.5 V  
VDIAG_EN = 0 V  
VEN = 0 V to 5 V  
and 5 V to 0 V  
VBB = 13.5 V  
VDIAG_EN = 0 V  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
7-11. Turn-off Time (tOFF) vs Temperature  
7-12. Turn-on and Turn-off Matching (tON - tOFF) vs  
Temperature  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
2.8  
2.6  
2.4  
2.2  
2
2.8  
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
1.8  
1.6  
1.4  
1.2  
1
-40èC  
6 V  
8 V  
13.5 V  
18 V  
24 V  
28 V  
25èC  
65èC  
85èC  
105èC  
125èC  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0
1
2
3
4
IOUT (A)  
5
6
7
8
0
1
2
3
4
IOUT (A)  
5
6
7
8
VSEL = 0 V  
RSNS = 1 kΩ  
VEN = 5 V  
VDIAG_EN = 5 V  
VSEL = 0 V  
RSNS = 1 kΩ  
VEN = 5 V  
TA = 25°C  
VDIAG_EN = 5 V  
VBB = 13.5 V  
7-13. Current Sense Output Current (ISNSI ) vs Load Current  
7-14. Current Sense Output Current (ISNSI) vs Load Current  
(IOUT) Across Temperature  
(IOUT) Across VBB  
2.2  
4.9  
6 V  
8 V  
13.5 V  
18 V  
6 V  
8 V  
13.5 V  
18 V  
2
4.85  
4.8  
1.8  
1.6  
1.4  
1.2  
1
4.75  
4.7  
4.65  
4.6  
0.8  
0.6  
0.4  
0.2  
0
4.55  
4.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
VSEL = 5 V  
RSNS = 1 kΩ  
VEN = 0 V  
VDIAG_EN = 5 V  
VSEL = 0 V  
RSNS = 500 Ω  
VEN = 0 V  
VDIAG_EN = 5 V  
VOUT Floating  
7-15. Temperature Sense Output Current (ISNST) vs  
7-16. Fault High Output Current (ISNSFH) vs Temperature  
Temperature  
2
1.95  
1.9  
1.59  
6 V  
8 V  
13.5 V  
18 V  
1.57  
1.55  
1.53  
1.51  
1.49  
1.47  
1.45  
1.43  
1.41  
1.39  
1.85  
1.8  
1.75  
1.7  
1.65  
6 V  
1.6  
8 V  
13.5 V  
1.55  
18 V  
1.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
VEN = 3.3 V to 0 V  
VOUT = 0 V  
VDIAG_EN = 0 V  
VEN = 0 V to 3.3 V  
VOUT = 0 V  
VDIAG_EN = 0 V  
ROUT = 1 kΩ  
ROUT = 1 kΩ  
7-17. VIL vs Temperature  
7-18. VIH vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
500  
1.15  
1.1  
6 V  
8 V  
13.5 V  
18 V  
6 V  
8 V  
13.5 V  
18 V  
490  
480  
470  
460  
450  
440  
430  
420  
410  
400  
390  
380  
370  
360  
350  
1.05  
1
0.95  
0.9  
0.85  
0.8  
0.75  
0.7  
0.65  
0.6  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
VEN = 0 V to 3.3 V  
and 3.3 V to 0 V  
ROUT = 1 kΩ  
VOUT = 0 V  
VDIAG_EN = 0 V  
VEN = 0.8 V  
VOUT = 0 V  
VDIAG_EN = 0 V  
ROUT = 1 kΩ  
7-20. IIL vs Temperature  
7-19. VHYST vs Temperature  
7.5  
7
6 V  
8 V  
13.5 V  
18 V  
6.5  
6
5.5  
5
4.5  
4
3.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
VEN = 5 V  
ROUT = 1 kΩ  
7-21. IIH vs Temperature  
VOUT = 0 V  
VDIAG_EN = 0 V  
VDIA_EN = 5 V  
ROUT = 2.6 Ω  
VSEL = 0 V  
7-22. Turn-on Time (tON  
RSNS = 1 kΩ  
)
VDIA_EN = 5 V  
VSEL = 0 V  
ROUT = 2.6 Ω  
VSEL = 0 V  
7-23. Turn-off Time (tOFF  
RSNS = 1 kΩ  
ROUT = 2.6 Ω  
IOUT = 1 A to 5 A  
RSNS = 1 kΩ  
VBB = 13.5 V  
)
7-24. ISNS Settling time (tSNSION1) on Load Step  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
VBB = 13.5 V  
TA = 25°C  
IOUT1 = 5 A  
LOUT = 5 µH to  
GND  
VSEL = 0 V  
TA = 25°C  
RLIM = 5 kΩ  
VEN = 0 V to 5 V  
VEN = 0 V to 5 V  
VDIAG_EN = 5 V  
7-25. SNS Output Current Measurement Enable on DIAG_EN  
PWM  
7-26. Device Version A Short Circuit Event  
VBB = 13.5 V  
TA = 25°C  
LOUT = 5 mH  
LOUT = 5 µH to  
GND  
VSEL = 0 V  
TA = 25°C  
RLIM = 5 kΩ  
7-28. 5-mH Inductive Load Demagnetization  
VEN = 0 V to 5 V  
VDIAG_EN = 5 V  
7-27. Device Version B Short Circuit Event  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
8 Parameter Measurement Information  
IEN  
EN  
IVBB  
VBB  
IDIAG_EN  
DIAG_EN  
FLT  
IFLT  
ILATCH  
ISNS  
IILIM  
VOUT  
IOUT  
LATCH  
SNS  
ILIM  
GND  
8-1. Parameter Definitions  
(1)  
VEN  
50%  
50%  
90%  
90%  
tDR  
tDF  
VOUT  
10%  
10%  
tON  
tOFF  
Rise and fall time of VEN is 100 ns.  
8-2. Switching Characteristics Definitions  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSE17  
16  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
VEN  
VDIA_EN  
IOUT  
ISNS  
tSNSION1  
tSNSION2  
tSNSION3  
tSNSIOFF1  
VEN  
VDIA_EN  
IOUT  
ISNS  
tSETTLEH  
tSETTLEL  
VEN  
VDIA_EN  
TJ  
ISNS  
tSNSTON1  
tSNSTON2  
tSNSTOFF  
Rise and fall times of control signals are 100 ns. Control signals include: EN, DIA_EN.  
8-3. SNS Timing Characteristics Definitions  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS1HB16-Q1 device is a single-channel smart high-side switch intended for use with 12-V automotive  
batteries. Many protection and diagnostic features are integrated in the device.  
Diagnostics features include the analog SNS output that is capable of providing a signal that is proportional to  
load current or device temperature. The high-accuracy load current sense allows for diagnostics of complex  
loads.  
This device includes protection through thermal shutdown, current limiting, transient withstand, and reverse  
battery operation. For more details on the protection features, refer to the Feature Description and Application  
Information sections of the document.  
The TPS1HB16-Q1 is one device in a family of TI high side switches. For each device, the part number indicates  
elements of the device behavior. 9-1 gives an example of the device nomenclature.  
TPS  
2
H
B
16  
X
Q
PWPR  
Q1  
Prefix  
Auto Qual  
Packaging  
No. of channels  
12V HSS  
H
AEC Temp Grade  
Version  
Generation  
RON (mΩ)  
9-1. Naming Convention  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSE17  
18  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
 
 
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
9.2 Functional Block Diagram  
9.3 Feature Description  
9.3.1 Protection Mechanisms  
The TPS1HB16-Q1 is designed to operate in the automotive environment. The protection mechanisms allow the  
device to be robust against many system-level events such as load dump, reverse battery, short-to-ground, and  
more.  
There are two protection features which, if triggered, will cause the switch to automatically disable:  
Thermal Shutdown  
Current Limit  
When any of these protections are triggered, the device will enter the FAULT state. In the FAULT state, the fault  
indication will be available on the SNS pin (see the Diagnostic Mechanisms section of the data sheet for more  
details).  
The switch is no longer held off and the fault indication is reset when all of the below conditions are met:  
LATCH pin is low  
tRETRY has expired  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
 
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
All faults are cleared (thermal shutdown, current limit)  
9.3.1.1 Thermal Shutdown  
The TPS1HB16-Q1 includes a temperature sensor on the power FET and also within the controller portion of the  
device. There are two cases that the device will consider to be a thermal shutdown fault:  
TJ,FET > TABS  
(TJ,FET TJ,controller) > TREL  
After the fault is detected, the switch will turn off. If TJ,FET passes TABS, the fault is cleared when the switch  
temperature decreases by the hysteresis value, THYS. If instead the TREL threshold is exceeded, the fault is  
cleared after TRETRY passes.  
9.3.1.2 Current Limit  
When IOUT reaches the current limit threshold, ICL, the channel will switch off immediately. The ICL value will vary  
with slew rate and a fast current increase that occurs during a powered-on short circuit can temporarily go above  
the specified ICL value. When the switch is in the FAULT state, it will output an output current ISNSFH on the SNS  
pin .  
During a short-circuit event, the device will hit the ICL value that is listed in the Electrical Characteristics table (for  
the given device version and RILIM) and then turn the output off to protect the device. The device will register a  
short-circuit event when the output current exceeds ICL, however, the measured maximum current can exceed  
the ICL value due to the TPS1HB16-Q1 deglitch filter and turn-off time. This deglitch time is defined at 3 µs, so  
use the test setup described in the AEC-Q100-012 Short Circuit Reliability section, and take 3 µs before the  
peak value as the ICL. The device is assured to protect itself during a short-circuit event over the nominal supple  
voltage range (as defined in the Electrical Characteristics table) at 125°C.  
9.3.1.2.1 Current Limit Foldback  
Version B of the TPS1HB16-Q1 implements a current limit foldback feature that is designed to protect the device  
in the case of a long-term fault condition. If the device undergoes fault shutdown events (either of thermal  
shutdown or current limit) seven consecutive times, the current limit will be reduced to half of the original value.  
The device will revert back to the original current limit threshold if either of the following occurs:  
The device goes to standby mode.  
The switch turns on and turns off without any fault occurring.  
Version A does not implement the current limit foldback due to the lower current limit causing less harm during  
repetitive long-term faults.  
9.3.1.2.2 Programmable Current Limit  
All versions of the TPS1HB16-Q1 include an adjustable current limit. Some applications (for example,  
incandescent bulbs) will require a high current limit while other applications can benefit from a lower current limit  
threshold. In general, wherever possible a lower current limit is recommended due to allowing system  
advantages through:  
Reduced size and cost in current carrying components such as PCB traces and module connectors  
Less disturbance at the power supply (VBB pin) during a short-circuit event  
Improved protection of the downstream load  
To set the current limit threshold, connect a resistor from ILIM to VBB. The current limit threshold is determined by  
Equation 1 (RILIM in kΩ):  
ICL = KCL / RILIM  
(1)  
The RILIM range is between 5 kΩ and 25 kΩ . An RILIM resistor is required, however in the fault case where the  
pin is floating, grounded, or outside of this range the current limit will default to an internal level that is defined in  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSE17  
20  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
the Specifications section of this document. If RILIM is out of this range, the device cannot assure complete short-  
circuit protection.  
备注  
Capacitance on the ILIM pin can cause ILIM to go out of range during short-circuit events. For accurate  
current limiting, place RILIM near to the device with short traces to ensure < 5-pF capacitance to GND  
on the ILIM pin.  
9.3.1.2.3 Undervoltage Lockout (UVLO)  
The device monitors the supply voltage VBB to prevent unpredicted behaviors in the event that the supply  
voltage is too low. When the supply voltage falls down to VUVLOF, the output stage is shut down automatically.  
When the supply rises up to VUVLOR, the device turns back on.  
During an initial ramp of VBB from 0 V at a ramp rate slower than 1 V/ms, VEN pin will have to be held low until  
VBB is above UVLO threshold (with respect to board ground) and the supply voltage to the device has reliably  
reached above the UVLO condition. For best operation, ensure that VBB has risen above UVLO before setting  
the VEN pin to high.  
9.3.1.2.4 VBB During Short-to-Ground  
When VOUT is shorted to ground, the module power supply (VBB) can have a transient decrease. This decrease  
is caused by the sudden increase in current flowing through the wiring harness cables. To achieve ideal system  
behavior, TI recommends that the module maintain VBB > 3 V (above the maximum VUVLOF) during VOUT short-  
to-ground. This maintenance is typically accomplished by placing bulk capacitance on the power supply node.  
9.3.1.3 Voltage Transients  
The TPS1HB16-Q1 device contains two types of voltage clamps which protect the FET against system-level  
voltage transients. The two different clamps are shown in 9-2.  
The clamp from VBB to GND is primarily used to protect the controller from positive transients on the supply line  
(for example, ISO7637-2). The clamp from VBB to VOUT is primarily used to limit the voltage across the FET  
when switching off an inductive load. If the voltage potential from VBB to GND exceeds the VBB clamp level, the  
clamp will allow current to flow through the device from VBB to GND (path 2). If the voltage potential from VBB to  
VOUT exceeds the clamping voltage, the power FET will allow current to flow from VBB to VOUT (path 3).  
Additional capacitance from VBB to GND can increase the reliability of the system during ISO 7637 pulse 2-A  
testing.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
Ri  
Positive Supply Transient  
(e.g. ISO7637 pulse 2a/3b)  
(1)  
VBB  
VDS  
Clamp  
(3)  
(2)  
Controller  
VBB  
Clamp  
VOUT  
Load  
GND  
9-2. Current Path During Supply Voltage Transient  
9.3.1.3.1 Load Dump  
The TPS1HB16-Q1 device is tested according to ISO 16750-2:2010(E) suppressed load dump pulse. The device  
supports up to 40-V load dump transient and will maintain normal operation during the load dump pulse. If the  
switch is enabled, it will stay enabled and if the switch is disabled, it will stay disabled.  
9.3.1.3.2 Driving Inductive Loads  
When switching off an inductive load, the inductor can impose a negative voltage on the output of the switch.  
The TPS1HB16-Q1 includes a voltage clamp to limit voltage across the FET. The maximum acceptable load  
inductance is a function of the device robustness.  
9-3. TPS1HB16-Q1 Inductive Discharge (5 mH)  
For more information on driving inductive loads, refer to TI's How To Drive Inductive, Capacitive, and Lighting  
Loads With Smart High Side Switches application report.  
9.3.1.4 Reverse Battery  
In the reverse battery condition, the switch will automatically be enabled regardless of the state of EN to prevent  
excess power dissipation inside the MOSFET body diode. In many applications (for example, resistive loads),  
the full load current can be present during reverse battery. In order to activate the automatic switch on feature,  
SEL must have a path to ground from either from the MCU or it needs to be tied to ground through RPROT if  
unused.  
There are two options for blocking reverse current in the system. The first option is to place a blocking device  
(FET or diode) in series with the battery supply, blocking all current paths. The second option is to place a  
blocking diode in series with the GND node of the high-side switch. This method will protect the controller portion  
of the switch (path 2), but it will not prevent current from flowing through the load (path 3). The diode used for the  
second option can be shared amongst multiple high-side switches.  
Path 1 shown in 9-4 is blocked inside of the device.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSE17  
22  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
 
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
Reverse blocking  
FET or diode  
Option 1  
BAT  
VBB  
0V  
µC  
VDD  
(3)  
(2)  
Controller  
VOUT  
GPIO  
GPIO  
VBB  
Clamp  
Load  
RPROT  
(1)  
GND  
Option 2  
13.5V  
9-4. Current Path During Reverse Battery  
For more information on reverse battery protection, refer to TI's Reverse Battery Protection for High Side  
Switches application note.  
9.3.1.5 Fault Event Timing Diagrams  
备注  
All timing diagrams assume that the SEL1 pin is low.  
The LATCH, DIA_EN, and EN pins are controlled by the user. The timing diagrams represent a  
possible use-case.  
9-5 shows the immediate current limit switch off behavior. The diagram also illustrates the retry behavior. As  
shown, the switch will remain latched off until the LATCH pin is low.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
µC resets  
the latch  
LATCH  
DIA_EN  
ISNSFH  
Current  
Sense  
High-z  
Current  
Sense  
High-z  
High-z  
High-z  
SNS  
VOUT  
EN  
ICL  
tRETRY  
IOUT  
t
Switch follows EN. Normal  
operation.  
Load reaches limit.  
Switch is Disabled.  
9-5. Current Limit Version A and B - Latched Behavior  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSE17  
24  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
9-6 shows the immediate current limit switch off behavior. In this example, LATCH is tied to GND; hence, the  
switch will retry after the fault is cleared and tRETRY has expired.  
DIA_EN  
ISNSFH  
Current  
Sense  
Current  
Sense  
High-z  
High-z  
High-z  
High-z  
SNS  
VOUT  
EN  
ICL  
tRETRY  
IOUT  
t
Switch follows EN. Normal  
operation.  
Load reaches limit.  
Switch is Disabled.  
9-6. Current Limit - Version A and B - LATCH = 0  
When the switch retries after a shutdown event, the SNS fault indication will remain until VOUT has risen to VBB  
1.8 V. After VOUT has risen, the SNS fault indication is reset and current sensing is available. If there is a  
short-to-ground and VOUT is not able to rise, the SNS fault indication will remain indefinitely. 9-7 illustrates  
auto-retry behavior and provides a zoomed-in view of the fault indication during retry.  
备注  
9-7 assumes that tRETRY has expired by the time that TJ reaches the hysteresis threshold.  
LATCH = 0 V and DIA_EN = 5 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
ISNSFH  
ISNSFH  
ISNSFH  
ISNSFH  
SNS  
VOUT  
EN  
TABS  
THYS  
TJ  
t
ISNSFH  
ISNSI  
SNS  
VBB t 1.8 V  
VOUT  
EN  
TABS  
THYS  
TJ  
t
9-7. Fault Indication During Retry  
9.3.2 Diagnostic Mechanisms  
9.3.2.1 VOUT Short-to-Battery and Open-Load  
The TPS1HB16-Q1 is capable of detecting short-to-battery and open-load events regardless of whether the  
switch is turned on or off, however the two conditions use different methods.  
9.3.2.1.1 Detection With Switch Enabled  
When the switch is enabled, the VOUT short-to-battery and open-load conditions can be detected by the current  
sense feature. In both cases, the load current will be measured through the SNS pin as below the expected  
value.  
9.3.2.1.2 Detection With Switch Disabled  
While the switch is disabled, if DIA_EN is high, an internal comparator will detect the condition of VOUT. If the  
load is disconnected (open load condition) or there is a short to battery the VOUT voltage will be higher than the  
open load threshold (VOL,off) and a fault is indicated on the SNS pin. An internal pull-up of 1 MΩis in series with  
an internal MOSFET switch, so no external component is required if a completely open load must be detected.  
However, if there is significant leakage or other current draw even when the load is disconnected, a lower value  
pull-up resistor and switch can be added externally to set the VOUT voltage above the VOL,off during open load  
conditions.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSE17  
26  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
 
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
This figure assumes that the device ground and the load ground are at the same potential. In a real system, there can be a ground shift  
voltage of 1 V to 2 V.  
9-8. Short to Battery and Open Load Detection  
The detection circuitry is only enabled when DIA_EN = HIGH and EN = LOW. If VOUT > VOL, the SNS pin will go  
to the fault level, but if VOUT < VOL there will be no fault indication. The fault indication will only occur if the SEL1  
pin is low.  
While the switch is disabled and DIA_EN is high, the fault indication mechanisms will continuously represent the  
present status. For example, if VOUT decreases from greater than VOL to less than VOL, the fault indication is  
reset. Additionally, the fault indication is reset upon the falling edge of DIA_EN or the rising edge of EN.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
DIA_EN  
ISNSFH  
High-z  
High-z  
SNS  
tOL2  
Enabled  
VOUT depends on external conditions  
VOL  
VOUT  
EN  
t
Switch is disabled and DIA_EN goes  
high.  
The condition is determined by the  
internal comparator.  
The open-load fault is  
indicated.  
Device standby  
9-9. Open Load  
9.3.2.2 SNS Output  
The SNS output can be used to sense the load current if the SEL1 pin is low and there is no fault or device  
temperature if the SEL1 pin is high and there is no fault. The sense circuit will provide a current that is  
proportional to the selected parameter. This current will be sourced into an external resistor to create a voltage  
that is proportional to the selected parameter. This voltage can be measured by an ADC or comparator. In  
addition, the SNS pin can be used to measure the FET temperature.  
To ensure accurate sensing measurement, the sensing resistor must be connected to the same ground potential  
as the μC ADC.  
9-1. Analog Sense Transfer Function  
PARAMETER  
TRANSFER FUNCTION  
ISNSI = IOUT / KSNS = IOUT / 3000  
ISNST = (TJ 25°C) × dISNST / dT + 0.85  
Load current  
Device temperature  
The SNS output will also be used to indicate system faults. ISNS will go to the predefined level, ISNSFH, when  
there is a fault. ISNSFH, dISNST/dT, and KSNS are defined in the Specifications section.  
9.3.2.2.1 RSNS Value  
The following factors must be considered when selecting the RSNS value:  
Current sense ratio (KSNS  
)
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSE17  
28  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
Largest and smallest diagnosable load current required for application operation  
Full-scale voltage of the ADC  
Resolution of the ADC  
For an example of selecting RISNS value, reference RILIM Calculation in the applications section of this data  
sheet.  
9.3.2.2.1.1 High Accuracy Load Current Sense  
In many automotive modules, it is required that the high-side switch provide diagnostic information about the  
downstream load. With more complex loads, high accuracy sensing is required. A few examples follow:  
LED lighting: In many architectures, the body control module (BCM) must be compatible with both  
incandescent bulbs and also LED modules. The bulb can be relatively simple to diagnose. However, the LED  
module will consume less current and also can include multiple LED strings in parallel. The same BCM is  
used in both cases, so the high-side switch can accurately diagnose both load types.  
Solenoid protection: Often solenoids are precisely controlled by low-side switches. However, in a fault  
event, the low-side switch cannot disconnect the solenoid from the power supply. A high-side switch can be  
used to continuously monitor several solenoids. If the system current becomes higher than expected, the  
high-side switch can disable the module.  
9.3.2.2.1.2 SNS Output Filter  
To achieve the most accurate current sense value, TI recommends to filter the SNS output. There are two  
methods of filtering:  
Low-Pass RC filter between the SNS pin and the ADC input. This filter is illustrated in Figure 10-1 with typical  
values for the resistor and capacitor. The designer must select a CSNS capacitor value based on system  
requirements. A larger value will provide improved filtering but a smaller value will allow for faster transient  
response.  
The ADC and microcontroller can also be used for filtering. TI recommends that the ADC collects several  
measurements of the SNS output. The median value of this data set must be considered as the most  
accurate result. By performing this median calculation, the microcontroller can filter out any noise or outlier  
data.  
9.3.2.3 Fault Indication and SNS Mux  
The following faults will be communicated through the SNS output:  
Switch shutdown, due to:  
Thermal Shutdown  
Current limit  
Open-Load and VOUT shorted-to-battery  
Open-load and Short-to-battery are not indicated while the switch is enabled, although these conditions can still  
be detected through the sense current. Hence, if there is a fault indication while the channel is enabled, then it  
must be either due to an overcurrent or overtemperature event.  
The SNS pin will only indicate the fault if the SEL1 pins is low. When the SEL1 pin is high and the device is set to  
measure temperature, the pin will be measuring the channel FET temperature.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
9-2. Device Version A/B SNS Mux  
INPUTS  
OUTPUTS  
SNS  
DIA_EN  
SEL1  
FAULT DETECT(1)  
0
1
1
1
1
X
0
1
0
1
X
0
0
1
1
High-z  
Output current  
Device temperature  
ISNSFH  
Device temperature  
(1) Fault Detect encompasses multiple conditions:  
Switch shutdown and waiting for retry  
Open Load and Short To Battery  
For device version F, the SEL1 pin has no functionality so the device cannot output a temperature sense current.  
In this case, SEL1 must be connected to ground through an RPROT resistor and the SNS behavior will follow the  
table below.  
9-3. Device Version F SNS Mux  
INPUTS  
OUTPUTS  
DIA_EN  
SEL1  
FAULT DETECT(1)  
SNS  
High-z  
FLT (2)  
High-z  
0
1
1
X
X
X
X
0
1
Output current  
ISNSFH  
High-z  
Open-drain  
(1) Fault Detect encompasses multiple conditions:  
Switch shutdown and waiting for retry  
Open Load / Short To Battery  
(2) Version F Only  
9.3.2.4 Resistor Sharing  
Multiple high-side devices can use the same SNS resistor as shown in 9-10. This action reduces the total  
number of passive components in the system and the number of ADC terminals that are required of the  
microcontroller.  
Microcontroller  
GPIO  
GPIO  
GPIO  
DIA_EN  
DIA_EN  
DIA_EN  
DIA_EN  
Switch 1  
Switch 2  
Switch 3  
Switch 4  
SNS  
SNS  
SNS  
SNS  
GPIO  
ADC  
RPROT  
CSNS  
RSNS  
9-10. Sharing RSNS Among Multiple Devices  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSE17  
30  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
 
 
 
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
9.3.2.5 High-Frequency, Low Duty-Cycle Current Sensing  
Some applications will operate with a high-frequency, low duty-cycle PWM or require fast settling of the SNS  
output. For example, a 250-Hz, 5% duty cycle PWM will have an on-time of only 200 µs that must be  
accommodated. The micro-controller ADC can sample the SNS signal after the defined settling time tSNSION3  
.
DIA_EN  
EN  
IOUT  
SNS  
t
t
SNSION3  
9-11. Current Sensing in Low-Duty Cycle Applications  
9.4 Device Functional Modes  
During typical operation, the TPS1HB16-Q1 can operate in a number of states that are described below and  
shown as a state diagram in 9-12.  
9.4.1 Off  
Off state occurs when the device is not powered.  
9.4.2 Standby  
Standby state is a low-power mode used to reduce power consumption to the lowest level. Diagnostic  
capabilities are not available in Standby mode.  
9.4.3 Diagnostic  
Diagnostic state can be used to perform diagnostics while the switch is disabled.  
9.4.4 Standby Delay  
The Standby Delay state is entered when EN and DIA_EN are low. After tSTBY, if the EN and DIA_EN pins are  
still low, the device will go to Standby State.  
9.4.5 Active  
In Active state, the switch is enabled. The diagnostic functions can be turned on or off during Active state.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
9.4.6 Fault  
The Fault state is entered if a fault shutdown occurs (thermal shutdown or current limit). After all faults are  
cleared, the LATCH pin is low, and the retry timer has expired, the device will transition out of Fault state. If the  
EN pin is high, the switch will re-enable. If the EN pin is low, the switch will remain off.  
VBB < UVLO  
OFF  
ANY STATE  
VBB > UVLO  
EN = Low  
DIA_EN = Low  
t > tSTBY  
STANDBY  
EN = Low  
DIA_EN = High  
EN = Low  
DIA_EN = Low  
EN = High  
DIA_EN = X  
DIAGNOSTIC  
STANDBY DELAY  
EN = Low  
DIA_EN = High  
EN = Low  
DIA_EN = High  
EN = High  
DIA_EN = X  
ACTIVE  
EN = Low  
DIA_EN = Low  
EN = High  
DIA_EN = X  
!OT_ABS & !OT_REL & !ILIM  
& LATCH = Low & tRETRY  
expired  
OT_ABS || OT_REL ||  
ILIM  
FAULT  
9-12. State Diagram  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
10 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers must validate and test their design  
implementation to confirm system functionality.  
10.1 Application Information  
10-1 shows the schematic of a typical application for version A or B of the TPS1HB16-Q1. It includes all  
standard external components. This section of the data sheet discusses the considerations in implementing  
commonly required application functionality. Version F of the device will replace the ILIM pin with the open drain  
FLT pin. In this case, the FLT pin must be connected to a 5-V rail through a 10-kΩpull up resistor.  
CVBB1 CVBB2  
VBB  
DIA_EN  
SEL1  
+
RPROT  
BAT  
œ
RPROT  
GND  
RGND  
DGND  
(1)  
EN  
RPROT  
Microcontroller  
(1)  
LATCH  
RPROT  
VBB  
Optional  
CGND  
Load  
VOUT  
RILIM  
COUT  
ILIM  
SNS  
Legend  
ADC  
RPROT  
Chassis GND  
Module GND  
Device GND  
RSNS  
CSNS  
(1) With the ground protection network, the  
device ground will be offset relative to the  
microcontroller ground.  
With the ground protection network, the device ground will be offset relative to the microcontroller ground.  
10-1. System Diagram  
10-1. Recommended External Components  
COMPONENT  
RPROT  
RSNS  
TYPICAL VALUE  
PURPOSE  
Protect microcontroller and device I/O pins.  
15 kΩ  
Translate the sense current into sense voltage.  
Low-pass filter for the ADC input.  
1 kΩ  
CSNS  
100 pF 10 nF  
4.7 kΩ  
RGND  
Stabilize GND potential during turn-off of inductive load.  
Protects device during reverse battery.  
Set current limit threshold.  
DGND  
BAS21 Diode  
5 kΩ25 kΩ  
RILIM  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
 
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
10-1. Recommended External Components (continued)  
COMPONENT  
TYPICAL VALUE  
PURPOSE  
Filtering of voltage transients (for example, ESD, ISO7637-2) and improved  
emissions.  
CVBB1  
4.7 nF to Device GND  
CVBB2  
COUT  
220 nF to Module GND Stabilize the input supply and filter out low frequency noise.  
220 nF Filtering of voltage transients (for example, ESD, ISO7637-2).  
10.1.1 Ground Protection Network  
As discussed in the Reverse Battery section, DGND can be used to prevent excessive reverse current from  
flowing into the device during a reverse battery event. Additionally, RGND is placed in parallel with DGND if the  
switch is used to drive an inductive load. The ground protection network (DGND and RGND) can be shared  
amongst multiple high-side switches.  
A minimum value for RGND can be calculated by using the absolute maximum rating for IGND. During the reverse  
battery condition, IGND = VBB / RGND  
:
RGND VBB / IGND  
(2)  
Set VBB = 13.5 V  
Set IGND = 50 mA (absolute maximum rating)  
RGND 13.5 V / 50 mA = 270 Ω  
In this example, it is found that RGND must be at least 270 . It is also necessary to consider the power  
dissipation in RGND during the reverse battery event:  
PRGND = VBB 2 / RGND  
(3)  
PRGND = (13.5 V)2 / 270 = 0.675 W  
In practice, RGND can not be rated for such a high power. In this case, a larger resistor value must be selected.  
10.1.2 Interface With Microcontroller  
The ground protection network will cause the device ground to be at a higher potential than the module ground  
(and microcontroller ground). This offset will impact the interface between the device and the microcontroller.  
Logic pin voltage will be offset by the forward voltage of the diode. For input pins (for example, EN), the designer  
must consider the VIH specification of the switch and the VOH specification of the microcontroller. For a system  
that does not include DGND, it is required that VOH > VIH. For a system that does include DGND, it is required that  
VOH > (VIH + VF). VF is the forward voltage of DGND  
.
The sense resistor, RSNS, must be terminated to the microcontroller ground. In this case, the ADC can accurately  
measure the SNS signal even if there is an offset between the microcontroller ground and the device ground.  
10.1.3 I/O Protection  
RPROT is used to protect the microcontroller I/O pins during system-level voltage transients such as ISO pulses  
or reverse battery. The SNS pin voltage can exceed the ADC input pin maximum voltage if the fault or saturation  
current causes a high enough voltage drop across the sense resistor. If that can occur in the design (for  
example, by switching to a high value RSNS to improve ADC input level), then an appropriate external clamp has  
to be designed to prevent a high voltage at the SNS output and the ADC input.  
10.1.4 Inverse Current  
Inverse current occurs when 0 V < VBB < VOUT. In this case, current can flow from VOUT to VBB. Inverse current  
cannot be caused by a purely resistive load. However, a capacitive or inductive load can cause inverse current.  
For example, if there is a significant amount of load capacitance and the VBB node has a transient droop, VOUT  
can be greater than VBB  
.
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSE17  
34  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
The TPS1HB16-Q1 will not detect inverse current. When the switch is enabled, inverse current will pass through  
the switch. When the switch is disabled, inverse current can pass through the MOSFET body diode. The device  
will continue operating in the normal manner during an inverse current event.  
10.1.5 Loss of GND  
The ground connection can be lost either on the device level or on the module level. If the ground connection is  
lost, the switch will be disabled. If the switch was already disabled when the ground connection was lost, the  
switch will remain disabled. When the ground is reconnected, normal operation will resume.  
10.1.6 Automotive Standards  
The TPS1HB16-Q1 is designed to be protected against all relevant automotive standards to ensure reliable  
operations when connected to a 12-V automotive battery.  
10.1.6.1 ISO7637-2  
The TPS1HB16-Q1 is tested according to the ISO7637-2:2011 (E) standard. The test pulses are applied both  
with the switch enabled and disabled. The test setup includes only the DUT and minimal external components:  
CVBB, COUT, DGND, and RGND  
.
Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as: The function does  
not perform as designed during the test but returns automatically to normal operation after the test. See 表  
10-2 for ISO7637-2:2011 (E) expected results.  
10-2. ISO7637-2:2011 (E) Results  
TEST PULSE SEVERITY LEVEL WITH  
STATUS II FUNCTIONAL PERFORMANCE  
MINIMUM NUMBER  
OF PULSES OR TEST  
TIME  
BURST CYCLE / PULSE REPETITION TIME  
TEST  
PULSE  
LEVEL  
US  
MINIMUM  
0.5 s  
MAXIMUM  
1
2a(1)  
2b  
III  
III  
IV  
IV  
IV  
500 pulses  
500 pulses  
10 pulses  
1 hour  
112 V  
+55 V  
5 s  
0.20  
+10 V  
0.5 s  
5 s  
3a  
90 ms  
90 ms  
100 ms  
100 ms  
220 V  
+150 V  
3b  
1 hour  
(1) 1-µF capacitance on CVBB is required for passing level 3 ISO7637 pulse 2 A.  
10.1.6.2 AEC-Q100-012 Short Circuit Reliability  
The TPS1HB16-Q1 is tested according to the AEC-Q100-012 Short Circuit Reliability standard. This test is  
performed to demonstrate the robustness of the device against VOUT short-to-ground events. Test conditions and  
test procedures are summarized in 10-3. For further details, refer to the AEC-Q100-012 standard document.  
Test conditions:  
LATCH = 0 V  
RILIM = 5 kΩ  
10 units from 3 separate lots for a total of 30 units.  
Lsupply = 5 μH, Rsupply = 10 mΩ  
VBB = 14 V  
Test procedure:  
Parametric data is collected on each unit pre-stress  
Each unit is enabled into a short-circuit with the required short circuit cycles or duration as specified  
Functional testing is performed on each unit post-stress to verify that the part still operates as expected  
The cold repetitive test is run at 85°C which is the worst case condition for the device to sustain a short circuit.  
The cold repetitive test refers to the device being given time to cool down between pulses, rather than being run  
at a cold temperature. The load short circuit is the worst case situation, since the energy stored in the cable  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
 
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
inductance can cause additional harm. The fast response of the device ensures current limiting occurs quickly  
and at a current close to the load short condition. In addition, the hot repetitive test is performed as well.  
10-3. AEC-Q100-012 Test Results  
DEVICE  
VERSION  
NO. OF CYCLES /  
DURATION  
NO. OF  
UNITS  
NO. OF  
FAILS  
TEST  
LOCATION OF SHORT  
Cold Repetitive - Long  
Pulse(1)  
Load Short Circuit, Lshort = 5 μH, Rshort  
200 mΩ, TA = 85°C  
=
=
B
B
100 k cycles  
100 hours  
30  
30  
0
0
Load Short Circuit, Lshort = 5 μH, Rshort  
100 mΩ, TA = 25°C  
Hot Repetitive - Long Pulse  
(1) For Cold Repetitive short, 200-mΩRshort is used so that the device is at a higher junction temperature before the short-circuit event,  
increasing the harshness of the test.  
10.1.7 Thermal Information  
When outputting current, the TPS1HB16-Q1 will heat up due to the power dissipation. The transient thermal  
impedance curve can be used to determine the device temperature during a pulse of a given length. This ZθJA  
value corresponds to a JEDEC standard 2s2p thermal test PCB with thermal vias.  
35  
32.5  
30  
27.5  
25  
22.5  
20  
17.5  
15  
12.5  
10  
7.5  
5
2.5  
0
0.0001  
0.0010.002 0.005 0.01 0.02 0.05 0.1 0.20.3 0.5  
Time (s)  
1
2
3 4 567 10 20 30 50 100 200  
500 1000  
16PW  
10-2. TPS1HB16-Q1 Transient Thermal Impedance  
10.2 Typical Application  
This application example demonstrates how the TPS1HB16-Q1 device can be used to power resistive heater  
loads in automotive seats. In this example, we consider a heater load that is powered by the device. This is just  
one example of the many applications where this device can fit.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSE17  
36  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
 
 
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
12 V Battery  
DIA_EN  
SEL1  
VBB  
SNS  
ILIM  
µC  
LATCH  
EN  
GND  
VOUT  
HEATER LOAD  
10-3. Block Diagram for Powering Heater Load  
10.2.1 Design Requirements  
For this design example, use the input parameters shown in 10-4.  
10-4. Design Parameters  
DESIGN PARAMETER  
VBB  
EXAMPLE VALUE  
13.5 V  
Load - Heater  
Load current sense  
ILIM  
80-W max  
60 mA to 12 A  
8 A  
Ambient temperature  
RθJA  
70°C  
34.3°C/W (depending on PCB)  
A
Device version  
10.2.2 Detailed Design Procedure  
10.2.2.1 Thermal Considerations  
The 80 W heater load will cause a DC current in the channel under maximum load power condition of around 5.9  
A. Therefore, this current at 13.5 V will assume worst case heating.  
Power dissipation in the switch is calculated in 方程式 4. RON is assumed to be 32 mΩ because this is the  
maximum specification at high temperature. In practice, RON will almost always be lower.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
PFET = I2 × RON  
(4)  
(5)  
PFET = (5.9 A)2 × 32 mΩ= 1.11 W  
This means that the maximum FET power dissipation is 1.11 W. The junction temperature of the device can be  
calculated using 方程6 and the RθJA value from the Specifications section.  
TJ = TA + RθJA × PFET  
(6)  
TJ = 70°C + 34.3°C/W × 1.11 W = 108.1°C  
The maximum junction temperature rating for the TPS1HB16-Q1 is TJ = 150°C. Based on the above example  
calculation, the device temperature will stay below the maximum rating even at this high level of current.  
10.2.2.2 RILIM Calculation  
In this application, the TPS1HB16-Q1 must allow for the maximum DC current with margin but minimize the  
energy in the switch during a fault condition by minimizing the current limit. For this application, the best ILIM set  
point is approximately 8 A. 方程式 7 allows you to calculate the RILIM value that is placed from the ILIM pins to  
V
BB. RILIM is calculated in kΩ.  
RILIM = KCL / ICL  
(7)  
(8)  
Because this device is version A, the KCL value in the Specifications section is 110 A × kΩ.  
RILIM = 110 (A × kΩ) / 8 A = 13.75 kΩ  
For a ILIM of 8 A, the RILIM value must be set at around 13.75 kΩ.  
10.2.2.3 Diagnostics  
If the resistive heating load is disconnected (heater malfunction), an alert is desired. Open-load detection can be  
performed in the switch-enabled state with the current sense feature of the TPS1HB16-Q1 device. Under open  
load condition, the current in the SNS pin will be the fault current and the can be detected from the sense  
voltage measurement.  
10.2.2.3.1 Selecting the RISNS Value  
10-5 shows the requirements for the load current sense in this application. The KSNS value is specified for the  
device and can be found in the Specifications section.  
10-5. RSNS Calculation Parameters  
PARAMETER  
EXAMPLE VALUE  
Current Sense Ratio (KSNS  
)
3000  
12 A  
Largest diagnosable load current  
Smallest diagnosable load current  
Full-scale ADC voltage  
60 mA  
5 V  
ADC resolution  
10 bit  
The load current measurement requirements of 12 A ensures that even in the event of a overcurrent surpassing  
the set current limit, the MCU can register and react by shutting down the TPS1HB16-Q1, while the low level of  
60 mA allows for accurate measurement of low load currents.  
The RSNS resistor value must be selected such that the largest diagnosable load current puts VSNS at about 95%  
of the ADC full-scale. With this design, any ADC value above 95% can be considered a fault. Additionally, the  
RSNS resistor value must ensure that the smallest diagnosable load current does not cause VSNS to fall below 1  
LSB of the ADC. With the given example values, a 1.2-ksense resistor satisfies both requirements shown in 表  
10-6.  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
 
 
 
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
10-6. VSNS Calculation  
LOAD (A)  
0.06  
SENSE RATIO  
3000  
ISNS (mA)  
VSNS (V)  
0.024  
% of 5-V ADC  
0.5%  
RSNS ()  
1200  
0.02  
4
12  
3000  
1200  
4.800  
96.0%  
10.2.3 Application Curves  
When the device receives a rising edge on the EN pulse the output will turn on. After the turn-on delay time, the  
device VOUT goes to the VBB supply and begins outputting the steady state resistive current.  
10-4. TPS1HB16-Q1 Turn-On Waveform (ROUT = 4 Ω)  
When the device turns off on a falling edge of EN, the channel IOUT will go to zero and the VOUT will drop to zero  
as well as shown.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
10-5. TPS1HB16-Q1 Turn-Off Waveform (ROUT = 4 Ω)  
When there is a load step, the SNS current output will follow the load current with a slight delay. The image  
shows the output current temporarily increase from 1 A to 5 A and then return to 1 A. In this situation, the output  
current is accurately modeled throughout the pulse by the voltage on the SNS pin allowing for accurate  
diagnostics.  
10-6. TPS1HB16-Q1 SNS Settling Time  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSE17  
40  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
If the device has a no-load case due to an open load or cable, the device will register the fault even in an off-  
state if the DIAG_EN pin is high. 10-7 shows the device behavior when an open load event is registered with  
EN low and DIAG_EN is raised. Systems can PWM DIAG_EN to lower system power losses while still watching  
for open load events and the same timing applies.  
10-7. Open Load (tOL) Detection Time  
If the output of the TPS1HB16-Q1 is short-circuited, the device will protect the system from failure. Depending on  
the device version and RILIM, the current limit set-point will vary. The waveforms below show examples of the  
current limit behavior when the device is enabled into a short circuit with a test setup according to AEC-  
Q100-012. In each case, the RILIM pin has a 5 kΩresistor to set the current limit.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
10-8. TPS1HB16-Q1 Version A Short Circuit Waveform  
10-9. TPS1HB16-Q1 Version B Short Circuit Waveform  
10.3 Typical Application  
This application example demonstrates how the TPS1HB16-Q1 device can be used to power bulb loads in  
automotive headlights. In this example, we consider a 35 W bulb that is powered by the device. This example is  
just one example of the many applications where this device can fit.  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
12 V Battery/  
Cap Bank  
Temperature  
Chamber  
DIA_EN  
SEL1  
VBB  
65 m  
~2m 18 AWG  
BULB LOAD  
VOUT  
SNS  
ILIM  
µC  
LATCH  
EN  
GND  
10mꢀ  
~2m 8 AWG  
10-10. Block Diagram for Driving Bulb Load  
10.3.1 Design Requirements  
For this design example, use the input parameters shown in 10-7.  
10-7. Design Parameters  
DESIGN PARAMETER  
VBB  
EXAMPLE VALUE  
16 V  
35-W maximum  
60 A  
Load - Bulb  
Fixed ILIM  
Ambient temperature  
Bulb temperature in chamber  
25°C  
40°C  
Cable impedance from device to  
bulb  
65 mΩ  
Device version  
F
10.3.2 Detailed Design Procedure  
The typical bulb test setup is where the device is at 25°C and the bulb is in a temperature chamber at 40°C.  
The bulb needs to be kept at 40°C so that the impedance is very low and the inrush current will be the highest.  
The impedance of the cables is important because it will change the inrush current of the bulb as well. The F  
version of the TPS1HB16-Q1 has a very high fixed current limit so that the inrush current of the bulb can be  
passed without limitation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
10.3.3 Application Curves  
10-11. TPS1HB16-Q1 Version F 35 W Bulb Inrush Current  
10.3.4 Detailed Design Procedure  
Another typical bulb test is to have the bulb at room temperature (25°C) and the device heated up to 105°C. This  
test is designed see if the device can drive the bulb without hitting thermal shutdown due to the current draw of  
the bulbs. The passing criteria is that the bulb illuminates when the device enables the channel and the device  
does not go into thermal shutdown. 10-12 shows the current waveform of this test and as it can be seen the  
bulb comes on and stays on without hitting thermal shutdown. Notice that the current is lower in this condition  
than the inrush condition. This is due to the bulb's effective capacitance being lower at higher temperatures as  
expected.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSE17  
44  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
10.3.5 Application Curves  
10-12. TPS1HB16-Q1 Version F 35W Bulb Turn On  
10.4 Power Supply Recommendations  
The TPS1HB16-Q1 device is designed to operate in a 12-V automotive system. The nominal supply voltage  
range is 6 V to 18 V as measured at the VBB pin with respect to the GND pin of the device. In this range the  
device meets full parametric specifications as listed in the Electrical Characteristics table. The device is also  
designed to withstand voltage transients beyond this range. When operating outside of the nominal voltage  
range but within the operating voltage range, the device will exhibit normal functional behavior. However,  
parametric specifications can not be specified outside the nominal supply voltage range.  
10-8. Operating Voltage Range  
VBB VOLTAGE RANGE  
NOTE  
Transients such as cold crank and start-stop, functional operation are  
specified but some parametric specifications can not apply. The  
device is completely short-circuit protected up to 125°C.  
3 V to 6 V  
Nominal supply voltage, all parametric specifications apply. The  
device is completely short-circuit protected up to 125°C.  
6 V to 18 V  
Transients such as jump-start and load-dump, functional operation  
specified but some parametric specifications can not apply.  
18 V to 40 V  
10.5 Layout  
10.5.1 Layout Guidelines  
To achieve optimal thermal performance, connect the exposed pad to a large copper pour. On the top PCB layer,  
the pour can extend beyond the package dimensions as shown in the example below. In addition to this, TI  
recommends to also have a VBB plane either on one of the internal PCB layers or on the bottom layer.  
Vias must connect this plane to the top VBB pour.  
Ensure that all external components are placed close to the pins. Device current limiting performance can be  
harmed if the RILIM is far from the pins and extra parasitics are introduced.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
 
 
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
10.5.2 Layout Example  
The layout example is for device versions A/B.  
Via to VBB plane  
GND  
SNS  
DIA_EN  
NC  
To µC  
To µC  
LATCH  
EN  
SEL1  
NC  
VBB  
ILIM  
NC  
VOUT  
VOUT  
VOUT  
NC  
NC  
NC  
10-13. 16-PWP Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSE17  
46  
Submit Document Feedback  
Product Folder Links: TPS1HB16-Q1  
TPS1HB16-Q1  
ZHCSJT6B MAY 2019 REVISED FEBRUARY 2023  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, How To Drive Inductive, Capacitive, and Lighting Loads with Smart High Side Switches  
application note  
Texas Instruments, Short-Circuit Reliability Test for Smart Power Switch application note  
Texas Instruments, Reverse Battery Protection for High Side Switches application note  
Texas Instruments, Adjustable Current Limit of Smart Power Switches application note  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS1HB16-Q1  
English Data Sheet: SLVSE17  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Mar-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS1HB16AQPWPRQ1  
TPS1HB16BQPWPRQ1  
TPS1HB16FQPWPRQ1  
ACTIVE  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
16  
16  
16  
3000  
3000  
3000  
RoHS-Exempt  
& Green  
NIPDAU  
Level-3-260C-168HRS  
Level-3-260C-168HRS  
Level-3-260C-168HRS  
-40 to 125  
-40 to 125  
-40 to 125  
1HB16AQ  
ACTIVE  
ACTIVE  
PWP  
RoHS-Exempt  
& Green  
NIPDAU  
NIPDAU  
1HB16BQ  
1HB16FQ  
PWP  
RoHS-Exempt  
& Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Mar-2021  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Mar-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS1HB16AQPWPRQ1 HTSSOP PWP  
TPS1HB16BQPWPRQ1 HTSSOP PWP  
TPS1HB16FQPWPRQ1 HTSSOP PWP  
16  
16  
16  
3000  
3000  
3000  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
6.9  
6.9  
6.9  
5.6  
5.6  
5.6  
1.6  
1.6  
1.6  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Mar-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS1HB16AQPWPRQ1  
TPS1HB16BQPWPRQ1  
TPS1HB16FQPWPRQ1  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
PWP  
PWP  
16  
16  
16  
3000  
3000  
3000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PWP0016M  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
6.6  
6.2  
C
TYP  
A
PIN 1 INDEX  
AREA  
0.1 C  
SEATING  
PLANE  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
B
0.19  
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 0.6 MAX  
NOTE 5  
THERMAL  
PAD  
2X 0.31 MAX  
NOTE 5  
8
9
0.25  
1.2 MAX  
GAGE PLANE  
3.37  
2.48  
17  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
0.45  
2X  
16  
1
0.25  
NOTE 5  
0.32  
0.16  
2X  
NOTE 5  
2X (0.13)  
2.78  
2.20  
4223886/B 09/2019  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0016M  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(2.78)  
16X (1.5)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
16  
16X (0.45)  
1
(1.2) TYP  
(R0.05) TYP  
SYMM  
(3.37)  
17  
(5)  
NOTE 9  
(0.6)  
14X (0.65)  
(
0.2) TYP  
VIA  
9
8
(1.2) TYP  
SEE DETAILS  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4223886/B 09/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0016M  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.78)  
BASED ON  
0.125 THICK  
STENCIL  
16X (1.5)  
METAL COVERED  
BY SOLDER MASK  
1
16  
16X (0.45)  
(R0.05) TYP  
SYMM  
(3.37)  
17  
BASED ON  
0.125 THICK  
STENCIL  
14X (0.65)  
8
9
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.11 X 3.77  
2.78 X 3.37 (SHOWN)  
2.54 X 3.08  
0.125  
0.15  
0.175  
2.35 X 2.85  
4223886/B 09/2019  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS1HB16AQPWPRQ1

具有可调节电流限制的 40V、16mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS1HB16BQPWPRQ1

具有可调节电流限制的 40V、16mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS1HB16FQPWPRQ1

具有可调节电流限制的 40V、16mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS1HB35-Q1

TPS1HB35-Q1 40-V, 35-mΩ Single-Channel Smart High-Side Switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS1HB35-Q1_V01

TPS1HB35-Q1 40-V, 35-mΩ Single-Channel Smart High-Side Switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS1HB35AQPWPRQ1

TPS1HB35-Q1 40-V, 35-mΩ Single-Channel Smart High-Side Switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS1HB35BQPWPRQ1

TPS1HB35-Q1 40-V, 35-mΩ Single-Channel Smart High-Side Switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS1HB35CQPWPRQ1

TPS1HB35-Q1 40-V, 35-mΩ Single-Channel Smart High-Side Switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS1HB35FQPWPRQ1

TPS1HB35-Q1 40-V, 35-mΩ Single-Channel Smart High-Side Switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS1HB50-Q1

具有可调节电流限制的 40V、50mΩ、汽车类单通道智能高侧开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS1HB50AQPWPRQ1

具有可调节电流限制的 40V、50mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS1HB50BQPWPRQ1

具有可调节电流限制的 40V、50mΩ、汽车类单通道智能高侧开关 | PWP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI