TPS2021 [TI]

POWER-DISTRIBUTION SWITCHES; 配电开关
TPS2021
型号: TPS2021
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

POWER-DISTRIBUTION SWITCHES
配电开关

开关
文件: 总23页 (文件大小:378K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
33-m(5-V Input) High-Side MOSFET  
Switch  
D OR P PACKAGE  
(TOP VIEW)  
Short-Circuit and Thermal Protection  
Overcurrent Logic Output  
GND  
IN  
OUT  
OUT  
OUT  
OC  
1
2
3
4
8
7
6
5
Operating Range . . . 2.7 V to 5.5 V  
Logic-Level Enable Input  
IN  
EN  
Typical Rise Time . . . 6.1 ms  
Undervoltage Lockout  
Maximum Standby Supply  
Current . . . 10 µA  
No Drain-Source Back-Gate Diode  
Available in 8-pin SOIC and PDIP Packages  
Ambient Temperature Range, 40°C to 85°C  
2-kV Human-Body-Model, 200-V  
Machine-Model ESD Protection  
description  
The TPS202x family of power distribution switches is intended for applications where heavy capacitive loads  
and short circuits are likely to be encountered. These devices are 50-mN-channel MOSFET high-side power  
switches. The switch is controlled by a logic enable compatible with 5-V logic and 3-V logic. Gate drive is  
provided by an internal charge pump designed to control the power-switch rise times and fall times to minimize  
current surges during switching. The charge pump requires no external components and allows operation from  
supplies as low as 2.7 V.  
When the output load exceeds the current-limit threshold or a short is present, the TPS202x limits the output  
current to a safe level by switching into a constant-current mode, pulling the overcurrent (OC) logic output low.  
When continuous heavy overloads and short circuits increase the power dissipation in the switch, causing the  
junction temperature to rise, a thermal protection circuit shuts off the switch to prevent damage. Recovery from  
a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch  
remains off until valid input voltage is present.  
The TPS202x devices differ only in short-circuit current threshold. The TPS2020 limits at 0.3-A load, the  
TPS2021 at 0.9-A load, the TPS2022 at 1.5-A load, the TPS2023 at 2.2-A load, and the TPS2024 at 3-A load  
(see Available Options). The TPS202x is available in an 8-pin small-outline integrated-circuit (SOIC) package  
and in an 8-pin dual-in-line (DIP) package and operates over a junction temperature range of 40°C to 125°C.  
GENERAL SWITCH CATALOG  
33 m, single  
80 m, single  
80 m, dual  
80 m, triple  
80 m, quad  
TPS201xA 0.2 A – 2 A  
TPS2042  
TPS2052  
TPS2046  
TPS2056  
500 mA  
500 mA  
250 mA  
250 mA  
TPS202x  
0.2 A – 2 A  
TPS203x  
0.2 A – 2 A  
260 mΩ  
1.3 Ω  
TPS2014  
TPS2015  
TPS2041  
TPS2051  
TPS2045  
TPS2055  
600 mA  
1 A  
500 mA  
500 mA  
250 mA  
250 mA  
TPS2100/1  
IN1 500 mA  
IN2 10 mA  
TPS2043  
500 mA  
500 mA  
250 mA  
250 mA  
TPS2044  
500 mA  
500 mA  
250 mA  
250 mA  
IN1  
IN2  
TPS2053  
TPS2047  
TPS2057  
TPS2054  
TPS2048  
TPS2058  
OUT  
TPS2102/3/4/5  
IN1 500 mA  
IN2 100 mA  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1999, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
AVAILABLE OPTIONS  
RECOMMENDED  
MAXIMUM CONTINUOUS  
LOAD CURRENT  
(A)  
PACKAGED DEVICES  
SMALL OUTLINE PLASTIC DIP  
TYPICAL SHORT-CIRCUIT  
CURRENT LIMIT AT 25°C  
(A)  
T
A
ENABLE  
(D)  
(P)  
0.2  
0.6  
1
0.3  
0.9  
1.5  
2.2  
3
TPS2020D  
TPS2021D  
TPS2022D  
TPS2023D  
TPS2024D  
TPS2020P  
TPS2021P  
TPS2022P  
TPS2023P  
TPS2024P  
40°C to 85°C Active low  
1.5  
2
The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2020DR)  
TPS2020 functional block diagram  
Power Switch  
CS  
IN  
OUT  
Charge  
Pump  
Current  
Limit  
EN  
Driver  
OC  
UVLO  
Thermal  
Sense  
GND  
Current Sense  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NO.  
D OR P  
NAME  
EN  
4
1
I
I
Enable input. Logic low turns on power switch.  
GND  
IN  
Ground  
2, 3  
5
I
Input voltage  
OC  
OUT  
O
O
Overcurrent. Logic output active low  
Power-switch output  
6, 7, 8  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
detailed description  
power switch  
The power switch is an N-channel MOSFET with a maximum on-state resistance of 50 m(V  
= 5 V).  
I(IN)  
Configured as a high-side switch, the power switch prevents current flow from OUT to IN and IN to OUT when  
disabled.  
charge pump  
An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate  
of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires  
very little supply current.  
driver  
The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated  
electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and  
fall times of the output voltage. The rise and fall times are typically in the 2-ms to 9-ms range.  
enable (EN)  
The logic enable disables the power switch, the bias for the charge pump, driver, and other circuitry to reduce  
the supply current to less than 10 µA when a logic high is present on EN . A logic zero input on EN restores bias  
to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS  
logic levels.  
overcurrent (OC)  
The OC open drain output is asserted (active low) when an overcurrent or overtemperature condition is  
encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.  
current sense  
A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than  
conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry  
sends a control signal to the driver. The driver, in turn, reduces the gate voltage and drives the power FET into  
its saturation region, which switches the output into a constant current mode and holds the current constant  
while varying the voltage on the load.  
thermal sense  
An internal thermal-sense circuit shuts off the power switch when the junction temperature rises to  
approximately 140°C. Hysteresis is built into the thermal sense circuit. After the device has cooled  
approximately 20°C, the switch turns back on. The switch continues to cycle off and on until the fault is removed.  
undervoltage lockout  
A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V, a control  
signal turns off the power switch.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Input voltage range, V  
Output voltage range, V  
Input voltage range, V  
Continuous output current, I  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6 V  
I(IN)  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6 V  
+ 0.3 V  
O(OUT)  
I(EN)  
I(IN)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . internally limited  
O(OUT)  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 125°C  
J
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Electrostatic discharge (ESD) protection: Human body model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 kV  
Machine model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200V  
Charged device model (CDM) . . . . . . . . . . . . . . . . . . . . . . . . . 750 V  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltages are with respect to GND.  
DISSIPATION RATING TABLE  
DERATING FACTOR  
T
25°C  
T
A
= 70°C  
T = 85°C  
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
D
P
725 mW  
5.8 mW/°C  
9.4 mW/°C  
464 mW  
752 mW  
377 mW  
611 mW  
1175 mW  
recommended operating conditions  
MIN  
2.7  
0
MAX  
5.5  
5.5  
0.2  
0.6  
1
UNIT  
V
V
V
I(IN)  
Input voltage  
V
I(EN)  
TPS2020  
TPS2021  
TPS2022  
TPS2023  
TPS2024  
0
0
Continuous output current, I  
0
A
O
0
1.5  
2
0
Operating virtual junction temperature, T  
40  
125  
°C  
J
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
electrical characteristics over recommended operating junction temperature range, V  
= 5.5 V,  
I(IN)  
I = rated current, EN = 0 V (unless otherwise noted)  
O
power switch  
PARAMETER  
MIN  
TYP  
33  
38  
44  
37  
43  
51  
30  
35  
39  
33  
39  
44  
MAX  
36  
46  
50  
41  
52  
61  
34  
41  
47  
37  
46  
56  
UNIT  
TEST CONDITIONS  
T = 25°C,  
V
V
V
V
V
V
V
V
V
V
V
V
V
= 5 V,  
= 5 V,  
= 5 V,  
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
= 1.8 A  
= 1.8 A  
= 1.8 A  
= 1.8 A  
= 1.8 A  
= 1.8 A  
= 0.18 A  
= 0.18 A  
= 0.18 A  
= 0.18 A  
= 0.18 A  
= 0.18 A  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
J
T = 85°C,  
J
T = 125°C,  
J
= 3.3 V, T = 25°C,  
J
= 3.3 V, T = 85°C,  
J
= 3.3 V, T = 125°C,  
J
r
Static drain-source on-state resistance  
mΩ  
DS(on)  
= 5 V,  
= 5 V,  
= 5 V,  
T = 25°C,  
J
T = 85°C,  
J
T = 125°C,  
J
= 3.3 V, T = 25°C,  
J
= 3.3 V, T = 85°C,  
J
= 3.3 V, T = 125°C,  
J
= 5.5 V, T = 25°C,  
J
6.1  
8.6  
3.4  
3
C
= 1 µF,  
R = 10 Ω  
L
L
t
t
Rise time, output  
Fall time, output  
ms  
ms  
r
V
C
= 2.7 V, T = 25°C,  
J
I(IN)  
= 1 µF,  
R = 10 Ω  
L
L
V
C
= 5.5 V, T = 25°C,  
J
I(IN)  
= 1 µF,  
R = 10 Ω  
L
L
f
V
C
= 2.7 V, T = 25°C,  
J
I(IN)  
= 1 µF,  
R = 10 Ω  
L
L
Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.  
enable input (EN)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
V
V
High-level input voltage  
2.7 V V  
4.5 V V  
2.7 V V  
5.5 V  
5.5 V  
4.5 V  
2
V
IH  
IL  
I
I(IN)  
I(IN)  
I(IN)  
0.8  
0.5  
0.5  
Low-level input voltage  
Input current  
V
I
EN= 0 V or EN = V  
0.5  
µA  
ms  
I(IN)  
t
t
Turnon time  
Turnoff time  
C
C
= 100 µF,  
= 100 µF,  
R
R
= 10 Ω  
= 10 Ω  
20  
40  
on  
L
L
L
L
off  
current limit  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
0.4  
1.1  
1.8  
2.7  
3.8  
UNIT  
TPS2020  
TPS2021  
TPS2022  
TPS2023  
TPS2024  
0.22  
0.66  
1.1  
0.3  
0.9  
1.5  
2.2  
3
T = 25°C, V = 5.5 V,  
OUT connected to GND,  
Device enable into short circuit  
J
I
I
Short-circuit output current  
A
OS  
1.65  
2.2  
Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
electrical characteristics over recommended operating junction temperature range, V  
= 5.5 V,  
I(IN)  
I = rated current, EN = 0 V (unless otherwise noted) (continued)  
O
supply current  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
T = 25°C  
0.3  
1
10  
J
Supply current, low-level output  
No Load on OUT  
No Load on OUT  
µA  
EN = V  
I(IN)  
40°C T 125°C  
J
T = 25°C  
J
58  
75  
10  
75  
Supply current, high-level output  
µA  
µA  
EN = 0 V  
40°C T 125°C  
100  
J
Leakage current  
OUT connected to ground EN = V  
40°C T 125°C  
J
I(IN)  
undervoltage lockout  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
Low-level input voltage  
Hysteresis  
2
2.5  
T = 25°C  
J
100  
mV  
overcurrent (OC)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.4  
1
UNIT  
V
Output low voltage  
I
= 10 mA,  
V
O
OL(OC)  
= 3.3 V  
O
Off-state current  
V
= 5 V,  
V
µA  
O
Specified by design, not production tested.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
PARAMETER MEASUREMENT INFORMATION  
OUT  
t
t
f
r
RL  
CL  
V
90%  
10%  
O(OUT)  
90%  
10%  
TEST CIRCUIT  
50%  
90%  
50%  
V
I(EN)  
t
t
off  
on  
V
O(OUT)  
10%  
VOLTAGE WAVEFORMS  
Figure 1. Test Circuit and Voltage Waveforms  
Table of Timing Diagrams  
FIGURE  
Turnon Delay and Rise TIme  
Turnoff Delay and Fall Time  
2
3
4
5
6
Turnon Delay and Rise TIme with 1-µF Load  
Turnoff Delay and Rise TIme with 1-µF Load  
Device Enabled into Short  
7, 8, 9,  
10, 11  
TPS2020, TPS2021, TPS2022, TPS2023, and TPS2024, Ramped Load on Enabled Device  
TPS2024, Inrush Current  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
7.9-Load Connected to an Enabled TPS2020 Device  
3.7-Load Connected to an Enabled TPS2020 Device  
3.7-Load Connected to an Enabled TPS2021 Device  
2.6-Load Connected to an Enabled TPS2021 Device  
2.6-Load Connected to an Enabled TPS2022 Device  
1.2-Load Connected to an Enabled TPS2022 Device  
1.2-Load Connected to an Enabled TPS2023 Device  
0.9-Load Connected to an Enabled TPS2023 Device  
0.9-Load Connected to an Enabled TPS2024 Device  
0.5-Load Connected to an Enabled TPS2024 Device  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
PARAMETER MEASUREMENT INFORMATION  
V
I(EN)  
(5 V/div)  
V
I(EN)  
(5 V/div)  
V
I(EN)  
V
I(EN)  
V
R
T
A
= 5 V  
I(IN)  
= 27 Ω  
L
= 25°C  
V
(2 V/div)  
V
(2 V/div)  
O(OUT)  
O(OUT)  
V
R
T
A
= 5 V  
= 27 Ω  
= 25°C  
IN  
L
V
V
O(OUT)  
O(OUT)  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18  
20  
t – Time – ms  
t – Time – ms  
Figure 2. Turnon Delay and Rise Time  
Figure 3. Turnoff Delay and Fall Time  
V
I(EN)  
(5 V/div)  
V
I(EN)  
(5 V/div)  
V
I(EN)  
V
I(EN)  
V
(2 V/div)  
O(OUT)  
V
(2 V/div)  
O(OUT)  
V
C
R
= 5 V  
= 1 µF  
= 27 Ω  
= 25°C  
I(IN)  
L
L
V
C
R
= 5 V  
= 1 µF  
= 27 Ω  
= 25°C  
I(IN)  
L
L
V
V
O(OUT)  
O(OUT)  
T
A
T
A
0
2
4
6
8
10 12 14 16 18  
20  
0
2
4
6
8
10 12 14 16 18  
20  
t – Time – ms  
t – Time – ms  
Figure 5. Turnoff Delay and Fall Time  
Figure 4. Turnon Delay and Rise Time  
With 1-µF Load  
With 1-µF Load  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
PARAMETER MEASUREMENT INFORMATION  
V
(5 V/div)  
O(OC)  
V
I(EN)  
V
I(EN)  
(5 V/div)  
V
O(OC)  
V
T
A
= 5 V  
= 25°C  
I(IN)  
V
T
A
= 5 V  
= 25°C  
I(IN)  
TPS2024  
TPS2023  
TPS2022  
I
(500 mA/div)  
O(OUT)  
TPS2021  
TPS2020  
I
O(OUT)  
I
O(OUT)  
I
(1 A/div)  
3
O(OUT)  
0
20 40 60 80 100 120 140 160 180 200  
t – Time – ms  
0
1
2
4
5
6
7
8
9
10  
t – Time – ms  
Figure 7. TPS2020, Ramped Load on  
Enabled Device  
Figure 6. Device Enabled Into Short  
V
(5 V/div)  
O(OC)  
V
(5 V/div)  
O(OC)  
V
V
O(OC)  
O(OC)  
V
T
A
= 5 V  
I(IN)  
= 25°C  
V
T
A
= 5 V  
I(IN)  
= 25°C  
I
(1 A/div)  
O(OUT)  
I
(1 A/div)  
O(OUT)  
I
I
O(OUT)  
O(OUT)  
0
20 40 60 80 100 120 140 160 180 200  
t – Time – ms  
0
20 40 60 80 100 120 140 160 180 200  
t – Time – ms  
Figure 8. TPS2021, Ramped Load on Enabled  
Device  
Figure 9. TPS2022, Ramped Load on  
Enabled Device  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
PARAMETER MEASUREMENT INFORMATION  
V
(5 V/div)  
O(OC)  
V
(5 V/div)  
O(OC)  
V
V
O(OC)  
O(OC)  
V
= 5 V  
I(IN)  
T = 25°C  
A
V
T
A
= 5 V  
I(IN)  
= 25°C  
I
(1 A/div)  
I
(1 A/div)  
O(OUT)  
O(OUT)  
I
I
O(OUT)  
O(OUT)  
0
20 40 60 80 100 120 140 160 180 200  
t – Time – ms  
0
20 40 60 80 100 120 140 160 180 200  
t – Time – ms  
Figure 10. TPS2023, Ramped Load on  
Enabled Device  
Figure 11. TPS2024, Ramped Load on Enabled  
Device  
V
I(EN)  
V
(5 V/div)  
O(OC)  
V
I(EN)  
(5 V/div)  
V
O(OC)  
I
(200 mA/div)  
O(OUT)  
470 µF  
150 µF  
I
(500 mA/div)  
I(IN)  
V
R
T
A
= 5 V  
= 7.9 Ω  
= 25°C  
I(IN)  
L
I
I
O(OUT)  
I(IN)  
R
= 10 Ω  
T = 25°C  
A
L
47 µF  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
0
1
2
3
4
5
6
7
8
9
10  
t – Time – µs  
t – Time – ms  
Figure 13. 7.9-Load Connected to an Enabled  
Figure 12. TPS2024, Inrush Current  
TPS2020 Device  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
PARAMETER MEASUREMENT INFORMATION  
V
(5 V/div)  
V
(5 V/div)  
O(OC)  
O(OC)  
V
V
O(OC)  
O(OC)  
V
= 5 V  
= 3.7 Ω  
= 25°C  
V
= 5 V  
= 3.7 Ω  
= 25°C  
I(IN)  
L
I(IN)  
L
R
T
R
T
A
A
I
(500 mA/div)  
O(OUT)  
I
(1 A/div)  
O(OUT)  
I
I
O(OUT)  
O(OUT)  
0
50 100 150 200 250 300 350 400 450 500  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
t – Time – µs  
t – Time – µs  
Figure 14. 3.7-Load Connected to an Enabled  
Figure 15. 3.7-Load Connected to an Enabled  
TPS2020 Device  
TPS2021 Device  
V
O(OC)  
V
(5 V/div)  
O(OC)  
V
(5 V/div)  
O(OC)  
V
O(OC)  
V
= 5 V  
= 2.6 Ω  
= 25°C  
V
= 5 V  
= 2.6 Ω  
= 25°C  
I(IN)  
L
I(IN)  
L
R
T
R
T
A
A
I
(1 A/div)  
I
(1 A/div)  
O(OUT)  
O(OUT)  
I
I
O(OUT)  
O(OUT)  
0
50 100 150 200 250 300 350 400 450 500  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
t – Time – µs  
t – Time – µs  
Figure 16. 2.6-Load Connected to an Enabled  
Figure 17. 2.6-Load Connected to an Enabled  
TPS2021 Device  
TPS2022 Device  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
PARAMETER MEASUREMENT INFORMATION  
V
(5 V/div)  
O(OC)  
V
(5 V/div)  
O(OC)  
V
V
O(OC)  
O(OC)  
V
R
T
A
= 5 V  
= 1.2 Ω  
= 25°C  
I(IN)  
L
I
(1 A/div)  
O(OUT)  
I
(2 A/div)  
O(OUT)  
V
R
T
A
= 5 V  
= 1.2 Ω  
= 25°C  
I(IN)  
L
I
I
O(OUT)  
O(OUT)  
0
100 200 300 400 500 600 700 800 900 1000  
0
100 200 300 400 500 600 700 800 900 1000  
t – Time – µs  
t – Time – µs  
Figure 18. 1.2-Load Connected to an Enabled  
Figure 19. 1.2-Load Connected to an Enabled  
TPS2022 Device  
TPS2023 Device  
V
(5 V/div)  
V
(5 V/div)  
O(OC)  
O(OC)  
V
V
O(OC)  
O(OC)  
V
= 5 V  
= 0.9 Ω  
= 25°C  
V
= 5 V  
= 0.9 Ω  
= 25°C  
I(IN)  
L
I(IN)  
L
R
T
R
T
A
A
I
(2 A/div)  
O(OUT)  
I
(5 A/div)  
O(OUT)  
I
I
O(OUT)  
O(OUT)  
0
100 200 300 400 500 600 700 800 900 1000  
0
100 200 300 400 500 600 700 800 900 1000  
t – Time – µs  
t – Time – µs  
Figure 21. 0.9-Load Connected to an Enabled  
Figure 20. 0.9-Load Connected to an Enabled  
TPS2024 Device  
TPS2023 Device  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
PARAMETER MEASUREMENT INFORMATION  
V
(5 V/div)  
O(OC)  
V
O(OC)  
V
R
T
A
= 5 V  
= 0.5 Ω  
= 25°C  
I(IN)  
L
I
O(OUT)  
(5 A/div)  
I
O(OUT)  
0
50 100 150 200 250 300 350 400 450 500  
t – Time – µs  
Figure 22. 0.5-Load Connected to an Enabled  
TPS2024 Device  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
23  
t
t
t
t
Turnon delay time  
Turnoff delay time  
Rise time  
vs Output voltage  
vs Input voltage  
d(on)  
24  
d(off)  
vs Load current  
25  
r
f
Fall time  
vs Load current  
26  
Supply current (enabled)  
Supply current (disabled)  
Supply current (enabled)  
Supply current (disabled)  
vs Junction temperature  
vs Junction temperature  
vs Input voltage  
27  
28  
29  
vs Input voltage  
30  
vs Input voltage  
31  
I
Short-circuit current limit  
OS  
vs Junction temperature  
vs Input voltage  
32  
33  
vs Junction temperature  
vs Input voltage  
34  
r
Static drain-source on-state resistance  
Input voltage  
DS(on)  
35  
vs Junction temperature  
Undervoltage lockout  
36  
V
37  
I
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
TYPICAL CHARACTERISTICS  
TURNON DELAY TIME  
vs  
OUTPUT VOLTAGE  
TURNOFF DELAY TIME  
vs  
INPUT VOLTAGE  
7.5  
7
18  
T
C
= 25°C  
= 1 µF  
A
L
T
C
= 25°C  
= 1 µF  
A
L
6.5  
6
17.5  
17  
5.5  
5
4.5  
16.5  
16  
4
3.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V – Input Voltage – V  
I
V – Input Voltage – V  
I
Figure 23  
Figure 24  
RISE TIME  
vs  
LOAD CURRENT  
FALL TIME  
vs  
LOAD CURRENT  
6.5  
3.5  
T
C
= 25°C  
= 1 µF  
A
L
T
C
= 25°C  
= 1 µF  
A
L
3.25  
3
6
5.5  
2.75  
2.5  
5
0
0.5  
1
1.5  
2
0
0.5  
1
I – Load Current – A  
L
1.5  
2
I
L
– Load Current – A  
Figure 25  
Figure 26  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT (ENABLED)  
vs  
JUNCTION TEMPERATURE  
SUPPLY CURRENT (DISABLED)  
vs  
JUNCTION TEMPERATURE  
75  
65  
5
4
3
2
V
= 5.5 V  
I(IN)  
V
= 5 V  
I(IN)  
V
= 5.5 V  
= 5 V  
I(IN)  
V
I(IN)  
55  
1
V
= 4 V  
I(IN)  
= 3.3 V  
V
= 4 V  
= 3.3 V  
45  
35  
I(IN)  
V
I(IN)  
V
I(IN)  
= 2.7 V  
0
V
= 2.7 V  
I(IN)  
V
I(IN)  
–1  
–50 –25  
0
25  
50  
75  
100 125 150  
–50 –25  
0
25  
50  
75  
100 125 150  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 27  
Figure 28  
SUPPLY CURRENT (ENABLED)  
SUPPLY CURRENT (DISABLED)  
vs  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
75  
65  
5
4
3
2
T
= 125°C  
J
T
J
= 125°C  
T
J
= 85°C  
T
J
= 85°C  
55  
1
T
= 25°C  
= 0°C  
J
45  
35  
T
= 25°C  
J
0
T
= 0°C  
J
T
J
T
= –40°C  
J
T
= –40°C  
J
–1  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V – Input Voltage – V  
I
V – Input Voltage – V  
I
Figure 29  
Figure 30  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
TYPICAL CHARACTERISTICS  
SHORT-CIRCUIT CURRENT LIMIT  
SHORT-CIRCUIT CURRENT LIMIT  
vs  
vs  
INPUT VOLTAGE  
JUNCTION TEMPERATURE  
3.5  
3.5  
T
A
= 25°C  
TPS2024  
TPS2024  
3
3
2.5  
2.5  
TPS2023  
TPS2022  
TPS2023  
TPS2022  
2
1.5  
1
2
1.5  
1
TPS2021  
TPS2020  
TPS2021  
TPS2020  
0.5  
0
0.5  
0
–50  
–25  
0
25  
50  
75  
100  
2
3
4
5
6
T
J
– Junction Temperature – °C  
V – Input Voltage – V  
I
Figure 31  
Figure 32  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE  
vs  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE  
vs  
INPUT VOLTAGE  
60  
JUNCTION TEMPERATURE  
60  
I
O
= 0.18 A  
I
O
= 0.18 A  
50  
40  
50  
40  
T
J
= 125°C  
V = 2.7 V  
I
V = 3.3 V  
I
T
J
= 25°C  
30  
20  
30  
20  
V = 5.5 V  
I
T
= –40°C  
J
2.5  
3
3.5  
4
4.5  
5
5.5  
6
–50 –25  
0
25  
50  
75 100 125 150  
V – Input Voltage – V  
I
T
J
– Junction Temperature – °C  
Figure 33  
Figure 34  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
TYPICAL CHARACTERISTICS  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE  
vs  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE  
vs  
JUNCTION TEMPERATURE  
60  
INPUT VOLTAGE  
60  
I
O
= 1.8 A  
I
O
= 1.8 A  
50  
40  
50  
40  
T
J
= 125°C  
V = 3.3 V  
I
V = 4 V  
I
V = 5.5 V  
I
T
J
= 25°C  
T
J
= –40°C  
30  
20  
30  
20  
3
3.5  
4
4.5  
5
5.5  
6
–50 –25  
0
25  
50  
75 100 125 150  
V – Input Voltage – V  
I
T
J
– Junction Temperature – °C  
Figure 35  
Figure 36  
UNDERVOLTAGE LOCKOUT  
2.5  
2.4  
2.3  
Start Threshold  
Stop Threshold  
2.2  
2.1  
2
–50  
0
50  
100  
150  
T
J
– Temperature – °C  
Figure 37  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
APPLICATION INFORMATION  
TPS2024  
2,3  
0.1 µF  
Power Supply  
2.7 V to 5.5 V  
IN  
6,7,8  
Load  
OUT  
10 kΩ  
0.1 µF  
22 µF  
5
4
OC  
EN  
GND  
1
Figure 38. Typical Application  
power-supply considerations  
A 0.01-µF to 0.1-µF ceramic bypass capacitor between IN and GND, close to the device, is recommended.  
Placing a high-value electrolytic capacitor on the output and input pins is recommended when the output load  
is heavy. This precaution reduces power supply transients that may cause ringing on the input. Additionally,  
bypassing the output with a 0.01-µF to 0.1-µF ceramic capacitor improves the immunity of the device to  
short-circuit transients.  
overcurrent  
A sense FET checks for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the  
series resistance of the current path. When an overcurrent condition is detected, the device maintains a  
constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault  
is present long enough to activate thermal limiting.  
Three possible overload conditions can occur. In the first condition, the output has been shorted before the  
device is enabled or before V  
immediately switches into a constant-current output.  
has been applied (see Figure 6). The TPS202x senses the short and  
I(IN)  
In the second condition, the excessive load occurs while the device is enabled. At the instant the excessive load  
occurs, very high currents may flow for a short time before the current-limit circuit can react (see Figures 13–22).  
After the current-limit circuit has tripped (reached the overcurrent trip threshhold) the device switches into  
constant-current mode.  
In the third condition, the load has been gradually increased beyond the recommended operating current. The  
current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is  
exceeded (see Figures 7–11). The TPS202x is capable of delivering current up to the current-limit threshold  
without damaging the device. Once the threshold has been reached, the device switches into its  
constant-current mode.  
OC response  
The OC open-drain output is asserted (active low) when an overcurrent or overtemperature condition is  
encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.  
Connectingaheavycapacitiveloadtoanenableddevicecancausemomentaryfalseovercurrentreportingfrom  
theinrushcurrentflowingthroughthedevice, chargingthedownstreamcapacitor. AnRCfiltercanbeconnected  
to the OC pin to reduce false overcurrent reporting. Using low-ESR electrolytic capacitors on the output lowers  
the inrush current flow through the device during hot-plug events by providing a low impedance energy source,  
thereby reducing erroneous overcurrent reporting.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
APPLICATION INFORMATION  
TPS202x  
GND  
TPS202x  
GND  
V+  
V+  
OUT  
OUT  
OUT  
OC  
OUT  
OUT  
OUT  
OC  
R
pullup  
IN  
IN  
R
pullup  
IN  
IN  
R
filter  
EN  
EN  
C
filter  
Figure 39. Typical Circuit for OC Pin and RC Filter for Damping Inrush OC Responses  
power dissipation and junction temperature  
The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass  
large currents. The thermal resistances of these packages are high compared to those of power packages; it  
is good design practice to check power dissipation and junction temperature. The first step is to find r  
the input voltage and operating temperature. As an initial estimate, use the highest operating ambient  
at  
DS(on)  
temperature of interest and read r  
from Figures 33–36. Next, calculate the power dissipation using:  
DS(on)  
2
P
r
I
D
DS(on)  
Finally, calculate the junction temperature:  
T
P
R
T
J
D
JA  
A
Where:  
T = Ambient Temperature °C  
A
θJA  
R
= Thermal resistance SOIC = 172°C/W, PDIP = 106°C/W  
Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees,  
repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally  
sufficient to get an acceptable answer.  
thermal protection  
Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for  
extended periods of time. The faults force the TPS202x into constant current mode, which causes the voltage  
across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal  
to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The  
protectioncircuitsensesthejunctiontemperatureoftheswitchandshutsitoff. Hysteresisisbuiltintothethermal  
sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch  
continues to cycle in this manner until the load fault or input power is removed.  
undervoltage lockout (UVLO)  
An undervoltage lockout ensures that the power switch is in the off state at powerup. Whenever the input voltage  
falls below approximately 2 V, the power switch will be quickly turned off. This facilitates the design of  
hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The  
UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V, even if  
the switch is enabled. Upon reinsertion, the power switch will be turned on, with a controlled rise time to reduce  
EMI and voltage overshoots.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
APPLICATION INFORMATION  
generic hot-plug applications (see Figure 40)  
In many applications it may be necessary to remove modules or pc boards while the main unit is still operating.  
These are considered hot-plug applications. Such implementations require the control of current surges seen  
by the main power supply and the card being inserted. The most effective way to control these surges is to limit  
and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply  
normally turns on. Because of the controlled rise times and fall times of the TPS202x series, these devices can  
be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature  
of the TPS202x also ensures the switch will be off after the card has been removed, and the switch will be off  
during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion  
of the card or module.  
PC Board  
TPS2024  
Power  
Supply  
Block of  
Circuitry  
GND  
OUT  
OUT  
OUT  
OC  
IN  
2.7 V to 5.5 V  
0.1 µF  
1000 µF  
Optimum  
IN  
EN  
Overcurrent Response  
Figure 40. Typical Hot-Plug Implementation  
By placing the TPS202x between the V input and the rest of the circuitry, the input power will reach this device  
CC  
first after insertion. The typical rise time of the switch is approximately 9 ms, providing a slow voltage ramp at  
the output of the device. This implementation controls system surge currents and provides a hot-plugging  
mechanism for any device.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
A
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2020, TPS2021, TPS2022, TPS2023, TPS2024  
POWER-DISTRIBUTION SWITCHES  
SLVS175A – DECEMBER 1998 – REVISED NOVEMBER 1999  
MECHANICAL DATA  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE PACKAGE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.310 (7,87)  
0.290 (7,37)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
4040082/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TPS2021-Q1

POWER-DISTRIBUTION SWITCHES
TI

TPS2021D

POWER-DISTRIBUTION SWITCHES
TI

TPS2021DG4

POWER-DISTRIBUTION SWITCHES
TI

TPS2021DR

POWER-DISTRIBUTION SWITCHES
TI

TPS2021DRG4

POWER-DISTRIBUTION SWITCHES
TI

TPS2021IDRQ1

低电平有效的汽车类 0.6A 负载、2.7-5.5V、33mΩ USB 电源开关 | D | 8 | -40 to 125
TI

TPS2021P

POWER-DISTRIBUTION SWITCHES
TI

TPS2021PE4

POWER-DISTRIBUTION SWITCHES
TI

TPS2022

POWER-DISTRIBUTION SWITCHES
TI

TPS2022-Q1

POWER-DISTRIBUTION SWITCHES
TI

TPS2022D

POWER-DISTRIBUTION SWITCHES
TI

TPS2022DG4

POWER-DISTRIBUTION SWITCHES
TI