TPS2045 [TI]

CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES; 电流限制的配电开关
TPS2045
型号: TPS2045
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
电流限制的配电开关

开关
文件: 总23页 (文件大小:407K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
features  
typical applications  
135-m-Maximum (5-V Input) High-Side  
MOSFET Switch  
Notebook, Desktop and Palmtop PCs  
Monitors, Keyboards, Scanners, and  
Printers  
250 mA Continuous Current  
Short-Circuit and Thermal Protection With  
Overcurrent Logic Output  
Digital Cameras, Phones, and PBXs  
Hot-Insertion Applications  
Operating Range . . . 2.7-V to 5.5-V  
Logic-Level Enable Input  
TPS2045  
D OR P PACKAGE  
(TOP VIEW)  
TPS2055  
D OR P PACKAGE  
(TOP VIEW)  
2.5-ms Typical Rise Time  
Undervoltage Lockout  
GND  
IN  
OUT  
OUT  
OUT  
OC  
GND  
IN  
OUT  
OUT  
OUT  
OC  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
10 µA Maximum Standby Supply Current  
Bidirectional Switch  
IN  
IN  
Available in 8-pin SOIC and PDIP Packages  
Ambient Temperature Range, –40°C to 85°C  
EN  
EN  
2-kV Human-Body-Model, 200-V  
Machine-Model ESD Protection  
description  
The TPS2045 and TPS2055 power-distribution switches are intended for applications where heavy capacitive  
loads and short circuits are likely. Each of these 135-mN-channel MOSFET high-side power switches is  
controlledbyalogicenablecompatiblewith5-Vand3-Vlogic. Gatedriveisprovidedbyaninternalchargepump  
that controls the power-switch rise times and fall times to minimize current surges during switching. The charge  
pump requires no external components and allows operation from supplies as low as 2.7 V.  
When the output load exceeds the current-limit threshold or a short is present, the TPS2045 and TPS2055 limit  
the output current to a safe level by switching into a constant-current mode, pulling the overcurrent (OC) logic  
output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch,  
causingthejunctiontemperaturetorise, athermalprotectioncircuitshutsofftheswitchinovercurrenttoprevent  
damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal  
circuitry ensures the switch remains off until valid input voltage is present.  
The TPS2045 and TPS2055 are designed to limit at 0.44-A load. These power-distribution switches, available  
in 8-pin small-outline integrated circuit (SOIC) and 8-pin plastic dual-in-line packages (PDIP), operate over an  
ambient temperature range of –40°C to 85°C.  
AVAILABLE OPTIONS  
RECOMMENDED  
MAXIMUM CONTINUOUS  
LOAD CURRENT  
(A)  
PACKAGED DEVICES  
TYPICAL SHORT-CIRCUIT  
CURRENT LIMIT AT 25°C  
(A)  
T
A
ENABLE  
SOIC  
PDIP  
(P)  
(D)  
–40°C to 85°C Active low  
–40°C to 85°C Active high  
0.25  
0.25  
0.44  
0.44  
TPS2045D TPS2045P  
TPS2055D TPS2055P  
The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2045DR)  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1999, Texas Instruments Incorporated  
This document contains information on products in more than one phase  
of development. The status of each device is indicated on the page(s)  
specifying its electrical characteristics.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
TPS2045 functional block diagram  
Power Switch  
CS  
IN  
OUT  
Charge  
Pump  
Current  
Limit  
EN  
Driver  
OC  
UVLO  
Thermal  
Sense  
GND  
Current Sense  
Terminal Functions  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
D OR P  
TPS2045  
TPS2055  
EN  
4
4
I
I
Enable input. Logic low turns on power switch.  
Enable input. Logic high turns on power switch.  
Ground  
EN  
GND  
IN  
1
1
I
2, 3  
5
2, 3  
5
I
Input voltage  
OC  
OUT  
O
O
Over current. Logic output active low  
Power-switch output  
6, 7, 8  
6, 7, 8  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
detailed description  
power switch  
The power switch is an N-channel MOSFET with a maximum on-state resistance of 135 m(V  
= 5 V).  
I(IN)  
Configured as a high-side switch, the power switch prevents current flow from OUT to IN and IN to OUT when  
disabled. The power switch can supply a minimum of 250 mA per switch.  
charge pump  
An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate  
of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires  
very little supply current.  
driver  
The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated  
electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and  
fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range.  
enable (EN or EN)  
Thelogicenabledisablesthepowerswitchandthebiasforthechargepump, driver, andothercircuitrytoreduce  
the supply current to less than 10 µA when a logic high is present on EN (TPS2045) or a logic low is present  
on EN (TPS2055). A logic zero input on EN or a logic high on EN restores bias to the drive and control circuits  
and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.  
overcurrent (OC)  
The OC open-drain output is asserted (active low) when an overcurrent or overtemperature condition is  
encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.  
current sense  
A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than  
conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry  
sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into  
its saturation region, which switches the output into a constant current mode and holds the current constant  
while varying the voltage on the load.  
thermal sense  
An internal thermal-sense circuit shuts off the power switch when the junction temperature rises to  
approximately 140°C. Hysteresis is built into the thermal sense circuit. After the device has cooled  
approximately 20°C, the switch turns back on. The switch continues to cycle off and on until the fault is removed.  
undervoltage lockout  
A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V, a control  
signal turns off the power switch.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Input voltage range, V  
Output voltage range, V  
Input voltage range, V  
Continuous output current, I  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 6 V  
I(IN)  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to V  
+ 0.3 V  
O(OUT)  
I(EN)  
I(IN)  
or V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 6 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . internally limited  
I(EN)  
O(OUT)  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 125°C  
J
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
stg  
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Electrostatic discharge (ESD) protection: Human body model MIL-STD-883C . . . . . . . . . . . . . . . . . . . . . 2 kV  
Machine model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.2 kV  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltages are with respect to GND.  
DISSIPATION RATING TABLE  
DERATING FACTOR  
T
25°C  
T
A
= 70°C  
T = 85°C  
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
D
P
725 mW  
5.8 mW/°C  
9.4 mW/°C  
464 mW  
752 mW  
377 mW  
611 mW  
1175 mW  
recommended operating conditions  
TPS2045  
TPS2055  
UNIT  
MIN  
2.7  
0
MAX  
5.5  
MIN  
2.7  
0
MAX  
Input voltage, V  
Input voltage, V  
5.5  
5.5  
V
V
I(IN)  
or V  
5.5  
I(EN)  
I(EN)  
Continuous output current, I  
O(OUT)  
0
250  
125  
0
250  
125  
mA  
°C  
Operating virtual junction temperature, T  
–40  
–40  
J
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
electrical characteristics over recommended operating junction temperature range, V  
= 5.5 V,  
I(IN)  
I = rated current, V  
= 0 V, V  
= Hi (unless otherwise noted)  
O
I(EN)  
I(EN)  
power switch  
TPS2045  
TPS2055  
TYP  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
V
= 5 V,  
T = 25°C,  
J
I(IN)  
= 0.25 A  
80  
95  
80  
90  
95  
I
O
Static drain-source on-state  
resistance, 5-V operation  
V
= 5 V,  
T = 85°C,  
J
I(IN)  
= 0.25 A  
90  
100  
85  
120  
135  
105  
135  
150  
120  
135  
105  
135  
150  
I
O
V
= 5 V,  
T = 125°C,  
J
I(IN)  
= 0.25 A  
100  
85  
mΩ  
I
O
r
DS(on)  
V
= 3.3 V, T = 25°C,  
J
= 0.25 A  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I
O
Static drain-source on-state  
resistance, 3.3-V operation  
V
= 3.3 V, T = 85°C,  
J
= 0.25 A  
100  
115  
2.5  
3
100  
115  
2.5  
3
I
O
V
= 3.3 V, T = 125°C,  
J
= 0.25 A  
I
O
V
C
= 5.5 V, T = 25°C,  
J
= 1 µF,  
R = 20 Ω  
L
L
t
t
Rise time, output  
Fall time, output  
ms  
ms  
r
V
C
= 2.7 V, T = 25°C,  
J
= 1 µF,  
I(IN)  
R = 20 Ω  
L
L
V
C
= 5.5 V, T = 25°C,  
J
I(IN)  
L
4.4  
2.5  
4.4  
2.5  
= 1 µF,  
R = 20 Ω  
L
f
V
C
= 2.7 V, T = 25°C,  
J
I(IN)  
= 1 µF,  
R = 20 Ω  
L
L
Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.  
enable input EN or EN  
TPS2045  
MIN TYP  
TPS2055  
MIN TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MAX  
MAX  
V
V
High-level input voltage  
Low-level input voltage  
2.7 V V  
4.5 V V  
2.7 V V  
5.5 V  
5.5 V  
4.5 V  
2
2
V
V
IH  
I(IN)  
I(IN)  
I(IN)  
0.8  
0.4  
0.5  
0.8  
0.4  
IL  
TPS2045  
TPS2055  
V
V
= 0 V or V  
= V  
–0.5  
I(EN)  
I(EN)  
or V  
I(IN)  
= 0 V  
I
I
Input current  
µA  
= V  
–0.5  
0.5  
20  
40  
I(EN)  
I(IN)  
I(EN)  
t
t
Turnon time  
Turnoff time  
C
C
= 100 µF,  
= 100 µF,  
R
R
= 20 Ω  
= 20 Ω  
20  
40  
ms  
on  
L
L
L
L
off  
current limit  
TPS2045  
MIN TYP  
TPS2055  
MIN TYP  
PARAMETER  
UNIT  
TEST CONDITIONS  
MAX  
MAX  
V
= 5 V, OUT connected to GND,  
I(IN)  
Device enabled into short circuit  
I
Short-circuit output current  
0.345  
0.44 0.525 0.345  
0.44 0.525  
A
OS  
Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
electrical characteristics over recommended operating junction temperature range, V  
= 5.5 V,  
I(IN)  
I = rated current, V  
= 0 V, V  
= Hi (unless otherwise noted) (continued)  
O
I(EN)  
I(EN)  
supply current  
TPS2045  
TPS2055  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
T = 25°C  
UNIT  
MIN  
TYP MAX  
0.015  
1
J
Supply  
TPS2045  
TPS2055  
TPS2045  
TPS2055  
V
V
= V  
I(EN)  
I(IN)  
–40°C T 125°C  
10  
No Load  
on OUT  
J
current,  
low-level  
output  
µA  
µA  
T = 25°C  
0.015  
1
J
= 0 V  
= 0 V  
I(EN)  
–40°C T 125°C  
10  
J
T = 25°C  
J
80  
100  
Supply  
V
V
I(EN)  
–40°C T 125°C  
100  
No Load  
on OUT  
J
current,  
high-level  
output  
T = 25°C  
80  
100  
J
= V  
= V  
I(EN)  
I(IN)  
I(IN)  
–40°C T 125°C  
100  
J
OUT  
connected  
to ground  
V
I(EN)  
V
I(EN)  
V
I(EN)  
V
I(EN)  
–40°C T 125°C TPS2045  
100  
0.3  
J
Leakage  
current  
µA  
µA  
= 0 V  
= 0 V  
= Hi  
–40°C T 125°C TPS2055  
100  
0.3  
J
Reverse  
leakage  
current  
TPS2045  
IN = high  
impedance  
T = 25°C  
J
TPS2055  
undervoltage lockout  
TPS2045  
TYP  
TPS2055  
TYP MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
Low-level input voltage  
2
2.5  
2
2.5  
V
Hysteresis  
T = 25°C  
J
100  
100  
mV  
overcurrent OC  
TPS2045  
TYP  
TPS2055  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
10  
MIN  
MAX  
10  
Sink current  
V
= 5 V  
mA  
V
O
Output low voltage  
I
= 5 V,  
V
0.5  
1
0.5  
1
O
OL(OC)  
= 3.3 V  
Off-state current  
V
= 5 V,  
V
µA  
O
O
Specified by design, not production tested.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
PARAMETER MEASUREMENT INFORMATION  
OUT  
t
t
f
r
RL  
CL  
V
90%  
10%  
O(OUT)  
90%  
10%  
TEST CIRCUIT  
50%  
90%  
50%  
50%  
50%  
V
V
I(EN)  
I(EN)  
t
t
off  
t
t
on  
off  
on  
90%  
V
V
O(OUT)  
O(OUT)  
10%  
10%  
VOLTAGE WAVEFORMS  
Figure 1. Test Circuit and Voltage Waveforms  
V
I(EN)  
(5 V/div)  
V
I(EN)  
(5 V/div)  
V
T
C
= 5 V  
= 25°C  
= 0.1 µF  
V
T
C
= 5 V  
= 25°C  
= 0.1 µF  
I(IN)  
A
L
I(IN)  
A
L
V
O(OUT)  
(2 V/div)  
V
O(OUT)  
(2 V/div)  
0
1000  
2000  
3000  
4000  
5000  
0
1
2
3
4
5
6
7
8
9
10  
t – Time – ms  
t – Time – ms  
Figure 2. Turnon Delay and Rise Time  
Figure 3. Turnoff Delay and Fall Time  
with 0.1-µF Load  
with 0.1-µF Load  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
PARAMETER MEASUREMENT INFORMATION  
V
V
I(EN)  
(5 V/div)  
I(EN)  
(5 V/div)  
V
= 5 V  
I(IN)  
= 25°C  
V
= 5 V  
I(IN)  
= 25°C  
T
A
T
A
V
O(OUT)  
(2 V/div)  
V
C
R
= 1 µF  
= 20 Ω  
O(OUT)  
(2 V/div)  
L
L
C
R
= 1 µF  
= 20 Ω  
L
L
0
1
2
3
4
5
6
7
8
9
10  
0
2
4
6
8
10 12 14 16 18 20  
t – Time – ms  
t – Time – ms  
Figure 4. Turnon Delay and Rise Time  
Figure 5. Turnoff Delay and Fall Time  
with 1-µF Load  
with 1-µF Load  
V
T
A
= 5 V  
I(IN)  
= 25°C  
V
T
A
= 5 V  
I(IN)  
= 25°C  
V
I(EN)  
(5 V/div)  
V
O(OUT)  
(2 V/div)  
I
I
O(OUT)  
O(OUT)  
(0.2 A/div)  
(0.5 A/div)  
0
1
2
3
4
5
6
7
8
9
10  
0
10 20 30 40 50 60 70 80 90 100  
t – Time – ms  
t – Time – ms  
Figure 6. TPS2045, Short-Circuit Current,  
Device Enabled into Short  
Figure 7. TPS2045, Threshold Trip Current  
with Ramped Load on Enabled Device  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
PARAMETER MEASUREMENT INFORMATION  
V
= 5 V  
I(IN)  
= 25°C  
T
A
R
= 20 Ω  
L
V
V
O(OC)  
(5 V/div)  
I(EN)  
(5 V/div)  
220 µF  
47 µF  
100 µF  
I
O(OUT)  
(0.5 A/div)  
I
V
T
= 5 V  
O(OUT)  
I(IN)  
= 25°C  
(0.2 A/div)  
A
0
2
4
6
8
10 12 14 16 18 20  
0
20 40 60 80 100 120 140 160 180 200  
t – Time – ms  
t – Time – ms  
Figure 8. Inrush Current with 220-µF, 100-µF  
and 47-µF Load Capacitance  
Figure 9. Ramped Load on Enabled Device  
V
T
A
= 5 V  
V
= 5 V  
I(IN)  
= 25°C  
I(IN)  
T = 25°C  
A
V
V
O(OC)  
O(OC)  
(5 V/div)  
(5 V/div)  
I
I
O(OUT)  
O(OUT)  
(0.5 A/div)  
(0.5 A/div)  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
t – Time – µs  
t – Time – µs  
Figure 10. 4-Load Connected  
Figure 11. 1-Load Connected  
to Enabled Device  
to Enabled Device  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
TYPICAL CHARACTERISTICS  
TURNON DELAY  
vs  
INPUT VOLTAGE  
TURNOFF DELAY  
vs  
INPUT VOLTAGE  
6
5.5  
5
15  
13  
11  
C
R
T
= 1 µF  
= 20 Ω  
= 25°C  
C
R
T
= 1 µF  
= 20 Ω  
= 25°C  
L
L
A
L
L
A
4.5  
4
9
7
3.5  
3
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V – Input Voltage – V  
I
V – Input Voltage – V  
I
Figure 12  
Figure 13  
RISE TIME  
vs  
FALL TIME  
vs  
LOAD CURRENT  
LOAD CURRENT  
2.7  
2.6  
2.5  
2.85  
2.8  
V
T
= 5 V  
= 25°C  
V
T
= 5 V  
I (IN)  
A
I (IN)  
= 25°C  
A
2.75  
2.4  
2.3  
2.7  
2.65  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4  
– Load Current – A  
I
L
– Load Current – A  
I
L
Figure 14  
Figure 15  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT, OUTPUT ENABLED  
SUPPLY CURRENT, OUTPUT DISABLED  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
200  
180  
160  
2000  
1800  
V
= 5.5 V  
I(IN)  
V
= 5.5 V  
= 5 V  
1600  
1400  
I(IN)  
V
I(IN)  
= 5 V  
V
I(IN)  
V
= 4 V  
I(IN)  
1200  
1000  
800  
V
I(IN)  
= 4 V  
V
I(IN)  
= 2.7 V  
V
= 2.7 V  
I(IN)  
140  
120  
100  
600  
V
= 3.3 V  
I(IN)  
400  
200  
0
–200  
–50 –25  
0
25  
50  
75 100 125 150  
–50 –25  
0
25  
50  
75  
100 125 150  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 16  
Figure 17  
SUPPLY CURRENT, OUTPUT ENABLED  
SUPPLY CURRENT, OUTPUT DISABLED  
vs  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
200  
180  
160  
2000  
1600  
T
J
= 125°C  
T
J
= 125°C  
T
J
= 85°C  
1200  
800  
T
J
= 25°C  
140  
T
J
= 0°C  
400  
0
T
J
= 25°C  
T
4
= 85°C  
J
T
J
= –40°C  
120  
100  
T
J
= –40°C  
T
J
= 0°C  
–400  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2.5  
3
3.5  
4.5  
5
5.5  
6
V – Input Voltage – V  
I
V – Input Voltage – V  
I
Figure 18  
Figure 19  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
TYPICAL CHARACTERISTICS  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE  
vs  
vs  
JUNCTION TEMPERATURE  
INPUT VOLTAGE  
175  
150  
125  
175  
150  
125  
I
O
= 0.25 A  
I
O
= 0.25 A  
V
= 2.7 V  
I(IN)  
V
I(IN)  
= 3.3 V  
T
J
= 125°C  
T
J
= 85°C  
100  
75  
100  
75  
V
I(IN)  
= 4.5 V  
T
J
= 25°C  
T
J
= 0°C  
V
I(IN)  
= 5 V  
T
J
= –40°C  
50  
–50 –25  
50  
2.5  
0
25  
50  
75  
100 125 150  
3
3.5  
4
4.5  
5
5.5  
6
T
J
– Junction Temperature – °C  
V – Input Voltage – V  
I
Figure 20  
Figure 21  
INPUT-TO-OUTPUT VOLTAGE  
SHORT-CURCUIT OUTPUT CURRENT  
vs  
vs  
LOAD CURRENT  
INPUT VOLTAGE  
45  
490  
T
A
= 25°C  
40  
35  
30  
25  
20  
15  
10  
470  
450  
V
= 2.7 V  
I(IN)  
T
= –40°C  
J
V
= 3.3 V  
I(IN)  
T
J
= 25°C  
430  
410  
390  
370  
350  
T
J
= 125°C  
V
= 4.5 V  
I(IN)  
V
I(IN)  
= 5 V  
5
0
0.1  
0.14  
0.18  
0.22  
0.26  
0.3  
2.5  
3
3.5  
4
4.5  
5
5.5  
I
L
– Load Current – A  
V – Input Voltage – V  
I
Figure 22  
Figure 23  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
TYPICAL CHARACTERISTICS  
THRESHOLD TRIP CURRENT  
SHORTCIRCUIT OUTPUT CURRENT  
vs  
vs  
INPUT VOLTAGE  
JUNCTION TEMPERATURE  
0.73  
0.71  
450  
T
= 25°C  
A
V
= 5 V  
Load Ramp = 1 A/10 ms  
I(IN)  
445  
440  
435  
430  
425  
420  
415  
V
I(IN)  
= 4 V  
V
= 2.7 V  
I(IN)  
0.69  
0.67  
0.65  
410  
405  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
–50 –25  
0
25  
50  
75  
100  
125  
V – Input Voltage – V  
I
T
J
– Junction Temperature – °C  
Figure 24  
Figure 25  
UNDERVOLTAGE LOCKOUT  
vs  
CURRENT-LIMIT RESPONSE  
vs  
JUNCTION TEMPERATURE  
PEAK CURRENT  
2.5  
2.4  
500  
350  
250  
100  
0
V
T
A
= 5 V  
I(IN)  
= 25°C  
Start Threshold  
Stop Threshold  
2.3  
2.2  
2.1  
2
–50 –25  
0
25  
50  
75  
100 125 150  
0
2
4
6
8
10  
T
J
– Junction Temperature – °C  
Peak Current – A  
Figure 26  
Figure 27  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
TYPICAL CHARACTERISTICS  
OVERCURRENT (OC) RESPONSE TIME  
vs  
PEAK CURRENT  
10  
V
T
A
= 5 V  
I(IN)  
= 25°C  
8.5  
7
5.5  
4
0
2
4
6
8
10  
Peak Current – A  
Figure 28  
APPLICATION INFORMATION  
TPS2045  
2,3  
Power Supply  
2.7 V to 5.5 V  
IN  
6,7,8  
Load  
OUT  
0.1 µF  
0.1 µF  
22 µF  
5
4
OC  
EN  
GND  
1
Figure 29. Typical Application  
power-supply considerations  
A 0.01-µF to 0.1-µF ceramic bypass capacitor between IN and GND, close to the device, is recommended.  
Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy.  
This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing  
the output with a 0.01-µF to 0.1-µF ceramic capacitor improves the immunity of the device to short-circuit  
transients.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
APPLICATION INFORMATION  
overcurrent  
A sense FET is employed to check for overcurrent conditions. Unlike current-sense resistors, sense FETs do  
not increase the series resistance of the current path. When an overcurrent condition is detected, the device  
maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs  
only if the fault is present long enough to activate thermal limiting.  
Three possible overload conditions can occur. In the first condition, the output has been shorted before the  
device is enabled or before V  
and immediately switch into a constant-current output.  
has been applied (see Figure 6). The TPS2045 and TPS2055 sense the short  
I(IN)  
In the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high  
currents may flow for a short time before the current-limit circuit can react. After the current-limit circuit has  
tripped (reached the overcurrent trip threshhold) the device switches into constant-current mode.  
In the third condition, the load has been gradually increased beyond the recommended operating current. The  
current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is  
exceeded (see Figure 7). The TPS2045 and TPS2055 are capable of delivering current up to the current-limit  
threshold without damaging the device. Once the threshold has been reached, the device switches into its  
constant-current mode.  
OC response  
The OC open-drain output is asserted (active low) when an overcurrent or overtemperature condition is  
encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.  
Connectingaheavycapacitiveloadtoanenableddevicecancausemomentaryfalseovercurrentreportingfrom  
the inrush current flowing through the device, charging the downstream capacitor. An RC filter of 500 µs (see  
Figure 30) can be connected to the OC pin to reduce false overcurrent reporting caused by hot-plug switching  
events or extremely high capacitive loads. Using low-ESR electrolytic capacitors on the output lowers the inrush  
current flow through the device during hot-plug events by providing a low impedance energy source, thereby  
reducing erroneous overcurrent reporting.  
TPS2045  
TPS2045  
GND  
V+  
V+  
GND  
OUT  
OUT  
OUT  
OC  
OUT  
OUT  
OUT  
OC  
R
pullup  
IN  
IN  
R
pullup  
IN  
IN  
R
filter  
To USB  
EN  
EN  
Controller  
C
filter  
Figure 30. Typical Circuit for OC Pin and RC Filter for Damping Inrush OC Responses  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
APPLICATION INFORMATION  
power dissipation and junction temperature  
The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass  
large currents. The thermal resistances of these packages are high compared to those of power packages; it  
is good design practice to check power dissipation and junction temperature. The first step is to find r  
the input voltage and operating temperature. As an initial estimate, use the highest operating ambient  
at  
DS(on)  
temperature of interest and read r  
from Figure 21. Next, calculate the power dissipation using:  
DS(on)  
2
P
r
I
D
DS(on)  
Finally, calculate the junction temperature:  
T
P
R
T
J
D
JA  
A
Where:  
T = Ambient Temperature °C  
A
θJA  
R
= Thermal resistance SOIC = 172°C/W, PDIP = 106°C/W  
Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees,  
repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally  
sufficient to get a reasonable answer.  
thermal protection  
Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for  
extendedperiodsoftime. ThefaultsforcetheTPS2045andTPS2055intoconstantcurrentmode, whichcauses  
the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch  
is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels.  
The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the  
thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The  
switch continues to cycle in this manner until the load fault or input power is removed.  
undervoltage lockout (UVLO)  
Anundervoltagelockoutensuresthatthepowerswitchisintheoffstateatpowerup. Whenevertheinputvoltage  
falls below approximately 2 V, the power switch will be quickly turned off. This facilitates the design of  
hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The  
UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V, even if  
the switch is enabled. Upon reinsertion, the power switch will be turned on, with a controlled rise time to reduce  
EMI and voltage overshoots.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
APPLICATION INFORMATION  
Universal Serial Bus (USB) applications  
The Universal Serial Bus (USB) interface is a 12-Mb/s, or 1.5-Mb/s, multiplexed serial bus designed for  
low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB  
interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for  
differential data, and two lines are provided for 5-V power distribution.  
USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power  
is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V  
from the 5-V input or its own internal power supply.  
The USB specification defines the following five classes of devices, each differentiated by power-consumption  
requirements:  
Hosts/self-powered hubs (SPH)  
Bus-powered hubs (BPH)  
Low-power, bus-powered functions  
High-power, bus-powered functions  
Self-powered functions  
Self-powered and bus-powered hubs distribute data and power to downstream functions. The TPS2045 and  
TPS2055 can provide power-distribution solutions for many of these classes of devices.  
Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs  
are required to power up with less than one unit load. The BPH usually has one embedded function, and power  
is always available to the controller of the hub. If the embedded function and hub require more than 100 mA  
on power up, the power to the embedded function may need to be kept off until enumeration is completed. This  
can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching  
the embedded function is not necessary if the aggregate power draw for the function and controller is less than  
one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the  
embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.  
low-power bus-powered functions and high-power bus-powered functions  
Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power  
functions always draw less than 100 mA; high-power functions must draw less than 100 mA at power up and  
can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of  
44 and 10 µF at power up, the device must implement inrush current limiting (see Figure 31).  
Power Supply  
D+  
3.3 V  
TPS2045  
D–  
2,3  
V
IN  
BUS  
GND  
6, 7, 8  
10 µF  
0.1 µF  
Internal  
Function  
OUT  
0.1 µF  
10 µF  
5
4
OC  
EN  
USB  
Control  
GND  
1
Figure 31. High-Power Bus-Powered Function  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
APPLICATION INFORMATION  
USB power-distribution requirements  
USB can be implemented in several ways, and, regardless of the type of USB device being developed, several  
power distribution features must be implemented.  
Bus-Powered Hubs must:  
Enable/disable power to downstream ports  
Power up at <100 mA  
Limit inrush current (<44 and 10 µF)  
Functions must:  
Limit inrush currents  
Power up at <100 mA  
The feature set of the TPS2045 and TPS2055 allows them to meet each of these requirements. The integrated  
current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level enable  
and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as the input  
ports for bus-power functions (see Figure 32).  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
APPLICATION INFORMATION  
TUSB2040  
Hub Controller  
BUSPWR  
SN75240  
Downstream  
Upstream  
Port  
A
B
C
D
Ports  
GANGED  
DP1  
DM1  
D +  
D –  
DP0  
DM0  
D +  
D –  
Ferrite Beads  
A
B
C
D
GND  
5 V  
GND  
SN75240  
DP2  
DM2  
33 µF  
DP3  
DM3  
5 V  
D +  
D –  
A
B
C
D
1 µF  
Ferrite Beads  
TPS76333  
IN  
SN75240  
GND  
DP4  
DM4  
0.1 µF  
4.7 µF  
V
3.3 V  
GND  
5 V  
CC  
4.7 µF  
TPS2045  
PWRON1  
EN  
OC  
IN  
GND  
33 µF  
OVRCUR1  
0.1 µF  
0.1 µF  
0.1 µF  
OUT  
IN  
D +  
D –  
TPS2045  
48-MHz  
Crystal  
PWRON2  
EN  
OC  
XTAL1  
XTAL2  
Ferrite Beads  
OVRCUR2  
GND  
5 V  
OUT  
IN  
Tuning  
Circuit  
TPS2045  
PWRON3  
EN  
OC  
33 µF  
OVRCUR3  
OCSOFF  
GND  
OUT  
IN  
D +  
D –  
TPS2045  
Ferrite Beads  
PWRON4  
EN  
OC  
GND  
5 V  
0.1 µF  
OVRCUR4  
OUT  
33 µF  
USB rev 1.1 requires 120 µF per hub.  
Figure 32. Bus-Powered Hub Implementation  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
APPLICATION INFORMATION  
generic hot-plug applications (see Figure 33)  
In many applications it may be necessary to remove modules or pc boards while the main unit is still operating.  
These are considered hot-plug applications. Such implementations require the control of current surges seen  
by the main power supply and the card being inserted. The most effective way to control these surges is to limit  
and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply  
normally turns on. Due to the controlled rise times and fall times of the TPS2045 and TPS2055, these devices  
can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature  
oftheTPS2045andTPS2055alsoensurestheswitchwillbeoffafterthecardhasbeenremoved, andtheswitch  
will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every  
insertion of the card or module.  
PC Board  
TPS2045  
Power  
Supply  
Block of  
Circuitry  
GND  
OUT  
OUT  
OUT  
OC  
IN  
2.7 V to 5.5 V  
0.1 µF  
1000 µF  
Optimum  
IN  
EN  
Overcurrent Response  
Figure 33. Typical Hot-Plug Implementation  
By placing the TPS2045 and TPS2055 between the V  
input and the rest of the circuitry, the input power will  
CC  
reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms, providng  
aslowvoltagerampattheoutputofthedevice. Thisimplementaioncontrolssystemsurgecurrentsandprovides  
a hot-plugging mechanism for any device.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2045, TPS2055  
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES  
SLVS182 – APRIL 1999  
MECHANICAL DATA  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE PACKAGE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.310 (7,87)  
0.290 (7,37)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
4040082/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TPS2045A

CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI

TPS2045AD

CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI

TPS2045ADR

CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI

TPS2045ADRG4

CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI

TPS2045BD

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, PLASTIC, MS-012AA, SOIC-8
TI

TPS2045BDBV

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO5, SOT-23, 5 PIN
TI

TPS2045BDR

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, PLASTIC, MS-012AA, SOIC-8
TI

TPS2045D

CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI

TPS2045DR

CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI

TPS2045P

CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI

TPS2045PE4

IC 0.44 A BUF OR INV BASED PRPHL DRVR, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8, Peripheral Driver
TI

TPS2046

DUAL CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
TI