TPS2096DR [TI]

QUAD POWER-DISTRIBUTION SWITCHES; QUAD配电开关
TPS2096DR
型号: TPS2096DR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

QUAD POWER-DISTRIBUTION SWITCHES
QUAD配电开关

外围驱动器 驱动程序和接口 开关 接口集成电路 光电二极管
文件: 总19页 (文件大小:313K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS2090, TPS2091, TPS2092 DUAL,  
TPS2095, TPS2096, TPS2097 QUAD  
POWER-DISTRIBUTION SWITCHES  
SLVS245A – SEPTEMBER 2000 – REVISED MARCH 2001  
TPS2090, TPS2091, AND TPS2092  
D PACKAGE  
80-mHigh-Side MOSFET Switch  
250 mA Continuous Current per Channel  
(TOP VIEW)  
Independent Thermal and Short-Circuit  
Protection With Overcurrent Logic Output  
GND  
IN1  
OC  
1
2
3
4
8
7
6
5
OUT1  
OUT2  
Operating Range . . . 2.7-V to 5.5-V  
CMOS- and TTL-Compatible Enable Inputs  
2.5-ms Typical Rise Time  
IN2  
EN1  
EN2  
See Available Options table  
Undervoltage Lockout  
10 µA Maximum Standby Supply Current  
Bidirectional Switch  
TPS2095, TPS2096 AND TPS2097  
D PACKAGE  
(TOP VIEW)  
Available in 8-Pin and 16-Pin SOIC  
Packages  
GNDA  
IN1  
OCA  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
Ambient Temperature Range, 0°C to 85°C  
OUT1  
OUT2  
ESD Protection  
IN2  
EN1  
EN2  
description  
GNDB  
IN3  
OCB  
OUT3  
The TPS2090, TPS2091, and TPS2092 dual and  
the TPS2095, TPS2096 and TPS2097 quad  
power-distribution switches are intended for  
applications where heavy capacitive loads and  
short circuits are likely to be encountered. The  
TPS209x devices incorporate 80-mN-channel  
IN4  
10 OUT4  
EN3  
9
EN4  
See Available Options table  
MOSFET high-side power switches for power-distribution systems that require multiple power switches in a  
single package. Each switch is controlled by an independent logic enable input. Gate drive is provided by an  
internal charge pump designed to control the power-switch rise times and fall times to minimize current surges  
during switching. The charge pump requires no external components and allows operation from supplies as low  
as 2.7 V.  
When the output load exceeds the current-limit threshold or a short is present, the TPS209x limits the output  
current to a safe level by switching into a constant-current mode, pulling the overcurrent (OCx) logic output low.  
When continuous heavy overloads and short circuits increase the power dissipation in the switch causing the  
junction temperature to rise, a thermal protection circuit shuts off the switch to prevent damage. Recovery from  
a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch  
remains off until valid input voltage is present. The TPS209x devices are designed to current limit at 0.5-A load.  
GENERAL SWITCH CATALOG  
80 mW, dual  
80 mW, quad  
33 mW, single  
80 mW, single  
80 mW, dual  
260 mW  
TPS201xA 0.2 A – 2 A  
TPS2042  
TPS2052  
TPS2046  
TPS2056  
500 mA  
500 mA  
250 mA  
250 mA  
80 mW, triple  
80 mW, quad  
TPS202x  
TPS203x  
0.2 A – 2 A  
0.2 A – 2 A  
TPS2080  
500 mA  
500 mA  
500 mA  
250 mA  
250 mA  
250 mA  
TPS2014  
TPS2015  
TPS2041  
TPS2051  
TPS2045  
TPS2055  
600 mA  
1 A  
500 mA  
500 mA  
250 mA  
250 mA  
TPS2100/1  
TPS2081  
TPS2082  
TPS2090  
TPS2091  
TPS2092  
IN1 500 mA  
IN2 10 mA  
TPS2043 500 mA  
TPS2053 500 mA  
TPS2047 250 mA  
TPS2057 250 mA  
IN1  
IN2  
TPS2085  
500 mA  
500 mA  
500 mA  
250 mA  
TPS2044 500 mA  
TPS2054 500 mA  
TPS2048 250 mA  
TPS2058 250 mA  
OUT  
TPS2086  
TPS2087  
TPS2095  
TPS2102/3/4/5  
IN1 500 mA  
IN2 100 mA  
1.3 W  
TPS2096 250 mA  
TPS2097 250 mA  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2001, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2090, TPS2091, TPS2092 DUAL,  
TPS2095, TPS2096, TPS2097 QUAD  
POWER-DISTRIBUTION SWITCHES  
SLVS245A SEPTEMBER 2000 REVISED MARCH 2001  
AVAILABLE OPTIONS  
DUAL POWER DISTRIBUTION SWITCHES  
RECOMMENDED  
MAXIMUM  
CONTINUOUS  
PACKAGED  
DEVICES  
TYPICAL SHORT-  
CIRCUIT CURRENT  
LIMIT AT 25°C  
(A)  
ENABLE  
T
A
SMALL OUTLINE  
LOAD CURRENT  
EN1  
EN2  
(D)  
(A)  
Active high  
Active high  
Active low  
Active high  
TPS2090D  
TPS2091D  
TPS2092D  
0°C to 85°C  
Active low  
Active low  
0.25  
0.5  
QUAD POWER DISTRIBUTION SWITCHES  
RECOMMENDED  
MAXIMUM  
CONTINUOUS  
LOAD CURRENT  
TYPICAL  
SHORT-CIRCUIT  
CURRENT LIMIT  
AT 25°C  
PACKAGED  
DEVICES  
ENABLE  
T
A
SMALL OUTLINE  
EN1  
EN2  
EN3  
EN4  
(D)  
(A)  
(A)  
Active high Active high Active high Active high  
Active high Active low Active high Active low  
TPS2095D  
TPS2096D  
TPS2097D  
0°C to 85°C  
0.25  
0.5  
Active low  
Active low  
Active low  
Active low  
The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2091DR)  
TPS2092 functional block diagram  
OC  
Thermal  
Sense  
GND  
EN1  
Current  
Limit  
Driver  
Charge  
Pump  
CS  
IN1  
IN2  
OUT1  
OUT2  
V
Select  
CC  
Power Switch  
and UVLO  
CS  
Charge  
Pump  
Current  
Limit  
Driver  
§
EN2  
Thermal  
Sense  
§
Current sense  
Active high for TPS2090 and TPS2091  
Active high for TPS2090  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2090, TPS2091, TPS2092 DUAL,  
TPS2095, TPS2096, TPS2097 QUAD  
POWER-DISTRIBUTION SWITCHES  
SLVS245A SEPTEMBER 2000 REVISED MARCH 2001  
TPS2097 functional block diagram  
OCA  
Thermal  
Sense  
GNDA  
EN1  
Current  
Limit  
Driver  
Charge  
Pump  
CS  
IN1  
IN2  
OUT1  
OUT2  
V
CC  
Select  
Power Switch  
CS  
and UVLO  
Charge  
Pump  
Current  
Limit  
Driver  
§
EN2  
Thermal  
Sense  
OCB  
Thermal  
Sense  
GNDB  
EN3  
Current  
Limit  
Driver  
Charge  
Pump  
CS  
IN3  
IN4  
OUT3  
OUT4  
V
Select  
CC  
Power Switch  
and UVLO  
CS  
Charge  
Pump  
Current  
Limit  
Driver  
§
EN4  
Thermal  
Sense  
§
Current sense  
Active high for TPS2095 and TPS2096  
Active high for TPS2095  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2090, TPS2091, TPS2092 DUAL,  
TPS2095, TPS2096, TPS2097 QUAD  
POWER-DISTRIBUTION SWITCHES  
SLVS245A SEPTEMBER 2000 REVISED MARCH 2001  
Terminal Functions  
DUAL POWER-DISTRIBUTION SWITCHES  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
TPS2090  
TPS2091  
TPS2092  
EN1  
EN2  
EN1  
EN2  
GND  
IN1  
4
5
I
I
Enable input. Active low turns on power switch.  
Enable input. Active low turns on power switch.  
Enable input. Active high turns on power switch.  
Enable input. Active high turns on power switch.  
Ground  
5
4
4
5
1
2
3
8
7
6
I
I
1
2
3
8
7
6
1
2
3
8
7
6
I
I
N-Channel MOSFET Drain  
IN2  
I
N-Channel MOSFET Drain  
OC  
O
O
O
Overcurrent. Open drain output active low  
Power-switch output  
OUT1  
OUT2  
Power-switch output  
QUAD POWER-DISTRIBUTION SWITCHES  
I/O  
TERMINAL  
NO.  
DESCRIPTION  
NAME  
TPS2095  
TPS2096  
TPS2097  
EN1  
EN2  
EN3  
EN4  
EN1  
EN2  
EN3  
EN4  
GNDA  
GNDB  
IN1  
4
13  
8
I
I
I
I
I
I
I
I
Enable input. Active low turns on power switch.  
Enable input. Active low turns on power switch.  
Enable input. Active low turns on power switch.  
Enable input. Active low turns on power switch.  
Enable input. Active high turns on power switch.  
Enable input. Active high turns on power switch.  
Enable input. Active high turns on power switch.  
Enable input. Active high turns on power switch.  
Ground for IN1 and IN2 switch and circuitry  
Ground for IN3 and IN4 switch and circuitry  
N-channel MOSFET drain  
13  
9
4
9
4
13  
8
8
9
1
1
5
1
5
5
2
2
2
I
IN2  
3
3
3
I
N-channel MOSFET drain  
IN3  
6
6
6
I
N-channel MOSFET drain  
IN4  
7
7
7
I
N-channel MOSFET drain  
OCA  
OCB  
OUT1  
OUT2  
OUT3  
OUT4  
16  
12  
15  
14  
11  
10  
16  
12  
15  
14  
11  
10  
16  
12  
15  
14  
11  
10  
O
O
O
O
O
O
Overcurrent indicator for switch 1 and switch 2. Active-low open drain output.  
Overcurrent indicator for switch 3 and switch 4. Active low open drain output  
Power-switch output  
Power-switch output  
Power-switch output  
Power-switch output  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2090, TPS2091, TPS2092 DUAL,  
TPS2095, TPS2096, TPS2097 QUAD  
POWER-DISTRIBUTION SWITCHES  
SLVS245A SEPTEMBER 2000 REVISED MARCH 2001  
detailed description  
power switch  
The power switch is an N-channel MOSFET with a maximum on-state resistance of 135 m(V  
= 5 V).  
I(IN)  
Configured as a high-side switch, the power switch prevents current flow from OUTx to IN and IN to OUTx when  
disabled. The power switch supplies a minimum of 250 mA per switch.  
charge pump  
An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate  
of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires  
very little supply current.  
driver  
The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated  
electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and  
fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range.  
enable (ENx or ENx)  
Thelogicenabledisablesthepowerswitchandthebiasforthechargepump, driver, andothercircuitrytoreduce  
the supply current to less than 10 µA when a logic high is present on ENx or a logic low is present on ENx. A  
logic low input on ENx or logic high on ENx restores bias to the drive and control circuits and turns the power  
on. The enable input is compatible with both TTL and CMOS logic levels.  
overcurrent (OCx)  
The OCx open drain output is asserted (active low) when an overcurrent or over temperature condition is  
encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.  
current sense  
A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than  
conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry  
sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into  
its saturation region, which switches the output into a constant current mode and holds the current constant  
while varying the voltage on the load.  
thermal sense  
The TPS209x implements a dual thermal trip to allow fully independent operation of the power distribution  
switches. In an overcurrent or short-circuit condition the junction temperature rises. When the die temperature  
rises to approximately 140°C, the internal thermal sense circuitry checks to determine which power switch is  
in an overcurrent condition and turns off that switch, thus isolating the fault without interrupting operation of the  
adjacent power switch. Hysteresis is built into the thermal sense, and after the device has cooled approximately  
20 degrees, the switch turns back on. The switch continues to cycle off and on until the fault is removed. The  
(OCx) open-drain output is asserted (active low) when overtemperature or overcurrent occurs.  
undervoltage lockout  
A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V, a control  
signal turns off the power switch.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2090, TPS2091, TPS2092 DUAL,  
TPS2095, TPS2096, TPS2097 QUAD  
POWER-DISTRIBUTION SWITCHES  
SLVS245A SEPTEMBER 2000 REVISED MARCH 2001  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Input voltage range, V  
Output voltage range, V  
Input voltage range, V  
Continuous output current, I  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6 V  
I(IN)  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
+ 0.3 V  
O(OUTx)  
I(ENx)  
I(IN)  
or V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 6 V  
I(ENx)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . internally limited  
O(OUTx)  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 125°C  
J
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Electrostatic discharge (ESD) protection: Human body model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 kV  
Machine model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 V  
Charged device model (CDM) . . . . . . . . . . . . . . . . . . . . . . . . . 750 V  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltages are with respect to GND.  
DISSIPATION RATING TABLE  
DERATING FACTOR  
T
25°C  
T
A
= 70°C  
T = 85°C  
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
D-8  
725 mW  
5.8 mW/°C  
9 mW/°C  
464 mW  
719 mW  
377 mW  
584 mW  
D-16  
1123 mW  
recommended operating conditions  
MIN  
2.7  
0
MAX  
5.5  
UNIT  
V
Input voltage, V  
Input voltage, V  
I(IN)  
or V  
5.5  
V
I(ENx)  
I(ENx)  
Continuous output current, I (per switch)  
0
250  
125  
mA  
°C  
O
Operating virtual junction temperature, T  
0
J
electrical characteristics over recommended operating junction temperature range, V  
= 5.5 V,  
I(IN)  
I = rated current, V  
= 0 V, V  
= V  
(unless otherwise noted)  
O
I(ENx)  
I(ENx)  
I(INx)  
supply current  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
T
= 25°C  
0.025  
1
J
Supply current, low-level  
output  
V
V
= V  
= 0 V  
,
I(ENx)  
I(ENx)  
I(IN)  
No Load on OUT  
µA  
40°C T 125°C  
10  
J
T
= 25°C  
85  
110  
Supply current,  
high-level output  
J
V
V
= 0 V,  
= V  
I(ENx)  
I(ENx)  
No Load on OUT  
µA  
40°C T 125°C  
100  
I(IN)  
J
V
V
= V  
I(IN)  
,
I(ENx)  
I(ENx)  
Leakage current  
OUT connected to ground  
40°C T 125°C  
100  
0.3  
µA  
µA  
J
= 0 V  
V
V
= 0 V,  
I(ENx)  
I(ENx)  
Reverse leakage current INx = high impedance  
T = 125°C  
J
= V  
I(IN)  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2090, TPS2091, TPS2092 DUAL,  
TPS2095, TPS2096, TPS2097 QUAD  
POWER-DISTRIBUTION SWITCHES  
SLVS245A SEPTEMBER 2000 REVISED MARCH 2001  
electrical characteristics over recommended operating junction temperature range, V  
= 5.5 V,  
I(IN)  
I = rated current, V  
= 0 V, V  
= V  
(unless otherwise noted) (continued)  
O
I(ENx)  
I(ENx)  
I(INx)  
power switch  
PARAMETER  
MIN  
TYP  
80  
MAX  
100  
120  
135  
125  
145  
165  
UNIT  
TEST CONDITIONS  
V
= 5 V,  
T
J
T
J
T
J
T
J
T
J
T
J
T
J
= 25°C,  
= 85°C,  
= 125°C,  
= 25°C,  
= 85°C,  
= 125°C,  
= 25°C,  
I
O
I
O
I
O
I
O
I
O
I
O
= 0.25 A  
= 0.25 A  
= 0.25 A  
= 0.25 A  
= 0.25 A  
= 0.25 A  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
I(IN)  
V
V
V
V
V
V
= 5 V,  
90  
= 5 V,  
100  
90  
mΩ  
r
Static drain-source on-state resistance  
DS(on)  
= 3.3 V,  
= 3.3 V,  
= 3.3 V,  
= 5.5 V,  
110  
120  
C
= 1 µF,  
= 1 µF,  
= 1 µF,  
= 1 µF,  
L
2.5  
3
R =20 Ω  
L
t
t
Rise time, output  
Fall time, output  
ms  
ms  
r
V
= 2.7 V,  
T
J
T
J
T
J
= 25°C,  
= 25°C,  
= 25°C,  
C
C
C
I(IN)  
R =20 Ω  
L
L
V
= 5.5 V,  
I(IN)  
R =20 Ω  
L
L
4.4  
2.5  
L
f
V
= 2.7 V,  
I(IN)  
R =20 Ω  
L
Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.  
enable input V  
or V  
I(ENx)  
I(ENx)  
PARAMETER  
TEST CONDITIONS  
5.5 V  
MIN TYP  
MAX  
UNIT  
V
V
V
High-level input voltage  
2.7 V V  
4.5 V V  
2
IH  
I(IN)  
I(IN)  
I(IN)  
5.5 V  
0.8  
0.4  
V
Low-level input voltage  
IL  
2.7 VV  
4.5 V  
V
V
= 0 V and V  
I(ENx)  
= V  
, or  
I(IN)  
I(ENx)  
I(ENx)  
I
I
Input current  
0.5  
0.5  
µA  
= V  
and V  
= 0 V  
I(ENx)  
I(IN)  
t
t
Turnon time  
Turnoff time  
C
C
= 100 µF, R =20 Ω  
20  
40  
ms  
on  
L
L
L
= 100 µF, R =20 Ω  
off  
L
current limit  
PARAMETER  
MIN TYP  
0.3 0.5  
MAX  
UNIT  
TEST CONDITIONS  
V
= 5 V, OUT connected to GND,  
I(IN)  
I
Short-circuit output current  
0.7  
A
OS  
Device enabled into short circuit  
Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.  
undervoltage lockout  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
Low-level input voltage  
Hysteresis  
2
2.5  
T
J
= 25°C  
100  
mV  
overcurrent OCx  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
10  
UNIT  
mA  
V
Sink current  
V
= 5 V  
O
Output low voltage  
I
O
= 5 mA,  
V
V
0.5  
1
OL(OCx)  
= 3.3 V  
Off-state current  
V
O
= 5 V,  
µA  
O
Specified by design, not production tested.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2090, TPS2091, TPS2092 DUAL,  
TPS2095, TPS2096, TPS2097 QUAD  
POWER-DISTRIBUTION SWITCHES  
SLVS245A SEPTEMBER 2000 REVISED MARCH 2001  
PARAMETER MEASUREMENT INFORMATION  
OUTx  
t
t
f
r
RL  
CL  
V
90%  
10%  
O(OUTx)  
90%  
10%  
TEST CIRCUIT  
50%  
90%  
50%  
50%  
50%  
V
V
I(ENx)  
I(ENx)  
t
t
off  
t
t
on  
off  
on  
90%  
V
V
O(OUTx)  
O(OUTx)  
10%  
10%  
VOLTAGE WAVEFORMS  
Figure 1. Test Circuit and Voltage Waveforms  
V
I(EN)  
(5 V/div)  
V
I(EN)  
(5 V/div)  
V
T
C
= 5 V  
= 25°C  
= 0.1 µF  
= 20 Ω  
V
T
C
= 5 V  
= 25°C  
= 0.1 µF  
= 20 Ω  
I(IN)  
A
L
L
I(IN)  
A
L
L
V
O(OUT)  
(2 V/div)  
V
O(OUT)  
(2 V/div)  
R
R
0
2
4
6
8
10 12 14 16 18 20  
0
1
2
3
4
5
6
7
8
9
10  
t Time ms  
t Time ms  
Figure 2. Turnon Delay and Rise Time  
Figure 3. Turnoff Delay and Fall Time  
With 0.1-µF Load  
With 0.1-µF Load  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2090, TPS2091, TPS2092 DUAL,  
TPS2095, TPS2096, TPS2097 QUAD  
POWER-DISTRIBUTION SWITCHES  
SLVS245A SEPTEMBER 2000 REVISED MARCH 2001  
PARAMETER MEASUREMENT INFORMATION  
V
I(EN)  
(5 V/div)  
V
I(EN)  
(5 V/div)  
V
= 5 V  
I(IN)  
= 25°C  
V
T
C
= 5 V  
I(IN)  
= 25°C  
T
A
V
A
O(OUT)  
(2 V/div)  
C
R
= 1 µF  
= 20 Ω  
V
L
L
O(OUT)  
(2 V/div)  
= 1 µF  
= 20 Ω  
L
L
R
0
2
4
6
8
10 12 14 16 18 20  
0
1
2
3
4
5
6
7
8
9
10  
t Time ms  
t Time ms  
Figure 4. Turnon Delay and Rise Time  
Figure 5. Turnoff Delay and Fall Time  
With 1-µF Load  
With 1-µF Load  
V
= 5 V  
I(IN)  
= 25°C  
T
A
RAMP: 1A/10ms  
V
I(ENx)  
(5 V/div)  
V
O(OUT)  
(2 V/div)  
V
T
A
= 5 V  
= 25°C  
I(IN)  
I
I
O(OUT)  
O(OUTx)  
(0.2 A/div)  
(0.2 A/div)  
0
10 20 30 40 50 60 70 80 90 100  
0
1
2
3
4
5
6
7
8
9
10  
t Time ms  
t Time ms  
Figure 6. TPS2090, Short-Circuit Current,  
Device Enabled Into Short  
Figure 7. TPS2090, Threshold Trip Current  
With Ramped Load on Enabled Device  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2090, TPS2091, TPS2092 DUAL,  
TPS2095, TPS2096, TPS2097 QUAD  
POWER-DISTRIBUTION SWITCHES  
SLVS245A SEPTEMBER 2000 REVISED MARCH 2001  
PARAMETER MEASUREMENT INFORMATION  
V
= 5 V  
I(IN)  
= 25°C  
T
A
RAMP: 1A/100 ms  
V
V
I(EN)  
(5 V/div)  
O(OC)  
(5 V/div)  
220 µF  
47 µF  
100 µF  
V
T
R
= 5 V  
I(IN)  
= 25°C  
I
I
A
O(OUT)  
O(OUT)  
= 20 Ω  
L
(0.2 A/div)  
(0.2 A/div)  
0
20 40 60 80 100 120 140 160 180 200  
0
2
4
6
8
10 12 14 16 18 20  
t Time ms  
t Time ms  
Figure 9. Inrush Current With 47-µF, 100-µF  
and 220-µF Load Capacitance  
Figure 8. Ramped Load on Enabled Device  
V
T
A
= 5 V  
V
= 5 V  
I(IN)  
= 25°C  
I(IN)  
T = 25°C  
A
V
V
O(OC)  
(5 V/div)  
O(OC)  
(5 V/div)  
I
I
O(OUT)  
(0.5 A/div)  
O(OUT)  
(1 A/div)  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
t Time µs  
t Time µs  
Figure 10. 4-Load Connected to  
Figure 11. 1-Load Connected to  
Enabled Device  
Enabled Device  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2090, TPS2091, TPS2092 DUAL,  
TPS2095, TPS2096, TPS2097 QUAD  
POWER-DISTRIBUTION SWITCHES  
SLVS245A SEPTEMBER 2000 REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
TURNON DELAY TIME  
vs  
TURNOFF DELAY TIME  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
3.9  
3.6  
3.3  
3
10  
8
C
= 1 µF  
= 20 Ω  
= 25°C  
C
R
T
= 1 µF  
= 20 Ω  
= 25°C  
L
L
L
L
A
R
T
A
6
4
2
2.7  
2.4  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V Input Voltage V  
I
V Input Voltage V  
I
Figure 12  
Figure 13  
RISE TIME  
vs  
INPUT VOLTAGE  
FALL TIME  
vs  
INPUT VOLTAGE  
2.7  
1.9  
1.8  
1.7  
1.6  
1.5  
C
R
T
= 1 µF  
= 20 Ω  
= 25°C  
C
R
T
= 1 µF  
= 20 Ω  
= 25°C  
L
L
A
L
L
A
2.6  
2.5  
2.4  
2.3  
2.2  
1.4  
1.3  
2.1  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V Input Voltage V  
I
V Input Voltage V  
I
Figure 14  
Figure 15  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2090, TPS2091, TPS2092 DUAL,  
TPS2095, TPS2096, TPS2097 QUAD  
POWER-DISTRIBUTION SWITCHES  
SLVS245A SEPTEMBER 2000 REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT, OUTPUT ENABLED  
SUPPLY CURRENT, OUTPUT DISABLED  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
160  
140  
110  
100  
90  
V
I(IN)  
= 5.5 V  
V
I(IN)  
= 5.5 V  
120  
100  
80  
V
= 5 V  
I(IN)  
V
I(IN)  
= 5 V  
V
I(IN)  
= 4.5 V  
V
= 4.5 V  
= 3.3 V  
I(IN)  
V
I(IN)  
80  
60  
V
I(IN)  
= 2.7 V  
70  
V
I(IN)  
= 3.3 V  
40  
V
I(IN)  
= 2.7 V  
60  
20  
0
50  
40  
40  
0
25  
85  
125  
0
25  
85  
125  
T
J
Junction Temperature °C  
T
J
Junction Temperature °C  
Figure 16  
Figure 17  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE  
INPUT-TO-OUTPUT VOLTAGE  
vs  
vs  
JUNCTION TEMPERATURE  
LOAD CURRENT  
160  
140  
120  
100  
80  
40  
35  
30  
25  
20  
15  
T
A
= 25°C  
V = 2.7 V  
I(IN)  
V
= 2.7 V  
I(IN)  
V
I(IN)  
= 3.3 V  
V
= 3 V  
I(IN)  
V
I(IN)  
= 3.3 V  
V
I(IN)  
= 5 V  
V
= 4.5 V  
I(IN)  
V
I(IN)  
= 4.5 V  
V
I(IN)  
= 5 V  
60  
10  
5
40  
20  
0
100  
0
25  
85  
125  
150  
200  
250  
T
J
Junction Temperature °C  
I
L
Load Current mA  
Figure 18  
Figure 19  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2090, TPS2091, TPS2092 DUAL,  
TPS2095, TPS2096, TPS2097 QUAD  
POWER-DISTRIBUTION SWITCHES  
SLVS245A SEPTEMBER 2000 REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
SHORT-CIRCUIT OUTPUT CURRENT  
THRESHOLD TRIP CURRENT  
vs  
vs  
JUNCTION TEMPERATURE  
INPUT VOLTAGE  
500  
490  
480  
470  
460  
450  
440  
430  
420  
410  
400  
0.67  
0.65  
0.63  
T
= 25°C  
A
Load Ramp = 1 A/10 ms  
V
= 2.7 V  
I(IN)  
V
= 3.3 V  
I(IN)  
V
I(IN)  
= 4 .5V  
V
I(IN)  
= 5 .5V  
V
= 5V  
I(IN)  
0.61  
0.59  
0.57  
40  
0
25  
85  
125  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
T
J
Junction Temperature °C  
V Input Voltage V  
I
Figure 20  
Figure 21  
UNDERVOLTAGE LOCKOUT  
vs  
JUNCTION TEMPERATURE  
CURRENT LIMIT RESPONSE  
vs  
PEAK CURRENT  
2.36  
2.34  
2.32  
2.3  
300  
250  
Start Threshold  
200  
2.28  
2.26  
2.24  
2.22  
2.2  
150  
100  
50  
Stop Threshold  
2.18  
2.16  
0
40  
0
25  
85  
125  
0
2
4
6
8
10  
T
J
Junction Temperature °C  
Peak Current A  
Figure 22  
Figure 23  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2090, TPS2091, TPS2092 DUAL,  
TPS2095, TPS2096, TPS2097 QUAD  
POWER-DISTRIBUTION SWITCHES  
SLVS245A SEPTEMBER 2000 REVISED MARCH 2001  
APPLICATION INFORMATION  
TPS2092  
2
Power Supply  
2.7 V to 5.5 V  
IN1  
7
6
Load  
Load  
OUT1  
0.1 µF  
0.1 µF  
0.1 µF  
22 µF  
22 µF  
8
OC  
4
5
EN1  
EN2  
IN2  
OUT2  
3
Power Supply  
2.7 V to 5.5 V  
0.1 µF  
GND  
1
Figure 24. Typical Application  
power-supply considerations  
A 0.01-µF to 0.1-µF ceramic bypass capacitor between INx and GND, close to the device, is recommended.  
Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy.  
This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing  
the output with a 0.01-µF to 0.1-µF ceramic capacitor improves the immunity of the device to short-circuit  
transients.  
overcurrent  
A sense FET is employed to check for overcurrent conditions. Unlike current-sense resistors, sense FETs do  
not increase the series resistance of the current path. When an overcurrent condition is detected, the device  
maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs  
only if the fault is present long enough to activate thermal limiting.  
Three possible overload conditions can occur. In the first condition, the output has been shorted before the  
device is enabled or before V  
immediately switches into a constant-current output.  
has been applied (see Figure 6). The TPS209x senses the short and  
I(IN)  
In the second condition, a short or an overload occurs while the device is enabled. At the instant the overload  
occurs, very high currents may flow for a short time before the current-limit circuit can react (see Figure 10 and  
11). After the current-limit circuit has tripped (reached the overcurrent trip threshhold) the device switches into  
constant-current mode.  
In the third condition, the load has been gradually increased beyond the recommended operating current. The  
current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is  
exceeded (see Figure 8). The TPS209x is capable of delivering current up to the current-limit threshold without  
damagingthedevice. Oncethethresholdhasbeenreached, thedeviceswitchesintoitsconstant-currentmode.  
OC response  
The OC open-drain output is asserted (active low) when an overcurrent or overtemperature condition is  
encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.  
Connectingaheavycapacitiveloadtoanenableddevicecancausemomentaryfalseovercurrentreportingfrom  
the inrush current flowing through the device, charging the downstream capacitor. The TPS209x devices are  
designed to reduce false overcurrent reporting. An internal overcurrent transient filter eliminates the need to use  
external components to remove unwanted pulses. Using low-ESR electrolytic capacitors on the output lowers  
the inrush current flow through the device during hot-plug events by providing a low impedance energy source,  
thereby reducing erroneous overcurrent reporting.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2090, TPS2091, TPS2092 DUAL,  
TPS2095, TPS2096, TPS2097 QUAD  
POWER-DISTRIBUTION SWITCHES  
SLVS245A SEPTEMBER 2000 REVISED MARCH 2001  
APPLICATION INFORMATION  
OC response (continued)  
V+  
R
TPS2092  
pullup  
GND  
OC  
OUT1  
OUT2  
EN2  
IN1  
IN2  
EN1  
Figure 25. Typical Circuit for OC Pin  
power dissipation and junction temperature  
The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass  
large currents. The thermal resistances of these packages are high compared to that of power packages; it is  
good design practice to check power dissipation and junction temperature. Begin by determining the r  
the N-channel MOSFET relative to the input voltage and operating temperature. As an initial estimate, use the  
of  
DS(on)  
highest operating ambient temperature of interest and read r  
dissipation per switch can be calculated by:  
from Figure 18. Using this value, the power  
DS(on)  
2
P
r
I
D
DS(on)  
Multiply this number by the total number of switches being used, to get the total power dissipation coming from  
the N-channel MOSFETs.  
Finally, calculate the junction temperature:  
T
P
R
T
J
D
JA  
A
Where:  
T = Ambient Temperature °C  
A
θJA  
R
= Thermal resistance SOIC = 172°C/W (for 8 pin), 111°C/W (for 16 pin)  
P = Total power dissipation based on number of switches being used.  
D
Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees,  
repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally  
sufficient to get a reasonable answer.  
thermal protection  
Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for  
extended periods of time. The faults force the TPS209x into constant current mode, which causes the voltage  
across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal  
to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The  
protectioncircuitsensesthejunctiontemperatureoftheswitchandshutsitoff. Hysteresisisbuiltintothethermal  
sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch  
continues to cycle in this manner until the load fault or input power is removed.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2090, TPS2091, TPS2092 DUAL,  
TPS2095, TPS2096, TPS2097 QUAD  
POWER-DISTRIBUTION SWITCHES  
SLVS245A SEPTEMBER 2000 REVISED MARCH 2001  
APPLICATION INFORMATION  
thermal protection (continued)  
The TPS209x implements a dual thermal trip to allow fully independent operation of the power distribution  
switches. In an overcurrent or short-circuit condition the junction temperature will rise. Once the die temperature  
risestoapproximately140°C, theinternalthermalsensecircuitrycheckswhichpowerswitchisinanovercurrent  
condition and turns that power switch off, thus isolating the fault without interrupting operation of the adjacent  
power switch. Should the die temperature exceed the first thermal trip point of 140°C and reach 160°C, both  
switches turn off. The OC open-drain output is asserted (active low) when overtemperature or overcurrent  
occurs.  
undervoltage lockout (UVLO)  
Anundervoltagelockoutensuresthatthepowerswitchisintheoffstateatpowerup. Whenevertheinputvoltage  
falls below approximately 2 V, the power switch will be quickly turned off. This facilitates the design of  
hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The  
UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V, even if  
the switch is enabled. Upon reinsertion, the power switch will be turned on with a controlled rise time to reduce  
EMI and voltage overshoots.  
generic hot-plug applications (see Figure 26)  
In many applications it may be necessary to remove modules or pc boards while the main unit is still operating.  
These are considered hot-plug applications. Such implementations require the control of current surges seen  
by the main power supply and the card being inserted. The most effective way to control these surges is to limit  
and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply  
normally turns on. Due to the controlled rise times and fall times of the TPS209x, these devices can be used  
to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the  
TPS209x also ensures the switch will be off after the card has been removed, and the switch will be off during  
the next insertion. The UVLO feature insures a soft start with a controlled rise time for every insertion of the card  
or module.  
Overcurrent Response  
PC Board  
Power  
Supply  
TPS2092  
1000 µF  
Optimum  
0.1 µF  
GND  
OC  
Block of  
Circuitry  
IN1  
OUT1  
2.7 V to 5.5 V  
0.1 µF  
1000 µF  
Optimum  
OUT2  
EN2  
IN2  
EN1  
Block of  
Circuitry  
Figure 26. Typical Hot-Plug Implementation  
By placing the TPS209x between the V  
input and the rest of the circuitry, the input power will reach these  
CC  
devices first after insertion. The typical rise time of the switch is approximately 2.5 ms, providing a slow voltage  
ramp at the output of the device. This implementation controls system surge currents and provides a  
hot-plugging mechanism for any device.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2090, TPS2091, TPS2092 DUAL,  
TPS2095, TPS2096, TPS2097 QUAD  
POWER-DISTRIBUTION SWITCHES  
SLVS245A SEPTEMBER 2000 REVISED MARCH 2001  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
M
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
A
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Apr-2005  
PACKAGING INFORMATION  
Orderable Device  
TPS2090D  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS2090DR  
TPS2091D  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS2091DR  
TPS2092D  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS2092DR  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS2095D  
TPS2095DR  
TPS2096D  
TPS2096DR  
TPS20976D  
TPS2097D  
TPS2097DR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
16  
16  
16  
16  
16  
16  
16  
40  
2500  
40  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
2500  
40  
Call TI  
Call TI  
40  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
2500  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

TPS2096DRG4

IC 0.5 A 4 CHANNEL, BUF OR INV BASED PRPHL DRVR, PDSO16, GREEN, PLASTIC, SOIC-16, Peripheral Driver
TI

TPS2097

QUAD POWER-DISTRIBUTION SWITCHES
TI

TPS20976D

QUAD POWER-DISTRIBUTION SWITCHES
TI

TPS2097D

QUAD POWER-DISTRIBUTION SWITCHES
TI

TPS2097DG4

0.3A 2.7 to 5.5V Quad 4 In/4 Out High-Side MOSFET Switch IC Fault Reporting 4 Act-Lo Enable 16-SOIC 0 to 85
TI

TPS2097DR

QUAD POWER-DISTRIBUTION SWITCHES
TI

TPS2097DRG4

0.5A 4 CHANNEL, BUF OR INV BASED PRPHL DRVR, PDSO16, GREEN, PLASTIC, SOIC-16
TI

TPS20XXC

Current-Limited, Power-Distribution Switches Deglitched Fault Reporting
TI

TPS20XXC_1110

Current-Limited, Power-Distribution Switches
TI

TPS2100

VAUX POWER-DISTRIBUTION SWITCHES
TI

TPS2100D

VAUX POWER-DISTRIBUTION SWITCHES
TI

TPS2100DBV

VAUX POWER-DISTRIBUTION SWITCHES
TI