TPS2101DRG4 [TI]

2-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, PLASTIC, SOIC-8;
TPS2101DRG4
型号: TPS2101DRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, PLASTIC, SOIC-8

光电二极管
文件: 总20页 (文件大小:485K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197D – JUNE 1999 – REVISED JUNE 2000  
features  
typical applications  
Dual-Input, Single-Output MOSFET Switch  
With No Reverse Current Flow (No Parasitic  
Diodes)  
Notebook and Desktop PCs  
Palmtops and PDAs  
IN1 . . . 250-m, 500-mA N-Channel;  
16-µA Max Supply Current  
TPS2100  
IN1  
IN2 . . . 1.3-, 10-mA P-Channel;  
Controller  
(CardBus,  
1394,  
PCI,  
et al.)  
1.5-µA Max Supply Current (V  
Mode)  
AUX  
3.3 V V  
CC  
3.3 V  
Advanced Switch Control Logic  
IN2  
3.3 V V  
AUX  
CMOS- and TTL-Compatible Enable Input  
Controlled Rise, Fall, and Transition Times  
2.7-V to 4 V Operating Range  
EN  
D3 or PME Status  
Control Signal  
Hold-Up  
Capacitor  
SOT-23-5 and SOIC-8 Package  
40°C to 70°C Ambient Temperature Range  
Figure 1. Typical Dual-Input Single-Output  
Application  
2-kV Human-Body-Model, 750-V CDM,  
200-V Machine-Model Electrostatic-  
Discharge Protection  
description  
The TPS2100 and TPS2101 are dual-input, single-output power switches designed to provide uninterrupted  
output voltage when transitioning between two independent power supplies. Both devices combine one  
n-channel (250 m) and one p-channel (1.3 ) MOSFET with a single output. The p-channel MOSFET (IN2)  
is used with auxiliary power supplies that deliver lower current for standby modes. The n-channel MOSFET  
(IN1) is used with a main power supply that delivers higher current required for normal operation. Low  
on-resistance makes the n-channel the ideal path for higher main supply current when power-supply regulation  
and system voltage drops are critical. When using the p-channel MOSFET, quiescent current is reduced to  
0.75 µA to decrease the demand on the standby power supply. The MOSFETs in the TPS2100 and TPS2101  
do not have the parasitic diodes, found in discrete MOSFETs, which allow the devices to prevent back-flow  
current when the switch is off.  
TPS2100  
D PACKAGE  
(TOP VIEW)  
(TOP VIEW)  
DBV PACKAGE  
PCI Bus  
V
3.3 V  
AUX  
IN2  
GND  
EN  
OUT  
OUT  
NC  
1
2
3
4
8
7
6
5
IN1  
1
2
3
5
4
EN  
GND  
IN2  
OUT  
NC  
IN1  
VGA  
TPS210x  
D3-STAT  
TPS2101  
V
CC  
D PACKAGE  
(TOP VIEW)  
DBV PACKAGE  
(TOP VIEW)  
PCI12xx / PCI14xx  
CardBus Controller  
IN2  
GND  
EN  
OUT  
OUT  
NC  
1
2
3
4
8
7
6
5
EN  
GND  
IN2  
IN1  
1
2
3
5
4
Figure 2. V  
CardBus Implementation  
AUX  
OUT  
NC  
IN1  
NC – No internal connection  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197D – JUNE 1999 – REVISED JUNE 2000  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
SOT-23-5 SOIC-8  
T
J
DEVICE  
ENABLE  
(DBV)  
(D)  
TPS2100  
TPS2101  
EN  
EN  
TSP2100DBV  
TPS2100D  
TPS2101D  
40°C to 85°C  
TPS2101DBV  
Both packages are available left-end taped and reeled. Add an R suffix to the D device type  
(e.g., TPS2101DR).  
Add T (e.g., TPS2100DBVT) to indicate tape and reel at order quantity of 250 parts.  
Add R (e.g., TPS2100DBVR) to indicate tape and reel at order quantity of 3000 parts.  
TPS2100 functional block diagram  
SW1  
250 mΩ  
IN1  
OUT  
Charge  
Pump  
Pullup  
Circuit  
Discharge  
Circuit  
V
CC  
Driver  
EN  
Select  
IN2  
SW2  
1.3 Ω  
GND  
Driver  
TPS2101 functional block diagram  
SW1  
250 mΩ  
IN1  
OUT  
Charge  
Pump  
Discharge  
Circuit  
V
CC  
Driver  
EN  
Select  
IN2  
SW2  
1.3 Ω  
Pulldown  
Circuit  
GND  
Driver  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197D – JUNE 1999 – REVISED JUNE 2000  
Function Tables  
TPS2100  
TPS2101  
VIN1  
0 V  
VIN2  
EN  
XX  
L
OUT  
VIN1  
0 V  
VIN2  
0 V  
EN  
XX  
H
OUT  
GND  
GND  
VIN1  
VIN1  
VIN2  
VIN2  
VIN2  
0 V  
3.3 V  
3.3 V  
0 V  
GND  
GND  
VIN1  
VIN1  
VIN2  
VIN2  
VIN2  
0 V  
0 V  
3.3 V  
3.3 V  
0 V  
3.3 V  
3.3 V  
0 V  
L
3.3 V  
3.3 V  
0 V  
H
L
H
3.3 V  
0 V  
H
3.3 V  
0 V  
L
3.3 V  
3.3 V  
H
3.3 V  
3.3 V  
L
3.3 V  
H
3.3 V  
L
XX = don’t care  
Terminal Functions  
TERMINAL  
NO.  
DESCRIPTION  
NAME  
I/O  
TPS2100  
DBV  
TPS2101  
D
DBV  
D
EN  
EN  
1
3
Active-high enable for IN1-OUT switch  
Active-low enable for IN1-OUT switch  
Ground  
1
2
5
3
4
3
2
I
I
GND  
IN1  
2
5
3
4
2
5
5
I
Main Input voltage, NMOS drain (250 m)  
Auxilliary input voltage, PMOS drain (1.3 )  
Power switch output  
IN2  
1
1
I
OUT  
NC  
7, 8  
4, 6  
7, 8  
4, 6  
O
No connection  
detailed description  
power switches  
n-channel MOSFET  
The IN1-OUT n-channel MOSFET power switch has a typical on-resistance of 250 mat 3.3-V input voltage,  
and is configured as a high-side switch.  
p-channel MOSFET  
The IN2-OUT p-channel MOSFET power switch with typical on-resistance of 1.3 at 3.3-V input voltage and  
is configured as a high-side switch. When operating, the p-channel MOSFET quiescent current is reduced to  
less than 1.5 µA.  
charge pump  
An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate  
of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires  
very little supply current.  
driver  
The driver controls the gate voltage of the IN1-OUT and IN2-OUT power switches. To limit large current surges  
and reduce the associated electromagnetic interference (EMI) produced, the drivers incorporate circuitry that  
controls the rise times and fall times of the output voltage.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197D – JUNE 1999 – REVISED JUNE 2000  
detailed description (continued)  
enable  
The logic enable will turn on the IN2-OUT power switch when a logic high is present on EN (TPS2100) or logic  
low is present on EN (TPS2101). A logic low input on EN (TPS2100) or logic high on EN (TPS2101) restores  
bias to the drive and control circuits and turns on the IN1-OUT power switch. The enable input is compatible  
with both TTL and CMOS logic levels.  
the V  
application for CardBus controllers  
AUX  
The PC Card specification requires the support of V  
sockets. Both are 3.3-V requirements; however the CardBus controller’s current demand from the V  
to the CardBus controller as well as to the PC Card  
AUX  
supply  
AUX  
is limited to 10 µA, whereas the PC Card may consume as much as 200 mA. In either implementation, if support  
of a wake-up event is required, the controller and the socket will transition from the 3.3-V V rail to the 3.3-V  
CC  
CC  
V
railwhentheequipmentmovesintoalowpowermodesuchasD3. ThetransitionfromV toV  
needs  
AUX  
AUX  
to be seamless in order to maintain all memory and register information in the system. If V  
the system will lose all register information when it transitions to the D3 state.  
is not supported,  
AUX  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Input voltage range, V  
Input voltage range, V  
(see Note1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 5 V  
(see Note1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 5 V  
I(IN1)  
I(IN2)  
Input voltage range, V at EN or EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 5 V  
I
Output voltage range, V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 5 V  
O
Continuous output current, I  
Continuous output current, I  
)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 mA  
O(IN1  
O(IN2)  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See dissipation rating table  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Electrostatic discharge (ESD) protection: Human body model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 kV  
Machine model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 V  
Charged device model (CDM) . . . . . . . . . . . . . . . . . . . . . . . . . 750 V  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltages are with respect to GND.  
DISSIPATION RATING TABLE  
DERATING FACTOR  
T
< 25°C  
T
A
= 70°C  
T = 85°C  
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
DBV  
D
309 mW  
3.1 mW/°C  
5.7 mW/°C  
170 mW  
313 mW  
123 mW  
227 mW  
568 mW  
recommended operating conditions  
MIN MAX  
UNIT  
V
Input voltage, V  
I(INx)  
2.7  
0
4
4
Input voltage, V at EN and EN  
V
I
Continuous output current, I  
Continuous output current, I  
500  
mA  
mA  
°C  
O(IN1)  
10  
O(IN2)  
Operating virtual junction temperature, T  
40  
85  
J
Thedevicecandeliverupto220mAatI  
and greater voltage droop when switching between IN1 and IN2.  
. However,operationatthehighercurrentlevelswillresultingreatervoltagedropacrossthedevice,  
O(IN2)  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197D – JUNE 1999 – REVISED JUNE 2000  
electrical characteristics over recommended operating junction temperature range,  
V
= V  
= 3.3 V, I = rated current (unless otherwise noted)  
I(IN1)  
(IN2) O  
power switch  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
T = 25°C  
250  
300  
1.3  
1.5  
J
IN1-OUT  
IN2-OUT  
mΩ  
T = 85°C  
J
375  
2.1  
r
On-state resistance  
DS(on)  
T = 25°C  
J
T = 85°C  
J
Pulse-testing techniques maintain junction temperature close to ambient termperature; thermal effects must be taken into account separately.  
enable input (EN and EN)  
PARAMETER  
High-level input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
2.7 V V  
2.7 V V  
TPS2100  
TPS2101  
4 V  
4 V  
2
IH  
I(INx)  
Low-level input voltage  
0.8  
0.5  
0.5  
V
IL  
I(INx)  
EN = 0 V or EN = V  
–0.5  
–0.5  
µA  
µA  
I(INx)  
I(INx)  
I
I
Input current  
EN = 0 V or EN = V  
supply current  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.5  
16  
UNIT  
T = 25°C  
J
0.75  
EN = H,  
µA  
IN2 selected  
–40°C T 85°C  
J
TPS2100  
TPS2101  
T = 25°C  
J
10  
0.75  
10  
EN = L,  
µA  
µA  
µA  
IN1 selected  
–40°C T 85°C  
J
I
I
Supply current  
T = 25°C  
J
EN = L,  
IN2 selected  
–40°C T 85°C  
1.5  
16  
J
T = 25°C  
J
EN = H,  
IN1 selected  
–40°C T 85°C  
J
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197D – JUNE 1999 – REVISED JUNE 2000  
switching characteristics, T = 25°C, V  
= V  
= 3.3 V (unless otherwise noted)  
I(IN2)  
J
I(IN1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
830  
840  
640  
5.5  
70  
MAX  
UNIT  
C
C
C
C
C
C
C
C
C
C
C
C
= 1 µF,  
= 10 µF,  
= 1 µF,  
= 1 µF,  
= 10 µF,  
= 1 µF,  
= 1 µF,  
= 10 µF,  
= 1 µF,  
= 1 µF,  
= 10 µF,  
= 1 µF,  
I
L
I
L
I
L
I
L
I
L
I
L
I
L
I
L
I
L
I
L
I
L
I
L
= 500 mA  
L
L
L
L
L
L
L
L
L
L
L
L
IN1-OUT  
V
= 0  
= 0  
= 0  
= 0  
= 500 mA  
= 10 mA  
= 10 mA  
= 10 mA  
= 1 mA  
I(IN2)  
I(IN1)  
I(IN2)  
I(IN1)  
t
r
Output rise time  
µs  
IN2-OUT  
IN1-OUT  
IN2-OUT  
V
V
V
5.5  
8
= 500 mA  
= 500 mA  
= 10 mA  
= 10 mA  
= 10 mA  
= 1 mA  
93  
23  
t
f
Output fall time  
µs  
690  
6900  
6900  
75  
IN1-OUT  
IN2-OUT  
IN1-OUT  
IN2-OUT  
V
I(IN2)  
V
I(IN1)  
V
I(IN2)  
V
I(IN1)  
= 0  
= 0  
= 0  
= 0  
t
t
Propagationdelaytime, low-to-highoutput  
Propagationdelaytime, high-to-lowoutput  
C
C
= 10 µF,  
= 10 µF,  
I
= 10 mA  
= 10 mA  
µs  
µs  
PLH  
L
L
L
L
2
3
I
PHL  
370  
All timing parameters refer to Figure 3.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197D – JUNE 1999 – REVISED JUNE 2000  
PARAMETER MEASUREMENT INFORMATION  
OUT  
I
O
C
L
LOAD CIRCUIT  
50%  
50%  
EN or EN  
t
EN or EN  
t
PHL  
V
I
V
I
PLH  
90%  
V
O
GND  
V
O
GND  
10%  
Propagation Delay Time, Low-to-High-Level Output  
Propagation Delay Time, High-to–Low-Level Output  
t
t
f
r
V
I
90%  
V
O
10%  
GND  
Rise/Fall Time  
50%  
50%  
EN or EN  
EN or EN  
t
off  
t
V
I
on  
V
I
90%  
V
O
GND  
V
O
GND  
10%  
Turn-off Transition Time  
Turn-on Transition Time  
WAVEFORMS  
Figure 3. Test Circuit and Voltage Waveforms  
Table of Timing Diagrams  
FIGURE  
Propagation Delay and Rise Time With 0.1-µF Load, IN1  
4
5
Propagation Delay and Rise Time With 0.1-µF Load, IN2  
Propagation Delay and Fall Time With 0.1-µF Load, IN1  
Propagation Delay and Fall Time With 0.1-µF Load, IN2  
Propagation Delay and Rise Time With 1-µF Load, IN1  
Propagation Delay and Rise Time With 1-µF Load, IN2  
Propagation Delay and Fall Time With 1-µF Load, IN1  
6
7
8
9
10  
Propagation Delay and Fall Time With 1-µF Load, IN2  
11  
Waveforms shown in Figures 4–11 refer to TPS2100 at T = 25°C  
J
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197D – JUNE 1999 – REVISED JUNE 2000  
PARAMETER MEASUREMENT INFORMATION  
V
V
C
R
= 3.3 V  
= 0 V  
= 0.1 µF  
I(IN1)  
I(IN2)  
L
L
= 330 Ω  
EN  
(2 V/div)  
EN  
(2 V/div)  
V
V
C
R
= 0 V  
= 3.3 V  
= 0.1 µF  
= 330 Ω  
I(IN1)  
I(IN2)  
L
L
V
O
V
O
(2 V/div)  
(2 V/div)  
t – Time – 1 µs/div  
t – Time – 250 µs/div  
Figure 4. Propagation Delay and Rise Time  
Figure 5. Propagation Delay and Fall Time  
With 0.1-µF Load, IN1  
With 0.1-µF Load, IN2  
V
V
C
R
= 0 V  
= 3.3 V  
= 0.1 µF  
= 330 Ω  
I(IN1)  
I(IN2)  
L
L
V
V
C
R
= 3.3 V  
= 0 V  
= 0.1 µF  
I(IN1)  
I(IN2)  
L
L
EN  
(2 V/div)  
EN  
(2 V/div)  
= 330 Ω  
V
O
V
O
(2 V/div)  
(2 V/div)  
t – Time – 50 µs/div  
t – Time – 5 µs/div  
Figure 6. Propagation Delay and Fall Time  
Figure 7. Propagation Delay and Fall Time  
With 0.1-µF Load, IN1  
With 0.1-µF Load, IN2  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197D – JUNE 1999 – REVISED JUNE 2000  
PARAMETER MEASUREMENT INFORMATION  
V
V
C
R
= 3.3 V  
= 0 V  
= 1 µF  
I(IN1)  
I(IN2)  
L
L
= 330 Ω  
EN  
(2 V/div)  
EN  
(2 V/div)  
V
V
C
R
= 0 V  
= 3.3 V  
= 1 µF  
= 330 Ω  
I(IN1)  
I(IN2)  
L
L
V
V
O
O
(2 V/div)  
(2 V/div)  
t – Time – 2.5 µs/div  
t – Time – 250 µs/div  
Figure 8. Propagation Delay and Rise Time  
Figure 9. Propagation Delay and Rise Time  
With 1-µF Load, IN1  
With 1-µF Load, IN2  
V
V
C
R
= 0 V  
= 3.3 V  
= 1 µF  
= 330 Ω  
I(IN1)  
I(IN2)  
L
L
V
V
C
R
= 3.3 V  
= 0 V  
= 1 µF  
I(IN1)  
I(IN2)  
L
L
EN  
(2 V/div)  
EN  
(2 V/div)  
= 330 Ω  
V
O
V
O
(2 V/div)  
(2 V/div)  
t – Time – 250 µs/div  
t – Time – 10 µs/div  
Figure 10. Propagation Delay and Fall Time  
Figure 11. Propagation Delay and Fall Time  
With 1-µF Load, IN1  
With 1-µF Load, IN2  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197D – JUNE 1999 – REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
12  
IN1 Switch Rise Time  
IN2 Switch Fall Time  
IN1 Switch Fall Time  
IN2 Switch Fall Time  
Output Voltage Droop  
Inrush Current  
vs Output Current  
vs Output Current  
13  
vs Output Current  
14  
vs Output Current  
15  
vs Output Current When Output Is Switched From IN2 to IN1  
vs Output Capacitance  
16  
17  
IN1 Supply Current  
IN1 Supply Current  
IN2 Supply Current  
IN2 Supply Current  
IN1-OUT On-State Resistance  
vs Junction Temperature (IN1 Enabled)  
vs Junction Temperature (IN1 Disabled)  
vs Junction Temperature (IN2 Enabled)  
vs Junction Temperature (IN2 Disabled)  
vs Junction Temperature  
18  
19  
20  
21  
22  
IN2-OUT On-State Resistance  
vs Junction Temperature  
23  
IN1 SWTICH RISE TIME  
IN2 SWTICH RISE TIME  
vs  
OUTPUT CURRENT  
vs  
OUTPUT CURRENT  
900  
850  
800  
750  
700  
1000  
100  
10  
C
= 100 µF  
L
V
V
= 3.3 V  
= 0 V  
= 25°C  
I(IN1)  
I(IN2)  
T
J
C
= 47 µF  
= 10 µF  
L
C
= 100 µF  
L
C
C
= 47 µF  
L
L
C
= 10 µF  
L
650  
600  
C
= 1 µF  
L
1
C
= 1 µF  
L
C
= 0.1 µF  
L
C
= 0.1 µF  
V
V
= 0 V  
= 3.3 V  
= 25°C  
L
I(IN1)  
I(IN2)  
550  
500  
T
J
0.1  
0.01  
0.1  
1
10  
100  
1000  
0
1
2
3
4
5
6
7
8
9
10  
I
O
– Output Current – mA  
I
O
– Output Current – mA  
Figure 12  
Figure 13  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197D – JUNE 1999 – REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
IN1 SWITCH FALL TIME  
IN2 SWITCH FALL TIME  
vs  
OUTPUT CURRENT  
vs  
OUTPUT CURRENT  
10000  
1000  
100  
1000  
100  
V
V
T
= 3.3 V  
= 0 V  
= 25°C  
I(IN1)  
I(IN2)  
J
C
= 100 µF  
L
C
= 100 µF  
L
C
= 47 µF  
= 10 µF  
L
L
C
= 10 µF  
L
C
L
C
= 1 µF  
L
10  
1
C
= 0.1 µF  
L
C
= 1 µF  
10  
1
V
V
= 0 V  
I(IN1)  
I(IN2)  
C
= 0.1 µF  
L
= 3.3 V  
C
= 47 µF  
L
T
J
= 25°C  
0.1  
0.01  
0.01  
0.1  
1
10  
100  
1000  
0.1  
1
10  
I
O
– Output Current – mA  
I
O
– Output Current – mA  
Figure 14  
Figure 15  
OUTPUT VOLTAGE DROOP  
vs  
OUTPUT CURRENT WHEN OUTPUT  
IS SWITCHED FROM IN2 TO IN1  
INRUSH CURRENT  
vs  
OUTPUT CAPACITANCE  
1
0.8  
0.6  
1.6  
1.4  
1.2  
1
V
V
T
= 3.3 V  
= 3.3 V  
= 25°C  
I(IN1)  
I(IN2)  
J
V
= 3.3 V  
= 0 V  
= 6.6 Ω  
C
= 0.1 µF  
I(IN1)  
V
I(IN2)  
L
C
L
= 1 µF  
L
R
L
J
T
= 25°C  
C
= 10 µF  
C
= 47 µF  
0.8  
0.6  
L
C
= 100 µF  
0.4  
L
0.4  
0.2  
0
0.2  
0
0.01  
0.1  
1
10  
0
100  
C
200  
300  
400  
500  
I
O
– Output Current – mA  
– Output Capacitance – µF  
o
Figure 16  
Figure 17  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197D – JUNE 1999 – REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
IN1 SUPPLY CURRENT  
vs  
JUNCTION TEMPERATURE (IN1 DISABLED)  
IN1 SUPPLY CURRENT  
vs  
JUNCTION TEMPERATURE (IN1 ENABLED)  
0.25  
0.23  
14  
12  
10  
V
I(INx)  
= 4 V  
V
I(INx)  
= 4 V  
V
I(INx)  
= 3.3 V  
0.21  
0.19  
V
I(INx)  
= 3.3 V  
V
I(INx)  
= 2.7 V  
V
= 2.7 V  
I(INx)  
8
6
0.17  
0.15  
–40 –20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
T
J
Junction Temperature – °C  
T
J
Junction Temperature – °C  
Figure 18  
Figure 19  
IN2 SUPPLY CURRENT  
vs  
JUNCTION TEMPERATURE (IN2 ENABLED)  
IN2 SUPPLY CURRENT  
vs  
JUNCTION TEMPERATURE (IN2 DISABLED)  
0.75  
0.7  
0.6  
0.56  
0.52  
0.48  
V
I(INx)  
= 4 V  
0.65  
0.6  
V
I(INx)  
= 4 V  
V
I(INx)  
= 3.3 V  
V
I(INx)  
= 3.3 V  
V
I(INx)  
= 2.7 V  
0.55  
0.5  
0.44  
0.4  
V
= 2.7 V  
40  
I(INx)  
–40 –20  
0
20  
40  
60  
80  
100  
–40 –20  
0
20  
60  
80  
100  
T
J
Junction Temperature – °C  
T
J
Junction Temperature – °C  
Figure 20  
Figure 21  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197D – JUNE 1999 – REVISED JUNE 2000  
TYPICAL CHARACTERISTICS  
IN2-OUT ON-STATE RESISTANCE  
IN1-OUT ON-STATE RESISTANCE  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
2
1.75  
1.5  
305  
280  
255  
V
I(INx)  
= 2.7 V  
V
= 3.3 V  
I(INx)  
1.25  
1
V
= 2.7 V  
I(INx)  
V
= 4 V  
230  
205  
180  
I(INx)  
V
= 3.3 V  
I(INx)  
0.75  
0.5  
V
= 4 V  
0
I(INx)  
–40  
–20  
0
20  
40  
60  
80  
100  
–40 –20  
20  
40  
60  
80  
100  
T
J
Junction Temperature – °C  
T
J
Junction Temperature – °C  
Figure 22  
Figure 23  
APPLICATION INFORMATION  
TPS2100  
CardBus or System Controller  
3.3 V  
EN  
IN1  
IN2  
OUT  
3.3 V V  
CC  
0.1 µF  
xx µF  
3.3 V V  
AUX  
0.1 µF  
GND  
0.1 µF  
Figure 24. Typical Application  
power supply considerations  
A 0.01-µF to 0.1-µF ceramic bypass capacitor between IN and GND, close to the device is recommended. The  
output capacitor should be chosen based on the size of the load during the transition of the switch. A 47-µF  
capacitor is recommended for 10-mA loads. Typical output capacitors (xx µF, shown in Figure 24) required for  
a given load can be determined from Figure 16 which shows the output voltage droop when output is switched  
from IN2 to IN1. The output voltage droop is insignificant when output is switched from IN1 to IN2. Additionally,  
bypassing the output with a 0.01-µF to 0.1-µF ceramic capacitor improves the immunity of the device to  
short-circuit transients.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197D – JUNE 1999 – REVISED JUNE 2000  
APPLICATION INFORMATION  
power supply considerations (continued)  
switch transition  
Then-channelMOSFETonIN1usesacharge-pumptocreatethegate-drivevoltage, whichgivestheIN1switch  
a rise time of approximately 1 ms. The p-channel MOSFET on IN2 has a simpler drive circuit that allows a rise  
time of approximately 8 µs. Because the device has two switches and a single enable pin, these rise times are  
seen as transition times, from IN1 to IN2, or IN2 to IN1, by the output. The controlled transition times help limit  
the surge currents seen by the power supply during switching.  
thermal protection  
Thermal protection provided on the IN1 switch prevents damage to the IC when heavy-overload or short-circuit  
faults are present for extended periods of time. The increased dissipation causes the junction temperature to  
rise to dangerously high levels. The protection circuit senses the junction temperature of the switch and shuts  
it off at approximately 125°C (T ). The switch remains off until the junction temperature has dropped. The switch  
J
continues to cycle in this manner until the load fault or input power is removed.  
undervoltage lockout  
An undervoltage lockout function is provided to ensure that the power switch is in the off state at power-up.  
Whenever the input voltage falls below approximately 2 V, the power switch quickly turns off. This function  
facilitates the design of hot-insertion systems that may not have the capability to turn off the power switch before  
input power is removed. Upon reinsertion, the power switch will be turned on with a controlled rise time to reduce  
EMI and voltage overshoots.  
power dissipation and junction temperature  
The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass  
large currents. The thermal resistances of these packages are high compared to that of power packages; it is  
good design practice to check power dissipation and junction temperature. First, find r at the input voltage,  
on  
and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and  
read r from Figure 22 or Figure 23. Next calculate the power dissipation using:  
on  
2
P
r
I
on  
D
Finally, calculate the junction temperature:  
T
P
R
T
J
D
JA  
A
Where:  
T = Ambient temperature  
A
R
= Thermal resistance  
θJA  
Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees,  
repeat the calculation using the calculated value as the new estimate. Two or three iterations are generally  
sufficient to obtain a reasonable answer.  
ESD protection  
All TPS2100 and TPS2101 terminals incorporate ESD-protection circuitry designed to withstand a 2-kV  
human-body-model discharge as defined in MIL-STD-883C.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197D – JUNE 1999 – REVISED JUNE 2000  
MECHANICAL DATA  
DBV (R-PDSO-G5)  
PLASTIC SMALL-OUTLINE  
0,50  
0,30  
M
0,20  
0,95  
5
4
0,15 NOM  
1,70  
1,50  
3,00  
2,60  
1
3
Gage Plane  
3,00  
2,80  
0,25  
0°–8°  
0,55  
0,35  
Seating Plane  
0,10  
1,45  
0,95  
0,05 MIN  
4073253-4/E 05/99  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-178  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2100, TPS2101  
POWER-DISTRIBUTION SWITCHES  
V
AUX  
SLVS197D – JUNE 1999 – REVISED JUNE 2000  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.010 (0,25)  
M
0.014 (0,35)  
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
A
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-May-2007  
PACKAGING INFORMATION  
Orderable Device  
TPS2100DBVR  
TPS2100DBVRG4  
TPS2100DBVT  
TPS2100DBVTG4  
TPS2101D  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOT-23  
DBV  
5
5
5
5
8
5
5
5
5
8
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
D
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS2101DBVR  
TPS2101DBVRG4  
TPS2101DBVT  
TPS2101DBVTG4  
TPS2101DG4  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
DBV  
D
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
TPS2100DBVR  
TPS2100DBVT  
TPS2101DBVR  
TPS2101DBVT  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
3000  
250  
180.0  
180.0  
180.0  
180.0  
9.0  
9.0  
9.0  
9.0  
3.15  
3.15  
3.15  
3.15  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS2100DBVR  
TPS2100DBVT  
TPS2101DBVR  
TPS2101DBVT  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
3000  
250  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
20.0  
20.0  
3000  
250  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

TPS2102

VAUX POWER-DISTRIBUTION SWITCHES
TI

TPS2102D

VAUX POWER-DISTRIBUTION SWITCHES
TI

TPS2102DBV

VAUX POWER-DISTRIBUTION SWITCHES
TI

TPS2102DBVR

POWER-DISTRIBUTION SWITCHES
TI

TPS2102DBVRG4

2.7-4V Dual In/Single Out MOSFET, 0.5A Main/0.1A Aux Input, Act-Low Enable, Comm. Temp. 5-SOT-23
TI

TPS2102DBVT

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO5, PLASTIC, SOT-23, 5 PIN
TI

TPS2102DR

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, PLASTIC, SOIC-8
TI

TPS2102DRG4

2-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, PLASTIC, SOIC-8
TI

TPS2103

VAUX POWER-DISTRIBUTION SWITCHES
TI

TPS2103D

VAUX POWER-DISTRIBUTION SWITCHES
TI

TPS2103DBV

VAUX POWER-DISTRIBUTION SWITCHES
TI

TPS2103DBVR

POWER-DISTRIBUTION SWITCHES
TI