TPS2210APWPRG4 [TI]

PC CARD™ POWER-INTERFACE SWITCH WITH RESER FOR SERIAL PCMCIA CONTROLLER; ? PC卡 - 答?? ¢电接口开关RESER用于串行PCMCIA控制器
TPS2210APWPRG4
型号: TPS2210APWPRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

PC CARD™ POWER-INTERFACE SWITCH WITH RESER FOR SERIAL PCMCIA CONTROLLER
? PC卡 - 答?? ¢电接口开关RESER用于串行PCMCIA控制器

电源电路 开关 电源管理电路 光电二极管 控制器 PC
文件: 总37页 (文件大小:1001K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
 
ꢎꢊ  
FEATURES  
APPLICATIONS  
D
D
D
D
D
Notebook and Desktop Computers  
Set-Top Boxes  
D
D
Fully Integrated V  
Single-Slot or Dual-Slot PC CardInterface  
and V  
Switching for  
PP  
CC  
2
Personal Digital Assistants(PDAs)  
Digital Cameras  
P C3-Lead Serial Interface Compatible With  
CardBusController  
Bar Code Scanners  
D
D
D
Meets PC Card Standard  
RESET for System Initialization of PC Cards  
DESCRIPTION  
12-V Supplies Can Be Disabled Except During  
12-V Flash Programming  
The TPS2204A and TPS2206A PC CardBus  
power-interface switches provide an integrated  
power-management solution for two PC Cardsockets.  
The TPS2210A is a single-slot option for this family of  
devices. These devices allow the controlled distribution of  
3.3 V, 5 V, and 12 V to each card slot. The current-limiting  
and thermal-protection features eliminate the need for  
fuses. Current-limit reporting helps the user isolate a  
system fault. The switch rDS(on) and current-limit values  
are set for the peak and average current requirements  
stated in the PC Cardspecification, and are optimized for  
cost.  
D
D
Short-Circuit and Thermal Protection  
24-Pin HTSSOP (PWP), 30-Pin SSOP (DB),  
and 32-Pin TSSOP (DAP) Packages  
D
D
D
D
Compatible With 3.3-V, 5-V, and 12-V PC  
Cards  
Low r  
3.3-V V  
(95-m, 5-V V  
Switch; 85-mΩ  
CC  
DS(on)  
Switch)  
CC  
Single-Slot Switch: TPS2210A  
Dual-Slot Switch: TPS2204A and TPS2206A  
The TPS2206A is pin and/or functionally compatible with  
the TPS2206, TPS2216, TPS2216A, TPS2226,  
TPS2226A, and TPS2228 with a few exceptions, as  
shown in the Available Options table.  
Break-Before-Make Switching  
AVAILABLE OPTIONS OF THE TPS2206A PIN COMPATABLE SWITCHES  
PIN VARIATION  
INDEPENDENT  
INPUT  
VOLTAGES  
PART NUMBER  
V
PP  
SWITCHING  
RESET  
Yes  
RESET  
Yes  
No  
SHDN  
No  
MODE  
No  
STBY  
No  
TPS2206  
TPS2206A  
TPS2216  
TPS2216A  
TPS2226  
TPS2226A  
TPS2228  
No  
No  
3.3 V, 5 V, 12 V  
3.3 V, 5 V, 12 V  
3.3 V, 5 V, 12 V  
3.3 V, 5 V, 12 V  
3.3 V, 5 V, 12 V  
3.3 V, 5 V, 12 V  
1.8 V, 3.3 V, 5 V  
Yes  
Yes  
No  
No  
No  
(1)  
(1)  
Yes/No  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
Yes  
Yes  
No  
Yes/No  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
No  
No  
No  
(1)  
Selected by MODE pin.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
P C is a trademark of Texas Instruments.  
PC Card and CardBus are trademarks of PCMCIA (Personal Computer Memory Card International Association).  
ꢁꢊ ꢌ ꢋꢖ ꢉ ꢀꢐ ꢌꢑ ꢋ ꢆꢀꢆ ꢗꢘ ꢙꢚ ꢛ ꢜꢝ ꢞꢗꢚꢘ ꢗꢟ ꢠꢡ ꢛ ꢛ ꢢꢘꢞ ꢝꢟ ꢚꢙ ꢣꢡꢤ ꢥꢗꢠ ꢝꢞꢗ ꢚꢘ ꢦꢝ ꢞꢢꢧ ꢁꢛ ꢚꢦꢡ ꢠꢞꢟ  
ꢠ ꢚꢘ ꢙꢚꢛ ꢜ ꢞꢚ ꢟ ꢣꢢ ꢠ ꢗ ꢙꢗ ꢠ ꢝ ꢞꢗ ꢚꢘꢟ ꢣ ꢢꢛ ꢞꢨꢢ ꢞꢢ ꢛ ꢜꢟ ꢚꢙ ꢀꢢꢩ ꢝꢟ ꢐꢘꢟ ꢞꢛ ꢡꢜ ꢢꢘꢞ ꢟ ꢟꢞ ꢝꢘꢦ ꢝꢛ ꢦ ꢪ ꢝꢛ ꢛ ꢝ ꢘꢞꢫꢧ  
ꢁꢛ ꢚ ꢦꢡꢠ ꢞ ꢗꢚ ꢘ ꢣꢛ ꢚ ꢠ ꢢ ꢟ ꢟ ꢗꢘ ꢬ ꢦꢚ ꢢ ꢟ ꢘꢚꢞ ꢘꢢ ꢠꢢ ꢟꢟ ꢝꢛ ꢗꢥ ꢫ ꢗꢘꢠ ꢥꢡꢦ ꢢ ꢞꢢ ꢟꢞꢗ ꢘꢬ ꢚꢙ ꢝꢥ ꢥ ꢣꢝ ꢛ ꢝꢜ ꢢꢞꢢ ꢛ ꢟꢧ  
Copyright 2002 − 2003, Texas Instruments Incorporated  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during  
storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION  
PACKAGED DEVICES  
T
A
PLASTIC SMALL OUTLINE  
(DB)  
POWERPADPLASTIC SMALL  
POWERPADPLASTIC SMALL  
OUTLINE (DAP−32)  
OUTLINE (PWP−24)  
TPS2204APWP  
TPS2210APWP  
−40°C to 85°C  
TPS2206ADB  
TPS2206ADAP  
(1)  
The DB, PWP, and DAP packages are available taped and reeled. Add R suffix to device type (e.g., TPS2206ADBR) for taped and reeled.  
PACKAGE DISSIPATION RATINGS  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T = 85°C  
A
A
A
(1)  
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
DB (30)  
821.46 mW  
10.95 mW/°C  
42.55 mW/°C  
33.22 mW/°C  
328.58 mW  
1276.5 mW  
996.67 mW  
164.29 mW  
638.29 mW  
498.33 mW  
DAP (32)  
PWP (24)  
3191.4 mW  
2491.6 mW  
(1)  
These devices are mounted on an JEDEC low-k board (2-oz. traces on surface).  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
(1)  
UNITS  
V
V
V
)
−0.3 V to 5.5  
−0.3 V to 5.5  
−0.3 V to 14  
−0.3 V to 6  
−0.3 V to 6  
−0.3 V to 14  
V
V
V
V
V
V
I(3.3V  
Input voltage range for card power  
Logic input/output voltage  
I(5V)  
I(12V)  
V
V
O(xVCC)  
Output voltage  
O(xVPP)  
Continuous total power dissipation  
See Dissipation Rating Table  
Internally Limited  
Internally Limited  
−40°C to 100  
−55°C to 150  
260  
I
I
O(xVCC)  
Output current  
O(xVPP)  
Operating virtual junction temperature range, T  
°C  
°C  
J
Storage temperature range, T  
STG  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds)  
OC sink current  
°C  
10  
mA  
(1)  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
PowerPAD is a trademark of Texas Instruments.  
2
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
RECOMMENDED OPERATING CONDITIONS  
MIN MAX  
UNIT  
V
V
V
3
3
7
3.6  
5.5  
13.5  
1
I(3.3V)(1)  
Input voltage, V  
is required for all circuit operations. 5 V and  
12 V are only required for their respective functions.  
I(3.3V)  
V
I(5V)  
I(12V)  
I
I
at T = 100°C  
A
O(xVCC)  
J
Output current, I  
O
at T = 100°C  
100  
2.5  
mA  
MHz  
O(xVPP)  
J
Clock frequency, f  
(clock)  
Data  
200  
250  
100  
100  
100  
100  
100  
250  
−40  
Latch  
Clock  
Reset  
Pulse duration, t  
ns  
w
Data-to-clock hold time, t (see Figure 2)  
ns  
ns  
ns  
ns  
°C  
h
Data-to-clock setup time, t (see Figure 2)  
su  
Latch delay time, t  
(see Figure 2)  
d(latch)  
d(clock)  
Clock delay time, t  
(see Figure 2)  
Operating virtual junction temperature, T (maximum to be calculated at worst case P at 85°C ambient)  
100  
J
D
(1)  
It is understood that for V < 3 V, voltages within the absolute maximum ratings applied to pin 5 V or pin 12 V will not damage the IC.  
I(3.3V)  
ELECTRICAL CHARACTERISTICS  
T = 25°C, V  
J I(5V)  
= 5 V, V  
I(3.3V)  
= 3.3 V, V = 12 V, all outputs unloaded (unless otherwise noted)  
I(12V)  
POWER SWITCH  
(1)  
TEST CONDITIONS  
PARAMETER  
3.3V to xVCC  
MIN  
TYP  
85  
MAX  
110  
140  
130  
160  
1
UNIT  
I
I
I
I
I
I
I
I
I
I
= 750 mA each  
O
(2)  
= 750 mA each, T = 100°C  
110  
95  
O
J
mΩ  
= 500 mA each  
O
(2)  
5V to xVCC  
Static drain-  
= 500 mA each, T = 100°C  
120  
0.8  
1
O
J
source on-state  
resistance  
r
DS(on)  
= 50 mA each  
O
(2)  
3.3V or 5V to xVPP  
= 50 mA each, T = 100°C  
1.3  
2.5  
3.4  
1
O
J
= 50 mA each  
2
O
(2)  
12V to xVPP  
= 50 mA each, T = 100°C  
2.5  
0.7  
0.4  
O
J
Discharge at xVCC  
Discharge at xVPP  
= 1 mA  
= 1 mA  
0.5  
0.2  
Output discharge  
resistance  
O(disc)  
O(disc)  
kΩ  
0.5  
Limit (steady-state value),  
output powered into a short  
circuit  
I
I
I
I
1
120  
1
1.4  
200  
1.4  
2
300  
2
A
OS(xVCC)  
OS(xVPP)  
OS(xVCC)  
OS(xVPP)  
mA  
A
I
Short-circuit output current  
Thermal shutdown  
OS  
Limit (steady-state value),  
output powered into a short  
120  
200  
300  
mA  
circuit, T = 100°C  
J
Thermal trip point, T  
Rising temperature  
135  
10  
10  
3
J
°C  
(2)  
temperature  
Hysteresis, T  
J
5V to xVCC = 5 V, with 100-mshort to GND  
5V to xVPP = 5 V, with 100-mshort to GND  
(3)(4)  
Current-limit response time  
µs  
(1)  
(2)  
(3)  
(4)  
Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.  
TPS2204A and TPS2206A: two switches on. TPS2210A: one switch on.  
Specified by design; not tested in production.  
From application of short to 110% of final current limit.  
3
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
ELECTRICAL CHARACTERISTICS Continued  
T = 25°C, V  
= 5 V, V  
I(3.3V)  
= 3.3 V, V  
I(12V)  
= 12 V, all outputs unloaded (unless otherwise noted)  
J
I(5V)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
140  
8
MAX  
200  
12  
180  
2
UNIT  
I
I
I
I
I
I
I(3.3V)  
Normal  
operation  
V (xVCC) = V (xVPP) = 3.3 V and  
O O  
also for RESET = 0 V  
I(5V)  
100  
0.3  
0.1  
0.3  
Input current,  
quiescent  
I(12V)  
I(3.3V)  
I(5V)  
I
I
µA  
Shutdown  
mode  
2
V (xVCC) = V (xVPP) = Hi-Z  
O
O
2
I(12V)  
10  
50  
10  
50  
V
V
= 5 V,  
O(xVCC)  
= V  
= 0 V  
T = 100°C  
I(5V)  
I(12V)  
Leakage current,  
output off state  
J
I
Shutdown mode  
µA  
lkg  
V
V
= 12 V,  
O(xVPP)  
I(5V)  
= V  
= 0 V  
T = 100°C  
J
I(12V)  
LOGIC SECTION (CLOCK, DATA, LATCH, RESET, SHDN, OC)  
PARAMETER  
TEST CONDITIONS  
RESET = 5.5 V  
MIN  
−1  
TYP  
MAX  
1
UNIT  
(1)  
I
I(RESET)  
RESET = 0 V  
SHDN = 5.5 V  
SHDN = 0 V  
LATCH = 5.5 V  
LATCH = 0 V  
0 V to 5.5 V  
−30  
−1  
−20  
−10  
1
(1)  
I
I(SHDN)  
I(LATCH)  
−50  
−3  
50  
1
I
I
Input current, logic  
µA  
(1)  
I
I
−1  
−1  
2
1
I(CLOCK, DATA)  
V
V
V
High-level input voltage, logic  
Low-level input voltage, logic  
V
V
IH  
0.8  
0.4  
1
IL  
Output saturation voltage at OC  
Leakage current at OC  
I
O
= 2 mA  
0.14  
0
V
O(sat)  
I
V
= 5.5 V  
µA  
lkg  
(1)  
O(/OC)  
LATCH has low current pulldown. RESET and SHDN have low-current pullup.  
UVLO AND POR (POWER-ON RESET)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2.7  
MAX  
UNIT  
V
V
V
V
V
Input voltage at 3.3V pin, UVLO  
UVLO hysteresis voltage at VA  
Input voltage at 5V pin, UVLO  
3.3-V level below which all switches are Hi-Z  
5-V level below which only 5V switches are Hi-Z  
Delay from voltage hit (step from 3 V to 2.3 V)  
2.4  
2.9  
I(3.3V)  
hys(3.3V)  
I(5V)  
(1)  
100  
2.5  
mV  
V
2.3  
2.9  
(1)  
UVLO hysteresis voltage at 5 V  
100  
mV  
hys(5V)  
(1)  
Delay time for falling response, UVLO  
t
df  
4
µs  
to Hi-Z control (90% V to GND)  
G
3.3-V voltage below which POR is asserted  
causing a RESET internally with all line  
switches open and all discharge switches  
closed.  
(1)  
Input voltage, power-on reset  
V
1.7  
V
I(POR)  
(1)  
Specified by design; not tested in production.  
4
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
SWITCHING CHARACTERISTICS  
V
= 5 V, T = 25°C, V  
= 3.3 V, V  
I(5V)  
= 5 V, V  
I(12)  
= 12 V (not applicable for TPS2223A) all outputs unloaded (unless otherwise noted)  
CC  
A
I(3.3V)  
(1)  
(2)  
PARAMETER  
LOAD CONDITION  
MIN  
TYP  
0.9  
MAX  
UNIT  
TEST CONDITIONS  
V
V
V
V
V
= 5 V  
C
I
= 0.1 µF, C  
= 0.1 µF,  
= 0 A  
O(xVCC)  
L(xVCC)  
O(xVCC)  
L(xVPP)  
O(xVPP)  
= 0 A,  
I
= 12 V  
= 5 V  
0.26  
1.1  
O(xVPP)  
O(xVCC)  
O(xVPP)  
O(xVCC)  
(3)  
t
r
Output rise times  
ms  
C
I
= 150 µF, C  
= 10 µF,  
= 50 mA  
L(xVCC)  
O(xVCC)  
L(xVPP)  
= 0.75 A, I  
= 12 V  
= 5 V,  
0.6  
O(xVPP)  
0.5  
0.2  
Discharge switches ON  
C
I
= 0.1 µF, C  
= 0.1 µF,  
= 0 A  
L(xVCC)  
O(xVCC)  
L(xVPP)  
O(xVPP)  
= 0 A,  
I
V
= 12 V,  
O(xVPP)  
Discharge switches ON  
(3)  
Output fall times  
t
f
ms  
V
V
= 5 V  
2.35  
3.9  
2
C
I
= 150 µF, C  
= 10 µF,  
= 50 mA  
O(xVCC)  
L(xVCC)  
O(xVCC)  
L(xVPP)  
= 0.75 A, I  
= 12 V  
O(xVPP)  
O(xVPP)  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
pdon  
pdoff  
pdon  
pdoff  
pdon  
pdoff  
pdon  
pdoff  
pdon  
pdoff  
pdon  
pdoff  
pdon  
pdoff  
pdon  
pdoff  
pdon  
pdoff  
pdon  
pdoff  
Latchto xVPP (12 V)  
Latchto xVPP (5 V)  
Latchto xVPP (3.3 V)  
Latchto xVCC (5 V)  
Latchto xVCC (3.3V)  
Latchto xVPP (12 V)  
Latchto xVPP (5 V)  
Latchto xVPP (3.3 V)  
Latchto xVCC (5 V)  
Latchto xVCC (3.3V)  
0.62  
0.77  
0.51  
0.75  
0.52  
0.3  
2.5  
0.3  
2.8  
2.2  
0.8  
0.8  
0.6  
0.8  
0.6  
0.6  
2.5  
0.5  
2.6  
C
I
= 0.1 µF, C  
= 0.1 µF,  
= 0 A  
L(xVCC)  
O(xVCC)  
L(xVPP)  
O(xVPP)  
ms  
= 0 A,  
I
Propagation delay  
(3)  
t
pd  
times  
C
= 150 µF, C  
= 10 µF,  
= 50 mA  
L(xVCC)  
O(xVCC)  
L(xVPP)  
ms  
I
= 0.75 A, I  
O(xVPP)  
(1)  
(2)  
(3)  
Refer to Parameter Measurement Information in Figure 1.  
No card inserted, assumes a 0.1-µF output capacitor (see Figure 1).  
Specified by design; not tested in production.  
5
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
PIN ASSIGNMENTS  
TPS2206A  
DB PACKAGE  
(TOP VIEW)  
TPS2206A  
DAP PACKAGE  
(TOP VIEW)  
5V  
5V  
DATA  
CLOCK  
LATCH  
NC  
1
2
3
4
5
6
7
8
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
5V  
NC  
NC  
NC  
NC  
SHDN  
12V  
BVPP  
BVCC  
BVCC  
BVCC  
NC  
5V  
5V  
NC  
5V  
NC  
NC  
NC  
NC  
NC  
SHDN  
12V  
BVPP  
BVCC  
BVCC  
BVCC  
OC  
NC  
3.3V  
3.3V  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
DATA  
CLOCK  
LATCH  
NC  
12V  
AVPP  
AVCC  
AVCC  
AVCC  
GND  
NC  
RESET  
3.3V  
9
12V  
10  
11  
12  
13  
14  
15  
AVPP  
AVCC  
AVCC  
AVCC  
GND  
RESET  
NC  
OC  
3.3V  
3.3V  
NC − No internal connection  
3.3V  
TPS2204A  
PWP PACKAGE  
(TOP VIEW)  
TPS2210A  
PWP PACKAGE  
(TOP VIEW)  
5V  
5V  
DATA  
CLOCK  
LATCH  
NC  
5V  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
5V  
NC  
NC  
SHDN  
12V  
BVPP  
BVCC  
BVCC  
NC  
OC  
3.3V  
3.3V  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
NC  
NC  
NC  
SHDN  
12V  
NC  
NC  
NC  
5V  
DATA  
CLOCK  
LATCH  
NC  
12V  
12V  
AVPP  
AVCC  
AVCC  
GND  
AVPP  
AVCC  
AVCC  
GND  
9
9
NC  
OC  
NC  
10  
11  
12  
10  
11  
12  
RESET  
RESET  
3.3V  
6
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
TERMINAL FUNCTIONS  
TERMINAL  
NUMBER  
TPS2206A  
I/O  
DESCRIPTION  
TPS2204A  
TPS2210A  
NAME  
PWP  
13, 14  
1, 2, 24  
DB  
DAP  
PWP  
3.3V  
15, 16, 17  
1, 2, 30  
16, 17, 18  
1, 2, 32  
13  
I
I
3.3-V input for card power and chip power  
5-V V input for card power  
5V  
1, 2  
CC  
12-V V  
input for card power (xVPP). The two 12-V pins must be  
externally connected.  
PP  
12V  
7, 20  
9, 10  
8
7, 24  
9, 10, 11  
8
8, 25  
10, 11, 12  
9
7, 20  
9, 10  
8
I
AVCC  
AVPP  
O
O
Switched output that delivers 0 V, 3.3 V, 5 V, or high impedance to card.  
Switched output that delivers 0 V, 3.3 V, 5 V, 12 V, or high impedance  
to card.  
BVCC  
BVPP  
CLOCK  
DATA  
17, 18  
20, 21, 22  
21, 22, 23  
−−  
−−  
4
O
O
I
Switched output that delivers 0 V, 3.3 V, 5 V, or high impedance.  
Switched output that delivers 0 V, 3.3 V, 5 V, 12 V, or high impedance.  
Logic-level clock for serial data word  
19  
4
23  
4
24  
5
3
3
4
3
I
Logic-level serial data word  
GND  
11  
5
12  
5
13  
6
11  
5
Ground  
LATCH  
I
Logic-level latch for serial data word, internal pulldown  
6, 14,  
16 − 19,  
22−24  
6, 16, 22,  
23  
13, 19,  
26−29  
3, 7, 15,  
19, 2731  
NC  
OC  
No internal connection  
Open-drain overcurrent reporting output that goes low when an  
overcurrent condition exists.  
15  
18  
20  
15  
O
An external pullup is required.  
Hi-Z (open) all switches. Identical function to serial D8. Asynchronous  
active-low command, internal pullup  
SHDN  
21  
12  
25  
14  
26  
14  
21  
12  
I
I
Logic-level RESET input active low. Do not connect if terminal 6 is  
used.  
RESET  
TYPICAL PC CARD POWER−DISTRIBUTION APPLICATION  
Power Supply  
TPS2206A  
V
V
1
2
AVPP  
12 V  
12 V  
PP  
PC  
Card A  
5 V  
5 V  
PP  
AVCC  
VCC  
VCC  
3.3 V  
3.3 V  
AVCC  
AVCC  
RESET  
SHDN  
Supervisor  
V
V
1
BVPP  
PP  
2
PC  
Card b  
3
PP  
Serial  
Interface  
BVCC  
BVCC  
BVCC  
VCC  
VCC  
PCMCIA  
Controller  
OC  
7
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
PARAMETER MEASUREMENT INFORMATION  
xVPP  
xVCC  
I
I
O(xVPP)  
O(xVCC)  
LOAD CIRCUIT (xVPP)  
LOAD CIRCUIT (xVCC)  
V
V
DD  
DD  
LATCH  
LATCH  
50%  
50%  
GND  
GND  
t
t
pd(off)  
pd(off)  
t
t
pd(on)  
pd(on)  
V
V
I(12V/5V/3.3V)  
I(5V/3.3V)  
90%  
10%  
V
O(xVPP)  
V
O(xVCC)  
90%  
10%  
GND  
GND  
Propagation Delay (xVPP)  
Propagation Delay (xVCC)  
t
f
t
f
t
r
t
r
V
V
I(12V/5V/3.3V)  
I(5V/3.3V)  
V
V
O(xVPP)  
90%  
10%  
90%  
10%  
O(xVCC)  
GND  
GND  
Rise/Fall Time (xVCC)  
Rise/Fall Time (xVPP)  
V
V
DD  
DD  
LATCH  
50%  
50%  
LATCH  
GND  
GND  
t
off  
t
off  
t
on  
t
on  
V
V
I(5V/3.3V)  
I(12V/5V/3.3V)  
V
O(xVPP)  
V
O(xVCC)  
90%  
10%  
90%  
10%  
GND  
GND  
Turnon/off Time (xVPP)  
Turnon/off Time (xVCC)  
VOLTAGE WAVEFORMS  
Figure 1. Test Circuits and Voltage Waveforms  
DATA  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LATCH  
CLOCK  
:
NOTE Data is clocked in on the positive edge of the clock. The latch should occur before the next positive leading edge of the clock. For definition  
of D0to D8, see the control logic table.  
Figure 2. Serial-Interface Timing for TPS2206A  
8
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
TABLE OF GRAPHS  
FIGURE  
Short-circuit response, short applied to powered-on 5-V xVCC-switch output  
Short-circuit response, short applied to powered-on 12-V xVPP-switch output  
OC response with ramped overcurrent-limit load on 5-V xVCC-switch output  
OC response with ramped overcurrent-limit load on 12-V xVPP-switch output  
vs Time  
3
4
vs Time  
vs Time  
5
vs Time  
6
Turnon propagation delay time, xVCC (C = 150 µF)  
vs Junction temperature  
vs Junction temperature  
vs Junction temperature  
vs Junction temperature  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Junction temperature  
vs Junction temperature  
vs Junction temperature  
vs Junction temperature  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
7
L
Turnoff propagation delay time, xVCC (C = 150 µF)  
8
L
Turnon propagation delay time, xVPP (C = 10 µF)  
9
L
Turnoff propagation delay time, xVPP (C = 10 µF)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
L
Turnon propagation delay time, xVCC (T = 25°C)  
J
Turnoff propagation delay time, xVCC (T = 25°C)  
J
Turnon propagation delay time, xVPP (T = 25°C)  
J
Turnoff propagation delay time, xVPP (T = 25°C)  
J
Rise time, xVCC (C = 150 µF)  
L
Fall time, xVCC (C = 150 µF)  
L
Rise time, xVPP (C = 10 µF)  
L
Fall time, xVPP (C = 10 µF)  
L
Rise time, xVCC (T = 25°C)  
J
Fall time, xVCC (T = 25°C)  
J
Rise time, xVPP (T = 25°C)  
J
Fall time, xVPP (T = 25°C)  
J
SHORT-CIRCUIT RESPONSE,  
SHORT-CIRCUIT RESPONSE,  
SHORT APPLIED TO POWERED-ON 5-V  
SHORT APPLIED TO POWERED-ON 12-V  
xVCC-SWITCH OUTPUT  
xVPP-SWITCH OUTPUT  
vs  
vs  
TIME  
TIME  
V
O(/OC)  
5 V/div  
V
O(/OC)  
2 V/div  
V
IN(5V)  
2 V/div  
I
O(xVPP)  
2 A/div  
I
O(VCC)  
5 A/div  
0
0
1
2
3
4
5
100  
200  
300  
400  
500  
t − Time − ms  
t − Time − µs  
Figure 3  
Figure 4  
9
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
OC RESPONSE WITH RAMPED  
OVERCURRENT-LIMIT LOAD ON 5-V  
OC RESPONSE WITH RAMPED  
OVERCURRENT-LIMIT LOAD ON 12-V  
xVCC-SWITCH OUTPUT  
xVPP-SWITCH OUTPUT  
vs  
TIME  
vs  
TIME  
V
O(/OC)  
5 V/div  
V
O(/OC)  
5 V/div  
I
O(xVCC)  
1 A/div  
I
O(xVPP)  
100 mA/div  
0
10  
20  
30  
40  
50  
0
2
4
6
8
10  
t − Time − ms  
t − Time − ms  
Figure 5  
Figure 6  
TURNOFF PROPAGATION DELAY TIME, xVCC  
TURNON PROPAGATION DELAY TIME, xVCC  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
2.6  
0.8  
0.7  
0.6  
0.5  
xVCC = 5 V  
xVCC = 5 V  
I
C
= 0.75 A  
I
C
= 0.75 A  
= 150 µF  
2.55  
2.5  
O
O
= 150 µF  
L
L
2.45  
2.4  
0.4  
0.3  
2.35  
0.2  
0.1  
0
2.3  
2.25  
−50  
−20  
10  
40  
70  
100  
−50  
−20  
10  
40  
70  
100  
T − Junction Temperature − °C  
J
T
J
− Junction Temperature − °C  
Figure 7  
Figure 8  
10  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
TURNOFF PROPAGATION DELAY TIME, xVPP  
TURNON PROPAGATION DELAY TIME, xVPP  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
0.9  
0.8  
3
xVPP = 12 V  
I
C
= 0.05 A  
= 10 µF  
O
2.5  
L
0.7  
0.6  
0.5  
0.4  
2
1.5  
0.3  
0.2  
0.1  
1
xVCC = 12 V  
I
C
= 0.05 A  
= 10 µF  
O
0.5  
L
0
0
−50  
−20  
10  
40  
70  
100  
−50  
−20  
10  
40  
70  
100  
T − Junction Temperature − °C  
J
T
J
− Junction Temperature − °C  
Figure 9  
Figure 10  
TURNOFF PROPAGATION DELAY TIME, xVCC  
TURNON PROPAGATION DELAY TIME, xVCC  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
2.55  
0.7  
xVCC = 5 V  
I = 0.75 A  
O
T = 25°C  
J
xVCC = 5 V  
I
T
= 0.75 A  
= 25°C  
O
0.6  
0.5  
2.5  
2.45  
2.4  
J
0.4  
0.3  
0.2  
0.1  
0
2.35  
2.3  
2.25  
0.1  
1
10  
100  
1000  
0.1  
1
C
10  
100  
1000  
C
L
− Load Capacitance − µF  
− Load Capacitance − µF  
L
Figure 11  
Figure 12  
11  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
TURNOFF PROPAGATION DELAY TIME, xVPP  
TURNON PROPAGATION DELAY TIME, xVPP  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
0.9  
2.25  
xVPP = 12 V  
xVPP = 12 V  
I
T
= 0.05 A  
= 25°C  
0.8  
0.7  
O
I
T
= 0.05 A  
= 25°C  
O
J
2.2  
2.15  
2.1  
J
0.6  
0.5  
0.4  
0.3  
0.2  
2.05  
2
0.1  
0
1.95  
0.1  
1
10  
0.1  
1
10  
C
L
− Load Capacitance − µF  
C
L
− Load Capacitance − µF  
Figure 13  
Figure 14  
FALL TIME, xVCC  
vs  
RISE TIME, xVCC  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
1.22  
1.2  
2.41  
2.4  
xVCC = 5 V  
xVCC = 5 V  
I
C
= 0.75 A  
= 150 µF  
O
I
C
= 0.75 A  
= 150 µF  
O
L
L
1.18  
2.39  
1.16  
1.14  
1.12  
1.1  
2.38  
2.37  
2.36  
1.08  
1.06  
1.04  
2.35  
2.34  
−50  
−20  
T
10  
40  
70  
100  
−50  
−20  
T
10  
40  
70  
100  
− Junction Temperature − °C  
− Junction Temperature − °C  
J
J
Figure 15  
Figure 16  
12  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
FALL TIME, xVPP  
vs  
JUNCTION TEMPERATURE  
RISE TIME, xVPP  
vs  
JUNCTION TEMPERATURE  
4.15  
0.605  
xVPP = 12 V  
= 0.05 A  
xVPP = 12 V  
I
O
4.1  
4.05  
4
I
C
= 0.05 A  
= 10 µF  
O
C
L
= 10 µF  
0.6  
0.595  
0.59  
L
3.95  
0.585  
3.9  
0.58  
3.85  
−50  
0.575  
−20  
10  
40  
70  
100  
−50  
−20  
10  
40  
70  
100  
T
− Junction Temperature − °C  
J
T
− Junction Temperature − °C  
J
Figure 17  
Figure 18  
FALL TIME, xVCC  
vs  
RISE TIME, xVCC  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
1.2  
2.5  
2
xVCC = 5 V  
I
T
= 0.75 A  
= 25°C  
O
J
1
0.8  
1.5  
1
0.6  
0.4  
0.2  
0
xVCC = 5 V  
0.5  
0
I
T
= 0.75 A  
= 25°C  
O
J
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
C
L
− Load Capacitance − µF  
C
L
− Load Capacitance − µF  
Figure 19  
Figure 20  
13  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
FALL TIME, xVPP  
vs  
LOAD CAPACITANCE  
RISE TIME, xVPP  
vs  
LOAD CAPACITANCE  
4.5  
4
0.7  
xVPP = 12 V  
= 0.05 A  
xVPP = 12 V  
I
O
I
T
= 0.05 A  
= 25°C  
O
T
J
= 25°C  
0.6  
0.5  
J
3.5  
3
2.5  
2
0.4  
0.3  
1.5  
1
0.2  
0.1  
0
0.5  
0
0.1  
1
10  
0.1  
1
10  
C − Load Capacitance − µF  
L
C
L
− Load Capacitance − µF  
Figure 21  
Figure 22  
14  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
TYPICAL CHARACTERISTICS  
TABLE OF GRAPHS  
FIGURE  
Input current, xVCC = 3.3 V  
23  
Input current, xVCC = 5 V  
Input current, xVPP = 12 V  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
I
vs Junction temperature  
vs Junction temperature  
vs Load current  
I
Static drain-source on-state resistance, 3.3 V to xVCC switch  
Static drain-source on-state resistance, 5 V to xVCC switch  
Static drain-source on-state resistance, 12 V to xVPP switch  
xVCC switch voltage drop, 3.3-V input  
r
DS(on)  
xVCC switch voltage drop, 5-V input  
V
O
xVPP switch voltage drop, 12-V input  
Short-circuit current limit, 3.3 V to xVCC  
Short-circuit current limit, 5 V to xVCC  
I
vs Junction temperature  
OS  
Short-circuit current limit, 12 V to xVPP  
INPUT CURRENT, xVCC = 3.3 V  
vs  
INPUT CURRENT, xVCC = 5 V  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
14  
12  
10  
180  
160  
140  
120  
100  
8
6
80  
60  
4
2
40  
20  
0
0
−50  
−50  
−20  
10  
40  
70  
100  
−20  
10  
40  
70  
100  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 23  
Figure 24  
15  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE,  
3.3 V TO xVCC SWITCH  
vs  
JUNCTION TEMPERATURE  
INPUT CURRENT, xVPP = 12 V  
vs  
JUNCTION TEMPERATURE  
0.12  
0.1  
120  
100  
80  
0.08  
0.06  
0.04  
0.02  
0
60  
40  
20  
0
−50  
−20  
10  
40  
70  
100  
−50  
−20  
10  
40  
70  
100  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 25  
Figure 26  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE,  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE,  
5 V TO xVCC SWITCH  
vs  
12 V TO xVPP SWITCH  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
3
2.5  
2
0.14  
0.12  
0.1  
0.08  
0.06  
1.5  
1
0.04  
0.02  
0
0.5  
0
−50  
−20  
10  
40  
70  
100  
−50  
−20  
10  
40  
70  
100  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 27  
Figure 28  
16  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
xVCC SWITCH VOLTAGE DROP, 5-V INPUT  
xVCC SWITCH VOLTAGE DROP, 3.3-V INPUT  
vs  
vs  
LOAD CURRENT  
LOAD CURRENT  
0.14  
0.12  
0.1  
0.12  
0.1  
T
J
= 100°C  
T
J
= 100°C  
0.08  
T
J
= 0°C  
T
J
= 0°C  
0.08  
0.06  
0.04  
0.02  
0
T
J
= 25°C  
T
J
= 25°C  
0.06  
T
J
= −40°C  
T
J
= −40°C  
0.04  
0.02  
T
J
= 85°C  
T
J
= 85°C  
0
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
1
I
L
− Load Current − A  
I − Load Current − A  
L
Figure 29  
Figure 30  
xVPP SWITCH VOLTAGE DROP, 12-V INPUT  
SHORT-CIRCUIT CURRENT LIMIT, 3.3 V TO xVCC  
vs  
vs  
LOAD CURRENT  
JUNCTION TEMPERATURE  
0.14  
0.12  
0.1  
1.395  
1.39  
1.385  
1.38  
T
J
= 100°C  
0.08  
0.06  
0.04  
0.02  
0
T
= 0°C  
J
1.375  
1.37  
T
= 25°C  
J
T
J
= −40°C  
1.365  
1.36  
T
= 85°C  
J
1.355  
0
0.01  
0.02  
0.03  
0.04  
0.05  
−50  
−20  
10  
40  
70  
100  
I
L
− Load Current − A  
T
J
− Junction Temperature − °C  
Figure 31  
Figure 32  
17  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
SHORT-CIRCUIT CURRENT LIMIT, 5 V TO xVCC  
SHORT-CIRCUIT CURRENT LIMIT, 12 V TO xVPP  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
1.435  
1.43  
0.208  
0.206  
1.425  
1.42  
0.204  
0.202  
0.2  
1.415  
1.41  
xVPP = 12 V  
0.198  
0.196  
0.194  
1.405  
1.4  
1.395  
1.39  
0.192  
0.19  
1.385  
−50  
−20  
10  
40  
70  
100  
−50  
−20  
10  
40  
70  
100  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 33  
Figure 34  
18  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
APPLICATION INFORMATION  
OVERVIEW  
PC Cards were initially introduced as a means to add flash memory to portable computers. The idea of add-in cards quickly  
took hold, and modems, wireless LANs, global positioning satellite system (GPS), multimedia, and hard-disk versions were  
soon available. As the number of PC Card applications grew, the engineering community quickly recognized the need for  
a standard to ensure compatibility across platforms. To this end, the PCMCIA (Personal Computer Memory Card  
International Association) was established, comprising members from leading computer, software, PC Card, and  
semiconductor manufacturers. One key goal was to realize the plug-and-play concept, so that cards and hosts from  
different vendors would be transparently compatible.  
PC CARD POWER SPECIFICATION  
System compatibility also means power compatibility. The most current set of specifications (PC Card Standard) set forth  
by the PCMCIA committee states that power is to be transferred between the host and the card through eight of the 68  
terminals of the PC Card connector. This power interface consists of two VCC, two Vpp, and four ground terminals. Multiple  
V
CC and ground terminals minimize connector-terminal and line resistance. The two Vpp terminals were originally specified  
as separate signals, but are normally tied together in the host to form a single node to minimize voltage losses. Card primary  
power is supplied through the VCC terminals; flash-memory programming and erase voltage are supplied through the Vpp  
terminals.  
DESIGNING FOR VOLTAGE REGULATION  
The current PCMCIA specification for output voltage regulation, VO(reg), of the 5-V output is 5% (250 mV). In a typical PC  
power-system design, the power supply has an output-voltage regulation, VPS(reg), of 2% (100 mV). Also, a voltage drop  
from the power supply to the PC Card results from resistive losses, VPCB, in the PCB traces and the PCMCIA connector.  
A typical design would limit the total of these resistive losses to less than 1% (50 mV) of the output voltage. Therefore, the  
allowable voltage drop, VDS, for the device would be the PCMCIA voltage regulation less the power supply regulation and  
less the PCB and connector resistive drops:  
V
+ V  
–V  
–V  
DS  
O(reg) PS(reg) PCB  
Typically, this would leave 100 mV for the allowable voltage drop across the TPS2204A, TPS2206A, or TPS2210A. The  
voltage drop is the output current multiplied by the switch resistance of the device. Therefore, the maximum output current,  
IO max, that can be delivered to the PC Card in regulation is the allowable voltage drop across the device, divided by the  
output-switch resistance.  
V
DS  
I max +  
r
O
DS(on)  
The xVCC outputs have been designed to deliver the peak and average currents defined by the PC Card specification  
within regulation over the operating temperature range. The xVPP outputs have been designed to deliver 100 mA  
continuously.  
19  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
OVERCURRENT AND OVERTEMPERATURE PROTECTION  
PC Cards are inherently subject to damage that can result from mishandling. Host systems require protection against  
short-circuited cards that could lead to power-supply or PCB trace damage. Even extremely robust systems could undergo  
rapid battery discharge into a damaged PC Card, resulting in the rather sudden and unacceptable loss of system power.  
The reliability of fused systems is poor, in comparison, as blown fuses require troubleshooting and repair, usually by the  
manufacturer.  
The TPS2204A, TPS2206A, and TPS2210A take a two-pronged approach to overcurrent protection. Overcurrent  
protection is designed to activate if an output is shorted or when an overcurrent condition is present when switches are  
powered up. First, instead of fuses, sense FETs monitor each of the xVCC and xVPP power outputs. Unlike sense resistors  
or polyfuses, these FETs do not add to the series resistance of the switch; therefore voltage and power losses are reduced.  
Overcurrent sensing is applied to each output separately. Excessive current generates an error signal that limits the output  
current of only the affected output, preventing damage to the host. Each xVCC output overcurrent limits from 1 A to 2.2  
A, typically around 1.6 A; the xVPP outputs limit from 100 mA to 250 mA, typically around 200 mA.  
Second, when an overcurrent condition is detected, the device asserts an active low OC signal that can be monitored by  
the microprocessor or controller to initiate diagnostics and/or send the user a warning message. If an overcurrent condition  
persists, causing the IC to exceed its maximum junction temperature, thermal-protection circuitry activates, shutting down  
all power outputs until the device cools to within a safe operating region, which is ensured by a thermal shutdown hysteresis.  
Thermal limiting prevents destruction of the IC from overheating beyond the package power-dissipation ratings.  
During power up, the devices control the rise times of the xVCC and xVPP outputs and limit the inrush current into a large  
load capacitance, faulty card, or connector.  
12-V SUPPLY NOT REQUIRED  
Some PC Card switches use the externally supplied 12 V to power gate drive and other chip functions, which requires that  
power be present at all times. The TPS2204A, TPS2206A, and TPS2210A offer considerable power savings by using an  
internal charge pump to generate the required higher gate drive voltages from the 3.3-V input. Therefore, the external 12-V  
supply can be disabled except when needed by the PC Card in the slot, thereby extending battery lifetime. A special feature  
in the 12-V circuitry actually helps to reduce the supply current demanded from the 3.3-V input. When 12 V is supplied and  
requested at the Vpp output, a voltage selection circuit draws the charge-pump drive current for the 12-V FETs from the  
12-V input. This selection is automatic and effectively reduces demand fluctuations on the normal 3.3-V VCC rail. For proper  
operation of this feature, a minimum 3.3-V input capacitance of 4.7 µF is recommended, and a minimum 12-V input ramp-up  
rate of 12 V/50 ms (240 V/s) is required. Additional power savings are realized during a software shutdown in which  
quiescent current drops to a maximum of 1 µA.  
BACKWARD COMPATIBILITY  
The TPS2206A is backward compatible with the TPS2206 product, with the following considerations. An active low /SHDN  
is added to provide fast shutdown capability. Also, the TPS2206A does not have the active−high RESET input, which is left  
as no connect.  
3.3–V input is required for device operation of TPS2206A.  
VOLTAGE-TRANSITIONING REQUIREMENT  
PC Cards, like portables, are migrating from 5 V to 3.3 V to minimize power consumption, optimize board space, and  
increase logic speeds. The TPS2204A, TPS2206A, and TPS2210A meet all combinations of power delivery as currently  
defined in the PCMCIA standard. The latest protocol accommodates mixed 3.3-V/5-V systems by first powering the card  
with 5 V, then polling it to determine its 3.3-V compatibility. The PCMCIA specification requires that the capacitors on  
3.3-V-compatible cards be discharged to below 0.8 V before applying 3.3-V power. This action ensures that sensitive 3.3-V  
circuitry is not subjected to any residual 5-V charge and functions as a power RESET. PC Card specification requires that  
VCC be discharged within 100 ms. PC Card resistance cannot be relied on to provide a discharge path for voltages stored  
on PC Card capacitance because of possible high-impedance isolation by power-management schemes. The devices  
include discharge transistors on all xVCC and xVPP outputs to meet the specification requirement.  
20  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
SHUTDOWN MODE  
In the shutdown mode, which can be controlled by SHDN or bit D8 of the input serial DATA word, each of the xVCC and  
xVPP outputs is forced to a high-impedance state. In this mode, the chip quiescent current is reduced to 1 µA or less to  
conserve battery power.  
POWER-SUPPLY CONSIDERATIONS  
These switches have multiple pins for each 3.3-V (except for the TPS2210A) and 5-V power input and for the switched  
xVCC outputs. Any individual pin can conduct the rated input or output current. Unless all pins are connected in parallel,  
the series resistance is higher than that specified, resulting in increased voltage drops and power loss. It is recommended  
that all input and output power pins be paralleled for optimum operation.  
To increase the noise immunity of the TPS2204A, TPS2206A, and TPS2210A, the power-supply inputs should be  
bypassed with at least a 4.7-µF electrolytic or tantalum capacitor paralleled by a 0.047-µF to 0.1-µF ceramic capacitor. It  
is strongly recommended that the switched outputs be bypassed with a 0.1-µF (or larger) ceramic capacitor; doing so  
improves the immunity of the IC to electrostatic discharge (ESD). Care should be taken to minimize the inductance of PCB  
traces between the devices and the load. High switching currents can produce large negative voltage transients, which  
forward biases substrate diodes, resulting in unpredictable performance. Similarly, no pin should be taken below −0.3 V.  
RESET INPUT  
To ensure that cards are in a known state after power brownouts or system initialization, the PC Cards should be reset at  
the same time as the host by applying low-impedance paths from xVCC and xVPP terminals to ground. A low-impedance  
output state allows discharging of residual voltage remaining on PC Card filter capacitance, permitting the system (host  
and PC Cards) to be powered up concurrently. The active low RESET input closes internal ground switches S1, S4, S7,  
and S11 with all other switches left open. The devices remain in the low-impedance output state until the signal is  
deasserted and new data is clocked in and latched. The input serial data cannot be latched during reset mode. RESET  
is provided for direct compatibility with systems that use an active-low reset voltage supervisor. The RESET pin has an  
internal 150-kpullup resistor.  
CALCULATING JUNCTION TEMPERATURE  
The switch resistance, rDS(on), is dependent on the junction temperature, TJ, of the die. The junction temperature is  
dependent on both rDS(on) and the current through the switch. To calculate TJ, first find rDS(on) from Figures 26 through 28,  
using an initial temperature estimate about 30°C above ambient. Then calculate the power dissipation for each switch,  
using the formula:  
2
P
+ r  
  I  
D
DS(on)  
Next, sum the power dissipation of all switches and calculate the junction temperature:  
TJ + ǒȍPD  
Ǔ) T , R  
  R  
+ 108°CńW  
qJA  
A
qJA  
Compare the calculated junction temperature with the initial temperature estimate. If the temperatures are not within a few  
degrees of each other, recalculate using the calculated temperature as the initial estimate.  
21  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
LOGIC INPUTS AND OUTPUTS  
The serial interface consists of the DATA, CLOCK, and LATCH leads. The data is clocked in on the positive edge of the  
clock (see Figure 2). The 9-bit (D0−D8) serial data word is loaded during the positive edge of the latch signal. The latch  
signal should occur before the next positive edge of the clock.  
The shutdown bit of the data word places all VCC and Vpp outputs in a high-impedance state and reduces chip quiescent  
current to 1 µA to conserve battery power.  
The serial interface is designed to be compatible with serial-interface PCMCIA controllers and current PCMCIA and Japan  
Electronic Industry Development Association (JEIDA) standards.  
An overcurrent output (OC) is provided to indicate an overcurrent or overtemperature condition in any of the VCC and VPP  
outputs as previously discussed.  
see Note A  
S2  
3.3 V  
3.3 V  
CS  
AVCC  
S5  
S3  
S6  
AVCC  
AVCC  
S1  
5 V  
5 V  
5 V  
See Note A  
S4  
CS  
BVCC  
BVCC  
BVCC  
S8  
S9  
See Note A  
12 V  
See Note B  
CS  
CS  
AVPP  
BVPP  
S7  
S10  
S12  
S13  
S14  
See Note A  
12 V  
See Note B  
Discharge  
Element  
S11  
Control Logic  
Current Limit  
Thermal Limit  
SHDN  
RESET  
DATA  
CLOCK  
LATCH  
GND  
UVLO  
POR  
OC  
NOTES: A. Current sense  
B. The two 12-V pins must be externally connected.  
Figure 35. Internal Switching Matrix, TPS2204A and TPS2206A  
22  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
See Note C  
CS  
S2  
S3  
3.3 V  
5 V  
AVCC  
AVCC  
S1  
S4  
S5  
See Note C  
CS  
AVPP  
S7  
5 V  
12 V  
See Note D  
S6  
12 V  
See Note D  
Control Logic  
SHDN  
Current Limit  
Thermal Limit  
RESET  
DATA  
CLOCK  
LATCH  
GND  
UVLO  
POR  
OC  
NOTES:C. Current sense  
D. The two 12-V pins must be externally connected.  
Figure 36. Internal Switching Matrix, TPS2210A  
CONTROL LOGIC  
AVPP  
BVPP  
CONTROL SIGNALS  
OUTPUT  
VAVPP  
0 V  
CONTROL SIGNALS  
OUTPUT  
VBVPP  
0 V  
D8 (SHDN)  
D0  
0
D1  
0
D8 SHDN)  
D4  
0
D5  
0
1
1
1
1
0
1
1
1
1
0
(1)  
AVCC  
(2)  
BVCC  
0
1
0
1
1
0
12 V  
Hi–Z  
Hi–Z  
1
0
12 V  
Hi–Z  
Hi–Z  
1
1
1
1
X
X
X
X
(1)  
(2)  
Output depends on BVCC  
Output depends on AVCC  
AVCC  
BVCC  
CONTROL SIGNALS  
OUTPUT  
VAVCC  
0 V  
CONTROL SIGNALS  
OUTPUT  
VBVCC  
0 V  
D8 SHDN)  
D3  
0
D2  
0
D8 SHDN)  
D6  
0
D7  
0
1
1
1
1
0
1
1
1
1
0
0
1
3.3 V  
5 V  
0
1
3.3 V  
5 V  
1
0
1
0
1
1
0 V  
1
1
0 V  
X
X
Hi–Z  
X
X
Hi–Z  
23  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
USING THE DEVICES WITH 11-BIT SERIAL DATA INTERFACE CONTROLLERS  
Even though the control logic table only shows a 9-bit interface, it can be used with most 11-bit serial data interface  
controllers. With the use of the latch input, the TPS2204A, TPS2206A, and TPS2210A only latch the last 9 bits from the  
serial stream. This means that for an 11-bit serial stream, bits 9 and 10 are ignored. 11-bit serial interface controllers use  
bits 9 and 10 for independent voltage selection of 3.3 V and 5 V between xVCC and xVPP  
.
ESD PROTECTIONS (see FIGURE 37)  
All TPS2206A inputs and outputs of these devices incorporate ESD-protection circuitry designed to withstand a 2-kV  
human-body-model discharge as defined in MIL-STD-883C, Method 3015. The xVCC and xVPP outputs can be exposed  
to potentially higher discharges from the external environment through the PC Card connector. Bypassing the outputs with  
0.1-µF capacitors protects the devices from discharges up to 10 kV.  
TPS2206A  
AVCC  
AVCC  
AVCC  
V
V
CC  
0.1 µF  
see Note A  
CC  
PC Card  
Connector A  
pp1  
V
V
AVPP  
0.1 µF  
see Note A  
pp2  
12 V  
12 V  
BVCC  
V
V
12 V  
5 V  
CC  
4.7 µF  
4.7 µF  
0.1 µF  
0.1 µF  
0.1 µF  
BVCC  
BVCC  
see Note A  
CC  
PC Card  
Connector B  
pp1  
5 V  
V
V
BVPP  
5 V  
5 V  
0.1 µF  
see Note A  
pp2  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
From PCI or  
System Shutdown  
4.7 µF  
0.1 µF  
SHDN  
Controller  
DATA  
DATA  
CLOCK  
LATCH  
CLOCK  
LATCH  
From PCI or  
System RST  
RESET  
OC  
GPI/O  
NOTE A: Maximumrecommended output capacitance for xVCC is 220 µF including card capacitance, and for xVPP is 10 µF, without OC  
glitch when switches are powered on.  
Figure 37. Detailed Interconnections and Capacitor Recommendations  
24  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
www.ti.com  
SLVS449A − DECEMBER 2002 − REVISED MAY 2003  
12-V FLASH MEMORY SUPPLY  
The TPS6734 is a fixed 12-V output boost converter capable of delivering 120 mA from inputs as low as 2.7 V. The device  
is pin-for-pin compatible with the MAX734 regulator and offers the following advantages: lower supply current, wider  
operating input-voltage range, and higher output currents. As shown in Figure 36, the only external components required  
are: an inductor, a Schottky rectifier, an output filter capacitor, an input filter capacitor, and a small capacitor for loop  
compensation. The entire converter occupies less than 0.7 in2 of PCB space when implemented with surface-mount  
components. An enable input is provided to shut the converter down and reduce the supply current to 3 µA when 12 V is  
not needed.  
The TPS6734 is a 170-kHz current-mode PWM (pulse-width modulation) controller with an n-channel MOSFET power  
switch. Gate drive for the switch is derived from the 12-V output after start-up to minimize the die area needed to realize  
the 0.7-MOSFET and improve efficiency at input voltages below 5 V. Soft start is accomplished with the addition of one  
small capacitor. A 1.22-V reference, pin 2 of TPS6734, is brought out for external use. For additional information, see the  
TPS6734 data sheet (SLVS127).  
TPS2206A  
AVCC  
3.3 V or 5 V  
R1  
10 kΩ  
AVCC  
AVCC  
AVPP  
TPS6734  
Enable  
(see Note A)  
1
8
L1  
18 µH  
EN  
VCC  
2
3
7
6
REF  
SS  
FB  
C1  
33 µF  
20 V  
+
D1  
OUT  
33 µF, 20 V  
4
5
12 V  
COMP  
GND  
12 V  
12 V  
C2  
0.01 µF  
+
C1  
0.1 µF  
BVCC  
BVCC  
BVCC  
BVPP  
C4  
0.001 µF  
5 V  
5 V  
5 V  
1 µF  
0.1 µF  
0.1 µF  
5 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
4.7 µF  
DATA  
CLOCK  
LATCH  
RESET  
OC  
SHDN  
NOTE A: The enable terminal can be tied to a general-purpose I/O terminal on the PCMCIA controller or tied high.  
Figure 38. TPS2206A With TPS6734 12-V, 120-mA Supply  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Aug-2010  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TPS2204APWP  
TPS2204APWPG4  
TPS2206ADAP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
SSOP  
PWP  
PWP  
DAP  
DAP  
DB  
24  
24  
32  
32  
30  
30  
30  
30  
24  
24  
24  
24  
60  
60  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Request Free Samples  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
Request Free Samples  
Request Free Samples  
Request Free Samples  
Request Free Samples  
Request Free Samples  
Purchase Samples  
46  
Green (RoHS  
& no Sb/Br)  
TPS2206ADAPG4  
TPS2206ADB  
46  
Green (RoHS  
& no Sb/Br)  
50  
Green (RoHS  
& no Sb/Br)  
TPS2206ADBG4  
TPS2206ADBR  
SSOP  
DB  
50  
Green (RoHS  
& no Sb/Br)  
SSOP  
DB  
2000  
2000  
60  
Green (RoHS  
& no Sb/Br)  
TPS2206ADBRG4  
TPS2210APWP  
TPS2210APWPG4  
TPS2210APWPR  
TPS2210APWPRG4  
SSOP  
DB  
Green (RoHS  
& no Sb/Br)  
Purchase Samples  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
PWP  
PWP  
PWP  
Green (RoHS  
& no Sb/Br)  
Request Free Samples  
Request Free Samples  
Purchase Samples  
60  
Green (RoHS  
& no Sb/Br)  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Purchase Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Aug-2010  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS2206ADBR  
SSOP  
DB  
30  
24  
2000  
2000  
330.0  
330.0  
16.4  
16.4  
8.2  
10.5  
8.3  
2.5  
1.6  
12.0  
8.0  
16.0  
16.0  
Q1  
Q1  
TPS2210APWPR  
HTSSOP PWP  
6.95  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS2206ADBR  
SSOP  
DB  
30  
24  
2000  
2000  
367.0  
367.0  
367.0  
367.0  
38.0  
38.0  
TPS2210APWPR  
HTSSOP  
PWP  
Pack Materials-Page 2  
MECHANICAL DATA  
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001  
DB (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
28 PINS SHOWN  
0,38  
0,22  
0,65  
28  
M
0,15  
15  
0,25  
0,09  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
14  
0,25  
A
0°ā8°  
0,95  
0,55  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
PINS **  
14  
16  
20  
24  
28  
30  
38  
DIM  
6,50  
5,90  
6,50  
5,90  
7,50  
8,50  
7,90  
10,50  
9,90  
10,50 12,90  
A MAX  
A MIN  
6,90  
9,90  
12,30  
4040065 /E 12/01  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-150  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All  
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time  
of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

TPS2211

SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS
TI

TPS2211A

SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS
TI

TPS2211AIDB

SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS
TI

TPS2211AIDBR

SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS
TI

TPS2211AIDBRG4

SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS
TI

TPS2211APW

暂无描述
TI

TPS2211APWP

SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS
TI

TPS2211APWPR

SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS
TI

TPS2211APWPRG4

SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS
TI

TPS2211APWRG4

3-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO20, GREEN, PLASTIC, TSSOP-20
TI

TPS2211DB

SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS
TI

TPS2211IDB

SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS
TI