TPS2216ADBRG4 [TI]

1A Dual-Slot PC Card Power Switch w/ Serial Interface 30-SSOP -40 to 70;
TPS2216ADBRG4
型号: TPS2216ADBRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1A Dual-Slot PC Card Power Switch w/ Serial Interface 30-SSOP -40 to 70

PC 光电二极管
文件: 总30页 (文件大小:571K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢃ ꢄꢈ ꢆ  
ꢉꢊꢆ ꢋꢌꢂ ꢋꢍ ꢀ ꢁꢎ ꢎꢆꢏ ꢉ ꢁꢍ ꢐ ꢑꢏ ꢂ ꢐꢒ ꢀꢎ ꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒꢆ ꢋ ꢁꢎ ꢕꢎꢒ ꢆ ꢎꢍ ꢖꢀꢏ ꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
TPS2214A  
DB PACKAGE  
(TOP VIEW)  
D
D
D
D
D
D
D
D
D
D
D
D
D
Fully Integrated xVCC and xVPP Switching  
xVPP Programmed Independent of xVCC  
3.3-V, 5-V, and/or 12-V Power Distribution  
5V  
NC  
MODE  
NC  
12V  
BVPP  
BVCC  
BVCC  
STBY  
OC  
3.3V  
3.3V  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
5V  
5V  
DATA  
Low r  
(60-m3.3-V xVCC Switch and  
DS(on)  
140-m5-V xVCC Switch Typical)  
Short Circuit and Thermal Protection  
150-µA (Maximum) Quiescent Current  
Standby Mode: 50-mA Current Limit (Typ)  
12-V Supply Can Be Disabled  
CLOCK  
LATCH  
RESET  
12V  
AVPP  
AVCC  
AVCC  
GND  
9
10  
11  
12  
3.3-V Low-Voltage Mode  
RESET  
Ambient Temperature . . . −40°C to 70°C  
Meets PC CardStandards  
NC − No internal connection  
TTL-Logic Compatible Inputs  
PINOUTS FOR TPS2216A DAP AND DB  
PACKAGES ARE PROVIDED ON PAGE 2.  
Available in 24-Pin and 30-Pin SSOP (DB),  
and 32-Pin TSSOP (DAP) Packages  
D
Break-Before-Make Switching  
Internal Power-On Reset  
D
description  
The TPS2214A and TPS2216A PC Card power-interface switches provide an integrated power-management  
solution for two PC Cards. All of the discrete power MOSFETs, a logic section, current limiting, and thermal  
protection for PC Card control are combined on single integrated circuits. These low-cost devices allow the  
distribution of 3.3-V, 5-V, and/or 12-V power to the card. The current-limiting feature eliminates the need for  
fuses. Current-limit reporting can help the user isolate a system fault.  
The TPS2214A and TPS2216A feature a 3.3-V low-voltage mode that allows for 3.3-V switching without the  
need for 5-V power. This feature facilitates low-power system designs such as sleep modes where only 3.3 V  
is available. These devices also have the ability to program the xVPP outputs independent of the xVCC outputs.  
A standby mode that changes all output-current limits to 50 mA (typical) has been incorporated.  
End-equipment applications for these products include: notebook computers, desktop computers, personal  
digital assistants (PDAs), digital cameras, and bar-code scanners.  
The TPS2216A is backward-compatible with the TPS2202A, TPS2206, and TPS2216. The TPS2214A is  
backward-compatible with the TPS2214.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
PowerPAD PLASTIC SMALL  
OUTLINE  
T
A
PLASTIC SMALL OUTLINE  
(DB)  
(DAP)  
40°C to 70°C  
TPS2214ADB(R), TPS2216ADB(R)  
TPS2216ADAP(R)  
The DB and DAP packages are available in tubes and left-end taped and reeled. Add R suffix  
to device type (e.g., TPS2216ADBR) for taped and reeled.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
PC Card is a trademark of PCMCIA (Personal Computer Memory Card International Association).  
ꢀꢢ  
Copyright 2000, Texas Instruments Incorporated  
ꢞ ꢢ ꢟ ꢞꢗ ꢘꢬ ꢚꢙ ꢝ ꢥꢥ ꢣꢝ ꢛ ꢝ ꢜ ꢢ ꢞ ꢢ ꢛ ꢟ ꢧ  
ꢝꢛ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢈ ꢆ  
ꢉ ꢊꢆꢋ ꢌꢂꢋ ꢍꢀ ꢁꢎ ꢎꢆ ꢏꢉ ꢁ ꢍꢐ ꢑꢏ ꢂ ꢐꢒ ꢀ ꢎꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒ ꢆ ꢋ ꢁꢎ ꢕꢎ ꢒ ꢆ ꢎꢍ ꢖꢀ ꢏꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
TPS2216A  
DAP PACKAGE  
(TOP VIEW)  
TPS2216A  
DB PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
8
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
5V  
5V  
NC  
5V  
NC  
MODE  
NC  
NC  
NC  
5V  
5V  
DATA  
CLOCK  
LATCH  
RESET  
12V  
AVPP  
AVCC  
AVCC  
AVCC  
GND  
5V  
MODE  
NC  
NC  
NC  
NC  
12V  
BVPP  
BVCC  
BVCC  
BVCC  
STBY  
OC  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
DATA  
CLOCK  
LATCH  
RESET  
12V  
AVPP  
AVCC  
AVCC  
AVCC  
GND  
NC  
12V  
9
BVPP  
BVCC  
BVCC  
BVCC  
OC  
STBY  
3.3V  
3.3V  
9
10  
11  
12  
13  
14  
15  
10  
11  
12  
13  
14  
15  
16  
NC  
RESET  
3.3V  
RESET  
NC  
3.3V  
3.3V  
3.3V  
NC − No internal connection  
Terminal Functions  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
TPS2214  
TPS2216  
NAME  
DB-24  
13, 14  
1, 2, 24  
7, 20  
9, 10  
8
DB-30  
DAP  
16, 17, 18  
1, 2, 32  
8, 25  
3.3V  
15, 16, 17  
1, 2, 30  
7, 24  
I
3.3-V input for card power and/or chip power if 5 V is not present  
5-V input for card power and/or chip power  
5V  
I
12V  
I
12-V V input card power  
pp  
AVCC  
AVPP  
BVCC  
BVPP  
GND  
MODE  
9, 10, 11  
8
10, 11, 12  
9
O
O
O
O
VCC output: 3.3-V, 5-V, GND or high impedance to card  
VPP output: 3.3-V, 5-V, 12-V, GND or high impedance to card  
VCC output: 3.3-V, 5-V, GND or high impedance to card  
VPP output: 3.3-V, 5-V, 12-V, GND or high impedance to card  
Ground  
17, 18  
19  
20, 21, 22  
23  
21, 22, 23  
24  
11  
12  
13  
22  
29  
30  
I
TPS2206 operation when floating or pulled low; must be pulled high externally for  
TPS2216A operation. MODE is internally pulled low with a 150-kpulldown  
resistor.  
OC  
15  
6
18  
6
20  
7
O
I
Logic-level output that goes low when an overcurrent or overtemperature condition  
exists.  
RESET  
RESET  
STBY  
Logic-level reset input active high. Do not connect if RESET pin is used. RESET  
is internally pulled low with a 150-kpulldown resistor.  
12  
16  
14  
19  
14  
19  
I
Logic-level reset input active low. Do not connect if RESET pin is used. The pin is  
internally pulled high with a 150-kpullup resistor.  
I
Logic-level active low input sets the TPS2216 to standby mode and sets all current  
limits to 50 mA. The pin is internally pulled high with a 150-kpullup resistor.  
CLOCK  
DATA  
LATCH  
NC  
4
4
3
5
5
4
6
I
I
I
Logic-level clock for serial data word  
Logic-level serial data word  
3
5
Logic-level latch for serial data word  
No internal connection  
21, 23  
13, 25, 26,  
27, 28  
3, 15, 26,  
27, 28, 29,  
31  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢃ ꢄꢈ ꢆ  
ꢉꢊꢆ ꢋꢌꢂ ꢋꢍ ꢀ ꢁꢎ ꢎꢆꢏ ꢉ ꢁꢍ ꢐ ꢑꢏ ꢂ ꢐꢒ ꢀꢎ ꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒꢆ ꢋ ꢁꢎ ꢕꢎꢒ ꢆ ꢎꢍ ꢖꢀꢏ ꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
functional block diagram (pin numbers refer to 30-pin DB package)  
9
TPS2216A  
AVCC  
AVCC  
10  
11  
15  
S1  
3.3V  
3.3V  
16  
17  
AVCC  
S2  
CS  
CS  
3.3V  
S7  
S8  
8
S3  
AVPP  
CS  
CS  
S9  
S10  
20  
21  
22  
BVCC  
BVCC  
BVCC  
CS  
1
2
5V  
5V  
S4  
30  
5V  
S5  
S6  
CS  
S11  
S12  
23  
BVPP  
CS  
CS  
CS  
S13  
S14  
7
12V  
24  
12V  
CS  
Internal  
Current Monitor  
29  
19  
Thermal  
MODE  
STBY  
3
4
5
6
DATA  
CLOCK  
LATCH  
RESET  
12  
GND  
14  
18  
RESET  
OC  
Both 12V pins must be connected together.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢈ ꢆ  
ꢉ ꢊꢆꢋ ꢌꢂꢋ ꢍꢀ ꢁꢎ ꢎꢆ ꢏꢉ ꢁ ꢍꢐ ꢑꢏ ꢂ ꢐꢒ ꢀ ꢎꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒ ꢆ ꢋ ꢁꢎ ꢕꢎ ꢒ ꢆ ꢎꢍ ꢖꢀ ꢏꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
absolute maximum ratings over operating virtual free-air temperature (unless otherwise noted)  
Input voltage range for card power: V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 14 V  
I(3.3V)  
I(5V)  
V
V
I(12V)  
Logic input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V  
Output voltage range:  
V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 14 V  
O(xVCC)  
O(xVPP)  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Output current: I  
I
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internally limited  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internally limited  
O(xVCC)  
O(xVPP)  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
A
= 70°C  
T = 85°C  
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
DB  
1095 mW  
10.99 mW/°C  
42.55 mW/°C  
602 mW  
438 mW  
DAP  
4255 mW  
2340 mW  
1702 mW  
These devices are mounted on an JEDEC low-k board (2 oz. traces on surface), 1-W power applied.  
recommended operating conditions  
MIN  
2.7  
2.7  
2.7  
MAX  
5.25  
5.25  
13.5  
750  
200  
2.5  
UNIT  
V
V
V
V
I(3.3V)  
V
Input voltage, V  
I(5V)  
I
V
I(12V)  
I
at T = 70°C  
mA  
mA  
MHz  
O(VCC)  
O(VPP)  
A
Output current, I  
Clock frequency  
O
I
at T = 70°C  
A
Data  
200  
250  
100  
100  
100  
100  
250  
40  
Latch  
Clock  
Pulse duration  
ns  
§
Data hold time  
ns  
ns  
ns  
ns  
°C  
§
Data setup time  
Latch delay time  
Clock delay time  
§
§
Operating virtual junction temperature, T  
100  
J
§
Refer to Figures 2 and 3.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢃ ꢄꢈ ꢆ  
ꢉꢊꢆ ꢋꢌꢂ ꢋꢍ ꢀ ꢁꢎ ꢎꢆꢏ ꢉ ꢁꢍ ꢐ ꢑꢏ ꢂ ꢐꢒ ꢀꢎ ꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒꢆ ꢋ ꢁꢎ ꢕꢎꢒ ꢆ ꢎꢍ ꢖꢀꢏ ꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
electrical characteristics, T = 25°C, V  
= 5 V, V  
= 3.3 V, V  
= 12 V, STBY floating, all  
J
I(5V)  
I(3.3V)  
I(12V)  
outputs unloaded (unless otherwise noted)  
power switch  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
60  
MAX  
105  
140  
185  
200  
1.5  
2.5  
2
UNIT  
T = 25°C,  
V
V
I
= 0 or 5,  
= 0 or 5,  
I
O
I
O
= 750 mA  
= 750 mA  
3.3 V to xVCC, with one or  
two switches on  
J
I(5V)  
I(5V)  
T = 85°C,  
J
T = 25°C,  
J
T = 85°C,  
J
T = 25°C,  
J
90  
mΩ  
= 750 mA  
140  
160  
0.7  
1.4  
1.4  
2
5 V to xVCC, with one or  
two switches on  
O
I
O
I
O
I
O
= 750 mA  
= 50 mA  
= 50 mA  
3.3 V/5 V/12 V to xVPP  
3.3 V/5 V to xVCC  
Switch resistance  
T = 85°C,  
J
T = 25°C, STBY = low,  
I
O
I
O
I
O
I
O
= 30 mA  
= 30 mA  
= 30 mA  
= 30 mA  
J
T = 85°C, STBY = low,  
3
J
T = 25°C, STBY = low,  
5
7
J
3.3 V/5 V/12 V to xVPP  
T = 85°C, STBY = low,  
10  
16  
J
V
V
I
I
at 10 mA, After reset  
at 10 mA, After reset  
0.275  
0.275  
1
0.8  
0.8  
10  
O(xVCC)  
O(xVPP)  
O(xVCC)  
O(xVPP)  
Clamp low voltage  
Leakage current  
V
T = 25°C  
I
high-impedance  
J
O(xVCC)  
state  
T = 85°C  
2
50  
J
I
I
µA  
lkg  
T = 25°C  
1
10  
I
high-impedance  
J
O(xVPP)  
state  
T = 85°C  
2
50  
J
I
1
2.5  
500  
A
T = 85°C,  
Output powered into a short to GND  
O(xVCC)  
J
I
250  
mA  
O(xVPP)  
Short-circuit output  
current limit  
OS  
T = 85°C,  
Standby mode, I  
Standby mode, I  
35  
30  
65  
60  
J
O(xVCC)  
mA  
Output powered into a short to GND,  
STBY = 0 V  
O(xVPP)  
xVCC switch  
xVPP switch  
100  
16  
Current limit  
response time  
100-mshort circuit  
µs  
I
I
I
I
I
I
I
I
I
0.01  
100  
6
2
120  
10  
I(3.3V)  
I(5V)  
V
= V  
O(xVPP)  
= 5 V  
µA  
µA  
O(xVCC)  
Normal operation  
and in reset  
mode  
I(12V)  
I(3.3V)  
I(5V)  
100  
0
120  
V
V
= 0,  
V
= 3.3 V,  
I(5V)  
O(xVPP)  
O(xVCC)  
§
Input current  
I
I
= 12 V  
22  
30  
1
I(12V)  
I(3.3V)  
I(5V)  
1
Shutdown mode  
V
= Hi-Z,  
V
= Hi-Z  
µA  
°C  
O(xVCC)  
O(xVPP)  
1
I(12V)  
Trip point, T  
Hysteresis  
155  
10  
J
Thermal shutdown  
Pulse-testing techniques maintain junction temperature close to ambient temperature (250-µs-wide pulse, less than 0.5% duty cycle); thermal  
effects must be taken into account separately.  
Specified by design, not tested in production.  
§
Input currents do not include logic input currents (presented in electrical characteristics for logic section); clock is inactive.  
NOTE: V  
I(3.3V)  
or V must be biased for switches to function.  
I(5V)  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢈ ꢆ  
ꢉ ꢊꢆꢋ ꢌꢂꢋ ꢍꢀ ꢁꢎ ꢎꢆ ꢏꢉ ꢁ ꢍꢐ ꢑꢏ ꢂ ꢐꢒ ꢀ ꢎꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒ ꢆ ꢋ ꢁꢎ ꢕꢎ ꢒ ꢆ ꢎꢍ ꢖꢀ ꢏꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
electrical characteristics, T = 25°C, V  
= 5 V, V  
= 3.3 V, V  
= 12 V, STBY floating, all  
J
I(5V)  
I(3.3V)  
I(12V)  
outputs unloaded (unless otherwise noted) (continued)  
logic section (CLOCK, DATA, LATCH, MODE, RESET, RESET, STBY, OC)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
50  
1
UNIT  
V
V
V
V
V
V
= 5 V or V  
= 0 V or V  
= 5 V  
= 0 V  
30  
I(RESET)  
I(RESET)  
I(MODE)  
I(MODE)  
I(RESET)  
I
I
or I  
I(RESET)  
I(RESET)  
= 5 V  
I(RESET)  
30  
30  
50  
1
I(MODE)  
= 0 V  
Logic input current  
µA  
= 5 V  
= 0 V  
1
I(STBY)  
I(STBY)  
I
I
I(STBY)  
50  
1
or I  
I(DATA)  
or I  
I(LATCH)  
I(CLOCK)  
V
V
= 5 V  
2
2
I(5V)  
Logic input high level  
Logic input low level  
V
V
= 0 V  
I(5V)  
0.8  
0.4  
V
V
= 5 V,  
= 0 V,  
I
I
= 1 mA  
= 1 mA  
V
−0.4  
I(5V)  
O
I(5V)  
Logic output high level, OC  
Logic output low level, OC  
V
V
V
−0.4  
I(5V)  
O
I(3.3V)  
I
O
= 1 mA  
RESET and MODE have internal 150-kpulldown resistors; RESET and STBY have internal 150-kpullup resistors.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢃ ꢄꢈ ꢆ  
ꢉꢊꢆ ꢋꢌꢂ ꢋꢍ ꢀ ꢁꢎ ꢎꢆꢏ ꢉ ꢁꢍ ꢐ ꢑꢏ ꢂ ꢐꢒ ꢀꢎ ꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒꢆ ꢋ ꢁꢎ ꢕꢎꢒ ꢆ ꢎꢍ ꢖꢀꢏ ꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
switching characteristics  
PARAMETER  
LOAD CONDITION  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
C
C
I
I
= 0.1 µF,  
= 0.1 µF,  
L(xVCC)  
L(xVPP)  
O(xVCC)  
O(xVPP)  
V
V
V
V
V
V
V
V
1
O(xVCC)  
O(xVPP)  
O(xVCC)  
O(xVPP)  
O(xVCC)  
O(xVPP)  
O(xVCC)  
O(xVPP)  
§
= 0 ,  
0.8  
1.2  
2.5  
0.01  
0.01  
3
§
= 0  
Output rise times  
t
r
ms  
C
C
= 150 µF,  
= 10 µF,  
= 1 A,  
L(xVCC)  
L(xVPP)  
O(xVCC)  
O(xVPP)  
I
I
= 50 mA  
C
C
= 0.1 µF,  
= 0.1 µF,  
L(xVCC)  
L(xVPP)  
O(xVCC)  
O(xVPP)  
§
= 0 ,  
I
I
§
= 0  
Output fall times  
t
f
ms  
C
C
= 150 µF,  
= 10 µF,  
= 1 A,  
L(xVCC)  
L(xVPP)  
O(xVCC)  
O(xVPP)  
I
I
8
= 50 mA  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
3
25  
0.6  
8.5  
0.6  
9
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
pd(on)  
pd(off)  
Latchto xVPP (12 V)  
Latchto xVPP (5 V)  
Latchto xVPP (3.3 V), V  
Latchto xVPP (3.3 V), V  
Latchto xVCC (5 V)  
= 5 V  
= 0 V  
I(5V)  
C
C
I
= 0.1 µF,  
= 0.1 µF,  
L(xVCC)  
L(xVPP)  
O(xVCC)  
O(xVPP)  
1.4  
9
I(5V)  
§
= 0 ,  
§
= 0  
I
0.3  
15  
0.2  
15  
0.4  
15  
4.5  
13  
3.3  
8
Latchto xVCC (3.3 V), V  
Latchto xVCC (3.3 V), V  
Latchto xVPP (12 V)  
Latchto xVPP (5 V)  
= 5 V  
= 0 V  
I(5V)  
I(5V)  
t
pd  
Propagation delay  
ms  
3
Latchto xVPP (3.3 V), V  
Latchto xVPP (3.3 V), V  
Latchto xVCC (5 V)  
= 5 V  
= 0 V  
I(5V)  
9
C
C
I
= 150 µF,  
= 10 µF,  
= 1 A,  
L(xVCC)  
L(xVPP)  
3
I(5V)  
9
O(xVCC)  
O(xVPP)  
I
= 50 mA  
1
12  
0.6  
12  
1
Latchto xVCC (3.3 V), V  
Latchto xVCC (3.3 V), V  
= 5 V  
= 0 V  
I(5V)  
I(5V)  
12  
§
Refer to Parameter Measurement Information  
Specified by design: not tested in production.  
No card inserted, assumes 0.1-µF recommended output capacitor (see Figure 32).  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢈ ꢆ  
ꢉ ꢊꢆꢋ ꢌꢂꢋ ꢍꢀ ꢁꢎ ꢎꢆ ꢏꢉ ꢁ ꢍꢐ ꢑꢏ ꢂ ꢐꢒ ꢀ ꢎꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒ ꢆ ꢋ ꢁꢎ ꢕꢎ ꢒ ꢆ ꢎꢍ ꢖꢀ ꢏꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
PARAMETER MEASUREMENT INFORMATION  
xVPP  
xVCC  
I
I
O(xVPP)  
O(xVCC)  
LOAD CIRCUITS  
V
V
DD  
DD  
LATCH  
LATCH  
50%  
50%  
GND  
GND  
t
t
pd(off)  
pd(off)  
t
t
pd(on)  
pd(on)  
90%  
10%  
V
O(xVPP)  
V
O(xVCC)  
90%  
10%  
GND  
GND  
Propagation Delay (xVPP)  
Propagation Delay (xVCC)  
t
f
t
f
t
t
r
r
V
V
O(xVPP)  
90%  
10%  
90%  
10%  
O(xVCC)  
GND  
GND  
Rise/Fall Time (xVCC)  
Rise/Fall Time (xVPP)  
V
V
DD  
DD  
LATCH  
50%  
50%  
GND  
GND  
t
t
off  
off  
t
t
on  
on  
V
O(xVPP)  
V
90%  
10%  
90%  
10%  
O(xVCC)  
GND  
GND  
Turn On/Off Time (xVPP)  
Turn On/Off Time (xVCC)  
VOLTAGE WAVEFORMS  
Figure 1. Test Circuits and Voltage Waveforms  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢃ ꢄꢈ ꢆ  
ꢉꢊꢆ ꢋꢌꢂ ꢋꢍ ꢀ ꢁꢎ ꢎꢆꢏ ꢉ ꢁꢍ ꢐ ꢑꢏ ꢂ ꢐꢒ ꢀꢎ ꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒꢆ ꢋ ꢁꢎ ꢕꢎꢒ ꢆ ꢎꢍ ꢖꢀꢏ ꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
PARAMETER MEASUREMENT INFORMATION  
DATA  
D6  
D10  
D8  
D7  
D4  
D3  
D1  
D9  
D5  
D2  
D0  
Data Setup Time  
Data Hold Time  
Latch Delay Time  
LATCH  
CLOCK  
Clock Delay Time  
NOTE: Data is clocked in on the positive edge of the clock. The positive edge of the latch signal should occur before the next positive edge of  
the clock. For definition of D0 to D10, see the control logic table.  
Figure 2. Serial-Interface Timing for Independent xVPP Switching When MODE = 5 V or 3.3 V  
DATA  
D4  
D8  
D6  
D5  
D2  
D1  
D7  
D3  
D0  
Data Setup Time  
LATCH  
Latch Delay Time  
Data Hold Time  
Clock Delay Time  
CLOCK  
NOTE: Data is clocked in on the positive edge of the clock. The positive edge of the latch signal should occur before the next positive edge of  
the clock. For definition of D0 to D8, see the control logic table.  
Figure 3. Serial-Interface Timing When MODE = 0 V or Floating  
Table of Timing Diagrams  
FIGURE  
Short-circuit current response, short applied to powered-on 5-V xVCC switch output  
Short-circuit current response, short applied to powered-on 12-V xVPP switch output  
OC response with ramped load on 5-V xVCC switch output  
4
5
6
7
OC response with ramped load on 12-V xVPP switch output  
Timing tests are conducted at free-air temperature, V  
I(5V)  
= 5 V, V  
I(3.3V)  
= 3.3 V, V = 12 V, C = 0.1 µF on each output, STBY floating.  
I(12V) L  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢈ ꢆ  
ꢉ ꢊꢆꢋ ꢌꢂꢋ ꢍꢀ ꢁꢎ ꢎꢆ ꢏꢉ ꢁ ꢍꢐ ꢑꢏ ꢂ ꢐꢒ ꢀ ꢎꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒ ꢆ ꢋ ꢁꢎ ꢕꢎ ꢒ ꢆ ꢎꢍ ꢖꢀ ꢏꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
PARAMETER MEASUREMENT INFORMATION  
V
O(OC)  
V
O(OC)  
5 V/div  
5 V/div  
I
I
O(VPP)  
5 A/div  
O(VCC)  
5 A/div  
0
0
200  
400  
600  
800  
1000  
200  
400  
600  
800  
1000  
t − Time − µs  
t − Time − µs  
Figure 4. Short-Circuit Response, Short Applied  
to Powered-on 5-V xVCC-Switch Output  
Figure 5. Short-Circuit Response, Short Applied  
to Powered-on 12-V xVPP-Switch Output  
V
V
O(OC)  
5 V/div  
O(OC)  
5 V/div  
I
I
O(VPP)  
O(VCC)  
1 A/div  
0.2 A/div  
0
0
4
8
12  
16  
20  
10  
20  
30  
40  
50  
t − Time − ms  
t − Time − ms  
Figure 6. OC Response With Ramped Load  
on 5-V xVCC-Switch Output  
Figure 7. OC Response With Ramped Load on  
12-V xVPP-Switch Output  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢃ ꢄꢈ ꢆ  
ꢉꢊꢆ ꢋꢌꢂ ꢋꢍ ꢀ ꢁꢎ ꢎꢆꢏ ꢉ ꢁꢍ ꢐ ꢑꢏ ꢂ ꢐꢒ ꢀꢎ ꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒꢆ ꢋ ꢁꢎ ꢕꢎꢒ ꢆ ꢎꢍ ꢖꢀꢏ ꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
8
t
t
t
t
t
t
t
t
t
t
t
t
Turnon propagation delay time, 3.3-V xVCC switch  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
vs Junction temperature  
vs Junction temperature  
vs Junction temperature  
vs Junction temperature  
vs Junction temperature  
vs Junction temperature  
vs Load current  
pd(on)  
Turnoff propagation delay time, 3.3-V xVCC switch  
Turnon propagation delay time, 5-V xVCC switch  
Turnoff propagation delay time, 5-V xVCC switch  
Turnon propagation delay time, 12-V xVPP switch  
Turnoff propagation delay time dc, 12-V xVPP switch  
Rise time, 3.3-V xVCC switch  
9
pd(off)  
10  
11  
pd(on)  
pd(off)  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
pd(on)  
pd(off)  
r
f
r
f
r
f
Fall time, 3.3-V xVCC switch  
Rise time, 5-V xVCC switch  
Fall time, 5-V xVCC switch  
Rise time, 12-V xVPP switch  
Fall time, 12-V xVPP switch  
Input current at V  
Input current at V  
Input current at V  
= V  
= V  
=3.3 V  
=5 V  
I(xVCC)  
I(xVCC)  
I(xVCC)  
I(xVPP)  
I
I
I(xVPP)  
= 5 V, V  
I(xVPP)  
=12 V  
Static drain-source on-state resistance, 3.3-V xVCC switch  
Static drain-source on-state resistance, 5-V xVCC switch  
Static drain-source on-state resistance, 12-V xVPP switch  
DC input-to-output voltage (drop), 3.3-V xVCC switch  
DC input-to-output voltage (drop), 5-V xVCC switch  
DC input-to-output voltage (drop), 12-V xVPP switch  
Short-circuit current limit, 3.3-V xVCC switch  
r
DS(on)  
V
V
IO(xVCC)  
vs Load current  
vs Load current  
IO(xVPP)  
vs Junction temperature  
vs Junction temperature  
vs Junction temperature  
I
Short-circuit current limit, 5-V xVCC switch  
OS  
Short-circuit current limit, 12-V xVPP switch  
NOTE: Electrical characteristics tests are conducted at V  
(unless otherwise noted on Figures).  
= 5 V, V  
I(3.3V)  
= 3.3 V, V  
I(12V)  
= 12 V, C = 0.1 µF on each output, STBY floating  
I(5V)  
L
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢈ ꢆ  
ꢉ ꢊꢆꢋ ꢌꢂꢋ ꢍꢀ ꢁꢎ ꢎꢆ ꢏꢉ ꢁ ꢍꢐ ꢑꢏ ꢂ ꢐꢒ ꢀ ꢎꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒ ꢆ ꢋ ꢁꢎ ꢕꢎ ꢒ ꢆ ꢎꢍ ꢖꢀ ꢏꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
TYPICAL CHARACTERISTICS  
TURNON PROPAGATION DELAY TIME,  
TURNOFF PROPAGATION DELAY TIME,  
3.3-V xVCC SWITCH  
vs  
3.3-V xVCC SWITCH  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
1.4  
1.2  
1
14  
12  
T
J
= 85°C  
T
J
= 25°C  
T
J
= 85°C  
0.8  
10  
8
T
J
= 25°C  
T
J
= −40°C  
0.6  
T
J
= −40°C  
0.4  
0.2  
dc Load = 1 A  
100 1000  
dc Load = 1 A  
100 1000  
6
0.1  
1
10  
0.1  
1
10  
C
− Load Capacitance − µF  
L
C
− Load Capacitance − µF  
L
Figure 8  
Figure 9  
TURNON PROPAGATION DELAY TIME,  
5-V xVCC SWITCH  
TURNOFF PROPAGATION DELAY TIME,  
5-V xVCC SWITCH  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
1.6  
1.4  
1.2  
1
14  
12  
T
J
= 25°C  
T
J
= −40°C  
T
J
= 85°C  
T
J
= −40°C  
T
J
= 85°C  
10  
T
J
= 25°C  
0.8  
0.6  
8
6
0.4  
0.2  
dc Load = 1 A  
100 1000  
dc Load = 1 A  
100 1000  
0.1  
1
10  
0.1  
1
10  
C
− Load Capacitance − µF  
C
− Load Capacitance − µF  
L
L
Figure 11  
Figure 10  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢃ ꢄꢈ ꢆ  
ꢉꢊꢆ ꢋꢌꢂ ꢋꢍ ꢀ ꢁꢎ ꢎꢆꢏ ꢉ ꢁꢍ ꢐ ꢑꢏ ꢂ ꢐꢒ ꢀꢎ ꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒꢆ ꢋ ꢁꢎ ꢕꢎꢒ ꢆ ꢎꢍ ꢖꢀꢏ ꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
TYPICAL CHARACTERISTICS  
TURNON PROPAGATION DELAY TIME,  
TURNOFF PROPAGATION DELAY TIME dc  
12-V xVPP SWITCH  
vs  
LOAD CAPACITANCE  
12-V xVPP SWITCH  
vs  
LOAD CAPACITANCE  
6
5
4
16  
14  
12  
10  
T
= 85°C  
J
T
J
= −40°C  
3
2
T
J
= 25°C  
T
J
= 25°C  
T
J
= −40°C  
T
J
= 85°C  
8
6
1
0
dc Load = 50 mA  
100 1000  
dc Load = 50 mA  
100 1000  
0.1  
1
10  
0.1  
1
10  
C
− Load Capacitance − µF  
L
C
− Load Capacitance − µF  
L
Figure 12  
Figure 13  
FALL TIME, 3.3-V xVCC SWITCH  
RISE TIME, 3.3-V xVCC SWITCH  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
2
3.5  
3
1.8  
1.6  
1.4  
1.2  
T
J
= 85°C  
T
J
= 25°C  
2.5  
2
T
J
= 85°C  
1
T
= −40°C  
J
T
= 25°C  
J
1.5  
T
J
= −40°C  
0.8  
0.6  
0.4  
1
0.5  
0
0.2  
0
dc Load = 1 A  
100 1000  
dc Load = 1 A  
100 1000  
0.1  
1
10  
0.1  
1
10  
C
− Load Capacitance − µF  
C
− Load Capacitance − µF  
L
L
Figure 14  
Figure 15  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢈ ꢆ  
ꢉ ꢊꢆꢋ ꢌꢂꢋ ꢍꢀ ꢁꢎ ꢎꢆ ꢏꢉ ꢁ ꢍꢐ ꢑꢏ ꢂ ꢐꢒ ꢀ ꢎꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒ ꢆ ꢋ ꢁꢎ ꢕꢎ ꢒ ꢆ ꢎꢍ ꢖꢀ ꢏꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
TYPICAL CHARACTERISTICS  
FALL TIME, 5-V xVCC SWITCH  
vs  
RISE TIME, 5-V xVCC SWITCH  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
1.8  
1.6  
4
3.5  
3
T
= 85°C  
J
1.4  
1.2  
2.5  
2
T
J
= 85°C  
1
T
J
= −40°C  
0.8  
0.6  
T
J
= 25°C  
T
J
= 25°C  
T
J
= −40°C  
1.5  
1
0.4  
0.5  
0
0.2  
0
dc Load = 1 A  
100 1000  
dc Load = 1 A  
100 1000  
0.1  
1
10  
0.1  
1
10  
C
− Load Capacitance − µF  
C
− Load Capacitance − µF  
L
L
Figure 16  
Figure 17  
FALL TIME, 12-V xVPP SWITCH  
RISE TIME, 12-V xVPP SWITCH  
vs  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
5
4.5  
4
20  
18  
T
J
= 85°C  
16  
14  
12  
T
J
= 25°C  
3.5  
3
10  
8
2.5  
2
T
J
= −40°C  
T
J
= −40°C  
1.5  
6
4
T
J
= 85°C  
1
T
J
= 25°C  
.5  
0
2
0
dc Load = 50 mA  
100 1000  
dc Load = 50 mA  
100 1000  
0.1  
1
10  
0.1  
1
10  
C
− Load Capacitance − µF  
C
− Load Capacitance − µF  
L
L
Figure 18  
Figure 19  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢃ ꢄꢈ ꢆ  
ꢉꢊꢆ ꢋꢌꢂ ꢋꢍ ꢀ ꢁꢎ ꢎꢆꢏ ꢉ ꢁꢍ ꢐ ꢑꢏ ꢂ ꢐꢒ ꢀꢎ ꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒꢆ ꢋ ꢁꢎ ꢕꢎꢒ ꢆ ꢎꢍ ꢖꢀꢏ ꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
TYPICAL CHARACTERISTICS  
INPUT CURRENT AT V  
= V  
= 5 V  
INPUT CURRENT AT V  
= V  
= 3.3 V  
I(xVCC)  
I(xVPP)  
I(xVCC)  
vs  
I(xVPP)  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
120  
110  
100  
90  
100  
90  
I
I
I(5V)  
I(5V)  
80  
70  
80  
70  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
I
I(3.3V)  
I
I(12V)  
10  
10  
0
0
I
I
I(12V)  
I(3.3V)  
−10  
−50  
0
50  
100  
−50  
0
50  
100  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 20  
Figure 21  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE,  
INPUT CURRENT AT V  
= 5 V, V  
= 12 V  
I(xVCC)  
vs  
I(xVPP)  
3.3-V xVCC SWITCH  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
120  
110  
100  
0.08  
dc Load = 0.75 A  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
I
I(5V)  
90  
80  
70  
60  
50  
40  
I
30  
20  
I(12V)  
10  
0
I
0.01  
0
I(3.3V)  
−10  
−50  
0
50  
100  
−50  
0
50  
100  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 22  
Figure 23  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢈ ꢆ  
ꢉ ꢊꢆꢋ ꢌꢂꢋ ꢍꢀ ꢁꢎ ꢎꢆ ꢏꢉ ꢁ ꢍꢐ ꢑꢏ ꢂ ꢐꢒ ꢀ ꢎꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒ ꢆ ꢋ ꢁꢎ ꢕꢎ ꢒ ꢆ ꢎꢍ ꢖꢀ ꢏꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
TYPICAL CHARACTERISTICS  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE,  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE,  
12-V xVPP SWITCH  
vs  
5-V xVCC SWITCH  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
0.2  
1
0.9  
0.8  
dc Load = 0.75 A  
0.16  
0.7  
0.6  
0.5  
0.12  
0.08  
0.4  
0.3  
0.2  
0.04  
0
0.1  
0
dc Load = 50 mA  
50  
−50  
0
100  
−50  
0
50  
100  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 24  
Figure 25  
DC INPUT-TO-OUTPUT VOLTAGE (DROP),  
DC INPUT-TO-OUTPUT VOLTAGE (DROP),  
3.3-V xVCC SWITCH  
vs  
5-V xVCC SWITCH  
vs  
LOAD CURRENT  
LOAD CURRENT  
0.16  
0.06  
0.05  
0.04  
0.03  
0.02  
0.14  
0.12  
0.1  
85°C  
85°C  
25°C  
25°C  
0.08  
0.06  
0.04  
−40°C  
−40°C  
0.01  
0
0.02  
0
0
0.2  
0.4  
0.6  
0.8  
0
0.2  
0.4  
0.6  
0.8  
I
− Load Current − A  
I
L
− Load Current − A  
L
Figure 26  
Figure 27  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢃ ꢄꢈ ꢆ  
ꢉꢊꢆ ꢋꢌꢂ ꢋꢍ ꢀ ꢁꢎ ꢎꢆꢏ ꢉ ꢁꢍ ꢐ ꢑꢏ ꢂ ꢐꢒ ꢀꢎ ꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒꢆ ꢋ ꢁꢎ ꢕꢎꢒ ꢆ ꢎꢍ ꢖꢀꢏ ꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
TYPICAL CHARACTERISTICS  
DC INPUT-TO-OUTPUT VOLTAGE (DROP),  
SHORT-CIRCUIT CURRENT LIMIT,  
3.3-V xVCC SWITCH  
vs  
12-V xVPP SWITCH  
vs  
LOAD CURRENT  
JUNCTION TEMPERATURE  
1.9  
0.06  
0.05  
1.85  
85°C  
25°C  
0.04  
1.8  
1.75  
1.7  
−40°C  
0.03  
0.02  
1.65  
1.6  
0.01  
0
−50  
0
50  
100  
0
0.01  
0.02  
0.03  
0.04  
0.05  
T
J
− Junction Temperature − °C  
I
L
− Load Current − A  
Figure 28  
Figure 29  
SHORT-CIRCUIT CURRENT LIMIT, 5-V xVCC  
SHORT-CIRCUIT CURRENT LIMIT, 12-V xVPP  
SWITCH  
SWITCH  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
2.36  
0.4  
2.32  
2.28  
0.38  
0.36  
2.24  
2.2  
0.34  
0.32  
0.3  
2.16  
2.12  
−50  
−20  
10  
40  
70  
100  
−50  
0
50  
100  
T
J
− Junction Temperature − °C  
T
J
− Junction Temperature − °C  
Figure 30  
Figure 31  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢈ ꢆ  
ꢉ ꢊꢆꢋ ꢌꢂꢋ ꢍꢀ ꢁꢎ ꢎꢆ ꢏꢉ ꢁ ꢍꢐ ꢑꢏ ꢂ ꢐꢒ ꢀ ꢎꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒ ꢆ ꢋ ꢁꢎ ꢕꢎ ꢒ ꢆ ꢎꢍ ꢖꢀ ꢏꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
APPLICATION INFORMATION  
overview  
PC Cards were initially introduced as a means to add EEPROM (flash memory) to portable computers with  
limited onboard memory. The idea of add-in cards quickly took hold; modems, wireless LANs, Global Positioning  
Satellite System (GPS), multimedia, and hard-disk versions were soon available. As the number of PC Card  
applications grew, the engineering community quickly recognized the need for a standard to ensure  
compatibility across platforms. To this end, the PCMCIA (Personal Computer Memory Card International  
Association), comprising members from leading computer, software, PC Card, and semiconductor  
manufacturers, was established. One key goal was to realize the plug-and-play concept. Cards and hosts from  
different vendors should be compatible or able to communicate with one another transparently.  
PC Card power specification  
System compatibility also means power compatibility. The most current set of specifications (PC Card Standard)  
set forth by the PCMCIA committee states that power is to be transferred between the host and the card through  
eight of the 68 terminals of the PC Card connector. This power interface consists of two V , two V , and four  
CC  
pp  
ground terminals. Multiple V  
and ground terminals minimize connector terminal and line resistance. The two  
CC  
V
terminals were originally specified as separate signals, but are commonly tied together in the host to form  
a single node to minimize voltage losses. Card primary power is supplied through the V  
pp  
terminals;  
CC  
flash-memory programming and erase voltage is supplied through the V terminals.  
pp  
designing for voltage regulation  
The current PCMCIA specification for output voltage regulation, V  
a typical PC power-system design, the power supply has an output-voltage regulation, V  
Also, a voltage drop from the power supply to the PC Card will result from resistive losses, V  
traces and the PCMCIA connector. A typical design would limit the total of these resistive losses to less than  
, of the 5-V output is 5% (250 mV). In  
O(reg)  
, of 2% (100 mV).  
PS(reg)  
, in the PCB  
PCB  
1% (50 mV) of the output voltage. Therefore, the allowable voltage drop, V , for the TPS2214A or TPS2216A  
DS  
would be the PCMCIA voltage regulation less the power supply regulation and less the PCB and connector  
resistive drops:  
V
+ V  
–V  
–V  
DS  
O(reg) PS(reg) PCB  
Typically, this would leave 100 mV for the allowable voltage drop across the 5-V switch. The specification for  
output voltage regulation of the 3.3-V output is 300 mV; so, using the same equation by deducting the voltage  
drop percentages (2%) for power-supply regulation and PCB resistive loss (1%), the allowable voltage drop for  
the 3.3-V switch is 200 mV. The voltage drop is the output current multiplied by the switch resistance of the  
TPS2214A or TPS2216A. Therefore, the maximum output current, I max, that can be delivered to the PC Card  
O
in regulation is the allowable voltage drop across the IC, divided by the output-switch resistance.  
V
DS  
I max +  
r
O
DS(on)  
The xVCC outputs can deliver 1 A continuously at 5 V and 3.3 V within regulation over the operating temperature  
range. The xVPP outputs of the IC can deliver 200 mA continuously.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢃ ꢄꢈ ꢆ  
ꢉꢊꢆ ꢋꢌꢂ ꢋꢍ ꢀ ꢁꢎ ꢎꢆꢏ ꢉ ꢁꢍ ꢐ ꢑꢏ ꢂ ꢐꢒ ꢀꢎ ꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒꢆ ꢋ ꢁꢎ ꢕꢎꢒ ꢆ ꢎꢍ ꢖꢀꢏ ꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
APPLICATION INFORMATION  
designing for voltage regulation (continued)  
overcurrent and overtemperature protection  
PC Cards are inherently subject to damage that can result from mishandling. Host systems require protection  
against short-circuited cards that could lead to power-supply or PCB trace damage. Even systems robust  
enough to withstand a short circuit would still undergo rapid battery discharge into the damaged PC Card,  
resulting in the rather sudden and unacceptable loss of system power. Most hosts include fuses for protection.  
However, the reliability of fused systems is poor, as blown fuses require troubleshooting and repair, usually by  
the manufacturer.  
The TPS2214A and TPS2216A take a two-pronged approach to overcurrent protection, which is designed to  
activate if an output is shorted or when an overcurrent condition is present when switches are powered up. First,  
instead of fuses, sense FETs monitor each of the xVCC and xVPP power outputs. Unlike sense resistors or  
polyfuses, these FETs do not add to the series resistance of the switch; therefore voltage and power losses are  
reduced. Overcurrent sensing is applied to each output separately. Excessive current generates an error signal  
that limits the output current of only the affected output, preventing damage to the host. Each xVCC output  
overcurrent limits from 1 A to 2.2 A, typically around 1.6 A; the xVPP outputs limit from 250 mA to 500 mA,  
typically around 375 mA.  
Second, when an overcurrent condition is detected, these devices assert an active low OC signal that can be  
monitored by the microprocessor or controller to initiate diagnostics and/or send the user a warning message.  
In the event that an overcurrent condition persists, causing the IC to exceed its maximum junction temperature,  
thermal-protection circuitry activates. This shuts down all power outputs until the device cools to within a safe  
operating region, which is ensured by a thermal shutdown hysteresis.  
12-V supply not required  
Many PC Card switches use the externally supplied 12 V to power gate drive and other chip functions; this  
requires that power be present at all times. The TPS2214A and TPS2216A offer considerable power savings  
by using an internal charge pump to generate the required higher gate drive voltages from the 5-V or 3.3-V  
power supplies. Therefore, the external 12-V supply can be disabled except when needed for flash-memory  
functions, thereby extending battery lifetime. Additional power savings are realized by the IC during shutdown  
mode, in which quiescent current drops to a maximum of 1 µA.  
3.3-V low-voltage mode  
The TPS2214A and TPS2216A will operate in 3.3-V low-voltage mode when 3.3 V is the only available input  
voltage (V  
= 0, V  
= 0). This feature allows host and PC Cards to be operated in low-power 3.3-V-only  
I(5V)  
I(12V)  
modes such as sleep modes. Note that in this operation mode, the IC will derive its bias current from the 3.3-V  
input pin and can only provide 3.3 V to the outputs.  
voltage transitioning requirement  
PC Cards are migrating from 5 V to 3.3 V to minimize power consumption, optimize board space, and increase  
logic speeds. The TPS2214A and TPS2216A meet all combinations of power delivery as currently defined in  
the PCMCIA standard. The latest protocol accommodates mixed 3.3-V/5-V systems by first powering the card  
with 5 V, then polling it to determine its 3.3-V compatibility. The PCMCIA specification requires that the  
capacitors on 3.3-V-compatible cards be discharged to below 0.8 V before applying 3.3-V power. This action  
ensures that sensitive 3.3-V circuitry is not subjected to any residual 5-V charge and functions as a power reset.  
PC Card specification requires that V  
be discharged within 100 ms. PC Card resistance can not be relied on  
CC  
to provide a discharge path for voltages stored on PC Card capacitance because of possible high-impedance  
isolation by power-management schemes. The TPS2214A and TPS2216A include discharge transistors on all  
xVCC and xVPP outputs to meet the specification requirement.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢈ ꢆ  
ꢉ ꢊꢆꢋ ꢌꢂꢋ ꢍꢀ ꢁꢎ ꢎꢆ ꢏꢉ ꢁ ꢍꢐ ꢑꢏ ꢂ ꢐꢒ ꢀ ꢎꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒ ꢆ ꢋ ꢁꢎ ꢕꢎ ꢒ ꢆ ꢎꢍ ꢖꢀ ꢏꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
APPLICATION INFORMATION  
designing for voltage regulation (continued)  
shutdown mode  
In the shutdown mode, which can be controlled by bit D8 of the input serial DATA word, each of the xVCC and  
xVPP outputs is forced to a high-impedance state. In this mode, the chip quiescent current is limited to 1 µA  
or less to conserve battery power.  
standby mode  
The TPS2214A and TPS2216A can be put in standby mode by pulling STBY low to conserve power during  
low-power operation. In this mode, all of the power outputs (xVCC and xVPP) will have a nominal current limit  
of 50 mA. STBY has an internal 150-kpullup resistor. The output-switch status of the device must be set,  
allowing the output capacitors to charge, prior to enabling the standby mode. Changing the setting of the output  
switches with the device in standby mode may cause an overcurrent response to be generated.  
mode  
The mode pin programs the switches in either TPS2214A/TPS2216A or TPS2206 mode. An internal 150-kΩ  
pulldown resistor is connected to the pin. Floating or pulling the mode pin low sets the switches in TPS2206  
mode; pulling the mode pin high sets the switches in TPS2214A/TPS2216A mode. In TPS2206 mode, xVPP  
outputs are dependent on xVCC outputs. In TPS2214A/TPS2216A mode, xVPP is programmed independent  
of xVCC. Refer to TPS2214A/TPS2216A control-logic tables for more information.  
power-supply considerations  
The TPS2214A and TPS2216A have multiple pins for each of its 3.3-V and 5-V power inputs and for the switched  
xVCC outputs. Any individual pin can conduct the rated input or output current. Unless all pins are connected  
in parallel, the series resistance is higher than that specified, resulting in increased voltage drops and less  
power. It is recommended that all input and output power pins be paralleled for optimum operation. Because  
the two 12-V pins are not internally connected, they must be tied together externally.  
To increase the noise immunity of the TPS2214A and TPS2216A, the power-supply inputs should be bypassed  
with a 1-µF electrolytic or tantalum capacitor paralleled by a 0.047-µF to 0.1-µF ceramic capacitor. It is strongly  
recommended that the switched outputs be bypassed with a 0.1-µF (or larger) ceramic capacitor; doing so  
improves the immunity of the IC to electrostatic discharge (ESD). Care should be taken to minimize the  
inductance of PCB traces between the IC and the load. High switching currents can produce large negative  
voltage transients, which forward biases substrate diodes, resulting in unpredictable performance. Similarly, no  
pin should be taken, or allowed to fall, below −0.3 V.  
RESET and RESET inputs  
To ensure that cards are in a known state after power brownouts or system initialization, the PC Cards should  
be reset at the same time as the host by applying low impedance paths from xVCC and xVPP terminals to  
ground. A low-impedance output state allows discharging of residual voltage remaining on PC Card filter  
capacitance, permitting the system (host and PC Cards) to be powered up concurrently. The active-high RESET  
or active low RESET input will close internal switches S1, S4, S7, and S11 with all other switches left open. The  
TPS2214A and TPS2216A remain in the low-impedance output state until the signal is deasserted and further  
data is clocked in and latched. The input serial data can not be latched during reset mode. RESET and RESET  
are provided for direct compatibility with systems that use either an active-low or active-high reset voltage  
supervisor. The RESET pin has an internal 150-kpulldown resistor and the RESET pin has an internal 150-kΩ  
pullup resistor. The device will be reset automatically when powered up.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢃ ꢄꢈ ꢆ  
ꢉꢊꢆ ꢋꢌꢂ ꢋꢍ ꢀ ꢁꢎ ꢎꢆꢏ ꢉ ꢁꢍ ꢐ ꢑꢏ ꢂ ꢐꢒ ꢀꢎ ꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒꢆ ꢋ ꢁꢎ ꢕꢎꢒ ꢆ ꢎꢍ ꢖꢀꢏ ꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
APPLICATION INFORMATION  
calculating junction temperature  
The switch resistance, r  
, is dependent on the junction temperature, T , of the die. The junction temperature  
J
DS(on)  
is dependent on both r  
and the current through the switch. To calculate T , first find r  
from Figures 23  
DS(on)  
J
DS(on)  
through 25, using an initial temperature estimate about 50°C above ambient. Then calculate the power  
dissipation for each switch, using the formula:  
2
P
+ r  
  I  
D
DS(on)  
Next, sum the power dissipation of all switches and calculate the junction temperature:  
ǒ
Ǔ) T  
ȍPD  
T +  
  R  
J
qJA  
A
Where:  
R
is the inverse of the derating factor given in the dissipation rating table.  
θJA  
Compare the calculated junction temperature with the initial temperature estimate. If the temperatures are not  
within a few degrees of each other, recalculate using the calculated temperature as the initial estimate.  
logic inputs and outputs  
The serial interface consists of DATA, CLOCK, and LATCH leads. The data is clocked in on the positive edge  
of the clock (see Figures 2 and 3). The 11-bit (D0−D10) serial data word is loaded during the positive edge of  
the latch signal. The positive edge of the latch signal should occur before the next positive edge of the clock  
occurs.  
The TPS2216 serial interfaces are compatible with serial-interface PCMCIA controllers and current PCMCIA  
and Japan Electronic Industry Development Association (JEIDA) standards.  
An overcurrent output (OC) is provided to indicate an overcurrent or overtemperature condition in any of the  
xVCC and xVPP outputs as previously discussed.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢈ ꢆ  
ꢉ ꢊꢆꢋ ꢌꢂꢋ ꢍꢀ ꢁꢎ ꢎꢆ ꢏꢉ ꢁ ꢍꢐ ꢑꢏ ꢂ ꢐꢒ ꢀ ꢎꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒ ꢆ ꢋ ꢁꢎ ꢕꢎ ꢒ ꢆ ꢎꢍ ꢖꢀ ꢏꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
APPLICATION INFORMATION  
TPS2214A/TPS2216A control logic  
TPS2214A/TPS2216A mode (MODE pulled high)  
xVPP  
AVPP CONTROL SIGNALS  
BVPP CONTROL SIGNALS  
OUTPUT  
OUTPUT  
V_BVPP  
V_AVPP  
D8 (SHDN)  
D0  
0
D1  
0
D9  
X
0
D8 (SHDN)  
D4  
0
D5  
0
D10  
X
1
1
1
1
1
0
0 V  
3.3 V  
5 V  
1
1
1
1
1
0
0 V  
3.3 V  
5 V  
0
1
0
1
0
0
1
1
0
1
1
1
0
X
X
X
12 V  
Hi-Z  
Hi-Z  
1
0
X
12 V  
Hi-Z  
Hi-Z  
1
1
1
1
X
X
X
X
X
X
xVCC  
AVCC CONTROL SIGNALS  
BVCC CONTROL SIGNALS  
OUTPUT  
V_AVCC  
OUTPUT  
V_BVCC  
D8 (SHDN)  
D3  
0
D2  
0
D8 (SHDN)  
D6  
0
D7  
0
1
1
1
1
0
0 V  
3.3 V  
5 V  
1
1
1
1
0
0 V  
3.3 V  
5 V  
0
1
0
1
1
0
1
0
1
1
0 V  
1
1
0 V  
X
X
Hi-Z  
X
X
Hi-Z  
TPS2206 mode (MODE floating or pulled low)  
xVPP  
AVPP CONTROL SIGNALS  
BVPP CONTROL SIGNALS  
OUTPUT  
OUTPUT  
V_BVPP  
V_AVPP  
D8 (SHDN)  
D0  
0
D1  
0
D8 (SHDN)  
D4  
0
D5  
0
1
1
1
1
0
0 V  
V_AVCC  
12 V  
1
1
1
1
0
0 V  
V_BVCC  
12 V  
0
1
0
1
1
0
1
0
1
1
Hi-Z  
1
1
Hi-Z  
X
X
Hi-Z  
X
X
Hi-Z  
xVCC  
AVCC CONTROL SIGNALS  
BVCC CONTROL SIGNALS  
OUTPUT  
V_AVCC  
OUTPUT  
V_BVCC  
D8 (SHDN)  
D3  
0
D2  
0
D8 (SHDN)  
D6  
0
D7  
0
1
1
1
1
0
0 V  
3.3 V  
5 V  
1
1
1
1
0
0 V  
3.3 V  
5 V  
0
1
0
1
1
0
1
0
1
1
0 V  
1
1
0 V  
X
X
Hi-Z  
X
X
Hi-Z  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢃ ꢄ ꢅ ꢆ ꢇ ꢀꢁ ꢂ ꢃꢃ ꢄꢈ ꢆ  
ꢉꢊꢆ ꢋꢌꢂ ꢋꢍ ꢀ ꢁꢎ ꢎꢆꢏ ꢉ ꢁꢍ ꢐ ꢑꢏ ꢂ ꢐꢒ ꢀꢎ ꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒꢆ ꢋ ꢁꢎ ꢕꢎꢒ ꢆ ꢎꢍ ꢖꢀꢏ ꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
APPLICATION INFORMATION  
ESD protections (see Figure 32)  
All TPS2214A and TPS2216A inputs and outputs incorporate ESD-protection circuitry designed to withstand  
a 2-kV human-body-model discharge as defined in MIL-STD-883C, Method 3015. The xVCC and xVPP outputs  
can be exposed to potentially higher discharges from the external environment through the PC Card connector.  
Bypassing the outputs with 0.1-µF capacitors protects the devices from discharges up to 10 kV.  
TPS2216A  
AVCC  
V
V
CC  
0.1 µF  
AVCC  
AVCC  
AVPP  
CC  
PC Card  
Connector A  
pp1  
V
V
0.1 µF  
pp2  
12V  
12V  
BVCC  
V
V
12V  
5V  
CC  
10 µF  
33 µF  
0.1 µF  
0.1 µF  
0.1 µF  
BVCC  
BVCC  
BVPP  
CC  
PC Card  
Connector B  
pp1  
5V  
5V  
V
V
0.1 µF  
pp2  
5V  
3.3V  
3.3V  
3.3V  
3.3V  
33 µF  
0.1 µF  
Controller  
DATA  
DATA  
CLOCK  
LATCH  
RESET  
RESET  
OC  
CLOCK  
LATCH  
MODE  
STBY  
From PCI or  
System RST  
GPI/O  
Maximum recommended output capacitance for xVCC is 220 µF and for xVPP is 10 µF without OC glitch when switches are powered on.  
Figure 32. Detailed Interconnections and Capacitor Recommendations  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢇ ꢀ ꢁꢂ ꢃ ꢃ ꢄ ꢈ ꢆ  
ꢉ ꢊꢆꢋ ꢌꢂꢋ ꢍꢀ ꢁꢎ ꢎꢆ ꢏꢉ ꢁ ꢍꢐ ꢑꢏ ꢂ ꢐꢒ ꢀ ꢎꢓꢑ ꢂ  
ꢔ ꢍꢏ ꢂꢑ ꢏꢒ ꢆ ꢋ ꢁꢎ ꢕꢎ ꢒ ꢆ ꢎꢍ ꢖꢀ ꢏꢍ ꢋꢋ ꢑꢏ ꢂ  
SLVS267B − DECEMBER 1999 − REVISED AUGUST 2000  
APPLICATION INFORMATION  
12-V flash memory supply  
The TPS6734 is a fixed 12-V output boost converter capable of delivering 120 mA from inputs as low as 2.7 V.  
The device is pin-for-pin compatible with the MAX734 regulator and offers the following advantages: lower  
supply current, wider operating input-voltage range, and higher output currents. As shown in Figure 33, the only  
external components required are: an inductor, a Schottky rectifier, an output filter capacitor, an input filter  
2
capacitor, and a small capacitor for loop compensation. The entire converter occupies less than 0.7 in of PCB  
space when implemented with surface-mount components. An enable input is provided to shut the converter  
down and reduce the supply current to 3 µA when 12 V is not needed.  
The TPS6734 is a 170-kHz current-mode PWM (pulse-width modulation) controller with an n-channel MOSFET  
power switch. Gate drive for the switch is derived from the 12-V output after start-up to minimize the die area  
needed to realize the 0.7-MOSFET and improve efficiency at input voltages below 5 V. Soft start is  
accomplished with the addition of one small capacitor. A 1.22-V reference (pin 2) is brought out for external use.  
For additional information, see the TPS6734 data sheet (SLVS127).  
TPS2216A  
AVCC  
3.3V or 5V  
R1  
10 kΩ  
AVCC  
AVCC  
AVPP  
TPS6734  
ENABLE  
(see Note A)  
1
8
L1  
18 µH  
EN  
VCC  
2
3
7
6
REF  
SS  
FB  
C1  
33 µF  
20V  
+
D1  
OUT  
33 µF, 20 V  
4
5
12 V  
COMP  
GND  
12V  
12V  
C2  
0.01 µF  
+
C1  
0.1 µF  
BVCC  
BVCC  
BVCC  
BVPP  
5 V  
C4  
0.001 µF  
5V  
5V  
33 µF  
33 µF  
0.1 µF  
0.1 µF  
5V  
3.3 V  
3.3V  
3.3V  
3.3V  
DATA  
CLOCK  
LATCH  
RESET  
RESET  
OC  
MODE  
STBY  
NOTE A: The enable terminal can be tied to a general-purpose I/O terminal on the PCMCIA controller or tied high.  
Figure 33. TPS2216A with TPS6734 12-V, 120-mA Supply  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Feb-2006  
PACKAGING INFORMATION  
Orderable Device  
TPS2214ADB  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SSOP  
DB  
24  
24  
24  
24  
32  
32  
32  
32  
30  
30  
30  
30  
Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS2214ADBG4  
TPS2214ADBR  
TPS2214ADBRG4  
TPS2216ADAP  
TPS2216ADAPG4  
TPS2216ADAPR  
TPS2216ADAPRG4  
TPS2216ADB  
SSOP  
SSOP  
DB  
DB  
Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SSOP  
DB  
Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
SSOP  
DAP  
DAP  
DAP  
DAP  
DB  
Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS2216ADBG4  
TPS2216ADBR  
TPS2216ADBRG4  
SSOP  
DB  
Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SSOP  
DB  
Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SSOP  
DB  
Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Feb-2006  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001  
DB (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
28 PINS SHOWN  
0,38  
0,22  
0,65  
28  
M
0,15  
15  
0,25  
0,09  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
14  
0,25  
A
0°ā8°  
0,95  
0,55  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
PINS **  
14  
16  
20  
24  
28  
30  
38  
DIM  
6,50  
5,90  
6,50  
5,90  
7,50  
8,50  
7,90  
10,50  
9,90  
10,50 12,90  
A MAX  
A MIN  
6,90  
9,90  
12,30  
4040065 /E 12/01  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-150  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  

相关型号:

TPS2216DAP

DUAL-SLOT PC CARD POWER-INTERFACE SWITCH FOR SERIAL PCMCIA CONTROLLERS
TI

TPS2216DAPG4

3-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO32, GREEN, PLASTIC, HTSSOP-32
TI

TPS2216DAPR

暂无描述
TI

TPS2216DAPRG4

3-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO32, GREEN, PLASTIC, HTSSOP-32
TI

TPS2216DB

DUAL-SLOT PC CARD POWER-INTERFACE SWITCH FOR SERIAL PCMCIA CONTROLLERS
TI

TPS2216DBG4

1A Dual-Slot PC Card Power Switch w/ Serial Interface 30-SSOP
TI

TPS2216IDAP

PCMCIA Switching Circuit
ETC

TPS2216IDAPR

PCMCIA Switching Circuit
ETC

TPS2216IDB

PCMCIA Switching Circuit
ETC

TPS2216IDBR

PCMCIA Switching Circuit
ETC

TPS2220A

CARDBUS POWER-INTERFACE SWITCHES FOR SERIAL PCMCIA CONTROLLERS
TI

TPS2220ADB

CARDBUS POWER-INTERFACE SWITCHES FOR SERIAL PCMCIA CONTROLLERS
TI