TPS22860DBVR [TI]

0.73Ω、5V 超低泄漏负载开关 | DBV | 6 | -40 to 85;
TPS22860DBVR
型号: TPS22860DBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

0.73Ω、5V 超低泄漏负载开关 | DBV | 6 | -40 to 85

开关
文件: 总16页 (文件大小:678K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS22860  
ZHCSDR1 APRIL 2015  
TPS22860 超低泄漏电流负载开关  
1 特性  
2 应用  
1
集成单通道负载开关  
可穿戴产品  
物联网  
偏置电压范围 (VBIAS)1.65V 5.5V  
输入电压范围:0V VBIAS  
无线传感器网络  
导通电阻 (RON  
)
3 说明  
VIN = 5V (VBIAS = 5V) 时,RON = 0.73  
TPS22968 是一款小型、超低泄漏电流、单通道负载  
开关。 该器件需要一个 VBIAS 电压,工作输入电压范  
围为 0V VBIAS。 它可支持最大 200mA 的持续电  
流。 此开关可由一个打开/关闭输入 (ON) 控制,此输  
入可与低压控制信号直接对接。 TPS22860 采用两种  
节省空间的 6 引脚 SOT-23 SC70 小型封装。  
器件在自然通风环境下的额定运行温度范围为 -40°C  
85°C。  
VIN = 3.3V (VBIAS = 5V) 时,RON = 0.68Ω  
VIN = 1.8V (VBIAS = 5V) 时,RON = 0.63Ω  
200mA 最大持续开关电流  
超低泄漏电流  
VIN 泄漏电流 = 2nA  
BIAS 泄漏电流(5.5V 时)= 10nA  
V
6 引脚小外形尺寸晶体管 (SOT)-23 封装或 SC70  
封装  
静电放电 (ESD) 性能经测试符合 JESD 22 规范  
器件信息(1)  
2kV 人体放电模式 (HBM) 1kV 组件充电模式  
器件型号  
TPS22860  
封装  
封装尺寸(标称值)  
2.80 x 2.90mm  
(CDM)  
SOT-23  
SC-70  
2.10 x 2.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 常见应用电路原理图  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSD04  
 
 
 
 
TPS22860  
ZHCSDR1 APRIL 2015  
www.ti.com.cn  
目录  
8.3 Feature Description................................................... 7  
8.4 Device Functional Modes.......................................... 7  
Application and Implementation .......................... 8  
9.1 Application Information.............................................. 8  
9.2 Typical Application ................................................... 8  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
常见应用电路原理图................................................. 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
7.1 Absolute Maximum Ratings ...................................... 3  
7.2 ESD Ratings.............................................................. 3  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 4  
7.6 Switching Characteristics.......................................... 4  
7.7 Typical Characteristics.............................................. 5  
Detailed Description .............................................. 7  
8.1 Overview ................................................................... 7  
8.2 Functional Block Diagram ......................................... 7  
9
10 Power Supply Recommendations ....................... 9  
11 Layout................................................................... 10  
11.1 Layout Guidelines ................................................. 10  
11.2 Thermal Reliability................................................. 10  
11.3 Improving Package Thermal Performance ........... 10  
11.4 Layout Example .................................................... 10  
12 器件和文档支持 ..................................................... 11  
12.1 ....................................................................... 11  
12.2 静电放电警告......................................................... 11  
12.3 术语表 ................................................................... 11  
13 机械、封装和可订购信息....................................... 11  
8
5 修订历史记录  
日期  
修订版本  
注释  
2015 4 月  
*
首次发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS22860  
www.ti.com.cn  
ZHCSDR1 APRIL 2015  
6 Pin Configuration and Functions  
Top View  
VOUT  
GND  
NC  
1
2
3
6
5
4
ON  
VBIAS  
VIN  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VOUT  
GND  
NC  
NO.  
1
O
I
Switch output.  
Ground  
2
3
No connect  
VIN  
4
Switch input. Connect a ceramic capacitor from VIN to GND.  
Bias voltage. Power supply to the device.  
VBIAS  
ON  
5
I
6
I
Active high switch control input. Do not leave floating.  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
MAX  
UNIT(2)  
V
VBIAS  
VIN  
BIAS voltage range  
6.5  
VBIAS + 0.5  
VBIAS + 0.5  
6.5  
Input voltage range  
V
VOUT  
VON  
IMAX  
IPLS  
TA  
Output voltage range  
V
Input voltage range  
V
Maximum Continuous Switch Current  
Maximum Pulsed Switch Current, pulse <300us, 2% duty cycle  
Operating free-air temperature range(3)  
Maximum junction temperature  
Storage temperature  
200  
mA  
mA  
°C  
400  
–40  
–65  
85  
TJ  
125  
°C  
TSTG  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) Inapplications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature [TA(max)] is dependent on the maximum operating junction temperature [TJ(max)], the  
maximum power dissipation of the device in the application [PD(max)], and the junction-to-ambient thermal resistance of the part/package  
in the application (θJA), as given by the following equation: TA(max) = TJ(max) – (M JA × PD(max)  
)
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS22860  
ZHCSDR1 APRIL 2015  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0
NOM  
MAX  
UNIT  
V
VIN  
Input voltage range  
VBIAS  
5.5  
VBIAS  
VON  
Supply voltage range  
Control input voltage range  
Output voltage range  
High-level input voltage, ON  
Low-level input voltage, ON  
Input Capacitor  
1.65  
0
V
5.5  
V
VOUT  
VIH, ON  
VIL, ON  
CIN  
0
VBIAS  
5.5  
V
VBIAS = 5 V  
VBIAS = 5 V  
2.4  
0
V
0.8  
V
1
µF  
7.4 Thermal Information  
TPS22860  
THERMAL METRIC(1)(2)  
DBV  
6 PINS  
235.2  
164.8  
82,.5  
52.9  
DCK  
6 PINS  
249.0  
107.7  
95.8  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
6.2  
ψJB  
82.0  
93.7  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.  
7.5 Electrical Characteristics  
over operating free-air temperature range(1) (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLIES AND CURRENTS  
IQ, VBIAS  
ISD, VBIAS  
ISD, VIN  
VBIAS quiescent current  
VBIAS shutdown current  
VIN shutdown current  
IOUT = 0, VIN = VON = VBIAS = 3.3 V  
10  
10  
2
100  
100  
VON = 0 V  
nA  
VON = 0 V, VOUT = 1 V  
VIN = 3.0 V  
50  
ON pin input leakage  
current  
ION  
VON = 5.5 V  
100  
RESISTANCE CHARACTERISTICS  
TA = 25°C  
Full TA  
0.92  
1.2  
1.15  
1.31  
1.5  
VIN = 3.3 V  
VIN = 2 V  
TA = 25°C  
Full TA  
IOUT = –100 mA, VBIAS = 3.3  
V
RON  
ON-state resistance  
Ω
1.7  
TA = 25°C  
Full TA  
0.95  
1.2  
VIN = 1.8 V  
1.35  
(1) Over the operating ambient temp –40°C TA 85°C (full) and VBIAS = 3.3V. Typical values are for TA = 25°C. (unless otherwise  
noted)  
7.6 Switching Characteristics  
over operating free-air temperature range(1) (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2
TYP  
MAX UNIT  
TA = 25°C  
VBIAS = 3.3 V  
4.5  
13  
ns  
15  
tON  
Turn-on time  
VOUT = VBIAS, RL = 50 Ω CL = 35 pF  
VOUT = VBIAS, RL = 50 Ω CL = 35 pF  
Full TA  
TA = 25°C  
Full TA  
VBIAS = 3 V to 3.6 V  
VBIAS = 3.3 V  
1
3
9
15  
ns  
20  
tOFF  
Turn-off time  
VBIAS = 3 V to 3.6 V  
2
tON/OFF ON/OFF delay time  
See Figure 9  
(1) VIN = VON = VBIAS = 5V, TA = 25ºC  
4
Copyright © 2015, Texas Instruments Incorporated  
 
TPS22860  
www.ti.com.cn  
ZHCSDR1 APRIL 2015  
7.7 Typical Characteristics  
Figure 1. ron vs VOUT  
Figure 2. ron vs VOUT (VBIAS = 3.3 V)  
Figure 4. Leakage Current vs Temperature (VBIAS = 5.5 V)  
Figure 3. ron vs VOUT (VBIAS = 5 V)  
VIN (PWRoff)  
VOUT (PWRoff)  
Figure 5. Leakage Current vs Temperature (VBIAS = 5 V)  
Figure 6. Logic-Level Threshold vs VBIAS  
Copyright © 2015, Texas Instruments Incorporated  
5
 
TPS22860  
ZHCSDR1 APRIL 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
TA (°C)  
Figure 7. Power-Supply Current vs Temperature  
(VBIAS = 5 V)  
6
Copyright © 2015, Texas Instruments Incorporated  
TPS22860  
www.ti.com.cn  
ZHCSDR1 APRIL 2015  
8 Detailed Description  
8.1 Overview  
The TPS22860 is a small, ultra-low leakage current, single channel bi-driectional load switch. The device  
requires a VBIAS voltage and can operate over an input voltage range of 0 V to VBIAS. It can support a maximum  
continuous current of 200 mA. The switch is controlled by an on/off input (ON), which is capable of interfacing  
directly with low-voltage control signals. The TPS22860 is available in two small, space-saving 6-pin SOT-23 and  
SC70 packages. The device is characterized for operation over the free-air temperature range of –40°C to 85°C.  
8.2 Functional Block Diagram  
VIN  
VOUT  
VBIAS  
ON  
GND  
8.3 Feature Description  
8.3.1 ON/OFF Control  
The ON input controls the load switch with positive logic.  
8.3.2 Pass Transistor  
The TPS22860 supports up to 200-mA current flow in either direction. RON is dependent on VBIAS as shown in  
Figure 1, Figure 2, and Figure 3.  
8.4 Device Functional Modes  
Table 1. Functional Table  
ON  
L
VIN to VOUT  
Off  
On  
H
Copyright © 2015, Texas Instruments Incorporated  
7
TPS22860  
ZHCSDR1 APRIL 2015  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
This section will highlight some of the design considerations when implementing this device in a common  
application.  
9.2 Typical Application  
The TPS22860 IC is a high side load switch. The TPS22860 internal components are rated for 1.65-V to 5.5-V  
supply and support up to 200 mA of load current. The TPS22860 can be used in a variety of applications.  
Figure 8 below shows a general application of TPS22860 to control the load inrush current.  
Figure 8. Standard Load Switching Application  
9.2.1 Design Requirements  
Table 2. Component Table  
COMPONENT  
CIN  
DESCRIPTION  
Input capacitance(1)  
LOAD  
Load resistance and capacitance will affect the output rise time  
(1) Required for load inrush current (slew rate) control  
8
Copyright © 2015, Texas Instruments Incorporated  
 
TPS22860  
www.ti.com.cn  
ZHCSDR1 APRIL 2015  
9.2.2 Detailed Design Procedure  
9.2.2.1 Inrush Current  
To limit the voltage drop on the input supply caused by transient inrush currents when the switch turns on into a  
discharged load capacitor, a capacitor must be placed between VIN and GND. A 1-µF ceramic capacitor, CIN,  
placed close to the pins, is usually sufficient. Higher values of CIN can be used to further reduce the voltage drop  
during high-current applications. When switching heavy loads, TI recommends to have an input capacitor about  
10× higher than the output capacitor to avoid excessive voltage drop. Do not float the ON pin.  
9.2.2.2 ON/OFF Interface  
The load switch is controlled by the voltage at the ON pin. To turn ON, the input voltage must be larger than VIH  
and to turn off the voltage must be below VIL.  
In applications where an ON/OFF signal is not available, connect ON pin to VIN. The TPS22860 will turn ON/OFF  
in sync with the input supply connected to VIN.  
NOTE  
Connect a pull down resistor from the ON pin to GND when the ON/OFF signal is driven  
by a high-impedance (tri-state) driver.  
9.2.3 Application Curves  
TA (°C)  
Figure 10. tON and tOFF vs Temperature (VBIAS = 5 V)  
Figure 9. tON and tOFF vs VBIAS  
10 Power Supply Recommendations  
The device is designed to operate from a VIN range of 1.65 V to 5.5 V. This supply must be well regulated and  
placed as close to the device terminal as possible with the recommended 1-μF bypass capacitor. If the supply is  
located more than a few inches from the device terminals, additional bulk capacitance may be required in  
addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or  
ceramic capacitor of 1 μF may be sufficient.  
Copyright © 2015, Texas Instruments Incorporated  
9
TPS22860  
ZHCSDR1 APRIL 2015  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
VIN and VOUT traces should be as short and wide as possible to accommodate for high current.  
The VIN pin should be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is 1-μF ceramic with X5R or X7R dielectric. This capacitor should be  
placed as close to the device pins as possible.  
The VOUT pin should be bypassed to ground with low ESR ceramic bypass capacitors. The typical  
recommended bypass capacitance is one-tenth of the VIN bypass capacitor of X5R or X7R dielectric rating.  
This capacitor should be placed as close to the device pins as possible.  
11.2 Thermal Reliability  
For higher reliability it is recommended to limit TPS22860 IC’s die junction temperature to less than 105°C. The  
IC junction temperature is directly proportional to the on-chip power dissipation. Use the following equation to  
calculate maximum on-chip power dissipation to achieve the maximum die junction temperature target:  
T
J(MAX) - TA  
(
)
PD(MAX)  
=
qJA  
Where:  
TJ(MAX) is the target maximum junction temperature.  
TA is the operating ambient temperature.  
R
θJA is the package junction to ambient thermal resistance.  
(1)  
11.3 Improving Package Thermal Performance  
The package RθJA value under standard conditions on a High-K board is listed in the Thermal Information table.  
RθJA value depends on the PC board layout. An external heat sink and/or a cooling mechanism, like a cold air  
fan, can help reduce RθJA and thus improve device thermal capabilities. Refer to TI’s design support web page at  
www.ti.com/thermal for a general guidance on improving device thermal performance.  
11.4 Layout Example  
Control  
Signal  
LOAD  
RL CL  
1
2
3
6
5
4
VOUT  
GND  
NC  
ON  
VOUT Bypass  
Capacitor  
VBIAS  
VIN  
+ Battery  
VIN Bypass  
Capacitor  
Indicates connection to ground plane  
Figure 11. Basic PCB Layout  
10  
版权 © 2015, Texas Instruments Incorporated  
TPS22860  
www.ti.com.cn  
ZHCSDR1 APRIL 2015  
12 器件和文档支持  
12.1 商标  
All trademarks are the property of their respective owners.  
12.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.3 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
11  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22860DBVR  
ACTIVE  
SOT-23  
DBV  
6
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 85  
ZFNR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS22901

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22901YFPR

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22902

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22902B

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22902BYFPR

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22902YFPR

ULTRA SMALL, LOW INPUT VOLTAGE, LOW rON, LOAD SWITCHES
TI

TPS22903

ULTRA-SMALL LOW-INPUT-VOLTAGE LOW rON LOAD SWITCH
TI

TPS22903YFPR

ULTRA-SMALL LOW-INPUT-VOLTAGE LOW rON LOAD SWITCH
TI

TPS22903_10

ULTRA-SMALL LOW-INPUT-VOLTAGE LOW rON LOAD SWITCH
TI

TPS22904

ULTRA-SMALL LOW-INPUT-VOLTAGE LOW rON LOAD SWITCH
TI

TPS22904YFPR

ULTRA-SMALL LOW-INPUT-VOLTAGE LOW rON LOAD SWITCH
TI

TPS22904YFPT

ULTRA-SMALL LOW-INPUT-VOLTAGE LOW rON LOAD SWITCH
TI