TPS22919-Q1 [TI]

符合 AEC Q100 标准、具有受控上升时间的单通道、5.5V、1.5A、90mΩ 自保护负载开关
TPS22919-Q1
型号: TPS22919-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

符合 AEC Q100 标准、具有受控上升时间的单通道、5.5V、1.5A、90mΩ 自保护负载开关 开关

文件: 总26页 (文件大小:1945K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS22919-Q1  
ZHCSKP7 JANUARY 2020  
TPS22919-Q1 5.5V1.5A90mΩ 自保护负载开关  
1 特性  
2 应用  
1
符合汽车类 应用要求  
符合 AEC-Q100 标准:  
信息娱乐系统、仪表组和音响主机  
汽车仪表组显示屏  
ADAS 环视系统 ECU  
车身控制模块和网关  
器件温度等级 1–40°C 125°C 的环境工作  
温度范围  
输入工作电压范围 (VIN):  
1.6V 5.5V  
3 说明  
最大持续电流 (IMAX)1.5A  
导通电阻 (RON):  
TPS22919-Q1 器件是一款压摆率可控的小型单通道负  
载开关。此器件包含一个可在 1.6V 5.5V 输入电压  
范围内运行的 N 沟道 MOSFET,并且支持 1.5A 的最  
大持续电流。  
5V VIN89m(典型值)  
3.6V VIN90m(典型值)  
1.8V VIN105m(典型值)  
开关导通状态由数字输入控制,此输入可与低压控制信  
号直接连接。首次加电时,此器件使用智能下拉电阻来  
保持 ON 引脚不悬空,直到系统定序完成。故意将该  
引脚驱动为高电平 (>VIH) 之后,便会断开智能下拉电  
阻,以防止不必要的功率损耗。  
输出短路保护 (ISC)3A(典型值)  
低功耗:  
导通状态 (IQ)8µA(典型值)  
关断状态 (ISD)2nA(典型值)  
智能 ON 引脚下拉电阻 (RPD):  
TPS22919-Q1 负载开关也是自保护的,这意味着它可  
以保护自己免受器件输出上短路事件的影响。它还具有  
热关断功能,可防止因过热而造成任何损坏。  
ON VIH (ION)100nA(最大值)  
ON VIL (RPD)530kΩ(典型值)  
可限制浪涌电流的慢速导通时序 (tON):  
5.0V 导通时间 (tON):  
3.2mV/μs 下为 1.95ms  
TPS22919-Q1 采用标准 SC-70 封装,工作结温范围  
–40°C 125°C。  
3.6V 导通时间 (tON):  
2.7mV/μs 下为 1.75ms  
器件信息(1)  
器件型号  
封装  
SC-70 (6)  
封装尺寸(标称值)  
1.8V 导通时间 (tON):  
1.8mV/μs 下为 1.5ms  
TPS22919-Q1  
2.1mm × 2.0mm  
可调节输出放电和下降时间:  
内部 QOD 电阻 = 24Ω(典型值)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFG2  
 
 
 
TPS22919-Q1  
ZHCSKP7 JANUARY 2020  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 12  
8.3 Feature Description................................................. 13  
8.4 Device Functional Modes........................................ 14  
Application and Implementation ........................ 15  
9.1 Application Information............................................ 15  
9.2 Typical Application ................................................. 15  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 4  
6.6 Switching Characteristics.......................................... 5  
6.7 Typical Characteristics ............................................. 7  
Parameter Measurement Information ................ 11  
7.1 Test Circuit and Timing Waveforms Diagrams ....... 11  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
9
10 Power Supply Recommendations ..................... 17  
11 Layout................................................................... 18  
11.1 Layout Guidelines ................................................. 18  
11.2 Layout Example .................................................... 18  
11.3 Thermal Considerations........................................ 18  
12 器件和文档支持 ..................................................... 19  
12.1 ....................................................................... 19  
12.2 静电放电警告......................................................... 19  
12.3 Glossary................................................................ 19  
13 机械、封装和可订购信息....................................... 19  
7
8
4 修订历史记录  
日期  
修订版本  
说明  
2020 1 月  
*
初始发行版。  
2
Copyright © 2020, Texas Instruments Incorporated  
 
TPS22919-Q1  
www.ti.com.cn  
ZHCSKP7 JANUARY 2020  
5 Pin Configuration and Functions  
DCK Package  
6-Pin SC-70  
Top View  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
IN  
I
Switch input.  
Device ground.  
2
GND  
ON  
I
3
Active high switch control input. Do not leave floating.  
No connect pin, leave floating.  
4
NC  
Quick Output Discharge pin. This functionality can be enabled in one of three ways.  
Placing an external resistor between VOUT and QOD  
Tying QOD directly to VOUT and using the internal resistor value (RPD  
Disabling QOD by leaving pin floating  
)
5
6
QOD  
O
O
See the Fall Time (tFALL) and Quick Output Discharge (QOD) section for more  
information.  
VOUT  
Switch output.  
Copyright © 2020, Texas Instruments Incorporated  
3
TPS22919-Q1  
ZHCSKP7 JANUARY 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
6
UNIT  
V
VIN  
Maximum Input Voltage Range  
Maximum Output Voltage Range  
Maximum ON Pin Voltage Range  
Maximum QOD Pin Voltage Range  
Maximum Continuous Current  
VOUT  
VON  
VQOD  
IMAX  
IPLS  
6
V
6
V
6
V
1.5  
2.5  
A
Maximum Pulsed Current (2 ms, 2% Duty Cycle)  
Junction temperature  
A
TJ  
Internally Limited  
–65  
°C  
°C  
°C  
TSTG  
TLEAD  
Storage temperature  
150  
300  
Maximum Lead Temperature (10 s soldering time)  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-  
002(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per AEC Q100-  
011  
±1000  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.6  
0
TYP  
MAX  
5.5  
UNIT  
V
VIN  
VOUT  
VIH  
VIL  
Input Voltage Range  
Output Voltage Range  
ON Pin High Voltage Range  
ON Pin Low Voltage Range  
Ambient Temperature  
5.5  
V
1
5.5  
V
0
0.35  
125  
V
TA  
–40  
°C  
6.4 Thermal Information  
TPS22919-Q1  
DCK (SC-70)  
PINS  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
214.2  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
147.6  
75.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
58.5  
ΨJB  
75.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Typical values at VIN = 3.6V unless otherwise specified  
PARAMETER  
Input Supply (VIN)  
TEST CONDITIONS  
TJ  
MIN TYP MAX UNIT  
4
Copyright © 2020, Texas Instruments Incorporated  
TPS22919-Q1  
www.ti.com.cn  
ZHCSKP7 JANUARY 2020  
Electrical Characteristics (continued)  
Typical values at VIN = 3.6V unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
TJ  
MIN TYP MAX UNIT  
25°C  
8
15 µA  
20 µA  
20 nA  
800 nA  
IQ, VIN  
VIN Quiescent Current  
VIN Shutdown Current  
VON VIH, VOUT = Open  
VON VIL, VOUT = GND  
-40°C to 125°C  
25°C  
2
ISD, VIN  
-40°C to 125°C  
ON-Resistance (RON)  
25°C  
89 125 mΩ  
150 mΩ  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 125°C  
25°C  
VIN = 5 V  
175 mΩ  
200 mΩ  
90 150 mΩ  
200 mΩ  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 125°C  
25°C  
RON  
ON-State Resistance  
IOUT = -200 mA  
VIN = 3.6 V  
225 mΩ  
250 mΩ  
105 300 mΩ  
330 mΩ  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 125°C  
VIN = 1.8 V  
340 mΩ  
350 mΩ  
Output Short Protection (ISC)  
V
OUT VIN - 1.5 V  
OUT VSC  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
3
A
ISC  
Short Circuit Current Limit  
V
30 500 900 mA  
VSC  
tSC  
Output Short Detection Threshold  
Output Short Reponse Time  
VIN - VOUT  
0.3 0.36 0.46  
V
VIN = 1.6V to 5.5V, 10mΩ short  
applied  
-40°C to 125°C  
2
µs  
Rising  
Falling  
180  
145  
TSD  
Thermal Shutdown  
Enable Pin (ON)  
ION  
ON Pin Leakage  
Smart Pull Down Resistance  
VON VIH  
VON VIL  
-40°C to 125°C  
-40°C to 125°C  
100 nA  
RPD, ON  
530  
24  
kΩ  
Quick-output Discharge (QOD)  
QOD Pin Internal Discharge  
Resistance  
RPD, QOD  
VON VIL  
-40°C to 125°C  
6.6 Switching Characteristics  
Unless otherwise noted, the typical characteristics in the following table apply to an input voltage of 3.6V, an ambient  
temperature of 25°C, and a load of CL = 0.1 µF, RL = 100 Ω  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1950  
1750  
1500  
1280  
1100  
750  
3.2  
MAX  
UNIT  
µs  
VIN = 5.0 V  
VIN = 3.6 V  
VIN = 1.8 V  
VIN = 5.0 V  
VIN = 3.6 V  
VIN = 1.8 V  
VIN = 5.0 V  
VIN = 3.6 V  
VIN = 1.8 V  
VIN = 1.8 V to 5.0V  
tON  
Turn ON Time  
µs  
µs  
µs  
tR  
Output Rise Time  
µs  
µs  
mV/µs  
mV/µs  
mV/µs  
µs  
Turn ON Slew  
Rate  
SRON  
2.7  
1.8  
tOFF  
Turn OFF Time  
RL = 100Ω, CL = 0.1uF  
6
Copyright © 2020, Texas Instruments Incorporated  
5
TPS22919-Q1  
ZHCSKP7 JANUARY 2020  
www.ti.com.cn  
Switching Characteristics (continued)  
Unless otherwise noted, the typical characteristics in the following table apply to an input voltage of 3.6V, an ambient  
temperature of 25°C, and a load of CL = 0.1 µF, RL = 100 Ω  
PARAMETER  
TEST CONDITIONS  
CL = 0.1uF, RQOD = Short  
MIN  
TYP  
10  
MAX  
UNIT  
µs  
RL = 100Ω  
CL = 10uF, RQOD = Short  
CL = 10uF, RQOD = 100 Ω  
CL = 100uF, RQOD = Short  
0.4  
3.5  
4
ms  
Output Fall Time  
tFALL  
(1)  
(2)  
RL = Open  
ms  
ms  
(1) Output may not discharge completely if QOD is not connected to VOUT  
(2) See the Timing Application section for information on how RL and CL affect Fall Time.  
6
版权 © 2020, Texas Instruments Incorporated  
TPS22919-Q1  
www.ti.com.cn  
ZHCSKP7 JANUARY 2020  
6.7 Typical Characteristics  
200  
12  
11.2  
10.4  
9.6  
8.8  
8
-40èC  
180  
25èC  
105èC  
125èC  
160  
140  
120  
100  
80  
60  
40  
20  
0
7.2  
6.4  
5.6  
4.8  
4
-40èC  
25èC  
105èC  
125èC  
1.8  
2.2  
2.6  
3
Input Voltage (V)  
3.4  
3.8  
4.2  
4.6  
5
1.8  
2.2  
2.6  
3
Input Voltage (V)  
3.4  
3.8  
4.2  
4.6  
5
D001  
D002  
VON VIL  
VON VIH  
1. Shutdown Current vs Input Voltage  
2. Quiescent Current vs Input Voltage  
160  
60  
54  
48  
42  
36  
30  
24  
18  
12  
6
-40èC  
25èC  
105èC  
125èC  
150  
140  
130  
120  
110  
100  
90  
80  
VIN = 1.8V  
VIN = 3.6V  
VIN = 5.0V  
70  
60  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
1.8  
2.2  
2.6  
3
3.4  
3.8  
Input Voltage (V)  
4.2  
4.6  
5
D003  
D004  
ILOAD = –200 mA  
VON VIL  
3. On-Resistance vs Junction Temperature  
4. QOD Resistance vs Input Voltage  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
560  
550  
540  
530  
520  
510  
500  
VIL  
VIH  
VIN = 1.8V  
VIN = 3.6V  
VIN = 5.0V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
D006  
VON VIL  
6. ON Pull Down Resistance vs Junction Temperature  
D005  
VON VIL  
5. VIH/VIL vs Junction Temperature  
版权 © 2020, Texas Instruments Incorporated  
7
TPS22919-Q1  
ZHCSKP7 JANUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
3000  
2750  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
1750  
1500  
1250  
1000  
750  
500  
250  
0
-40èC  
25èC  
105èC  
125èC  
-40èC  
25èC  
105èC  
125èC  
500  
250  
0
1.8  
2.2  
2.6  
3
Input Voltage (V)  
3.4  
3.8  
4.2  
4.6  
5
1.8  
2.2  
2.6  
3
Input Voltage (V)  
3.4  
3.8  
4.2  
4.6  
5
D007  
D008  
CL = 0.1 μF  
RL = 100 Ω  
CL = 0.1 μF  
RL = 100 Ω  
7. Turn ON Time vs Input Voltage  
8. Rise Time vs Input Voltage  
4.5  
4
2100  
2000  
1900  
1800  
1700  
1600  
1500  
3.5  
3
2.5  
2
-40èC  
25èC  
105èC  
125èC  
0.1mF  
1.5  
1
1mF  
10mF  
1.8  
2.2  
2.6  
3
Input Voltage (V)  
3.4  
3.8  
4.2  
4.6  
5
1.8  
2.2  
2.6  
3
Input Voltage (V)  
3.4  
3.8  
4.2  
4.6  
5
D009  
D010  
CL = 0.1 μF  
RL = 100 Ω  
RL = 100 Ω  
TJ = 25°C  
9. Output Slew Rate vs Input Voltage  
10. Turn ON Time vs Input Voltage Across Load  
Capacitance  
1400  
1200  
1000  
800  
3.3  
3
2.7  
2.4  
2.1  
1.8  
0.1mF  
0.1mF  
1mF  
10mF  
1mF  
10mF  
600  
1.8  
2.2  
2.6  
3
Input Voltage (V)  
3.4  
3.8  
4.2  
4.6  
5
1.8  
2.2  
2.6  
3
Input Voltage (V)  
3.4  
3.8  
4.2  
4.6  
5
D011  
D012  
RL = 100 Ω  
TJ = 25°C  
RL = 100 Ω  
TJ = 25°C  
11. Rise Time vs Input Voltage Across Load Capacitance  
12. Slew Rate vs Input Voltage Across Load Capacitance  
版权 © 2020, Texas Instruments Incorporated  
8
TPS22919-Q1  
www.ti.com.cn  
ZHCSKP7 JANUARY 2020  
Typical Characteristics (接下页)  
2200  
1600  
1400  
1200  
1000  
800  
2000  
1800  
1600  
1400  
1200  
RL = 10W  
RL = 100W  
RL = Open  
RL = 10W  
RL = 100W  
RL = Open  
600  
1.8  
2.2  
2.6  
3
Input Voltage (V)  
3.4  
3.8  
4.2  
4.6  
5
1.8  
2.2  
2.6  
3
Input Voltage (V)  
3.4  
3.8  
4.2  
4.6  
5
D013  
D014  
CL = 0.1 μF  
TJ = 25°C  
CL = 0.1 μF  
TJ = 25°C  
13. Turn ON Time vs Input Voltage Across Load  
14. Rise Time vs Input Voltage Across Load Resistance  
Resistance  
4
3.5  
3
9
8
7
6
5
4
2.5  
2
3
-40èC  
RL = 10W  
RL = 100W  
RL = Open  
25èC  
1.5  
2
105èC  
125èC  
1
1
1.8  
2.2  
2.6  
3
Input Voltage (V)  
3.4  
3.8  
4.2  
4.6  
5
1.8  
2.2  
2.6  
3
Input Voltage (V)  
3.4  
3.8  
4.2  
4.6  
5
D015  
D016  
CL = 0.1 μF  
TJ = 25°C  
CL = 0.1 μF  
RL = 100 Ω  
15. Output Slew Rate vs Input Voltage Across Load  
Resistance  
16. Turn OFF Time vs Input Voltage  
15  
14  
13  
12  
11  
10  
9
8
-40èC  
25èC  
7
105èC  
125èC  
6
5
1.8  
2.2  
2.6  
3
3.4  
3.8  
Input Voltage (V)  
4.2  
4.6  
5
D018  
CL = 0.1 μF  
RL = 100 Ω  
RPD,QOD = Short  
17. Fall Time vs Input Voltage  
版权 © 2020, Texas Instruments Incorporated  
9
TPS22919-Q1  
ZHCSKP7 JANUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
CL = 0.1 μF  
RL = 100 Ω  
CL = 0.1 μF  
RL = 100 Ω  
18. Rise Time with VIN = 1.8 V  
19. Rise Time with VIN = 3.3 V  
CL = 0.1 μF  
RL = 100 Ω  
CL = Open  
RL = 100 Ω  
20. Rise Time with VIN = 5 V  
21. Turn Off with a Small Load Capacitance  
CL = 10 μF  
RL = 100 Ω  
VIN = 3.3 V  
22. Turn Off with a Large Load Capacitance  
23. Turn On Into an Output Short  
10  
版权 © 2020, Texas Instruments Incorporated  
TPS22919-Q1  
www.ti.com.cn  
ZHCSKP7 JANUARY 2020  
Typical Characteristics (接下页)  
VIN = 3.3 V  
VIN = 3.3 V  
24. Hot Short Event when ON  
25. Hot Short Event when ON and Recovery  
7 Parameter Measurement Information  
7.1 Test Circuit and Timing Waveforms Diagrams  
(1) Rise and fall times of the control signal are 100 ns  
(2) Turn-off times and fall times are dependent on the time constant at the load. For the TPS22919-Q1 devices, the  
internal pull-down resistance QOD is enabled when the switch is disabled. The time constant is (RQOD + RPD,QOD ||  
RL) × CL.  
26. Test Circuit  
27. Timing Waveforms  
版权 © 2020, Texas Instruments Incorporated  
11  
TPS22919-Q1  
ZHCSKP7 JANUARY 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS22919-Q1 device is a 5.5-V, 1.5-A load switch in a 6-pin SOT-23 package. To reduce voltage drop for  
low voltage and high current rails, the device implements a low resistance N-channel MOSFET which reduces  
the drop out voltage across the device.  
The TPS22919-Q1 device has a slow slew rate which helps reduce or eliminate power supply droop because of  
large inrush currents. Furthermore, the device features a QOD pin, which allows the configuration of the  
discharge rate of VOUT once the switch is disabled. During shutdown, the device has very low leakage currents,  
thereby reducing unnecessary leakages for downstream modules during standby. Integrated control logic, driver,  
charge pump, and output discharge FET eliminates the need for any external components which reduces  
solution size and bill of materials (BOM) count.  
The TPS22919-Q1 load switch is also self-protected, meaning that it will protect itself from short circuit events on  
the output of the device. It also has thermal shutdown to prevent any damage from overheating.  
8.2 Functional Block Diagram  
Short  
Circuit  
Protection  
IN  
OUT  
Control Logic  
Driver  
ON  
Smart  
Pull  
Down  
QOD  
GND  
12  
版权 © 2020, Texas Instruments Incorporated  
TPS22919-Q1  
www.ti.com.cn  
ZHCSKP7 JANUARY 2020  
8.3 Feature Description  
8.3.1 On and Off Control  
The ON pin controls the state of the switch. The ON pin is compatible with standard GPIO logic threshold so it  
can be used in a wide variety of applications. When power is first applied to VIN, a Smart Pull Down is used to  
keep the ON pin from floating until the system sequencing is complete. Once the ON pin is deliberately driven  
high (VIH), the Smart Pull Down is disconnected to prevent unnecessary power loss. See 1 when the ON Pin  
Smart Pull Down is active.  
1. Smart-ON Pull Down  
VON  
VIL  
VIH  
Pull Down  
Connected  
Disconnected  
8.3.2 Output Short Circuit Protection (ISC  
)
The device will limit current to the output in case of output shorts. When a short occurs, the large VIN to VOUT  
voltage drop causes the switch to limit the output current (ISC) within (tSC). When the output is below the hard  
short threshold (VSC), a lower limit is used to minimize the power dissipation while the fault is present. The device  
will continue to limit the current until it reaches its thermal shutdown temperature. At this time, the device will turn  
off until its temperature has lowered by the thermal hysteresis (35°C typical) before turning on again.  
28. Output Short Circuit Current Limit  
29. Output Short Circuit Response  
8.3.3 Fall Time (tFALL) and Quick Output Discharge (QOD)  
The TPS22919-Q1 device includes a QOD pin that can be configured in one of three ways:  
QOD pin shorted to VOUT pin. Using this method, the discharge rate after the switch becomes disabled is  
controlled with the value of the internal resistance QOD (RPD,QOD).  
QOD pin connected to VOUT pin using an external resistor RQOD. After the switch becomes disabled, the  
discharge rate is controlled by the value of the total discharge resistance. To adjust the total discharge  
resistance, 公式 1 can be used:  
RDIS = RPD,QOD + RQOD  
Where:  
RDIS = Total output discharge resistance (Ω)  
版权 © 2020, Texas Instruments Incorporated  
13  
 
 
TPS22919-Q1  
ZHCSKP7 JANUARY 2020  
www.ti.com.cn  
RPD,QOD = Internal pulldown resistance (Ω)  
RQOD = External resistance placed between the VOUT and QOD pins (Ω)  
(1)  
QOD pin is unused and left floating. Using this method, there will be no quick output discharge functionality,  
and the output will remain floating after the switch is disabled.  
The fall times of the device depend on many factors including the total discharge resistance (RDIS) and the output  
capacitance (CL). To calculate the approximate fall time of VOUT use 公式 2.  
tFALL = 2.2 × (RDIS || RL) × CL  
Where:  
tFALL = Output Fall Time from 90% to 10% (μs)  
RDIS = Total QOD + RQOD Resistance (Ω)  
RL = Output Load Resistance (Ω)  
CL = Output Load Capacitance (μF)  
(2)  
8.3.3.1 QOD When System Power is Removed  
The adjustable QOD can be used to control the power down sequencing of a system even when the system  
power supply is removed. When the power is removed, the input capacitor discharges at VIN. Past a certain VIN  
level, the strength of the RPD will be reduced. If there is still remaining charge on the output capacitor, this will  
result in longer fall times. For further information regarding this condition, see the Setting Fall Time for Shutdown  
Power Sequencing section.  
8.4 Device Functional Modes  
2 describes the connection of the VOUT pin depending on the state of the ON pin as well as the various QOD  
pin configurations.  
2. VOUT Connection  
ON  
L
QOD CONFIGURATION  
QOD pin connected to VOUT with RQOD  
QOD pin tied to VOUT directly  
QOD pin left open  
TPS22919-Q1 VOUT  
GND (RPD, QOD + RQOD  
)
L
GND (RPD, QOD  
Floating  
)
L
H
N/A  
VIN  
14  
版权 © 2020, Texas Instruments Incorporated  
 
 
TPS22919-Q1  
www.ti.com.cn  
ZHCSKP7 JANUARY 2020  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
This section highlights some of the design considerations when implementing this device in various applications.  
9.2 Typical Application  
This typical application demonstrates how the TPS22919-Q1 devices can be used to power downstream  
modules.  
30. Typical Application Schematic  
9.2.1 Design Requirements  
For this design example, use the values listed in 3 as the design parameters:  
3. Design Parameters  
DESIGN PARAMETER  
Input Voltage (VIN  
EXAMPLE VALUE  
3.6 V  
)
Load Current / Resistance (RL)  
Load Capacitance (CL)  
1 kΩ  
47 µF  
Minimum Fall Time (tF)  
40 ms  
Maximum Inrush Current (IRUSH  
)
150 mA  
版权 © 2020, Texas Instruments Incorporated  
15  
 
TPS22919-Q1  
ZHCSKP7 JANUARY 2020  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9.2.2.1 Limiting Inrush Current  
Use 公式 3 to find the maximum slew rate value to limit inrush current for a given capacitance:  
(Slew Rate) = IRUSH ÷ CL  
where  
IINRUSH = maximum acceptable inrush current (mA)  
CL = capacitance on VOUT (μF)  
Slew Rate = Output Slew Rate during turn on (mV/μs)  
(3)  
Based on 公式 3, the required slew rate to limit the inrush current to 150 mA is 3.2 mV/μs. The TPS22919-Q1  
has a slew rate of 2.3 mV/μs, so the inrush current will be below 150 mA.  
9.2.2.2 Setting Fall Time for Shutdown Power Sequencing  
Microcontrollers and processors often have a specific shutdown sequence in which power must be removed.  
Using the adjustable Quick Output Discharge function of the TPS22919-Q1 device, adding a load switch to each  
power rail can be used to manage the power down sequencing. To determine the QOD values for each load  
switch, first confirm the power down order of the device you wish to power sequence. Be sure to check if there  
are voltage or timing margins that must be maintained during power down.  
Once the required fall time is determined, the maximum external discharge resistance (RDIS) value can be found  
using 公式 2:  
tFALL = 2.2 × (RDIS || RL) × CL  
(4)  
(5)  
RDIS = 630 Ω  
公式 1 can then be used to calculate the RQOD resistance needed to achieve a particular discharge value:  
RDIS = QOD + RQOD  
(6)  
(7)  
RQOD = 600 Ω  
To ensure a fall time greater than, choose an RQOD value greater than 600 Ω.  
9.2.2.3 Application Curves  
A.  
CL = 47μF  
31. Fall Time (RQOD = 1 kΩ)  
16  
版权 © 2020, Texas Instruments Incorporated  
 
TPS22919-Q1  
www.ti.com.cn  
ZHCSKP7 JANUARY 2020  
10 Power Supply Recommendations  
The device is designed to operate with a VIN range of 1.6 V to 5.5 V. The VIN power supply must be well  
regulated and placed as close to the device terminal as possible. The power supply must be able to withstand all  
transient load current steps. In most situations, using an input capacitance (CIN) of 1 μF is sufficient to prevent  
the supply voltage from dipping when the switch is turned on. In cases where the power supply is slow to  
respond to a large transient current or large load current step, additional bulk capacitance may be required on  
the input.  
版权 © 2020, Texas Instruments Incorporated  
17  
TPS22919-Q1  
ZHCSKP7 JANUARY 2020  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For best performance, all traces must be as short as possible. To be most effective, the input and output  
capacitors must be placed close to the device to minimize the effects that parasitic trace inductances may have  
on normal operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic electrical effects.  
11.2 Layout Example  
32. Recommended Board Layout  
11.3 Thermal Considerations  
The maximum IC junction temperature should be restricted to 125°C under normal operating conditions. To  
calculate the maximum allowable dissipation, PD(max) for a given output current and ambient temperature, use 公  
8:  
TJ(MAX) - TA  
PD(MAX)  
=
qJA  
where  
PD(MAX) = maximum allowable power dissipation  
TJ(MAX) = maximum allowable junction temperature (125°C for the TPS22919-Q1 devices)  
TA = ambient temperature of the device  
θJA = junction to air thermal impedance. Refer to the Thermal Parameters table. This parameter is highly  
dependent upon board layout.  
(8)  
18  
版权 © 2020, Texas Instruments Incorporated  
 
TPS22919-Q1  
www.ti.com.cn  
ZHCSKP7 JANUARY 2020  
12 器件和文档支持  
12.1 商标  
All trademarks are the property of their respective owners.  
12.2 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2020, Texas Instruments Incorporated  
19  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS22919QDCKRQ1  
ACTIVE  
SC70  
DCK  
6
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
1H2  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
27-Aug-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS22919QDCKRQ1  
SC70  
DCK  
6
3000  
178.0  
9.0  
2.4  
2.5  
1.2  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
27-Aug-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SC70 DCK  
SPQ  
Length (mm) Width (mm) Height (mm)  
180.0 180.0 18.0  
TPS22919QDCKRQ1  
6
3000  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS22919DCKR

具有可调节输出放电功能的 5.5V、1.5A、90mΩ 负载开关 | DCK | 6 | -40 to 105
TI

TPS22919DCKT

具有可调节输出放电功能的 5.5V、1.5A、90mΩ 负载开关 | DCK | 6 | -40 to 105
TI

TPS22919QDCKRQ1

符合 AEC Q100 标准、具有受控上升时间的单通道、5.5V、1.5A、90mΩ 自保护负载开关

TI

TPS22920

Ultra-Low On-Resistance, 4-A Integrated Load Switch with Controlled Turn-on
TI

TPS22920LYZPR

3.6-V, 4-A, 5.3-m&Omega; load switch with output discharge 8-DSBGA -40 to 85
TI

TPS22920LYZPT

具有输出放电功能的 3.6V、4A、5.3mΩ 负载开关 | YZP | 8 | -40 to 85
TI

TPS22920YZPR

Ultra-Low On-Resistance, 4-A Integrated Load Switch with Controlled Turn-on
TI

TPS22920YZPRB

暂无描述
TI

TPS22920YZPT

Ultra-Low On-Resistance, 4-A Integrated Load Switch with Controlled Turn-on
TI

TPS22920_14

Ultra-Low On-Resistance, 4-A Integrated Load Switch with Controlled Turn-on
TI

TPS22921

LOW INPUT VOLTAGE, ULTRA-LOW rON LOAD SWITCHES
TI

TPS22921YFPR

LOW INPUT VOLTAGE, ULTRA-LOW rON LOAD SWITCHES
TI