TPS2310IPWG4 [TI]

DUAL HOT-SWAP POWER CONTROLLERS WITH INTERDEPENDENT CIRCUIT BREAKER AND POWER-GOOD REPORTING;
TPS2310IPWG4
型号: TPS2310IPWG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DUAL HOT-SWAP POWER CONTROLLERS WITH INTERDEPENDENT CIRCUIT BREAKER AND POWER-GOOD REPORTING

功率控制 光电二极管
文件: 总22页 (文件大小:423K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
PW PACKAGE  
(TOP VIEW)  
features  
Dual-Channel High-Side MOSFET Drivers  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
GATE1  
GATE2  
DGND  
TIMER  
VREG  
DISCH1  
DISCH2  
ENABLE  
PWRGD1  
FAULT  
ISET1  
ISET2  
PWRGD2  
IN2  
IN1: 3 V to 13 V; IN2: 3 V to 5.5 V  
Inrush Current Limiting With dv/dt Control  
Circuit-Breaker Control With Programmable  
Current Limit and Transient Timer  
VSENSE2  
VSENSE1  
AGND  
ISENSE2  
ISENSE1  
Power-Good Reporting With Transient  
Filter  
CMOS- and TTL-Compatible Enable Input  
Low, 5-µA Standby Supply Current . . . Max  
Available in 20-Pin TSSOP Package  
IN1  
NOTE: Terminal 18 is active high on TPS2311.  
40°C to 85°C Ambient Temperature Range  
Electrostatic Discharge Protection  
typical application  
V
O1  
applications  
+
V1  
3 V – 13 V  
Hot-Swap/Plug/Dock Power Management  
Hot-Plug PCI, Device Bay  
DISCH1  
IN1  
ISET1  
GATE1  
ISENSE1  
VSENSE1  
VREG  
Electronic Circuit Breaker  
AGND  
DGND  
TPS2310  
PWRGD1  
description  
FAULT  
TIMER  
The TPS2310 and TPS2311 are dual-channel  
hot-swap controllers that use external N-channel  
MOSFETs as high-side switches in power  
applications. Features of these devices, such as  
overcurrent protection (OCP), inrush current  
control, output-power status reporting, and  
separation of load transients from actual load  
increases, are critical requirements for hot-swap  
applications.  
ENABLE  
PWRGD2  
VSENSE2  
GATE2  
IN2  
ISET2  
ISENSE2  
DISCH2  
V
O2  
+
V2  
3 V – 5.5 V  
The TPS2310/11 devices incorporate undervoltage lockout (UVLO) and power-good (PG) reporting to ensure  
the device is off at start-up and confirm the status of the output voltage rails during operation. Each internal  
charge pump, capable of driving multiple MOSFETs, provides enough gate-drive voltage to fully enhance the  
N-channel MOSFETs. The charge pumps control both the rise times and fall times (dv/dt) of the MOSFETs,  
reducing power transients during power up/down. The circuit-breaker functionality combines the ability to sense  
overcurrentconditionswithatimerfunction;thisallowsdesignssuchasDSPs, thatmayhavehighpeakcurrents  
during power-state transitions, to disregard transients for a programmable period.  
AVAILABLE OPTIONS  
TSSOP PACKAGES (PW, PWR)  
PIN  
COUNT  
T
A
HOT-SWAP CONTROLLER DESCRIPTION  
ENABLE  
ENABLE  
Dual-channel with independent OCP and adjustable PG  
Dual-channel with interdependent OCP and adjustable PG  
Dual-channel with independent OCP  
20  
20  
16  
14  
TPS2300IPW  
TPS2310IPW  
TPS2320IPW  
TPS2330IPW  
TPS2301IPW  
TPS2311IPW  
TPS2321IPW  
TPS2331IPW  
40°C to 85°C  
Single-channel with OCP and adjustable PG  
The packages are available left-end taped and reeled (indicated by the R suffix on the device type; e.g., TPS2311IPWR).  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
functional block diagram  
IN1  
PREREG  
ISET1  
ISENSE1 GATE1  
Clamp  
DISCH1  
VREG  
dv/dt Rate  
Protection  
Charge  
Pump  
Circuit  
Breaker  
50 µA  
Pulldown FET  
Circuit Breaker  
UVLO and  
Power-Up  
VSENSE1  
PWRGD1  
AGND  
DGND  
75 µA  
20-µs Deglitch  
FAULT  
Logic  
ENABLE  
50-µs Deglitch  
TIMER  
Second Channel  
DISCH2  
PWRGD2  
VSENSE2  
IN2  
ISET2  
ISENSE2 GATE2  
Terminal Functions  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
8
AGND  
DGND  
I
I
Analog ground, connects to DGND as close as possible  
Digital ground  
3
DISCH1  
DISCH2  
20  
19  
18  
16  
1
O
O
I
Discharge transistor 1  
Discharge transistor 2  
ENABLE/ ENABLE  
FAULT  
Active low (TPS2310) or active high enable (TPS2311)  
Overcurrent fault, open-drain output  
Connects to gate of channel 1 high-side MOSFET  
Connects to gate of channel 2 high-side MOSFET  
Input voltage for channel 1  
O
O
O
I
GATE1  
GATE2  
2
IN1  
11  
12  
10  
9
IN2  
I
Input voltage for channel 2  
ISENSE1  
ISENSE2  
ISET1  
I
Current-sense input channel 1  
I
Current-sense input channel 2  
15  
14  
17  
13  
4
I
Adjusts circuit-breaker threshold with resistor connected to IN1  
Adjusts circuit-breaker threshold with resistor connected to IN2  
ISET2  
I
PWRGD1  
PWRGD2  
TIMER  
O
O
O
O
I
Open-drain output, asserted low when VSENSE1 voltage is less than reference.  
Open-drain output, asserted low when VSENSE2 voltage is less than reference.  
Adjusts circuit-breaker deglitch time  
VREG  
5
Connects to bypass capacitor, for stable operation  
Power-good sense input channel 1  
VSENSE1  
VSENSE2  
7
6
I
Power-good sense input channel 2  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
detailed description  
DISCH1, DISCH2 – DISCH1 and DISCH2 should be connected to the sources of the external N-channel  
MOSFET transistors connected to GATE1 and GATE2, respectively. These pins discharge the loads when the  
MOSFET transistors are disabled. They also serve as reference-voltage connections for internal gate  
voltage-clamp circuitry.  
ENABLE or ENABLE – ENABLE for TPS2310 is active low. ENABLE for TPS2311 is active high. When the  
controller is enabled, both GATE1 and GATE2 voltages will power up to turn on the external MOSFETs. When  
the ENABLE pin is pulled high for TPS2310 or the ENABLE pin is pulled low for TPS2311 for more than 50 µs,  
the gate of the MOSFET is discharged at a controlled rate by a current source, and a transistor is enabled to  
discharge the output bulk capacitance. In addition, the device turns on the internal regulator PREREG (see  
VREG) when enabled and shuts down PREREG when disabled so that total supply current is less than 5 µA.  
FAULT – FAULT is an open-drain overcurrent flag output. When an overcurrent condition in either channel is  
sustained long enough to charge TIMER to 0.5 V, both channels channel latch off and pull this pin low.  
GATE1, GATE2 – GATE1 and GATE2 connect to the gates of external N-channel MOSFET transistors. When  
the device is enabled, internal charge-pump circuitry pulls these pins up by sourcing approximately 15 µA to  
each. The turnon slew rates depend upon the capacitance present at the GATE1 and GATE2 terminals. If  
desired, the turnon slew rates can be further reduced by connecting capacitors between these pins and ground.  
These capacitors also reduce inrush current and protect the device from false overcurrent triggering during  
powerup.The charge-pump circuitry will generate gate-to-source voltages of 9 V–12 V across the external  
MOSFET transistors.  
IN1, IN2 – IN1 and IN2 should be connected to the power sources driving the external N-channel MOSFET  
transistors connected to GATE1 and GATE2, respectively. The TPS2310/TPS2311 draws its operating current  
from IN1, and both channels will remain disabled until the IN1 power supply has been established. The IN1  
channel has been constructed to support 3-V, 5-V, or 12-V operation, while the IN2 channel has been  
constructed to support 3-V or 5-V operation  
ISENSE1, ISENSE2, ISET1, ISET2 – ISENSE1 and ISENSE2, in combination with ISET1 and ISET2,  
implement overcurrent sensing for GATE1 and GATE2. ISET1 and ISET2 set the magnitude of the current that  
generates an overcurrent fault, through external resistors connected to ISET1 and ISET2. An internal current  
source draws 50 µA from ISET1 and ISET2. With a sense resistor from IN1 to ISENSE1 or from IN2 to ISENSE2,  
which is also connected to the drains of external MOSFETs, the voltage on the sense resistor reflects the load  
current. An overcurrent condition is assumed to exist if ISENSE1 is pulled below ISET1 or if ISENSE2 is pulled  
below ISET2.  
PWRGD1, PWRGD2 – PWRGD1 and PWRGD2 signal the presence of undervoltage conditions on VSENSE1  
and VSENSE2, respectively. These pins are open-drain outputs and are pulled low during an undervoltage  
condition. To minimize erronous PWRGDx responses from transients on the voltage rail, the voltage sense  
circuit incorporates a 20-µs deglitch filter. When VSENSEx is lower than the reference voltage (about 1.23 V),  
PWRGDx will be active low to indicate an undervoltage condition on the power-rail voltage.  
TIMER – A capacitor on TIMER sets the time during which the power switch can be in overcurrent before turning  
off. When the overcurrent protection circuits sense an excessive current, a current source is enabled which  
charges the capacitor on TIMER. Once the voltage on TIMER reaches approximately 0.5 V, the circuit-breaker  
latch is set and the power switch is latched off. Power must be recycled or the ENABLE pin must be toggled  
to restart the controller. In high-power or high-temperature applications, a minimum 50-pF capacitor is strongly  
recommended from TIMER to ground, to prevent any false triggering.  
VREG – The VREG pin is the output of an internal low-dropout voltage regulator. This regulator draws current  
from IN1. A 0.1-µF ceramic capacitor should be connected between VREG and ground. VREG can be  
connected to IN1, IN2, or to a separated power supply through a low-resistance resistor. However, the voltage  
on VREG must be less than 5.5 V.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
detailed description (continued)  
VSENSE1, VSENSE2 – VSENSE1 and VSENSE2 can be used to detect undervoltage conditions on external  
circuitry. If VSENSE1 senses a voltage below approximately 1.23 V, PWRGD1 is pulled low. Similarly, a voltage  
less than 1.23 V on VSENSE2 causes PWRGD2 to be pulled low.  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Input voltage range: V  
, V  
, V  
, V  
, V  
,
I(IN1) I(ISENSE1) I(VSENSE1) I(VSENSE2) I(ISET1)  
V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 15 V  
I(ENABLE)  
, V  
, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 7 V  
I(IN2) I(ISENSE2) I(ISET2)  
Output voltage range:  
V
V
V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 30 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 22V  
O(GATE1)  
O(GATE2)  
, V  
, V  
, V  
, V  
,
O(DISCH1) O(PWRGD1) O(PWRGD2) O(FAULT) O(VREG)  
, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 15V  
O(DISCH2) O(TIMER)  
Sink current range:  
I
I
, I  
, I  
, I  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 mA to 100 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 mA to 10 mA  
GATE1 GATE2 DISCH1 DISCH2  
PWRGD1 PWRGD2 TIMER FAULT  
, I  
, I  
, I  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 100°C  
Storage temperature range, T  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
J
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltages are respect to DGND.  
DISSIPATION RATING TABLE  
DERATING FACTOR  
T
25°C  
T
A
= 70°C  
T = 85°C  
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
PW-20  
1015 mW  
13.55 mW/°C  
406 mW  
203 mW  
recommended operating conditions  
MIN NOM  
MAX  
13  
UNIT  
V
, V  
, V  
I(IN2) I(ISENSE2) I(ISET2)  
, V  
, V  
3
3
I(IN1) I(ISENSE1) I(VSENSE1) I(VSENSE2) I(ISET1)  
Input voltage, V  
V
I
V
, V , V  
5.5  
VREG voltage, V  
, when VREG is directly connected to IN1  
O(VREG)  
2.95  
–40  
5.5  
V
Operating virtual junction temperature, T  
100  
°C  
J
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
electrical characteristics over recommended operating temperature range (–40°C < T < 85°C),  
A
3 V V  
13 V, 3 V V  
5.5 V (unless otherwise noted)  
I(IN1)  
I(IN2)  
general  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.5  
75  
MAX  
1
UNIT  
mA  
I
I
Input current, IN1  
Input current, IN2  
V
V
V
V
= 5 V (TPS2311),  
= 0 V (TPS2310)  
= 0 V (TPS2311)  
= 5 V (TPS2310)  
I(IN1)  
I(ENABLE)  
I(ENABLE)  
I(ENABLE)  
I(ENABLE)  
200  
µA  
I(IN2)  
Standby current (sum of currents into IN1, IN2,  
ISENSE1, ISENSE2, ISET1, and ISET2)  
I
5
µA  
I(stby)  
GATE1  
PARAMETER  
TEST CONDITIONS  
MIN  
9
TYP  
11.5  
14.5  
21  
MAX  
UNIT  
V
V
V
V
I(IN1)  
V
I(IN1)  
V
I(IN1)  
= 3 V  
G(GATE1_3V)  
I
= 500 nA,  
I(GATE1)  
DISCH1 open  
Gate voltage  
= 4.5 V  
= 10.8 V  
10.5  
16.8  
V
G(GATE1_4.5V)  
G(GATE1_10.8V)  
Clamping voltage, GATE1  
to DISCH1  
V
9
10  
50  
10  
14  
75  
12  
20  
V
C(GATE1)  
S(GATE1)  
3 V V  
13.2 V, 3 V V  
5.5 V,  
5.5 V,  
I(IN1)  
I(IN1)  
O(VREG)  
O(VREG)  
I
Source current, GATE1  
Sink current, GATE1  
µA  
µA  
V
= V  
+ 6 V  
I(GATE1)  
I(IN1)  
3 V V  
13.2 V, 3 V V  
100  
V
= V  
I(GATE1)  
I(IN1)  
V
I(IN1)  
V
I(IN1)  
V
I(IN1)  
V
I(IN1)  
V
I(IN1)  
V
I(IN1)  
= 3 V  
0.5  
0.6  
1
t
t
Rise time, GATE1  
Fall time, GATE1  
C
to GND = 1 nF (see Note 2)  
to GND = 1 nF (see Note 2)  
= 4.5 V  
= 10.8 V  
= 3 V  
ms  
ms  
r(GATE1)  
g
g
0.1  
0.12  
0.2  
C
= 4.5 V  
= 10.8 V  
f(GATE)  
GATE2  
PARAMETER  
TEST CONDITIONS  
MIN  
9
TYP  
11.7  
14.7  
MAX  
UNIT  
V
V
V
V
= 3 V  
G(GATE2_3V)  
I(IN2)  
Gate voltage  
I
= 500 nA, DISCH2 open  
V
I(GATE2)  
= 4.5 V  
10.5  
G(GATE2_4.5V)  
C(GATE2)  
I(IN2)  
Clamping voltage,  
GATE2 to DISCH2  
V
9
10  
50  
10  
14  
75  
12  
20  
V
Source current,  
GATE2  
3 V V  
V
5.5 V, 3 V V  
5.5 V,  
5.5 V,  
I(IN2)  
I(IN2)  
O(VREG)  
O(VREG)  
I
µA  
µA  
S(GATE2)  
= V  
+ 6 V  
I(GATE2)  
I(IN2)  
3 V V  
V
5.5 V, 3 V V  
Sink current, GATE2  
Rise time, GATE2  
Fall time, GATE2  
100  
= V  
I(GATE2)  
I(IN2)  
V
I(IN2)  
V
I(IN2)  
V
I(IN2)  
V
I(IN2)  
= 3 V  
0.5  
0.6  
C
to GND = 1 nF  
g
t
t
ms  
ms  
r(GATE2)  
(see Note 2)  
= 4.5 V  
= 3 V  
V
= 3 V  
O(VREG)  
0.1  
C
to GND = 1 nF  
g
f(GATE2)  
(see Note 2)  
= 4.5 V  
0.12  
NOTE 2: Specified, but not production tested.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
electrical characteristics over recommended operating temperature range (–40°C < T < 85°C),  
A
3 V V  
13 V, 3 V V  
5.5 V ( unless otherwise noted) (continued)  
I(IN1)  
I(IN2)  
TIMER  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.5  
50  
MAX  
0.6  
UNIT  
V
V
Threshold voltage, TIMER  
Charge current, TIMER  
Discharge current, TIMER  
0.4  
35  
1
OT(TIMER)  
V
V
= 0 V  
= 1 V  
65  
µA  
I(TIMER)  
2.5  
mA  
I(TIMER)  
circuit breaker  
PARAMETER  
Undervoltage voltage, circuit breaker  
Input bias current, I  
TEST CONDITIONS  
MIN  
TYP  
50  
MAX  
60  
UNIT  
mV  
V
R
= 1 kΩ  
40  
IT(CB)  
ISETx  
I
0.1  
5
µA  
IB(ISENSEx)  
SENSEx  
V
V
= 4 V  
= 1 V  
400  
25  
800  
150  
O(GATEx)  
Discharge current, GATEx  
mA  
O(GATEx)  
Propagation (delay) time, comparator inputs to  
gate output  
C
= 50 pF,  
10 mV overdrive,  
C = 50 pF  
O(timer)  
g
t
1.3  
µs  
pd(CB)  
(50% to 10%)  
ENABLE, active low (TPS2310)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
High-level input voltage, ENABLE  
Low-level input voltage, ENABLE  
2
IH(ENABLE)  
0.8  
V
IL(ENABLE)  
Input pullup resistance,  
ENABLE  
R
t
See Note 3  
100  
200  
60  
300  
kΩ  
µs  
µs  
I(ENABLE)  
V
increasingabovestopthreshold;100  
I(ENABLE)  
ns rise time, 20 mV overdrive (see Note 2)  
Turnoff delay time, ENABLE  
Turnon delay time, ENABLE  
d_off(ENABLE)  
V
decreasing below start threshold;  
I(ENABLE)  
t
125  
d_on(ENABLE)  
100 ns fall time, 20 mV overdrive (see Note 2)  
NOTES: 2. Specified, but not production tested.  
3. Test I of ENABLE at V  
1 V  
= 1 V and 0 V, then R =  
I(ENABLE)  
O
I(ENABLE)  
I
I
0V  
1V  
O_  
O_  
ENABLE, active high (TPS2311)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
High-level input voltage, ENABLE  
2
IH(ENABLE)  
Low-level input voltage, ENABLE  
0.7  
V
IL(ENABLE)  
Input pulldown resistance,  
ENABLE  
R
100  
150  
85  
300  
kΩ  
µs  
µs  
I(ENABLE)  
V
increasing above start threshold;  
I(ENABLE)  
100 ns rise time, 20 mV overdrive (see Note 2)  
t
t
Turnon delay time, ENABLE  
Turnoff delay time, ENABLE  
d_on(ENABLE)  
V
decreasing below stop threshold;  
I(ENABLE)  
100  
d_off(ENABLE)  
100 ns fall time, 20 mV overdrive (see Note 2)  
NOTE 2: Specified, but not production tested.  
PREREG  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
5.5  
UNIT  
V
VREG  
PREREG output voltage  
PREREG dropout voltage  
4.5 V  
13 V  
3.5  
4.1  
I(IN1)  
= 3 V  
Vdrop_PREREG  
V
I(IN1)  
0.1  
V
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
electrical characteristics over recommended operating temperature range (–40°C < T < 85°C),  
A
3 V V  
13 V, 3 V V  
5.5 V (unless otherwise noted) (continued)  
I(IN1)  
I(IN2)  
VREG UVLO  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2.85  
2.78  
75  
MAX  
UNIT  
V
V
V
V
Output threshold voltage, start  
Output threshold voltage, stop  
Hysteresis  
2.75  
2.65  
50  
2.95  
OT(UVLOstart)  
OT(UVLOstop)  
hys(UVLO)  
V
mV  
mA  
UVLO sink current, GATEx  
V
V
= 2 V  
10  
I(GATEx)  
PWRGD1 and PWRGD2  
PARAMETER  
TEST CONDITIONS  
decreasing  
I(VSENSEx)  
MIN  
TYP  
MAX  
UNIT  
V
V
Trip threshold, VSENSEx  
1.2 1.225  
1.25  
V
IT(ISENSEx)  
Hysteresis voltage, power-good  
comparator  
20  
30  
40  
mV  
hys  
V
V
Output saturation voltage PWRGDx  
I
I
= 2 mA  
0.2  
0.4  
1
V
V
O(sat)(PWRGDx)  
O
Minimum V  
O(VREG)  
for valid power-good  
= 100 µA, V  
= 1 V  
O(PWRGDx)  
O(VREGmin)  
O
I
I
Input bias current, power-good comparator  
Leakage current, PWRGDx  
V
V
V
= 5.5 V  
1
µA  
µA  
IB  
I(VSENSEx)  
O(PWRGDx)  
I(VSENSEx)  
= 13 V  
1
lkg(PWRGDx)  
increasing,  
t
dr  
Delay time, rising edge, PWRGDx  
Delay time, falling edge, PWRGDx  
Overdrive = 20 mV, t = 100 ns,  
25  
2
µs  
µs  
r
See Note 2  
V
decreasing,  
I(VSENSEx)  
t
df  
Overdrive = 20 mV, t = 100 ns,  
r
See Note 2  
NOTE 2: Specified, but not production tested.  
FAULT output  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.4  
1
UNIT  
V
V
Output saturation voltage, FAULT  
Leakage current, FAULT  
I
= 2 mA  
O(sat)(FAULT)  
O
I
V
= 13 V  
µA  
lkg(FAULT)  
O(FAULT)  
DISCH1 and DISCH2  
PARAMETER  
TEST CONDITIONS  
= 1.5 V, V = 5 V  
I(VIN1)  
MIN  
5
TYP  
MAX  
UNIT  
mA  
V
I
Discharge current, DISCHx  
V
10  
DISCH  
I(DISCHx)  
V
Discharge on high-level input voltage  
Discharge on low-level input voltage  
2
IH(DISCH)  
IL(DISCH)  
V
1
V
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
PARAMETER MEASUREMENT INFORMATION  
Load 12 Ω  
Load 12 Ω  
V
I(ENABLE)  
5 V/div  
V
I(ENABLE)  
5 V/div  
V
O(GATE1)  
10 V/div  
V
O(DISCH1)  
5 V/div  
V
O(GATE1)  
10 V/div  
V
O(DISCH1)  
5 V/div  
t – Time – 10 ms/div  
t – Time – 10 ms/div  
Figure 1. Turnon Voltage Transition of  
Channel 1  
Figure 2. Turnoff Voltage Transition of  
Channel 1  
Load 5 Ω  
Load 5 Ω  
V
I(ENABLE)  
5 V/div  
V
I(ENABLE)  
5 V/div  
V
O(GATE2)  
10 V/div  
V
O(GATE2)  
10 V/div  
V
O(DISCH2)  
5 V/div  
V
O(DISCH2)  
5 V/div  
t – Time – 10 ms/div  
t – Time – 10 ms/div  
Figure 3. Turnon Voltage Transition of  
Channel 2  
Figure 4. Turnoff Voltage Transition of  
Channel 2  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
PARAMETER MEASUREMENT INFORMATION  
No Capacitor  
on Timer  
V
V
I(ENABLE)  
5 V/div  
I(ENABLE)  
5 V/div  
No Capacitor  
on Timer  
V
O(GATE1)  
10 V/div  
V
O(GATE1)  
10 V/div  
V
O(FAULT)  
10 V/div  
V
O(FAULT)  
10 V/div  
I
I
O(OUT1)  
2 A/div  
O(OUT1)  
2 A/div  
t – Time – 1 ms/div  
t – Time – 5 ms/div  
Figure 6. Channel 1 Overcurrent Response: an  
Overcurrent Load Plugged Into the Enabled Board  
Figure 5. Channel 1 Overcurrent Response:  
Enabled Into Overcurrent Load  
No Capacitor  
on Timer  
No Capacitor  
on Timer  
V
I(ENABLE)  
5 V/div  
V
I(ENABLE)  
5 V/div  
V
O(GATE2)  
10 V/div  
V
O(GATE2)  
10 V/div  
V
V
O(FAULT)  
10 V/div  
O(FAULT)  
10 V/div  
I
O(OUT2)  
2 A/div  
I
O(OUT2)  
2 A/div  
t – Time – 2 ms/div  
t – Time – 0.5 ms/div  
Figure 7. Channel 2 Overcurrent Response:  
Enabled Into Overcurrent Load  
Figure 8. Channel 2 Overcurrent Response: an  
Overcurrent Load Plugged Into the Enabled Board  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
PARAMETER MEASUREMENT INFORMATION  
No Capacitor  
on Timer  
No Capacitor  
on Timer  
V
V
I(ENABLE)  
5 V/div  
I(ENABLE)  
5 V/div  
V
V
O(GATE1)  
10 V/div  
O(GATE2)  
5 V/div  
V
V
O(FAULT)  
10 V/div  
O(FAULT)  
10 V/div  
I
I
O(IN1)  
O(IN2)  
2 A/div  
2 A/div  
t – Time – 1 ms/div  
t – Time – 1 ms/div  
Figure 10. Channel 2 – Enabled Into Short Circuit  
Figure 9. Channel 1 – Enabled Into Short  
Circuit  
No Capacitor  
on Timer  
V
No Capacitor  
on Timer  
I(IN1)  
10 V/div  
V
V
O(GATE1)  
10 V/div  
I(IN1)  
10 V/div  
V
O(GATE1)  
10 V/div  
V
I
O(OUT1)  
10 V/div  
V
I
O(OUT1)  
10 V/div  
O(OUT1)  
1 A/div  
O(OUT1)  
1 A/div  
t – Time – 5 ms/div  
t – Time – 1 ms/div  
Figure 11. Channel 1 – Hot Plug  
Figure 12. Channel 1 – Hot Removal  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
PARAMETER MEASUREMENT INFORMATION  
No Capacitor  
on Timer  
V
I(IN2)  
5 V/div  
V
O(GATE2)  
10 V/div  
V
I
O(OUT2)  
5 V/div  
O(OUT2)  
1 A/div  
t – Time – 5 ms/div  
Figure 13. Channel 2 – Hot Plug  
No Capacitor  
on Timer  
V
I(IN2)  
5 V/div  
V
O(GATE2)  
10 V/div  
V
I
O(OUT2)  
5 V/div  
O(OUT2)  
1 A/div  
t – Time – 1 ms/div  
Figure 14. Channel 2 – Hot Removal  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT (ENABLED)  
SUPPLY CURRENT (ENABLED)  
vs  
vs  
VOLTAGE  
VOLTAGE  
52  
51  
50  
49  
71.5  
71  
IN1 = 13 v  
IN2 = 5.5 V  
T
= 85°C  
A
T
= 0°C  
A
T
= –40°C  
A
T
A
= 25°C  
70.5  
70  
T
A
= 25°C  
48  
47  
46  
45  
T
= 85°C  
A
T
A
= 0°C  
69.5  
69  
T
A
= –40°C  
68.5  
68  
44  
43  
4
5
6
7
8
9
10 11 12 13 14  
2.5  
3
3.5  
V
4
4.5  
5
5.5  
6
V
– Input Voltage 1 – V  
– Input Voltage 2 – V  
I1  
I2  
Figure 15  
Figure 16  
SUPPLY CURRENT (DISABLED)  
SUPPLY CURRENT (DISABLED)  
vs  
vs  
VOLTAGE  
VOLTAGE  
15  
23  
21  
19  
17  
15  
T
= 85°C  
A
IN2 = 5.5 V  
IN1 = 13 V  
14  
13  
12  
11  
10  
9
T
A
= 25°C  
T
A
= 85°C  
T
= –40°C  
A
T
A
= –40°C  
T
A
= 0°C  
13  
11  
9
T
A
= 0°C  
8
7
T
= 25°C  
A
7
5
4
5
6
7
8
9
10 11 12 13 14  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V
I1  
– Input Voltage 1 – V  
V
I2  
– Input Voltage 2 – V  
Figure 17  
Figure 18  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
TYPICAL CHARACTERISTICS  
GATE1 VOLTAGE  
GATE1 VOLTAGE RISE TIME  
vs  
GATE1 LOAD CAPACITANCE  
vs  
INPUT VOLTAGE  
22  
20  
18  
18  
15  
12  
C
= 1000 pF  
L(GATE1)  
IN1 = 12 V  
T
= 85°C  
A
T
= 25°C  
A
T
= 25°C  
A
T
A
= 0°C  
T
A
= –40°C  
16  
14  
9
6
12  
10  
3
0
2
3
4
5
6
7
8
9
10 11 12  
0
3
6
9
12  
V
I1  
– Input Voltage1 – V  
C
– GATE1 Load Capacitance – nF  
L(GATE1)  
Figure 19  
Figure 20  
GATE1 VOLTAGE FALL TIME  
vs  
GATE1 LOAD CAPACITANCE  
GATE1 OUTPUT CURRENT  
vs  
GATE1 VOLTAGE  
4
3
2
15  
14.5  
14  
IN1 = 12 V  
= 25°C  
T
A
T
A
= –40°C  
T
= 85°C  
A
13.5  
13  
T
A
= 25°C  
T
= 0°C  
A
12.5  
12  
1
0
IN1 = 13 V  
11.5  
11  
0
3
6
9
12  
14 15 16 17 18 19 20 21 22 23 24  
V – GATE1 Voltage  
C
– GATE1 Load Capacitance – nF  
L(GATE1)  
Figure 21  
Figure 22  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
TYPICAL CHARACTERISTICS  
CIRCUIT BREAKER RESPONSE  
LOAD VOLTAGE 1 DISCHARGE TIME  
vs  
vs  
TIMER CAPACITANCE  
LOAD CAPACITANCE  
12  
9
320  
280  
240  
200  
160  
120  
80  
IN1 = 12 V  
IN1 = 12 V  
T
A
= 25°C  
I
T
= 0 A  
= 25°C  
O1  
A
6
3
0
40  
0
0
0.2  
0.4  
0.6  
0.8  
1
0
100  
200  
300  
400  
500  
C
– TIMER Capacitance – nF  
(timer)  
C
– Load Capacitance – µF  
L
Figure 23  
Figure 24  
UVLO START AND STOP THRESHOLDS  
PWRGDx THRESHOLD  
vs  
vs  
TEMPERATURE  
TEMPERATURE  
2.9  
2.88  
2.86  
2.84  
2.82  
2.8  
1.27  
1.26  
Up  
Start  
Stop  
1.25  
1.24  
1.23  
1.22  
Down  
2.78  
2.76  
2.74  
1.21  
1.20  
2.72  
2.7  
–45–35–25–15 –5  
5
15 25 35 45 55 65 75 85 95  
–4535–25 –15 –5 5 15 25 35 45 55 65 75 85 95  
T
A
– Temperature – °C  
T
A
– Temperature – °C  
Figure 26  
Figure 25  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
APPLICATION INFORMATION  
typical application diagram  
This diagram shows a typical dual hot-swap application. The pullup resistors at PG1, PG2 and Fault should be  
relatively large (e.g. 100 k) to reduce power loss unless they are required to drive a large load.  
System  
3 V 12 V IN1  
Board  
R
SENSE1  
V
O1  
1 µF 10 µF  
+
R
R
VSENSE1_TOP  
R
ISET1  
VSENSE1_BOTTOM  
0.1 µF  
V
IN1 ISET1 ISENSE1 GATE1 DISCH1 VSENSE1  
reg  
ENABLE  
ENABLE  
DGND  
FAULT  
PWRGD1  
PWRGD2  
FAULT  
TPS2311  
PWRGD1  
PWRGD2  
AGND  
TIMER  
IN2 ISET2 ISENSE2 GATE2 DISCH2 VSENSE2  
V
V
or  
R
O1  
ISET2  
O2  
V
O2  
3 V 5 V IN2  
1 µF 10 µF  
+
R
SENSE2  
R
R
VSENSE2_TOP  
VSENSE2_BOTTOM  
Figure 27. Typical Dual Hot-Swap Application  
input capacitor  
A 0.1-µF ceramic capacitor in parallel with a 1-µF ceramic capacitor should be placed on the input power  
terminals near the connector on the hot-plug board to help stabilize the voltage rails on the cards. The  
TPS2310/11 does not need to be mounted near the connector or these input capacitors. For applications with  
more severe power environments, a 2.2-µF or higher ceramic capacitor is recommended near the input  
terminals of the hot-plug board. A bypass capacitor for IN1 and for IN2 should be placed close to the device.  
output capacitor  
A 0.1-µF ceramic capacitor is recommended per load on the TPS2311; these capacitors should be placed close  
to the external FETs and to TPS2310/11. A larger bulk capacitor is also recommended on the load. The value  
of the bulk capacitor should be selected based on the power requirements and the transients generated by the  
application.  
external FET  
To deliver power from the input sources to the loads, each channel needs an external N-channel MOSFET. A  
few widely used MOSFETs are shown in Table 1. But many other MOSFETs in the market can also be used with  
TPS23xx in hot-swap systems.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
APPLICATION INFORMATION  
Table 1. Some Available N-Channel MOSFETs  
CURRENT RANGE  
PART NUMBER  
DESCRIPTION  
MANUFACTURER  
(A)  
IRF7601  
N-channel, r  
N-channel, r  
= 0.035 , 4.6 A, Micro-8  
= 0.040 , 4.6 A, Micro-8  
International Rectifier  
ON Semiconductor  
International Rectifier  
ON Semiconductor  
International Rectifier  
ON Semiconductor  
International Rectifier  
Vishay Dale  
DS(on)  
MTSF3N03HDR2  
IRF7101  
DS(on)  
0 to 2  
Dual N-channel, r  
= 0.1 , 2.3 A, SO-8  
= 0.04 , 5 A, SO-8  
DS(on)  
DS(on)  
MMSF5N02HDR2  
IRF7401  
Dual N-channel, r  
N-channel, r  
N-channel, r  
= 0.022 , 7 A, SO-8  
= 0.025 , 5 A, SO-8  
DS(on)  
MMSF5N02HDR2  
IRF7313  
DS(on)  
2 to 5  
Dual N-channel, r  
DS(on)  
= 0.029 , 5.2 A, SO-8  
SI4410  
N-channel, r  
N-channel, r  
N-channel, r  
= 0.020 , 8 A, SO-8  
= 0.019 , 29 A, d-Pak  
= 0.045 , 14 A, d-Pak  
DS(on)  
DS(on)  
DS(on)  
IRLR3103  
International Rectifier  
International Rectifier  
5 to 10  
IRLR2703  
timer  
For most applications, a minimum capacitance of 50 pF is recommended to prevent false triggering. This  
capacitor should be connected between TIMER and ground. The presence of an overcurrent condition on either  
channel of the TPS2310/11 causes a 50-µA current source to begin charging this capacitor. If the over-  
current condition persists until the capacitor has been charged to approximately 0.5 V, the TPS2310/11 will latch  
off all channels and will pull the FAULT pin low. The timer capacitor can be made as large as desired to provide  
additional time delay before registering a fault condition.  
output-voltage slew-rate control  
When enabled, the TPS2310/11 controllers supply the gates of each external MOSFET transistor with a current  
of approximately 15 µA. The slew rate of the MOSFET source voltage is thus limited by the gate-to-drain  
capacitance C of the external MOSFET capacitor to a value approximating:  
gd  
15  
C
A
dvs  
dt  
gd  
If a slower slew rate is desired, an additional capacitance can be connected between the gate of the external  
MOSFET and ground.  
VREG capacitor  
The internal voltage regulator connected to VREG requires an external capacitor to ensure stability. A 0.1-µF  
or 0.22-µF ceramic capacitor is recommended.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
APPLICATION INFORMATION  
gate drive circuitry  
The TPS2310/11 includes four separate features associated with each gate-drive terminal:  
A charging current of approximately 15 µA is applied to enable the external MOSFET transistor. This current  
is generated by an internal charge pump that can develop a gate-to-source potential (referenced to DISCH1  
or DISCH2) of 9 V–12 V. DISCH1 and DISCH2 must be connected to the respective external MOSFET  
source terminals to ensure proper operation of this circuitry.  
A discharge current of approximately 75 µA is applied to disable the external MOSFET transistor. Once the  
transistor gate voltage has dropped below approximately 1.5 V, this current is disabled and the UVLO  
discharge driver is enabled instead. This feature allows the part to enter a low-current shutdown mode while  
ensuring that the gates of the external MOSFET transistors remain at a low voltage.  
During a UVLO condition, the gates of both MOSFET transistors are pulled down by internal PMOS  
transistors. ThesetransistorscontinuetooperateevenifIN1andIN2arebothat0V. Thiscircuitryalsohelps  
hold the external MOSFET transistors off when power is suddenly applied to the system.  
During an overcurrent fault condition, the external MOSFET transistor that exhibited an over-current  
condition will be rapidly turned off by an internal pulldown circuit capable of pulling in excess of 400 mA (at  
4 V) from the pin. Once the gate has been pulled below approximately 1.5 V, this driver is disengaged and  
the UVLO driver is enabled instead. If any channel experiences an overcurrent condition, then both  
channels will be turned off rapidly.  
setting the current-limit circuit-breaker threshold  
Using channel one as an example, the current sensing resistor R  
and the current limit setting resistor  
ISENSE1  
R
determine the current limit of the channel, and can be calculated by the following equation:  
ISET1  
–6  
R
50 10  
ISET1  
R
I
LMT1  
ISENSE1  
Typically R  
the junction of R  
is usually very small (0.001 to 0.1 ). If the trace and solder-junction resistances between  
ISENSE1  
and ISENSE1 and the junction of R  
and R  
are greater than 10% of the  
value used in the calculation  
ISENSE1  
ISENSE1  
ISET1  
R
value, then these resistance values should be added to the R  
ISENSE1  
ISENSE1  
above.  
The above information and calculation also apply to channel 2. Table 2 shows some of the current sense  
resistors available in the market.  
Table 2. Some Current Sense Resistors  
CURRENT RANGE  
PART NUMBER  
DESCRIPTION  
MANUFACTURER  
(A)  
0 to 1  
1 to 2  
2 to 4  
4 to 6  
6 to 8  
8 to 10  
WSL-1206, 0.05 1%  
WSL-1206, 0.025 1%  
WSL-1206, 0.015 1%  
WSL-2010, 0.010 1%  
WSL-2010, 0.007 1%  
WSR-2, 0.005 1%  
0.05 , 0.25 W, 1% resistor  
0.025 , 0.25 W, 1% resistor  
0.015 , 0.25 W, 1% resistor  
0.010 , 0.5 W, 1% resistor  
0.007 , 0.5 W, 1% resistor  
0.005 , 0.5 W, 1% resistor  
Vishay Dale  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
APPLICATION INFORMATION  
setting the power good threshold voltage  
The two feedback resistors R  
resistor divider setting the voltage at the VSENSEx pins. VSENSE1 voltage equals to  
and R  
connected between V and ground form a  
VSENSEx_TOP  
VSENSEx_BOT Ox  
V
= V × R /(R + R  
)
VSENSE1_BOT  
I(SENSE1)  
O
VSENSE1_BOT VSENSE1_TOP  
Thisvoltageiscomparedtoaninternalvoltagereference(1.225V±2%)todeterminewhethertheoutputvoltage  
level is within a specified tolerance. For example, given a nominal output voltage at V , and defining V  
as the minimum required output voltage, then the feedback resistors are defined by:  
O1  
O1_min  
V
1.225  
O1_min  
R
R
VSENSE1_TOP  
VSENSE1_BOT  
1.225  
Start the process by selecting a large standard resistor value for R  
to reduce power loss. Then  
VSENSE1_BOT  
R
than V  
canbecalculatedbyinsertingalloftheknownvaluesintotheequationabove.WhenV islower  
, PWRGD1 will be low as long as the controller is enabled.  
VSENSE1_TOP  
O1  
O1_min  
undervoltage lockout (UVLO)  
The TPS2310/11 includes an undervoltage lockout (UVLO) feature that monitors the voltage present on the  
VREG pin. This feature will disable both external MOSFETs if the voltage on VREG drops below 2.78 V  
(nominal) and will re-enable normal operation when it rises above 2.85 V (nominal). Since VREG is fed from  
IN1 through a low-dropout voltage regulator, the voltage on VREG will track the voltage on IN1 within 50 mV.  
While the undervoltage lockout is engaged, both GATE1 and GATE2 are held low by internal PMOS pulldown  
transistors, ensuringthattheexternalMOSFETtransistorsremainoffatalltimes, evenifallpowersupplieshave  
fallen to 0 V.  
single-channel operation  
Some applications may require only a single external MOS transistor. Such applications should use GATE1 and  
the associated circuitry (IN1, ISENSE1, ISET1, DISCH1). The IN2 pin should be grounded to disable the  
circuitry associated with the GATE2 pin. The VSENSE2 and PWRGD2 circuitry is unaffected by disabling  
GATE2, and may still be used if so desired.  
power-up control  
The TPS2310/11 includes a 500 µs (nominal) startup delay that ensures that internal circuitry has sufficient time  
to start before the device begins turning on the external MOSFETs. This delay is triggered only upon the rapid  
application of power to the circuit. If the power supply ramps up slowly, the undervoltage lockout circuitry will  
provide adequate protection against undervoltage operation.  
3-channel hot-swap application  
Some applications require hot-swap control of up to three voltage rails, but may not explicitly require the sensing  
of the status of the output power on all three of the voltage rails. One such application is device bay, where dv/dt  
control of 3.3 V, 5 V, and 12 V is required. By using channel 2 to drive both the 3.3-V and 5-V power rails and  
channel 1 to drive the 12-V power rail, as is shown below, TPS2310/11 can deliver three different voltages to  
three loads while monitoring the status of two of the loads.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
APPLICATION INFORMATION  
System  
12 V IN1  
Board  
R
SENSE1  
V
O1  
1 µF 10 µF  
+
R
R
VSENSE1_TOP  
R
ISET1  
VSENSE1_BOTTOM  
0.1 µF  
V
IN1 ISET1 ISENSE1 GATE1 DISCH1 VSENSE1  
reg  
ENABLE  
ENABLE  
DGND  
FAULT  
PWRGD1  
PWRGD2  
FAULT  
TPS2311  
PWRGD1  
PWRGD2  
AGND  
TIMER  
IN2 ISET2 ISENSE2 GATE2 DISCH2 VSENSE2  
R
V
V
or  
R
ISET2  
O1  
g1  
O2  
V
O2  
3.3 V IN2  
1 µF 10 µF  
+
R
SENSE2  
R
R
VSENSE2_TOP  
R
g2  
VSENSE2_BOTTOM  
V
O3  
5 V IN3  
1 µF 10 µF  
+
Figure 28. Three-Channel Application  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
APPLICATION INFORMATION  
Figure 29 shows ramp-up waveforms of the three output voltages.  
V
O1  
V
V
O3  
O2  
t – Time – 2.5 ms/div  
Figure 29  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS2310, TPS2311  
DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT  
CIRCUIT BREAKER AND POWER-GOOD REPORTING  
SLVS275B – FEBRUARY 2000 – REVISED APRIL 2000  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
M
0,10  
0,65  
0,19  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

TPS2310IPWR

3-13V Dual HotSwap IC w/ Inter-dependent Channel Circuit Breaking &amp; Pwr Good Report, Act-Low Enable 20-TSSOP -40 to 85
TI

TPS2310IPWR

2-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO20, GREEN, PLASTIC, TSSOP-20
ROCHESTER

TPS2310IPWRG4

2-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO20, GREEN, PLASTIC, TSSOP-20
TI

TPS2310PW

DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT CIRCUIT BREAKER AND POWER-GOOD REPORTING
TI

TPS2310_15

DUAL HOT-SWAP POWER CONTROLLERS WITH INTERDEPENDENT CIRCUIT BREAKER AND POWER-GOOD REPORTING
TI

TPS2311

DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT CIRCUIT BREAKER AND POWER-GOOD REPORTING
TI

TPS2311IPW

DUAL HOT SWAP POWER CONTROLLERS WITH INDEPENDENT CIRCUIT BREAKER
TI

TPS2311IPWG4

2-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO20, GREEN, PLASTIC, TSSOP-20
TI

TPS2311IPWR

3-V-13-V dual channel hot swap with interdependent channel circuit breaking and power good 20-TSSOP -40 to 85
TI

TPS2311PW

DUAL HOT SWAP POWER CONTROLLER WITH INTERDEPENDENT CIRCUIT BREAKER AND POWER-GOOD REPORTING
TI

TPS2311PWR

Analog IC
ETC

TPS2320

DUAL HOT SWAP POWER CONTROLLER WITH INDEPENDENT CIRCUIT BREAKER
TI