TPS25200QDRVRQ1 [TI]

关断时可实现反向电流阻断的 2.5V 至 6.5V、67mΩ、2.1A 至 2.7A 汽车电子保险丝 | DRV | 6 | -40 to 125;
TPS25200QDRVRQ1
型号: TPS25200QDRVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

关断时可实现反向电流阻断的 2.5V 至 6.5V、67mΩ、2.1A 至 2.7A 汽车电子保险丝 | DRV | 6 | -40 to 125

电子 光电二极管
文件: 总28页 (文件大小:2835K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS25200-Q1  
ZHCSDG1 MARCH 2015  
TPS25200-Q1 具有精度可调节的电流限制和过压钳位的 5V 电子熔丝  
1 特性  
3 说明  
1
符合汽车应用要求  
TPS25200-Q1 器件是一款具有精确电流限制和过压钳  
位的 5V 电子熔丝。 此器件在过压和过压事件发生时  
为负载和电源提供强健保护。  
具有符合 AEC-Q100 的下列结果:  
器件人体模型 (HBM) 分类等级 2  
器件充电器件模型 (CDM) 分类等级 C5  
TPS25200-Q1 是一款智能保护型负载开关,可耐受  
20V VIN 电压。当 IN 引脚上施加错误电压时,输出  
会钳位在 5.4V 电压,从而保护负载。 当 IN 引脚上的  
电压超过 7.6V 时,器件会与负载断开连接,从而避免  
损坏器件和/或负载。  
2.5V 6.5V 工作电压  
20V 持续 VIN(绝对最大值)  
7.6V 输入过压关断  
5.25V 5.55V 固定过压钳位  
0.6μs 过压锁定响应  
TPS25200-Q1 具有一个内部 67mΩ 电源开关,并且用  
于在多种异常情况下保护电源、器件和负载。 此器件  
提供高达 2.4A 的持续负载电流。 通过一个接地电阻,  
可在 85mA 2.7A 范围内对限流值进行设置。 当发  
生过载时,输出电流会被限制在由 RILIM 电阻设置的电  
流值上。 如果出现持续过载,此器件最终将进入热关  
断模式,以防止对 TPS25200-Q1 器件造成损坏。  
3.5μs 短路响应  
67mΩ 高侧金属氧化物半导体场效应晶体管  
(MOSFET)  
精确的电流限制设置(包含电阻):2.5A(最小  
值)与 2.9A(最大值);2.1A(最小值)与  
2.5A(最大值)  
2.7A 电流下的电流限制精度为 ±6.3%  
禁用时,反向电流阻断  
器件信息(1)  
内置软启动  
器件型号  
封装  
WSON (6)  
封装尺寸(标称值)  
TPS2553 引脚到引脚兼容  
TPS25200-Q1  
2.00mm x 2.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
2 应用范围  
汽车 USB 端口保护  
USB 电源开关  
USB 受控设备  
4 简化电路原理图  
V
IO  
VOUT VIN 之间的关系  
300kΩ  
Fault signal  
VOUT (V)  
Over Voltage Clamp  
(OVC)  
TPS25200-Q1  
V
IN  
V
OUT  
6
IN  
OUT  
ILIM  
1
2
3
C
IN  
5.4 V  
300 kΩ  
5 GND  
4 EN  
C
OUT  
FAULT  
Turn Off  
MOSFET  
Thermal Pad  
R
ILIM  
UVLO (2.35 V)  
OVLO (7.6 V)  
VIN (V)  
20 V  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCU5  
 
 
 
 
TPS25200-Q1  
ZHCSDG1 MARCH 2015  
www.ti.com.cn  
目录  
9.1 Overview ................................................................... 9  
9.2 Functional Block Diagram ......................................... 9  
9.3 Feature Description................................................. 10  
9.4 Device Functional Modes........................................ 11  
10 Application and Implementation........................ 12  
10.1 Application Information.......................................... 12  
10.2 Typical Application ................................................ 12  
11 Power Supply Recommendations ..................... 19  
12 Layout................................................................... 19  
12.1 Layout Guidelines ................................................. 19  
12.2 Layout Example .................................................... 19  
13 器件和文档支持 ..................................................... 20  
13.1 文档支持................................................................ 20  
13.2 ....................................................................... 20  
13.3 静电放电警告......................................................... 20  
13.4 术语表 ................................................................... 20  
14 机械封装和可订购信息 .......................................... 20  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
7.1 Absolute Maximum Ratings ...................................... 3  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Switching Characteristics.......................................... 6  
7.7 Typical Characteristics.............................................. 6  
Parameter Measurement Information .................. 8  
Detailed Description .............................................. 9  
8
9
5 修订历史记录  
日期  
修订版本  
注释  
2015 3 月  
*
最初发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS25200-Q1  
www.ti.com.cn  
ZHCSDG1 MARCH 2015  
6 Pin Configuration and Functions  
DRV Package  
6-Pin WSON With Exposed Thermal Pad  
Top View  
OUT  
1
6
5
4
IN  
Thermal  
Pad  
ILIM 2  
GND  
EN  
3
FAULT  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Logic-level control input. When this pin is driven high, the power switch is enabled. When this pin  
is driven low, the power switch turns off. This pin cannot be left floating and it must be limited  
below the absolute maximum rating if tied to the IN pin.  
EN  
4
I
Active-low open-drain output. This pin is asserted during an overcurrent, overvoltage, or  
overtemperature event. Connect a pullup resistor to the logic I/O voltage.  
FAULT  
GND  
ILIM  
3
5
2
O
O
Ground connection. Connect this pin externally to the exposed thermal pad.  
External resistor. The ILIM pin is used to set the current-limit threshold. The recommended value  
for this pin is: 36 kΩ ≤ RILIM 1100 kΩ.  
Input voltage. Connect a ceramic capacitor with a value of 0.1 μF or greater from the IN pin to the  
GND pin as close to the IC as possible.  
IN  
6
1
I
OUT  
O
Protected power switch, VOUT.  
The exposed thermal pad is internally connected to the GND pin. Use the thermal pad to heat-sink  
the device to the circuit board traces. Connect the thermal pad to the GND pin externally.  
Thermal pad  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range, voltage are referenced to GND (unless otherwise noted)(1)  
MIN  
MAX  
20  
UNIT  
IN  
–0.3  
–0.3  
–7  
V
V
V
Voltage  
OUT, EN, ILIM, FAULT  
From IN to OUT  
7
20  
Continuous output current, IO  
Thermally Limited  
Continuous FAULT output sink current  
Continuous ILIM output source current  
Operating junction temperature, TJ  
Storage temperature, Tstg  
25  
150  
mA  
µA  
Internally limited  
–65  
150  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under recommended  
operating conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS25200-Q1  
ZHCSDG1 MARCH 2015  
www.ti.com.cn  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
6.5  
UNIT  
V
VIN  
Input voltage of IN  
2.5  
0
VEN  
IFAULT  
IOUT  
RILIM  
TJ  
Enable pin voltage  
6.5  
V
Continuous FAULT sink current  
Continuous output current of OUT  
Current-limit set resistors  
Operating junction temperature  
0
10  
mA  
A
2.4  
36  
1100  
125  
kΩ  
°C  
–40  
7.4 Thermal Information  
DRV (WSON)  
THERMAL METRIC(1)  
UNIT  
6 PINS  
66.5  
83.4  
36.1  
1.6  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
36.5  
7.6  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
 
TPS25200-Q1  
www.ti.com.cn  
ZHCSDG1 MARCH 2015  
7.5 Electrical Characteristics  
Conditions are –40°C TJ 125°C and 2.5 V VIN 6.5 V. VEN = VIN, RILIM = 36 k. Positive current into pins. Typical value  
is at 25°C. All voltages are with respect to ground (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SWITCH  
TJ = 25°C  
67  
67  
67  
75  
95  
2.5 V VIN 5 V,  
IOUT = 2.4 A  
rDS(on)  
IN–OUT resistance(1)  
–40°C TJ 85°C  
–40°C TJ 125°C  
mΩ  
105  
ENABLE INPUT EN  
EN pin turn on threshold  
Input rising  
Input falling  
1.9  
V
V
EN pin turn off threshold  
Hysteresis  
0.6  
–2  
330(2)  
500  
mV  
µA  
IEN  
Leakage current  
VEN = 0 V or 5.5 V  
2
DISCHARGE  
RDCHG  
OUT Discharge Resistance  
VOUT = 5 V, VEN = 0 V  
625  
Ω
CURRENT LIMIT  
RILIM = 36 kΩ  
RILIM = 42.2 kΩ  
RILIM = 56 kΩ  
RILIM = 80.6 kΩ  
RILIM = 150 kΩ  
RILIM = 1100 kΩ  
2530  
2140  
1620  
1110  
590  
2700  
2300  
1740  
1206  
647  
2870  
2460  
1860  
1300  
710  
IOS  
Current-limit, see Figure 12  
mA  
40  
83  
130  
OVERVOLTAGE LOCKOUT, IN  
V(OVLO) IN rising OVLO threshold voltage  
Hysteresis  
IN rising  
6.8  
7.6  
70(2)  
8.45  
5.55  
V
mV  
VOLTAGE CLAMP, OUT  
V(OVC)  
OUT clamp voltage threshold  
CL = 1 µF, RL = 100 Ω, VIN = 6.5 V  
5.25  
5.4  
V
SUPPLY CURRENT  
VEN = 0 V, VIN = 5 V  
1
1040  
147  
5
1700  
200  
IIN(off)  
Supply current, low-level output  
µA  
VEN = 0 or 5 V, VIN = 20 V  
RILIM = 36 kΩ  
RILIM = 150 kΩ  
VIN = 5 V,  
No load on OUT  
IIN(on)  
IREV  
Supply current, high-level output  
Reverse leakage current  
µA  
µA  
120  
190  
VOUT = 6.5V, VIN = VEN = 0 V, TJ = 25°C,  
Measure IOUT  
3.2  
5
UNDERVOLTAGE LOCKOUT, IN  
VUVLO IN rising UVLO threshold voltage  
Hysteresis  
FAULT FLAG  
VOL Output low voltage, FAULT  
Off-state leakage  
THERMAL SHUTDOWN  
Thermal shutdown threshold, OTSD2(3)  
IN rising  
2.35  
30(2)  
2.45  
V
mV  
IFAULT = 1 mA  
VFAULT = 6.5 V  
50  
180  
1
mV  
µA  
155  
135  
Thermal shutdown threshold only in  
current-limit, OTSD1(3)  
°C  
Hysteresis  
20(2)  
(1) Pulse-testing techniques maintain junction temperature close to ambient temperature. Thermal effects must be taken into account  
separately.  
(2) These parameters are provided for reference only and does not constitute part of TI's published device specifications for purposes of  
TI's product warranty.  
(3) For more information on the thermal sensors, OTSD1 and OTSD2, see the Thermal Sense section.  
Copyright © 2015, Texas Instruments Incorporated  
5
 
TPS25200-Q1  
ZHCSDG1 MARCH 2015  
www.ti.com.cn  
7.6 Switching Characteristics  
Conditions are –40°C TJ 125°C and 2.5 V VIN 6.5 V. VEN = VIN, RILIM = 36 k. Positive current are into pins. Typical  
value is at 25°C. All voltages are with respect to GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SWITCH  
tr  
tf  
OUT voltage rise time  
OUT voltage fall time  
CL = 1 µF, RL = 100 , (see Figure 10)  
CL = 1 µF, RL = 100 , (see Figure 10)  
2.05  
0.18  
3.2  
ms  
0.2  
ENABLE INPUT EN  
ton Turn-on time  
toff  
2.5 V VIN 5 V, CL = 1 µF, RL = 100 Ω,  
(see Figure 10)  
5.12  
0.22  
7.3  
0.3  
ms  
ms  
2.5 V VIN 5 V, CL = 1 µF, RL = 100 Ω,  
(see Figure 10)  
Turn-off time  
CURRENT LIMIT  
t(IOS)  
Short-circuit response time  
VIN = 5 V (see Figure 12)  
3.5(1)  
0.6(1)  
µs  
µs  
OVERVOLTAGE LOCKOUT, IN  
t(OVLO_off_delay) Turn-off Delay for OVLO  
FAULT FLAG  
VIN = 5 V to 10 V with 1 V/µs ramp-up rate,  
VOUT with 100-Ω load  
FAULT assertion or deassertion because of  
overcurrent condition  
FAULT deglitch  
5
8
12  
ms  
(1) This parameter is provided for reference only and does not constitute part of TI's published device specifications for purposes of TI's  
product warranty.  
7.7 Typical Characteristics  
200  
180  
160  
140  
120  
100  
80  
2.5  
2
VIN = 2.5 V  
VIN = 5 V  
VIN = 2.5 V  
VIN = 5 V  
1.5  
1
60  
40  
0.5  
0
20  
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature (qC)  
Junction Temperature (qC)  
D001  
D002  
RILIM = 36 KΩ  
RILIM = 36 KΩ  
Figure 1. IIN(on) vs Junction Temperature  
Figure 2. IIN(off) vs Junction Temperature  
6
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS25200-Q1  
www.ti.com.cn  
ZHCSDG1 MARCH 2015  
Typical Characteristics (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature (qC)  
Junction Temperature (qC)  
D003  
D004  
VEN = VIN = 0 V  
VOUT = 6.5 V  
Figure 3. IREV vs Junction Temperature  
Figure 4. rDS(ON) vs Junction Temperature  
7.8  
7.75  
7.7  
5.5  
5.45  
5.4  
7.65  
7.6  
7.55  
7.5  
5.35  
7.45  
7.4  
5.3  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature (qC)  
Junction Temperature (qC)  
D005  
D006  
CL = 1 µF  
RL = 100 Ω  
VIN = 6.5 V  
Figure 5. V(OVLO) vs Junction Temperature  
Figure 6. VO(VC) vs Junction Temperature  
3000  
2500  
2000  
1500  
1000  
500  
560  
550  
540  
530  
520  
510  
500  
490  
480  
RILIM = 36 K:  
RILIM = 42.2 K:  
RILIM = 80.6 K:  
RILIM = 150 K:  
0
-50  
0
50  
100  
150  
2
3
4
5
6
7
Junction Temperature (qC)  
Input Voltage (V)  
D007  
D0098  
Figure 7. IOS vs Junction Temperature  
Figure 8. Discharge Resistance vs VIN  
Copyright © 2015, Texas Instruments Incorporated  
7
TPS25200-Q1  
ZHCSDG1 MARCH 2015  
www.ti.com.cn  
8 Parameter Measurement Information  
OUT  
90%  
10%  
tr  
tf  
VOUT  
RL  
CL  
Figure 9. Output Rise and Fall Test Load  
Figure 10. Power-On and Off Timing  
IOS  
50%  
ton  
50%  
VEN  
IOUT  
toff  
90%  
VOUT  
tIOS  
10%  
Figure 11. Enable Timing, Active High Enable  
Figure 12. Output Short Circuit Parameters  
8
Copyright © 2015, Texas Instruments Incorporated  
 
TPS25200-Q1  
www.ti.com.cn  
ZHCSDG1 MARCH 2015  
9 Detailed Description  
9.1 Overview  
The TPS25200-Q1 device is an intelligent low-voltage switch or e-Fuse with robust overcurrent and overvoltage  
protection which are suitable for a variety of applications.  
The TPS25200-Q1 current-limited power switch uses N-channel MOSFETs in applications requiring up to 2.4 A  
of continuous load current. The device allows the user to program the current-limit threshold between 85 mA and  
2.7 A (typical) through an external resistor. The device enters constant-current mode when the load exceeds the  
current-limit threshold.  
The TPS25200-Q1 input can withstand 20-V DC voltage, but clamps VOUT to a precision regulated 5.4 V and  
shuts down in the event that the VIN value exceeds 7.6 V. The device also integrates overcurrent and short-circuit  
protection. The precision overcurrent limit helps minimize over designing of the input power supply while the fast  
response short-circuit protection isolates the load when a short circuit is detected.  
The additional features of the device include the following:  
Overtemperature protection to safely shutdown in the event of an overcurrent event or a slight overvoltage  
event where the VOUT clamp is engaged over an extended period of time.  
Deglitched fault reporting to filter the FAULT signal to ensure that the TPS25200-Q1 device does not provide  
false-fault alerts.  
Output discharge pulldown to ensue a load is off and not in an undefined operational state.  
Reverse blocking when disabled to prevent back-drive from an active load which inadvertently causes  
undetermined behavior in the application.  
9.2 Functional Block Diagram  
Current  
Sense  
CS  
IN  
OUT  
UVLO  
Charge  
Pump  
Current  
Limit  
Driver  
OVLO  
See Note A  
EN  
GND  
Zener Diode  
OTSD  
Thermal  
Sense  
OVC  
8-ms  
Deglitch  
FAULT  
ILIM  
A. 6.4-V typical clamp voltage  
Copyright © 2015, Texas Instruments Incorporated  
9
TPS25200-Q1  
ZHCSDG1 MARCH 2015  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Enable  
This logic enable input controls the power switch and device supply current. A logic-high input on the EN pin  
enables the driver, control circuits, and powers the switch. The enable input is compatible with both TTL and  
CMOS logic levels.  
The EN pin can be tied to VIN with a pullup resistor, and is protected with an integrated Zener diode. Use a  
sufficiently large (300 kΩ) pullup resistor to ensure that V(EN) is limited below the absolute maximum rating.  
9.3.2 Thermal Sense  
The TPS25200-Q1 device uses two independent thermal sensing circuits for self protection that monitor the  
operating temperature of the power switch and disable operation if the temperature exceeds the values listed in  
the Recommended Operating Conditions table. The TPS25200-Q1 device operates in constant-current mode  
during an overcurrent condition, which increases the voltage drop across the power switch. The power  
dissipation in the package is proportional to the voltage drop across the power switch, which increases the  
junction temperature during an overcurrent condition. The first thermal sensor (OTSD1) turns off the power  
switch when the die temperature exceeds 135°C (minimum) and the device is in current-limit protection.  
Hysteresis is built into the thermal sensor, and the switch turns on after the device has cooled by approximately  
20°C.  
The TPS25200-Q1 device also has a second ambient thermal sensor (OTSD2). The thermal sensor turns off the  
power switch when the die temperature exceeds 155°C (minimum) regardless of whether the power switch is in  
current-limit protection and turns on the power switch after the device has cooled by approximately 20°C. The  
TPS25200-Q1 device continues to cycle off and on until the fault is removed.  
9.3.3 Overcurrent Protection  
The TPS25200-Q1 device initiates thermal protection by thermal cycling during an extended overcurrent  
condition. The device turns off when the junction temperature exceeds 135°C (typical) while in current limit. The  
device remains off until the junction temperature cools by 20°C (typical) and then restarts. The TPS25200-Q1  
device cycles on and off until the overload is removed (see Figure 26 and Figure 29).  
The TPS25200-Q1 device responds to an overcurrent condition by limiting the output current to the IOS levels  
shown in Figure 12. When an overcurrent condition is detected, the device maintains a constant output current  
and the output voltage is reduced accordingly. During an overcurrent event, two possible overload conditions can  
occur.  
The first condition is when a short circuit or partial short circuit is present when the device is powered up or  
enabled. The output voltage is held near zero potential with respect to ground and the TPS25200-Q1 device  
ramps the output current to the IOS level. The TPS25200-Q1 device limits the current to the IOS level until the  
overload condition is removed or the device begins a thermal cycle.  
The second condition is when a short circuit, partial short circuit, or transient overload occurs while the device is  
enabled and powered on. The device responds to the overcurrent condition within the time, tIOS (see Figure 12).  
The current-sense amplifier is overdriven during this time and momentarily disables the internal current-limit  
MOSFET. The current-sense amplifier recovers and limits the output current to the IOS level. Similar to the  
previous case, the TPS25200-Q1 device limits the current to the IOS level until the overload condition is removed  
or the device begins a thermal cycle.  
9.3.4 FAULT Response  
The FAULT open-drain output is asserted (active low) during an overcurrent, overtemperature, or overvoltage  
condition. The TPS25200-Q1 device asserts the FAULT signal until the fault condition is removed and the device  
resumes normal operation. The TPS25200-Q1 device is designed to eliminate false FAULT reporting by using an  
internal delay deglitch circuit for overcurrent (8-ms typical) conditions without the requirement for external  
circuitry. This design ensures that the FAULT signal is not accidentally asserted because of normal operation  
such as starting into a heavy capacitive load. The deglitch circuitry delays entering and leaving current-limit  
induced fault conditions.  
10  
Copyright © 2015, Texas Instruments Incorporated  
TPS25200-Q1  
www.ti.com.cn  
ZHCSDG1 MARCH 2015  
Feature Description (continued)  
The FAULT signal is not deglitched when the MOSFET is disabled because of an overtemperature condition but  
is deglitched after the device has cooled and begins to turn on. This unidirectional deglitch prevents FAULT  
oscillation during an overtemperature event.  
The FAULT signal is not deglitched when the MOSFET is disabled into overvoltage-lockout (OVLO) or out of  
OVLO. The TPS25200-Q1 device does not assert the FAULT during output-voltage clamp mode.  
Connect the FAULT pin with a pullup resistor to a low-voltage I/O rail.  
9.3.5 Output Discharge  
A 480-Ω (typical) output discharge dissipates the stored charge and leakage current on the OUT pin when the  
TPS25200-Q1 device is in undervoltage-lockout (UVLO) or OVLO or is disabled. The pulldown capability  
decreases as VIN decreases (see Figure 8).  
9.4 Device Functional Modes  
The input voltage of the TPS25200-Q1 device can withstand up to 20 V. The input voltage, within a range of 0 V  
to 20 V, can be divided to four modes which are described in the following sections.  
VOUT (V)  
Over Voltage Clamp  
(OVC)  
5.4 V  
Turn Off  
MOSFET  
VIN (V)  
UVLO (2.35 V)  
OVLO (7.6 V)  
20 V  
Figure 13. Output vs Input Voltage  
9.4.1 Undervoltage Lockout (UVLO)  
The undervoltage lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO turn-  
on threshold. Built-in hysteresis prevents unwanted on and off cycling because of input voltage droop during turn  
on.  
9.4.2 Overcurrent Protection (OCP)  
When 2.35 V < VIN < 5.4 V, the TPS25200-Q1 device is a traditional power switch that provides overcurrent  
protection.  
9.4.3 Overvoltage Clamp (OVC)  
When 5.4 V < VIN < 7.6 V, the overvoltage-clamp (OVC) circuit clamps the output voltage to 5.4 V. Within this VIN  
range, the overcurrent protection remains active. Fast transients can exceed the bandwidth of the internal gate-  
control amplifier but such events will not risk damage to the load. In the unlikely event that a transient is fast  
enough to exceed the amplifier bandwidth but not severe enough to exceed 7.6 V, it may cause momentary  
droops in VOUT while the amplifier catches up and settles on VOUT = 5.4 V. For example, a 5-V to 7-V transient  
with 0.5-V/ms slew rate and with 2 × 47 µF // 100-load, some drooping occurs at VOUT  
.
9.4.4 Overvoltage Lockout (OVLO)  
When VIN exceeds 7.6 V, the overvoltage lockout (OVLO) circuit turns off the protected power switch.  
Copyright © 2015, Texas Instruments Incorporated  
11  
TPS25200-Q1  
ZHCSDG1 MARCH 2015  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The TPS25200-Q1 device is a 5-V eFuse with precision current-limit and overvoltage clamp. When a slave  
device such as a mobile data-card device is hot plugged into a USB port as shown in Figure 14, an input  
transient voltage could damage the slave device because of the cable inductance. Placing the TPS25200-Q1  
device at the input of a mobile device as an overvoltage and overcurrent protector can help safeguard the slave  
device. Input transients also occur when the current through the cable parasitic inductance changes abruptly  
which can occur when the TPS25200-Q1 device turns off the internal MOSFET in response to an overvoltage or  
overcurrent event. The TPS25200-Q1 device can withstand the transient without a bypass bulk capacitor, or  
other external overvoltage protection components at the input side. The TPS25200-Q1 device also can be used  
at the host side as a traditional power switch that is pin-to-pin compatible with the TPS2553 device.  
Mobile Device  
Rcable  
Lcable  
OUT  
IN  
TPS25200-Q1  
GND  
5-V  
USB Port  
Load  
Figure 14. Hot Plug into 5-V USB Port With Parasitic Cable Resistance and Inductance  
10.2 Typical Application  
10.2.1 Overvoltage and Overcurrent Protector  
VIO  
300 kΩ  
FAULT signal  
TPS25200-Q1  
0.1 µF  
VIN  
VOUT  
6
1
IN  
OUT  
300 kΩ  
ILIM  
GND  
5
2
3
4
EN  
FAULT  
22 µF  
Thermal Pad  
RILIM  
Figure 15. Typical Application Schematic  
Use the IOS level listed in the Electrical Characteristics table or the IOS value in the Equation 1 to select the value  
of RILIM  
.
12  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS25200-Q1  
www.ti.com.cn  
ZHCSDG1 MARCH 2015  
Typical Application (continued)  
10.2.1.1 Design Requirements  
For this design example, use the values listed in Table 1 as the input parameters.  
Table 1. Design Parameters  
DESIGN PARAMETERS  
Normal input operation voltage  
Output transient voltage  
Minimum current limit  
EXAMPLE VALUE  
5 V  
6.5 V  
2.1 A  
2.9 A  
Maximum current limit  
10.2.1.2 Detailed Design Procedure  
10.2.1.2.1 Step by Step Design Produce  
To begin the design process a few parameters must be decided upon. The designer needs to know the following:  
Normal Input Operation Voltage  
Output transient voltage  
Minimum Current Limit  
Maximum Current Limit  
10.2.1.2.2 Input and Output Capacitance  
Input and output capacitance improves the performance of the device; the actual capacitance should be  
optimized for the particular application. For all applications, a ceramic bypass capacitor with a value of 0.1 µF or  
greater is recommended between the IN and GND pins. This capacitor should be placed as close to the device  
as possible for local noise decoupling.  
When VIN ramp up exceeds 7.6 V, VOUT follows VIN until the TPS25200-Q1 device turns off the internal MOSFET  
after t(OVLO_off_delay). Because t(OVLO_off_delay) largely depends on the VIN ramp rate, VOUT receives some peak  
voltage. Increasing the output capacitance can lower the output peak voltage as shown in Figure 16.  
10  
8
6
4
2
0
0
10  
20  
30  
40  
50  
Output Capacitor (µF)  
C008  
Figure 16. VOUT Peak Voltage vs COUT  
(VIN Step From 5 V to 15 V With 1-V/us Ramp-Up Rate)  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
 
TPS25200-Q1  
ZHCSDG1 MARCH 2015  
www.ti.com.cn  
10.2.1.2.3 Programming the Current-Limit Threshold  
The overcurrent threshold is user programmable through an external resistor. The TPS25200-Q1 device uses an  
internal regulation loop to provide a regulated voltage on the ILIM pin. The current-limit threshold is proportional  
to the current sourced out of the ILIM pin. The recommended 1% resistor range for RILIM is 36 kΩ ≤ RILIM 1100  
kΩ to ensure stability of the internal regulation loop. Many applications require that the minimum current limit is  
above a certain current level or that the maximum current limit is below a certain current level. Therefore,  
considering the tolerance of the overcurrent threshold is important when selecting a value for RILIM. The following  
equations approximate the resulting overcurrent threshold for a given external resistor value, RILIM. See the  
Electrical Characteristics table for specific current-limit settings. The traces routing the RILIM resistor to the  
TPS25200-Q1 device should be as short as possible to reduce parasitic effects on the current-limit accuracy.  
RILIM can be selected to provide a current-limit threshold that occurs either above a minimum load current or  
below a maximum load current.  
To design above a minimum current-limit threshold, find the intersection of RILIM and the minimum desired load  
current on the IOS(min) curve. Select a value of RILIM below this value. Programming the current limit above a  
minimum threshold is important to ensure start up into full load or heavy capacitive loads.  
To design below a maximum current-limit threshold, find the intersection of RILIM and the maximum desired load  
current on the IOS(max) curve. Select a value of RILIM above this value. Programming the current limit below a  
maximum threshold is important to avoid current limiting the upstream power supplies which causes the input  
voltage bus to droop.  
Use Equation 1, Equation 2, and Equation 3, to calculate the minimum, nominal, and maximum current-limit  
thresholds for IOS (respectively). For each equation, 36 kΩ ≤ RILIM 1100 kΩ.  
97399 (V)  
IOSmin (mA) =  
IOSnom (mA) =  
IOSmax (mA) =  
- 30  
1.015  
RILIM  
(kW)  
(1)  
(2)  
(3)  
98322 (V)  
1.003  
RILIM  
(kW)  
96754 (V)  
0.985  
+ 30  
RILIM  
(kW)  
3500  
3000  
2500  
2000  
1500  
1000  
500  
800  
700  
600  
500  
400  
300  
200  
100  
0
IOS(min)  
IOS(typ)  
IOS(max)  
IOS(min)  
IOS(typ)  
IOS(max)  
0
30 40 50 60 70 80 90 100 110 120 130 140 150  
150 250 350 450 550 650 750 850 950 1050 1150  
Current-Limit Resistor (k:)  
Current-Limit Resistor (k:)  
D016  
D017  
36 kΩ ≤ RILIM 150 KΩ  
150 kΩ ≤ RILIM 1100 KΩ  
Figure 17. Current-Limit Threshold vs RILIM  
I
Figure 18. Current-Limit Threshold vs RILIM II  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
 
TPS25200-Q1  
www.ti.com.cn  
ZHCSDG1 MARCH 2015  
10.2.1.2.4 Design Above a Minimum Current Limit  
Some applications require that current limiting does not occur below a certain threshold. For this example,  
assume that 2.1 A must be delivered to the load so that the minimum desired current-limit threshold is 2100 mA.  
Use Equation 1 and Figure 17 to select a value for RILIM, with IOSmin = 2100 mA, as shown in Equation 4.  
1
1
1.015  
1.015  
æ
ö
÷
÷
ø
97399  
97399  
æ
ö
RILIM (kW) = ç  
=
= 43.22 kW  
ç
÷
ç
è
IOS(min) + 30  
2100 + 30  
è
ø
(4)  
Select the closest 1% resistor less than the calculated value: RILIM = 42.2 kΩ. This value sets the minimum  
current-limit threshold at 2130 mA as shown in Equation 5.  
97399 (V)  
1.015  
97399  
42.2 ´ 1.01 1.015  
IOSmin (mA) =  
- 30 =  
- 30 = 2130 mA  
RILIM  
(kW)  
(
)
(5)  
Use Equation 3, Figure 17, and the previously calculated value for RILIM to calculate the maximum resulting  
current-limit threshold as shown in Equation 6.  
96754  
IOSmax (mA) =  
+ 30 = 2479 mA  
(42.2 ´ 0.99)0.985  
(6)  
The resulting current-limit threshold minimum is 2130 mA and maximum is 2479 mA with RILIM = 42.2k± 1%.  
10.2.1.2.5 Design Below a Maximum Current Limit  
Some applications require that current limiting must occur below a certain threshold. For this example, assume  
that 2.9 A must be delivered to the load so that the minimum desired current-limit threshold is 2900 mA. Use  
Equation 3 and Figure 18 to select RILIM  
.
1
1
0.985  
æ
ö
÷
÷
ø
96754  
96754  
0.985  
æ
ö
IR  
ILIM  
(kW) = ç  
=
= 35.57 kW  
ç
÷
ç
è
IOS(max) - 30  
2900 - 30  
è
ø
(7)  
Select the closest 1% resistor greater than the calculated value: RILIM = 36 k. This value sets the maximum  
current-limit threshold at 2894 mA as shown in Equation 8.  
96754 (V)  
0.985  
96754  
IOSmax (mA) =  
+ 30 =  
+ 30 = 2894 mA  
0.985  
RILIM  
(kW)  
36 ´ 0.99  
(
)
(8)  
Use Equation 1, Figure 18, and the previously calculated value for RILIM to calculate the minimum resulting  
current-limit threshold as shown in Equation 9.  
97399  
IOSmin (mA) =  
- 30 = 2508 mA  
36 ´ 1.01 1.015  
(
)
(9)  
The resulting minimum current-limit threshold minimum is 2592 mA and maximum is 2894 mA with RILIM = 36 kΩ  
± 1%.  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
 
 
 
 
TPS25200-Q1  
ZHCSDG1 MARCH 2015  
www.ti.com.cn  
10.2.1.2.6 Power Dissipation and Junction Temperature  
The low on-resistance of the internal N-channel MOSFET allows small surface-mount packages to pass large  
currents. Estimating the power dissipation and junction temperature is good design practice. The following  
analysis provides an approximation for calculating the junction temperature based on the power dissipation of the  
package.  
NOTE  
Thermal analysis is strongly dependent on additional system-level factors. Such factors  
include air flow, board layout, copper thickness and surface area, and proximity to other  
devices dissipating power. Good thermal design practice must include all system-level  
factors in addition to individual component analysis.  
Begin by determining the rDS(on) value of the N-channel MOSFET relative to the input voltage (VIN) and operating  
temperature. As an initial estimate, use the highest operating ambient temperature of interest and read rDS(on)  
from Figure 4 in the Typical Characteristics section. When VIN is lower than V(OVC), the TPS25200-Q1 device is  
an traditional power switch. Using this value, calculate the power dissipation with Equation 10.  
2
PD = rDS(on) × IOUT  
where  
PD = Total power dissipation (W)  
rDS(on) = Power switch on-resistance (Ω)  
IOUT = Maximum current-limit threshold (A)  
(10)  
When VIN exceeds V(OVC), but is lower than V(OVLO), the TPS25200-Q1 clamp output is fixed to V(OVC). Use  
Equation 11 to calculate the power dissipation.  
PD = (VIN – V(OVC)) × IOUT  
where  
V(OVC) = Overvoltage clamp voltage (V)  
(11)  
This step calculates the total power dissipation of the N-channel MOSFET.  
Finally, calculate the junction temperature using Equation 12.  
TJ = PD × RθJA + TA  
where  
R
θJA = Thermal resistance (°C/W)  
TA = Ambient temperature (°C)  
(12)  
Compare the calculated junction temperature with the initial estimate. If these two values are not within a few  
degrees, repeat the calculation using the refined rDS(on) value from the previous calculation as the new estimate.  
Two or three iterations are generally sufficient to achieve the desired result. The final junction temperature is  
highly dependent on thermal resistance RθJA, and the thermal resistance is highly dependent on the individual  
package and board layout.  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
TPS25200-Q1  
www.ti.com.cn  
ZHCSDG1 MARCH 2015  
10.2.1.3 Application Curves  
9
8
0.36  
0.32  
0.28  
0.24  
0.2  
12  
11  
10  
9
VOUT  
V
IN  
V IN  
V OUT  
FAULT  
IOUT  
7
8
6
7
5
6
5
4
0.16  
0.12  
0.08  
0.04  
0
4
3
3
2
2
1
1
0
±1  
0
±2.0 ±1.5 ±1.0 ±0.5  
0.0  
Time (s)  
0.5  
1.0  
1.5  
2.0  
-1  
-0.04  
C001  
-80  
-40  
0
40  
80  
120  
160  
Time (s)  
D019  
Figure 19. VOUT vs VIN (0 V to 10 V)  
Figure 20. VIN Step, 5 V to 8 V With 4.7 μF || 100 Ω  
13  
12  
11  
10  
9
11  
V
V
V IN  
IN  
10  
9
V OUT  
FAULT  
OUT  
8
7
8
6
7
5
6
4
5
3
4
2
3
2
1
1
0
0
-1  
-1  
-6  
-4  
-2  
0
2
4
-2  
0
2
4
6
8
Time (us)  
C012  
Time (s)  
D018  
Figure 22. 5-V to 10-V OVLO Response Time  
Figure 21. Pulse Overvoltage With 100 Ω  
5
4
3
2
1
0
5
5
5
EN  
V
IN  
4
3
2
1
0
-1  
4
3
4
3
2
1
0
-1  
V
OUT  
2
1
EN  
0
V
IN  
V
OUT  
±1  
±1  
±4  
1
6
11  
16  
-1.2  
-0.2  
0.8  
1.8  
2.8  
Time (ms)  
Time (ms)  
C013  
C013  
Figure 23. Turn On Delay and Rise Time, 150 µF || 2.5 Ω  
Figure 24. Turn Off Delay and Fall Time, 150 µF || 2.5 Ω  
Copyright © 2015, Texas Instruments Incorporated  
17  
TPS25200-Q1  
ZHCSDG1 MARCH 2015  
www.ti.com.cn  
7
3.5  
3
7
6
3.5  
3
EN  
FAULT  
IOUT  
EN  
FAULT  
IOUT  
6
5
4
2.5  
2
5
2.5  
2
4
3
1.5  
1
3
1.5  
1
2
2
1
0.5  
0
1
0.5  
0
0
0
-1  
-2  
-0.5  
18  
-1  
-20  
-0.5  
80  
2
6
10  
Time (ms)  
14  
0
20  
40  
60  
Time (ms)  
D009  
D010  
Figure 25. Enable into Output Short  
Figure 26. 2.5-to Output Short Transient Response  
7
6
3.5  
3
7
6
3.5  
VOUT  
FAULT  
IOUT  
3
5
2.5  
2
5
2.5  
2
4
4
3
1.5  
1
3
1.5  
1
2
2
1
0.5  
0
1
0.5  
0
VOUT  
FAULT  
IOUT  
0
0
-1  
-0.5  
-1  
-0.5  
-70  
-50  
-30  
-10  
10  
30  
-20  
0
20  
40  
60  
80  
Time (ms)  
Time (ms)  
D011  
D012  
Figure 27. Output Short to 2.5-Load Recovery Response  
Figure 28. No Load to Output Short-Transient Response  
6
6
7
3.5  
3
VOUT  
FAULT  
IOUT  
VOUT  
IOUT  
6
5
5
4
5
2.5  
2
4
3
2
1
0
-1  
4
3
3
1.5  
1
2
2
1
1
0.5  
0
0
0
-1  
-0.5  
-1  
-70  
-50  
-30  
-10  
10  
30  
-0.8  
0
0.8  
1.6  
2.4  
3.2  
Time (ms)  
Time (ms)  
D013  
D014  
Figure 29. Output Short to No-Load Recovery Response  
Figure 30. Hot-Short With 50 mΩ  
18  
Copyright © 2015, Texas Instruments Incorporated  
TPS25200-Q1  
www.ti.com.cn  
ZHCSDG1 MARCH 2015  
6
5
60  
50  
40  
30  
20  
10  
0
VOUT  
IOUT  
4
3
2
1
0
-1  
-2  
-10  
-20  
-4  
-2  
0
2
4
6
Time (Ps)  
D015  
Figure 31. 50-mHot-Short Response Time  
11 Power Supply Recommendations  
The TPS25200-Q1 device is designed for 2.7 V < VIN < 5 V (typical) voltage rails. Although a VOUT clamp is  
provided, it is not intended to regulate VOUT at approximately 5.4 V with 6 V < VIN < 7 V. This clamp is a  
protection feature only.  
12 Layout  
12.1 Layout Guidelines  
For all applications, a 0.1-µF or greater ceramic bypass capacitor between the IN and GND pins is  
recommended as close to the device as possible for local noise decoupling.  
For output capacitance, see Figure 16. A low-ESR ceramic capacitor is recommended.  
The traces routing the RILIM resistor to the device should be as short as possible to reduce parasitic effects on  
the current-limit accuracy.  
The thermal pad should be directly connected to PCB ground plane using wide and short copper trace.  
12.2 Layout Example  
VIA to Power Ground Plane  
FAULT  
3
4
5
6
EN  
ILIM  
2
1
IN  
High Frequency  
Bypass Capacitor  
OUT  
Power Ground  
VI/O  
Figure 32. TPS25200-Q1 Board Layout  
版权 © 2015, Texas Instruments Incorporated  
19  
TPS25200-Q1  
ZHCSDG1 MARCH 2015  
www.ti.com.cn  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档ꢀ  
相关文档如下:  
TPS2553《精度可调节限流配电开关》SLVS841  
13.2 商标  
All trademarks are the property of their respective owners.  
13.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
14 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS25200QDRVRQ1  
TPS25200QDRVTQ1  
ACTIVE  
ACTIVE  
WSON  
WSON  
DRV  
DRV  
6
6
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
SIL  
SIL  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A  
C
B
0.05  
4222173/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222173/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222173/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS25200QDRVTQ1

关断时可实现反向电流阻断的 2.5V 至 6.5V、67mΩ、2.1A 至 2.7A 汽车电子保险丝 | DRV | 6 | -40 to 125
TI

TPS2521

TPS2521xx, 2.7 - 5.7 V, 4 A, 31-mΩ True Reverse Current Blocking eFuse with Input Reverse Polarity Protection
TI

TPS25210A

TPS2521xx, 2.7 - 5.7 V, 4 A, 31-mΩ True Reverse Current Blocking eFuse with Input Reverse Polarity Protection
TI

TPS25210ARPWR

TPS2521xx, 2.7 - 5.7 V, 4 A, 31-mΩ True Reverse Current Blocking eFuse with Input Reverse Polarity Protection
TI

TPS25210L

TPS2521xx, 2.7 - 5.7 V, 4 A, 31-mΩ True Reverse Current Blocking eFuse with Input Reverse Polarity Protection
TI

TPS25210LRPWR

TPS2521xx, 2.7 - 5.7 V, 4 A, 31-mΩ True Reverse Current Blocking eFuse with Input Reverse Polarity Protection
TI

TPS2521XX

TPS2521xx, 2.7 - 5.7 V, 4 A, 31-mΩ True Reverse Current Blocking eFuse with Input Reverse Polarity Protection
TI

TPS2521XXRPW

TPS2521xx, 2.7 - 5.7 V, 4 A, 31-mΩ True Reverse Current Blocking eFuse with Input Reverse Polarity Protection
TI

TPS2521_V01

TPS2521xx, 2.7 - 5.7 V, 4 A, 31-mΩ True Reverse Current Blocking eFuse with Input Reverse Polarity Protection
TI

TPS25221

高电平有效且具有反向阻断功能的 0.275-2.7A 可调节ILIMIT、2.5-5.5V、70mΩ USB 电源开关
TI

TPS25221DBVR

高电平有效且具有反向阻断功能的 0.275-2.7A 可调节ILIMIT、2.5-5.5V、70mΩ USB 电源开关 | DBV | 6 | -40 to 125
TI

TPS25221DBVT

高电平有效且具有反向阻断功能的 0.275-2.7A 可调节ILIMIT、2.5-5.5V、70mΩ USB 电源开关 | DBV | 6 | -40 to 125
TI