TPS25221DRVT [TI]

高电平有效且具有反向阻断功能的 0.275-2.7A 可调节ILIMIT、2.5-5.5V、70mΩ USB 电源开关 | DRV | 6 | -40 to 125;
TPS25221DRVT
型号: TPS25221DRVT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高电平有效且具有反向阻断功能的 0.275-2.7A 可调节ILIMIT、2.5-5.5V、70mΩ USB 电源开关 | DRV | 6 | -40 to 125

开关 驱动 电源开关 光电二极管 接口集成电路
文件: 总36页 (文件大小:2055K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS25221  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
TPS25221 2.5V 5.5V2A 持续电流限制开关  
1 特性  
3 说明  
1
2.5V 5.5V VOPERATING  
TPS25221 旨在用于可能会遇到大电容负载和短路事  
件的 应用 。可编程电流限制阈值可通过一个外部电阻  
器设定在 275mA 2.7A(典型值)之间。在更高电  
流限制设置上可实现严格至 ±6% ILIMIT 精度。通过  
控制电源开关的上升时间和下降时间,可最大限度地降  
低开通和关断期间的电流浪涌。  
TPS2553 引脚对引脚兼容  
2A ICONT_MAX  
0.275A 1.7A 可调节 ILIMIT2.7A 时精确度为  
±6.5%)  
70mΩ(典型值)RON  
1.5µs 短路响应  
当负载尝试吸收超过编程的 ILIMIT 的电流时,内部 FET  
会进入恒定电流模式,以确保 ILOAD 等于或低于  
8ms 故障报告抗尖峰脉冲  
反向电流阻断(禁用时)  
内置软启动  
ILIMIT。在固有的抗尖峰脉冲时间之后,FAULT 输出将  
会在过流状态期间维持低电平。  
UL 60950 UL 62368 认证  
器件信息(1)  
15kV ESD 保护,符合 IEC 61000-4-2 标准(带外  
部电容)  
器件型号  
TPS25221  
封装  
SOT-23 (6)  
WSON (6)  
封装尺寸(标称值)  
2.90mm x 1.60mm  
2.00mm x 2.00mm  
2 应用  
USB 端口/集线器、笔记本、台式机  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
高清电视  
机顶盒  
可选插座保护  
简化原理图  
5-V USB  
Input  
USB Data  
120 µF  
0.1 µF  
USB  
Port  
IN  
OUT  
ILIM  
RFAULT  
20 kΩ  
Fault Signal  
Control Signal  
FAULT  
EN  
USB requirement only*  
RILIM  
20 kΩ  
GND  
Thermal Pad  
*USB requirement that downstream facing ports are bypassed with at  
least 120 µF per hub.  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDT3  
 
 
 
 
 
TPS25221  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings ............................................................ 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Typical Characteristics.............................................. 7  
Parameter Measurement Information ................ 10  
Detailed Description ............................................ 11  
9.1 Overview ................................................................. 11  
9.2 Functional Block Diagram ....................................... 11  
9.3 Feature Description................................................. 12  
9.4 Device Functional Modes........................................ 13  
9.5 Programming........................................................... 13  
10 Application and Implementation........................ 14  
10.1 Application Information.......................................... 14  
10.2 Typical Applications .............................................. 15  
11 Power Supply Recommendations ..................... 21  
11.1 Self-Powered and Bus-Powered Hubs ................. 21  
11.2 Low-Power Bus-Powered and High-Power Bus-  
Powered Functions .................................................. 21  
11.3 Power Dissipation and Junction Temperature ...... 21  
12 Layout................................................................... 23  
12.1 Layout Guidelines ................................................. 23  
12.2 Layout Example .................................................... 23  
13 器件和文档支持 ..................................................... 24  
13.1 器件支持 ............................................................... 24  
13.2 文档支持 ............................................................... 24  
13.3 接收文档更新通知 ................................................. 24  
13.4 社区资源................................................................ 24  
13.5 ....................................................................... 24  
13.6 静电放电警告......................................................... 24  
13.7 Glossary................................................................ 24  
14 机械、封装和可订购信息....................................... 24  
8
9
4 修订历史记录  
Changes from Revision C (May 2019) to Revision D  
Page  
Removed content from the Programming the Current-Limit Threshold section................................................................... 13  
Changes from Revision B (November 2018) to Revision C  
Page  
Changed the Storage temperature From: TBD to: MIN = –65°C MAX = 150°C in the Absolute Maximum Ratings ............ 4  
Changes from Revision A (May 2018) to Revision B  
Page  
已删除 特性 列表项中的正在申请字样.................................................................................................................................. 1  
Changes from Original (January 2018) to Revision A  
Page  
已投入量产 ............................................................................................................................................................................. 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TPS25221  
www.ti.com.cn  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
5 Device Comparison Table  
MAX  
OPERATING  
CURRENT  
OUTPUT  
DISCHARGE  
ENABLE  
CURRENT LIMIT  
LATCH OFF  
Package  
BASE PART NUMBER  
2
2
N
N
High  
High  
Adjustable  
Adjustable  
N
N
SOT-23 (6)  
WSON (6)  
TPS25221DBV  
TPS25221DRV  
6 Pin Configuration and Functions  
DBV PACKAGE  
SOT-23 6-Pin  
Top View  
DRV PACKAGE  
WSON 6-Pin  
Top View  
OUT  
ILIM  
1
2
3
6
5
4
IN  
IN  
GND  
EN  
1
2
3
6
5
4
OUT  
Thermal  
Pad  
ILIM  
GND  
EN  
FAULT  
FAULT  
Not to scale  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
SOT-23  
WSON  
Input voltage and power switch drain; connect a 0.1 μF or greater  
ceramic capacitor from IN to GND close to IC  
IN  
1
6
I
GND  
EN  
2
3
5
4
--  
I
Ground connection  
Enable input, logic high/low turns on power switch  
Active-low open-drain output, asserted during over-current, or over-  
temperature conditions  
FAULT  
4
3
O
ILIM  
OUT  
5
6
2
1
O
O
External resistor used to set current limit threshold  
Power switch output, connect to load  
Internally connected to GND; used to heat-sink the part to the circuit  
board traces. Connect thermal pad to GND pin externally.  
Thermal Pad  
--  
PAD  
--  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
TPS25221  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–6  
0
MAX  
UNIT  
Voltage range on IN, OUT, EN, FAULT,ILIM  
Voltage range from IN to OUT  
Continuous FAULT sink current  
ILIM source current  
6
6
V
25  
1
mA  
mA  
0
Maximum junction temperature, Tj  
Storage temperature, Tstg  
Internally Limited  
–65 150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101  
or ANSI/ESDA/JEDEC JS-002(2)  
±500  
V
V(ESD)  
Electrostatic discharge  
IEC 61000-4-2 contact discharge(3)  
IEC 61000-4-2 air-gap discharge(3)  
±8000  
V
V
±15000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) Surges per EN61000-4-2. 1999 applied to output terminals of EVM. These are passing tests levels, not failure threshold.  
7.3 Recommended Operating Conditions  
Voltages are respect to GND (unless otherwise noted)  
MIN NOM MAX UNIT  
VIN  
Supply voltage  
IN  
2.5  
0
5.5  
5.5  
V
V
VEN  
VIH  
Input voltage  
EN  
EN  
EN  
OUT  
High-level input voltage  
Low-level input voltage  
Output continuous current  
1.7  
V
VIL  
0.66  
2
V
ICON  
RILIM  
I/FAULT  
TJ  
0
20  
A
Current-limit threshold resistor range (nominal 1%) from ILIM to GND  
210  
10  
kΩ  
mA  
°C  
Sink current into FAULT  
FAULT  
0
Operating junction temperature  
–40  
125  
7.4 Thermal Information  
TPS25221  
THERMAL METRIC(1)  
DBV (SOT-23)  
6-PIN  
193.2  
127.1  
65.6  
DRV (WSON)  
6-PIN  
83  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
100.5  
46.5  
ψJT  
49.0  
8.7  
ψJB  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
65.3  
46.4  
RθJC(bot)  
--  
24.4  
(1) Proper thermal design is required to ensure TJ <125°C for best long term reliability. This is particularly important at higher currents, see  
the Semiconductor and IC Package Thermal Metrics application report.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
TPS25221  
www.ti.com.cn  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
7.5 Electrical Characteristics  
over recommended operating conditions, VEN = VIN, RFAULT = 10 kΩ (unless otherwise noted)  
PARAMETER  
POWER SWITCH  
TEST CONDITIONS  
MIN  
TYP  
70  
MAX UNIT  
DBV package, TJ = 25°C  
80  
DBV package, –40°C TJ 125°C  
DRV package, TJ = 25°C  
DRV package, –40°C TJ 125°C  
VIN = 5.5 V  
110  
mΩ  
92  
Static drain-source on-state  
resistance  
rDS(on)  
70  
122  
0.55  
0.35  
0.24  
0.22  
0.95  
Rise time, output  
Fall time, output  
r
VIN = 2.5 V  
0.62  
ms  
CL = 1 µF, RL = 100 Ω,  
(see 1)  
VIN = 5.5 V  
0.3  
tf  
VIN = 2.5 V  
0.28  
ENABLE INPUT EN OR EN  
Enable pin turn on/off  
threshold  
0.8  
1.6  
V
IEN  
ton  
toff  
Input current  
Turnon time  
Turnoff time  
VEN = 0 V or 5.5 V  
-0.5  
0
0.5  
3
µA  
ms  
ms  
CL = 1 µF, RL = 100 Ω, (see 2 )  
CL = 1 µF, RL = 100 Ω, (see 2)  
0.7  
CURRENT LIMIT  
TJ = 25°C  
2585  
2560  
1710  
1700  
630  
2720  
1820  
690  
2850  
2880  
1930  
1945  
755  
RILIM = 20 kΩ  
RILIM = 30 kΩ  
RILIM = 80 kΩ  
–40°C TJ 125°C  
TJ = 25°C  
Current-limit threshold  
(Maximum DC output current  
IOUT delivered to load) and  
Short-circuit current, OUT  
connected to GND  
–40°C TJ 125°C  
TJ = 25°C  
IOS  
mA  
µs  
–40°C TJ 125°C  
TJ = 25°C  
610  
790  
220  
275  
330  
RILIM = 210 kΩ  
–40°C TJ 125°C  
210  
370  
Response time to short  
circuit  
tIOS  
VIN = 5 V (see 4)  
1.5  
SUPPLY CURRENT  
Supply current, switch  
disable  
ISD  
ISE  
VIN = 5.5 V, No load on OUT, VEN = 0 V,RILIM = 20 kΩ  
VIN = 5.5 V, No load on OUT ,RILIM = 20 kΩ  
0.02  
75  
0.5  
90  
µA  
µA  
Supply current, switch  
enable  
UNDERVOLTAGE LOCKOUT  
UVLO Low-level input voltage, IN  
Hysteresis, IN  
VIN rising  
2.37  
45  
2.47  
V
TJ = 25 °C  
mV  
FAULT FLAG  
VOL  
Output low voltage, FAULT  
Off-state leakage  
I/FAULT = 1 mA  
180  
0.5  
12  
mV  
µA  
ms  
V/FAULT = 5.5 V  
FAULT deglitch  
FAULT assertion or de-assertion due to overcurrent condition  
6
8
THERMAL SHUTDOWN  
Thermal shutdown threshold  
165  
145  
20  
°C  
°C  
°C  
Thermal shutdown threshold  
in current-limit  
Hysteresis  
版权 © 2018–2019, Texas Instruments Incorporated  
5
TPS25221  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
90%  
10%  
tr  
tf  
VOUT  
1. Power-On and Off Timing  
50%  
ton  
50%  
VEN  
toff  
90%  
VOUT  
10%  
2. Enable Timing, Active High Enable  
50%  
50%  
VEN  
toff  
90%  
ton  
VOUT  
10%  
3. Enable Timing, Active Low Enable  
IOS  
IOUT  
tIOS  
4. Output Short Circuit Parameters  
6
版权 © 2018–2019, Texas Instruments Incorporated  
 
TPS25221  
www.ti.com.cn  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
7.6 Typical Characteristics  
See 21 for reference schematic  
VIN = 5 V, RILIM = 20 kΩ, ROUT = 5 Ω  
VIN = 5 V, RILIM = 20 kΩ, ROUT = 5 Ω  
6. Turnoff Delay and Fall Time  
5. Turnon Delay and Rise Time  
VIN = 5 V, RILIM = 20 kΩ, ROUT = 0 Ω  
7. Device Enabled into Short-Circuit  
VIN = 5 V, RILIM = 20 kΩ  
8. Full-Load to Short-Circuit Transient Response  
VIN = 5 V, RILIM = 20 kΩ  
10. No-Load to Short-Circuit Transient Response  
VIN = 5 V, RILIM = 20 kΩ  
9. Short-Circuit to Full-Load Recovery Response  
版权 © 2018–2019, Texas Instruments Incorporated  
7
TPS25221  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
See 21 for reference schematic  
VIN = 5 V, RILIM = 20 kΩ  
VIN = 5 V, RILIM = 20 kΩ  
12. No Load to 1-Ω Transient Response  
11. Short-Circuit to No-Load Recovery Response  
2.4  
2.39  
2.38  
2.37  
2.36  
2.35  
2.34  
2.33  
2.32  
2.31  
2.3  
UVLO Rising  
UVLO Falling  
-50  
0
50  
100  
150  
TJ - Junction Temperature (èC)  
UVLO  
RILIM = 20 kΩ  
VIN = 5 V, RILIM = 20 kΩ  
14. UVLO – Undervoltage Lockout – V  
13. 1-Ω to No Load Transient Response  
0.04  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0.035  
0.03  
0.025  
0.02  
2.5 V  
5 V  
5.5 V  
0.015  
2.5 V  
5.5 V  
0.01  
0
-50  
0
50  
100  
150  
-50  
0
50  
TJ - Junction Temperature (°C)  
100  
150  
TJ - Junction Temperature (èC)  
D007  
D008  
RILIM = 20 kΩ  
RILIM = 20 kΩ  
15. IIN – Supply Current, Output Disabled – µA  
16. IIN – Supply Current, Output Enabled – µA  
版权 © 2018–2019, Texas Instruments Incorporated  
8
TPS25221  
www.ti.com.cn  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
Typical Characteristics (接下页)  
See 21 for reference schematic  
20  
150  
125  
100  
75  
18  
16  
14  
12  
10  
8
50  
6
4
25  
DBV package  
DRV package  
2
0
-50  
0
0
50  
100  
150  
0
1.5  
3
Peak Current (A)  
4.5  
6
TJ - Junction Temperature (èC)  
D004  
D006  
VIN = 5 V, RILIM = 20 kΩ, TA = 25°C  
18. On-Resistance Vs. Junction Temperature  
17. Current Limit Response – µs  
3
2.5  
2
0.35  
0.3  
0.25  
0.2  
1.5  
1
0.15  
0.1  
TA = -40èC  
TA = -40èC  
TA = 25èC  
TA = 125èC  
0.5  
0
0.05  
0
TA = 25èC  
TA = 125èC  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
VIN - VOUT (V/div)  
1
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45  
VIN - VOUT (V/div)  
Curr  
D006  
VIN = 5.5 V, RILIM = 20 kΩ  
VIN = 5.5 V, RILIM = 210 kΩ  
19. Switch Current Vs. Drain-Source Voltage Across  
20. Switch Current Vs. Drain-Source Voltage Across  
Switch  
Switch  
版权 © 2018–2019, Texas Instruments Incorporated  
9
TPS25221  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
8 Parameter Measurement Information  
21. Typical Characteristics Reference Schematic  
OUT  
RL  
CL  
22. Output Rise / Fall Test Load  
Decreasing  
Load Resistance  
V
OUT  
Decreasing  
Load Resistance  
I
OUT  
I
OS  
23. Output Voltage vs Current-Limit Threshold  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TPS25221  
www.ti.com.cn  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
9 Detailed Description  
9.1 Overview  
The TPS25221 is current-limited, power-distribution switch using N-channel MOSFETs for applications where  
short circuits or heavy capacitive loads are encountered. The TPS25221 allows the user to program the current  
limit threshold between 275 mA to 2.7A (typical) through an external resistor.  
This device incorporates an internal charge pump and the gate drive circuitry necessary to drive the N-channel  
MOSFET. The charge pump supplies power to the driver circuit and provides the necessary voltage to pull the  
gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.5 V and  
requires little supply current. The driver controls the gate voltage of the power switch. The driver incorporates  
circuitry that controls the rise and fall times of the output voltage to limit large current and voltage surges and  
provides built-in soft-start functionality.  
The TPS25221 limits the output current to the current-limit threshold IOS during an over-current or short-circuit  
event by reducing the charge pump voltage driving the N-channel MOSFET and operating it in the saturation  
region. The result of limiting the output current to IOS reduces the output voltage at OUT because N-channel  
MOSFET is no longer fully enhanced (see 22).  
9.2 Functional Block Diagram  
IN  
CS  
OUT  
Current  
Sense  
Charge  
Pump  
Current  
Limit  
Driver  
EN  
FAULT  
UVLO  
GND  
ILIM  
Thermal  
Sense  
8-ms  
Deglitch  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
TPS25221  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Over-current Conditions  
The TPS25221 responds to over-current conditions by limiting output current to IOS as show in 24. When an  
overload condition occurs, the device maintains a constant output current and the output voltage reduces  
accordingly. Two possible overload conditions can occur.  
1. The first condition is when a short circuit or overload is present when the device is powered-up or enabled.  
The short circuit and overload holds the output near zero potential with respect to ground and the TPS25221  
ramps the output current to IOS. The TPS25221 limits the current to IOS until the overload condition is  
removed or the device begins to thermal cycle.  
2. The second condition is when a short circuit, partial short circuit, or transient overload occurs when the  
device is on and the internal NFET is fully enhanced. The device responds to the over-current condition by  
turning off the NFET within the time limit specified by tIOS (see 4). The current-sense amplifier is over-  
driven during this time and momentarily disables the internal N-channel MOSFET. The current-sense  
amplifier then recovers and ramps the output current to IOS. Similar to the previous case, the TPS25221  
limits the current to IOS until the overload condition is removed or the device begins to thermal cycle.  
The TPS25221 thermal cycles if an overload condition is present long enough to activate thermal limiting in any  
of the above cases. Thermal limiting turns off the internal NFET and starts when the junction temperature  
exceeds 145°C (typical). The device remains off until the junction temperature cools 20°C (typical) and then  
restarts.  
9.3.2 Fault Response  
The FAULT open-drain output is asserted (active low) during an over-current or over-temperature condition. The  
TPS25221 asserts the FAULT signal until the fault condition is removed and the device resumes normal  
operation. The TPS25221 is designed to eliminate nuisance FAULT reporting by using an internal 8 ms deglitch  
delay when reporting a fault. This ensures that FAULT is not accidentally asserted due to normal transient  
conditions, such as starting into a heavy capacitive load. The deglitch circuitry delays asserting and de-asserting  
current limit induce FAULT reports. The FAULT signal is not deglitched when the MOSFET is disabled due to an  
over-temperature condition, but is deglitched after the device has cooled and begins to turn on. This  
unidirectional deglitch prevents FAULT oscillation during an over-temperature event.  
9.3.3 Undervoltage Lockout (UVLO)  
The undervoltage lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO turn-  
on threshold. Built-in hysteresis prevents unwanted on/off cycling due to input voltage droop during turn on.  
9.3.4 Enable, (EN)  
The logic enable controls the power switch and device supply current. The supply current is reduced to less than  
0.5 μA.  
The TPS25221 is active high logic, when a logic low is present on EN, the part is disabled. A logic high input on  
EN enables the driver, control circuits, and power switch. The enable input is compatible with both TTL and  
CMOS logic levels.  
9.3.5 Thermal Sense  
The TPS25221 has self-protection features using two independent thermal-sensing circuits that monitor the  
operating temperature of the power switch and disable operation if the temperature exceeds the Over  
Temperature Shutdown Threshold (OTSD). The TPS25221 device operates in constant-current mode during  
overload conditions, which increases the voltage drop across power-switch. Power dissipation in the package is  
proportional to the voltage drop across the power switch, which increases the junction temperature during an  
over-current condition. The first thermal sensor turns off the power switch when the die temperature exceeds  
145°C (typical) and the part is in current limit. Hysteresis is built into the thermal sensor, and the switch turns on  
after the device has cooled approximately 20°C (typical). The TPS25221 continues to cycle off and on until the  
fault condition is removed.  
The ambient thermal sensor turns off the power-switch when the junction temperature exceeds 165°C (typical) in  
non-current limit condition. The part will turn the switch back on once the junction temperature has cooled  
approximately 20°C (typical).  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS25221  
www.ti.com.cn  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
Feature Description (接下页)  
The open-drain fault reporting output FAULT is asserted (active low) immediately during an over-temperature  
shutdown condition.  
9.4 Device Functional Modes  
1. Protection Function Table  
EVENT  
CONDITION  
ACTION  
The device outputs IOS x RLOAD until thermal shutdown. The  
fault indicator asserts when the over-current condition  
persists for more 8 ms, the fault does not de-assert until  
over-current is removed and persists for 8 ms.  
Overload on OUT  
Overheating  
ILOAD > IOS  
The device immediately shuts off the internal power switch  
and the fault indicator asserts immediately when the junction  
temperature exceeds 165°C (typical). The device has a  
thermal hysteresis of 20°C (typical). The fault indicator de-  
asserts when the junction temperature falls below 145°C  
(typical).  
TJ > 165 C  
The device immediately shuts off the internal current-limited  
switch.  
Undervoltage on IN  
VIN < 2.37 V  
9.5 Programming  
9.5.1 Programming the Current-Limit Threshold  
The over-current threshold is user programmable through an external resistor. The TPS25221 uses an internal  
regulation loop to provide a regulated voltage on the ILIM pin. The current-limit threshold is proportional to the  
current sourced out of ILIM. The recommended 1% resistor range for RILIM is 20 kΩ RILIM 210 kΩ to ensure  
stability of the internal regulation loop. Many applications require that the minimum current limit is above a certain  
current level or that the maximum current limit is below a certain current level, so it is important to consider the  
tolerance of the over-current threshold when selecting a value for RILIM. The following equations and 24 can  
be used to calculate the resulting over-current threshold for a given external resistor value (RILIM). 24 includes  
current-limit tolerance due to variations caused by temperature and process. However, the equations do not  
account for tolerance due to external resistor variation, so it is important to account for this tolerance when  
selecting RILIM. The traces routing the RILIM resistor to the TPS25221 must be as short as possible to reduce  
parasitic effects on the current-limit accuracy.  
RILIM can be selected to provide a current-limit threshold that occurs: 1) above a minimum load current or 2)  
below a maximum load current.  
To design above a minimum current-limit threshold, find the intersection of RILIM and the maximum desired load  
current on the IOS(min) curve and choose a value of RILIM below this value. Programming the current limit above a  
minimum threshold is important to ensure start-up into full load or heavy capacitive loads. The resulting  
maximum current-limit threshold is the intersection of the selected value of RILIM and the IOS(max) curve.  
To design below a maximum current-limit threshold, find the intersection of RILIM and the maximum desired load  
current on the IOS(max) curve and choose a value of RILIM above this value. Programming the current limit below a  
maximum threshold is important to avoid current limiting upstream power supplies, causing the input voltage bus  
to droop. The resulting minimum current-limit threshold is the intersection of the selected value of RILIM and the  
IOS(min) curve.  
Current-Limit Threshold Equation (IOS):  
52640V  
IOSmax (mA) =  
RILIM0.97kW  
55960V  
RILIM1.004kW  
IOSnom(mA) =  
56850V  
RILIM1.033kW  
IOSmin(mA) =  
where:  
20 kΩ RILIM 210 kΩ.  
(1)  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
 
TPS25221  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Programming (接下页)  
3000  
2800  
2600  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
IOS(max)  
IOS(nom)  
IOS(min)  
600  
400  
200  
0
20 40 60 80 100 120 140 160 180 200 220 235  
RILIM-Current Limit Resistor-KW  
Curr  
24. Current-Limit Threshold vs Current-Limit Resistor (RILIM  
)
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
10.1.1 Constant-Current  
During normal operation, the TPS25221 load current is less than the current-limit threshold and the device is not  
limiting current. During normal operation the N-channel MOSFET is fully enhanced, and VOUT = VIN - (IOUT  
x
rDS(on)). The voltage drop across the MOSFET is relatively small compared to VIN, and VOUT is approximately  
equal to VIN.  
The TPS25221 limits current to the programmed current-limit threshold, set by RILIM, reducing gate drive to the  
internal NFET, which increases Rds(on) and reduces load current. This allows the device to effectively regulate  
the current to the current-limit threshold. Increasing the resistance of the MOSFET means that the voltage drop  
across the device is no longer negligible (VIN VOUT), and VOUT decreases. The amount that VOUT decreases is  
proportional to the magnitude of the overload condition. The expected VOUT can be calculated by:  
IOS × RLOAD  
where:  
IOS is the current-limit threshold and RLOAD is the magnitude of the overload condition.  
(2)  
For example, if IOS is programmed to 1 A and a 1 Ω overload condition is applied, the resulting VOUT is 1 V.  
While in current limit the power dissipation in the package can raise the die temperature above the thermal  
shutdown threshold (145°C typical), and the device turns off until the die temperature decreases by the  
hysteresis of the thermal shutdown circuit (20°C typical). The device then turns on and continues to thermal cycle  
until the overload condition is removed.  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TPS25221  
www.ti.com.cn  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
10.2 Typical Applications  
10.2.1 Two-Level Current-Limit Circuit  
Some applications require different current-limit thresholds depending on external system conditions. 25  
shows an implementation for an externally controlled, two-level current-limit circuit. The current-limit threshold is  
set by the total resistance from ILIM to GND (see the Programming the Current-Limit Threshold section). A logic-  
level input enables or disables MOSFET Q1 and changes the current-limit threshold by modifying the total  
resistance from ILIM to GND. Additional MOSFET and resistor combinations can be used in parallel to Q1/R2 to  
increase the number of additional current-limit levels.  
ILIM must never be driven directly with an external signal.  
Input  
0.1 mF  
Output  
IN  
OUT  
R
R
FAULT  
C
LOAD  
LOAD  
100 kW  
R1  
210 kW  
ILIM  
R2  
22.1 kW  
Fault Signal  
FAULT  
EN  
GND  
Control Signal  
Thermal Pad  
Q1  
2N7002  
Current Limit  
Control Signal  
Copyright © 2018, Texas Instruments Incorporated  
25. Two-Level Current-Limit Circuit  
10.2.1.1 Design Requirements  
For this example, use the parameters shown in 2.  
2. Design Requirements  
PARAMETER  
Input voltage  
VALUE  
5 V  
Output voltage  
5 V  
Above a minimum current limit  
Below a maximum current limit  
1000 mA  
500 mA  
10.2.1.2 Detailed Design Procedures  
10.2.1.2.1 Designing Above a Minimum Current Limit  
Some applications require that current limiting cannot occur below a certain threshold. For this example, assume  
that 1 A must be delivered to the load so that the minimum desired current-limit threshold is 1000 mA. Use the  
IOS equations and 24 to select RILIM  
.
版权 © 2018–2019, Texas Instruments Incorporated  
15  
 
 
TPS25221  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
IOSmin(mA) = 1000mA  
56850V  
RILIM1.033kW  
IOSmin(mA) =  
1
æ
ç
ç
ö1.033  
56850V  
÷
÷
÷
÷
ø
RILIM(kW) =  
ç
ç
I
mA  
è OSmin  
RILIM(kW) = 50kW  
(3)  
Select the closest 1% resistor less than the calculated value: RILIM = 49.9 kΩ. This sets the minimum current-limit  
threshold at 1 A . Use the IOS equations, 24, and the previously calculated value for RILIM to calculate the  
maximum resulting current-limit threshold.  
RILIM(kW) = 49.9kW  
52640V  
RILIM0.97kW  
IOSmax (mA) =  
52640V  
49.90.97kW  
IOSmax (mA) =  
IOSmax (mA) = 1186mA  
(4)  
The resulting maximum current-limit threshold is 1186 mA with a 49.9 kΩ resistor.  
10.2.1.2.2 Designing Below a Maximum Current Limit  
Some applications require that current limiting must occur below a certain threshold. For this example, assume  
that the desired upper current-limit threshold must be below 500 mA to protect an up-stream power supply. Use  
the IOS equations and 24 to select RILIM  
.
IOSmax (mA) = 500mA  
52640V  
RILIM0.97kW  
IOSmax (mA) =  
1
æ
ç
ç
ö0.97  
52640V  
÷
÷
÷
÷
ø
RILIM(kW) =  
ç
ç
I
mA  
è OSmax  
RILIM(kW) = 121.6kW  
(5)  
Select the closest 1% resistor greater than the calculated value: RILIM = 124 kΩ. This sets the maximum current-  
limit threshold at 500 mA . Use the IOS equations, 24, and the previously calculated value for RILIM to calculate  
the minimum resulting current-limit threshold.  
RILIM(kW) = 124kW  
56850V  
RILIM1.033kW  
IOSmin(mA) =  
56850V  
1241.033kW  
IOSmin(mA) =  
IOSmin(mA) = 391mA  
(6)  
The resulting minimum current-limit threshold is 391 mA with a 124 kΩ resistor.  
10.2.1.2.3 Accounting for Resistor Tolerance  
The previous sections described the selection of RILIM given certain application requirements and the importance  
of understanding the current-limit threshold tolerance. The analysis focused only on TPS25221 performance and  
assumed an exact resistor value. However, resistors sold in quantity are not exact and are bounded by an upper  
and lower tolerance centered around a nominal resistance. The additional RILIM resistance tolerance directly  
affects the current-limit threshold accuracy at a system level. The following table shows a process that accounts  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS25221  
www.ti.com.cn  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
for worst-case resistor tolerance assuming 1% resistor values. Step one follows the selection process outlined in  
the application examples above. Step two determines the upper and lower resistance bounds of the selected  
resistor. Step three uses the upper and lower resistor bounds in the IOS equations to calculate the threshold  
limits. It is important to use tighter tolerance resistors, for example, 0.5% or 0.1%, when precision current limiting  
is desired.  
3. Common RILIM Resistor Selections  
DESIRED  
NOMINAL  
CURRENT  
LIMIT  
RESISTOR TOLERANCE  
ACTUAL LIMITS  
IOS(nom) (mA)  
IDEAL  
RESISTOR  
(kΩ)  
CLOSEST  
1% RESISTOR  
(kΩ)  
1% LOW (kΩ) 1% HIGH (kΩ)  
IOS(min) (mA)  
IOS(max) (mA)  
(mA)  
275  
400  
199.2  
137.2  
109.8  
91.6  
78.6  
68.8  
61.2  
55.1  
45.9  
39.4  
34.5  
30.7  
27.6  
25.1  
23.0  
21.3  
20.5  
200  
137  
198  
135.6  
108.9  
90.0  
77.9  
67.4  
61.3  
54.4  
45.9  
38.8  
34.5  
30.6  
27.1  
24.7  
23.0  
21.3  
20.3  
202  
138.4  
111.1  
91.8  
79.5  
68.8  
62.5  
55.4  
46.9  
39.6  
35.1  
31.2  
27.7  
25.1  
23.4  
21.7  
20.7  
236  
349  
274  
401  
312  
450  
500  
110  
438  
499  
556  
600  
90.9  
78.7  
68.1  
61.9  
54.9  
46.4  
39.2  
34.8  
30.9  
27.4  
24.9  
23.2  
21.5  
20.5  
533  
605  
669  
700  
619  
699  
770  
800  
719  
808  
886  
900  
793  
889  
972  
1000  
1200  
1400  
1600  
1800  
2000  
2200  
2400  
2600  
2700  
898  
1003  
1188  
1407  
1585  
1786  
2015  
2219  
2382  
2571  
2697  
1092  
1285  
1514  
1699  
1907  
2143  
2351  
2518  
2711  
2839  
1068  
1272  
1438  
1626  
1841  
2032  
2186  
2365  
2484  
10.2.1.2.4 Input and Output Capacitance  
Input and output capacitance improves the performance of the device; the actual capacitance must be optimized  
for the particular application. For all applications, TI recommends placing a 0.1 µF or greater ceramic bypass  
capacitor between IN and GND as close to the device as possible for local noise de-coupling. This precaution  
reduces ringing on the input due to power-supply transients. Additional input capacitance may be needed on the  
input to reduce voltage overshoot from exceeding the absolute maximum voltage of the device during heavy  
transient conditions. This is especially important during bench testing when long, inductive cables are used to  
connect the evaluation board to the bench power-supply.  
TI recommends placing a high-value electrolytic capacitor on the output pin when large transient currents are  
expected on the output.  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
TPS25221  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
10.2.1.3 Application Curve  
VIN = 5 V, RILIM = 20 kΩ, ROUT = 5 Ω  
26. Turnon Delay and Rise Time  
10.2.2 Auto-Retry Functionality  
Some applications require that an over-current condition disables the part momentarily during a fault condition  
and re-enables after a pre-set time. This auto-retry functionality can be implemented with an external resistor and  
capacitor. During a fault condition, FAULT pulls low disabling the part. The part is disabled when EN is pulled  
low, and FAULT goes high impedance allowing CRETRY to begin charging. The part re-enables when the voltage  
on EN reaches the turn-on threshold, and the auto-retry time is determined by the resistor-capacitor time  
constant. The device continues to cycle in this manner until the fault condition is removed.  
TPS25221  
0.1 mF  
Input  
Output  
IN  
OUT  
R
R
LOAD  
FAULT  
C
LOAD  
100 kW  
ILIM  
R
ILIM  
FAULT  
EN  
20 kW  
GND  
C
RETRY  
Thermal Pad  
0.1 mF  
Copyright © 2018, Texas Instruments Incorporated  
27. Auto-Retry Functionality  
Some applications require auto-retry functionality and the ability to enable or disable with an external logic signal.  
28 shows how an external logic signal can drive EN through RFAULT and maintain auto-retry functionality. The  
resistor-capacitor time constant determines the auto-retry time-out period.  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS25221  
www.ti.com.cn  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
TPS25221  
0.1 mF  
Input  
Output  
IN  
OUT  
R
LOAD  
C
LOAD  
ILIM  
External Logic  
Signal & Driver  
R
R
FAULT  
ILIM  
FAULT  
EN  
100 kW  
20 kW  
GND  
C
RETRY  
Thermal Pad  
0.1 mF  
Copyright © 2018, Texas Instruments Incorporated  
28. Auto-Retry Functionality With External EN Signal  
10.2.2.1 Design Requirements (added)  
For this example, use the parameters shown in 4.  
4. Design Requirements  
PARAMETER  
Input voltage  
VALUE  
5 V  
Output voltage  
5 V  
Above a minimum current limit  
Below a maximum current limit  
1000 mA  
500 mA  
10.2.2.2 Detailed Design Procedure  
Refer to Programming the Current-Limit Threshold section for the current limit setting. For auto-retry functionality,  
once FAULT asserted, EN pull low, TPS25221 is disabled, FAULT des-asserted, CRETRY is slowly charged to EN  
logic high through RFAULT, then enable, after deglitch time, FAULT asserted again. In the event of an overload,  
TPS25221 cycles and has output average current. ON-time with output current is decided by FAULT deglitch  
time. OFF-time without output current is decided by RFAULT x CRETRY constant time to EN logic high and ton time.  
Therefore, set the RFAULT × CRETRY to get the desired output average current during overload.  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
 
TPS25221  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
10.2.3 Typical Application as USB Power Switch  
TPS25221  
5V USB  
Input  
USB Data  
0.1 mF  
USB  
Port  
IN  
OUT  
RFAULT  
100 kW  
120 mF  
ILIM  
RILIM  
20 kW  
Fault Signal  
Control Signal  
FAULT  
EN  
USB requirement only*  
GND  
*USB requirement that downstream  
facing ports are bypassed with at least  
120 mF per hub  
Thermal Pad  
Copyright © 2018, Texas Instruments Incorporated  
29. Typical Application as USB Power Switch  
10.2.3.1 Design Requirements  
For this example, use the parameters shown in 5.  
5. Design Requirements  
PARAMETER  
Input voltage  
Output voltage  
Current  
VALUE  
5 V  
5 V  
1200 mA  
10.2.3.1.1 USB Power-Distribution Requirements  
USB can be implemented in several ways regardless of the type of USB device being developed. Several power-  
distribution features must be implemented.  
Self Powered Hub (SPH) must:  
Current limit downstream ports  
Report over-current conditions  
Bus Powered Hub (BPH) must:  
Enable or disable power to downstream ports  
Power up at <100 mA  
Limit inrush current (<44 Ω and 10 µF)  
Functions must:  
Limit inrush currents  
Power up at <100 mA  
The feature set of the TPS25221 meets each of these requirements. The integrated current limiting and over-  
current reporting is required by self-powered hubs. The logic-level enable and controlled rise times meet the  
need of both input and output ports on bus-powered hubs and the input ports for bus-powered functions.  
10.2.3.2 Detailed Design Procedure  
10.2.3.2.1 Universal Serial Bus (USB) Power-Distribution Requirements  
One application for this device is for current limiting in universal serial bus (USB) applications. The original USB  
interface was a 12-Mbps or 1.5-Mbps, multiplexed serial bus designed for low-to-medium bandwidth PC  
peripherals (for example, keyboards, printers, scanners, and mice). As the demand for more bandwidth  
increased, the USB 2.0 standard was introduced increasing the maximum data rate to 480 Mbps. The four-wire  
USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for  
differential data, and two lines are provided for 5-V power distribution.  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TPS25221  
www.ti.com.cn  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power  
is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V  
from the 5-V input or its own internal power supply. The USB specification classifies two different classes of  
devices depending on its maximum current draw. A device classified as low-power can draw up to 100 mA as  
defined by the standard. A device classified as high-power can draw up to 500 mA. It is important that the  
minimum current-limit threshold of the current-limiting power-switch exceed the maximum current-limit draw of  
the intended application. The latest USB standard must always be referenced when considering the current-limit  
threshold  
The USB specification defines two types of devices as hubs and functions. A USB hub is a device that contains  
multiple ports for different USB devices to connect and can be self-powered (SPH) or bus-powered (BPH). A  
function is a USB device that is able to transmit or receive data or control information over the bus. A USB  
function can be embedded in a USB hub. A USB function can be one of three types included in the list below.  
Low-power, bus-powered function  
High-power, bus-powered function  
Self-powered function  
SPHs and BPHs distribute data and power to downstream functions. The TPS25221 has higher current capability  
than required for a single USB port allowing it to power multiple downstream ports.  
11 Power Supply Recommendations  
11.1 Self-Powered and Bus-Powered Hubs  
A SPH has a local power supply that powers embedded functions and downstream ports. This power supply  
must provide between 4.75 V to 5.25 V to downstream facing devices under full-load and no-load conditions.  
SPHs are required to have current-limit protection and must report over-current conditions to the USB controller.  
Typical SPHs are desktop PCs, monitors, printers, and stand-alone hubs.  
A BPH obtains all power from an upstream port and often contains an embedded function. It must power up with  
less than 100 mA. The BPH usually has one embedded function, and power is always available to the controller  
of the hub. If the embedded function and hub require more than 100 mA on power up, keep the power to the  
embedded function off until enumeration is completed. This can be accomplished by removing power or by  
shutting off the clock to the embedded function. Power-switching the embedded function is not necessary if the  
aggregate power draw for the function and controller is less than 100 mA. The total current drawn by the bus-  
powered device is the sum of the current to the controller, the embedded function, and the downstream ports,  
and it is limited to 500 mA from an upstream port.  
11.2 Low-Power Bus-Powered and High-Power Bus-Powered Functions  
Both low-power and high-power bus-powered functions obtain all power from upstream ports. Low-power  
functions always draw less than 100 mA; high-power functions must draw less than 100 mA at power up and can  
draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44 Ω  
and 10 µF at power up, the device must implement inrush current limiting.  
11.3 Power Dissipation and Junction Temperature  
The low ON-resistance of the N-channel MOSFET allows small surface-mount packages to pass large currents.  
It is required design practice to determine power dissipation and junction temperature. The below analysis gives  
an approximation for calculating junction temperature based on the power dissipation in the package. However, it  
is important to note that thermal analysis is strongly dependent on additional system level factors. Such factors  
include air flow, board layout, copper thickness and surface area, and proximity to other devices dissipating  
power. Good thermal design practice must include all system level factors in addition to individual component  
analysis.  
Begin by determining the rDS(on) of the N-channel MOSFET relative to the input voltage and operating  
temperature. As an initial estimate, use the highest operating ambient temperature expected and read rDS(on)  
from the typical characteristics graph. Using this value, the power dissipation can be calculated using 公式 7:  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
TPS25221  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
Power Dissipation and Junction Temperature (接下页)  
2
PD = rDS(on) × IOUT  
where  
PD = Total power dissipation (W)  
rDS(on) = Power switch on-resistance (Ω)  
IOUT = Maximum current-limit threshold (A)  
This step calculates the total power dissipation of the N-channel MOSFET.  
(7)  
(8)  
Finally, calculate the junction temperature:  
TJ = PD × θJA + TA  
where  
TA = Ambient temperature (°C)  
θJA = Thermal resistance (°C/W)  
PD = Total power dissipation (W)  
Compare the calculated junction temperature with the initial estimate. If they are not within a few degrees, repeat  
the calculation using the refined rDS(on) from the previous calculation as the new estimate. Two or three iterations  
are generally sufficient to achieve the desired result. The final junction temperature is highly dependent on  
thermal resistance θJA, and thermal resistance is highly dependent on the individual package and board layout.  
The table provides example thermal resistances for specific packages and board layouts.  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS25221  
www.ti.com.cn  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
12 Layout  
12.1 Layout Guidelines  
TI recommends placing the 100-nF bypass capacitor near the IN and GND pins, and make the connections  
using a low-inductance trace.  
TI recommends placing a high-value electrolytic capacitor and a 100-nF bypass capacitor on the output pin  
when large transient currents are expected on the output.  
The traces routing the RILIM resistor to the device must be as short as possible to reduce parasitic effects on  
the current limit accuracy.  
The thermal pad must be directly connected to PCB ground plane using wide and short copper trace.  
12.2 Layout Example  
1
6
IN  
GND  
EN  
OUT  
2
3
ILIM  
5
4
FAULT  
30. TPS25221DBV Board Layout  
1
IN  
6
5
OUT  
ILIM  
2
3
GND  
4
EN  
FAULT  
31. TPS25221DRV Board Layout  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
TPS25221  
ZHCSHI4D JANUARY 2018REVISED DECEMBER 2019  
www.ti.com.cn  
13 器件和文档支持  
13.1 器件支持  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
13.2 文档支持  
13.2.1 相关文档  
请参阅如下相关文档:  
TPS25221 评估模块用户指南》(SLVUBD1)  
13.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.5 商标  
E2E is a trademark of Texas Instruments.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS25221DBVR  
TPS25221DBVT  
TPS25221DRVR  
TPS25221DRVT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
WSON  
WSON  
DBV  
DBV  
DRV  
DRV  
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1B4F  
1B4F  
1C7H  
1C7H  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS25221DBVR  
TPS25221DBVT  
TPS25221DBVT  
TPS25221DRVR  
TPS25221DRVT  
SOT-23  
SOT-23  
SOT-23  
WSON  
WSON  
DBV  
DBV  
DBV  
DRV  
DRV  
6
6
6
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
3.23  
3.2  
3.2  
3.17  
3.2  
1.4  
1.37  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q2  
Q2  
250  
3000  
250  
2.3  
2.3  
1.15  
1.15  
2.3  
2.3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS25221DBVR  
TPS25221DBVT  
TPS25221DBVT  
TPS25221DRVR  
TPS25221DRVT  
SOT-23  
SOT-23  
SOT-23  
WSON  
WSON  
DBV  
DBV  
DBV  
DRV  
DRV  
6
6
6
6
6
3000  
250  
210.0  
183.0  
210.0  
210.0  
210.0  
185.0  
183.0  
185.0  
185.0  
185.0  
35.0  
20.0  
35.0  
35.0  
35.0  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A  
C
B
0.05  
4222173/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222173/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222173/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS2524

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS252G1

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS252G10

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS252G12

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS252G14

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS252G15

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS252G2

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS252G20

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS252G4

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS252G5

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS252G7

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS252G9

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC