TPS2556-Q1 [TI]

低电平有效的汽车类 0.5-5A 可调节 ILIMIT 2.5-6.5V、22mΩ USB 电源开关;
TPS2556-Q1
型号: TPS2556-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

低电平有效的汽车类 0.5-5A 可调节 ILIMIT 2.5-6.5V、22mΩ USB 电源开关

开关 电源开关
文件: 总29页 (文件大小:1925K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
TPS2556-Q1, TPS2557-Q1  
TPS255x-Q1 精密汽车用可调电流受限配电开关  
1 特性  
3 说明  
符合 AEC-Q100  
TPS2556-Q1 TPS2557-Q1 配电开关专门用于需要  
精密电流限制或者能够处理大电容负载和短路的汽车  
应用。这些器件借助一个外部电阻器提供 500mA 至  
5A典型值之间的可编程电流限制阈值。对电源开  
关上升和下降时间的控制最大限度地减少了接通或关闭  
期间的电流浪涌。  
– 器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 H2  
– 器件组件充电模式 (CDM) ESD 分类等级 C5  
提供功能安全  
– 可帮助进行功能安全系统设计的文档  
满足 USB 限流要求  
当 输 出 负 载 超 过 限 流 阈 值 时 TPS2556-Q1  
TPS2557-Q1 器件通过切换到恒定电流模式来将输出  
电流限制在安全的水平上。在过流和过热情况下,  
FAULT 逻辑输出为低电平有效。  
可调电流限值500mA 5A典型值)  
4.5A 电流下的限流精度为 ±6.5%  
快速短路响应3.5μs典型值)  
22m高侧 MOSFET  
TPS2511-Q1 TPS2513A-Q1 一同使用可实现  
一款低功耗、符合汽车标准的 USB 充电端口解决方  
案。此解决方案能够为目前普遍使用的手机和平板电脑  
充电。  
工作电压范围2.5V 6.5V  
最大待机电源电流 2μA  
内置软启动  
器件信息  
封装(1)  
15kV 8kV 系统级 ESD 能力  
订货编号  
封装尺寸  
安全相关认证:  
TPS2556QDRB  
TPS2557QDRB  
S-PVSON (8)  
S-PVSON (8)  
3mm x 3mm  
3mm x 3mm  
– 通过 UL 2367 UL 认证  
– 通过 IEC 60950 CB 认证  
– 通过 IEC 62368 CB 认证  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
汽车 USB 充电端口  
5 V OUT  
0.1 μF  
IN  
IN  
OUT  
OUT  
TPS2556-Q1  
100 kΩ  
USB  
Connector  
TPS2557-Q1  
RILIM  
ILIM  
FAULT  
VBUS  
Control Signal  
DC to DC  
Converter  
EN  
GND  
Thermal Pad  
D–  
D+  
or Controller  
(LM25117-Q1,  
TPS54340-Q1,  
TPS54240-Q1,  
TPS40170-Q1)  
GND  
VIN  
DM1  
DP1  
COUT  
TPS2513A-Q1  
DM2  
CUSB  
GND  
DP2  
Recommend TPS2561A-Q1  
for the Dual Port Solution  
作为单端口汽车 USB 充电端口电源开关的典型应用  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSC97  
 
 
 
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
Table of Contents  
9.2 Functional Block Diagram...........................................9  
9.3 Feature Description.....................................................9  
9.4 Device Functional Modes..........................................10  
10 Applications and Implementation..............................12  
10.1 Application Information........................................... 12  
10.2 Typical Application, Design for Current Limit.......... 12  
11 Power Supply Recommendations..............................17  
12 Layout...........................................................................18  
12.1 Layout Guidelines................................................... 18  
12.2 Layout Example...................................................... 18  
13 Device and Documentation Support..........................19  
13.1 Related Links.......................................................... 19  
13.2 Trademarks.............................................................19  
13.3 Electrostatic Discharge Caution..............................19  
13.4 Glossary..................................................................19  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Terminal Configuration and Functions..........................3  
7 Specifications.................................................................. 3  
7.1 Absolute Maximum Ratings........................................ 3  
7.2 Handling Ratings.........................................................4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics.............................................5  
7.6 Switching Characteristics............................................5  
7.7 Typical Characteristics................................................6  
8 Parameter Measurement Information............................7  
9 Detailed Description........................................................8  
9.1 Overview.....................................................................8  
Information.................................................................... 20  
4 Revision History  
Changes from Revision A (March 2014) to Revision B (September 2020)  
Page  
特性 部分添加了功能安全链接和安全相关认证项目符号.................................................................................1  
更新了整个文档的表、图和交叉参考的编号格式................................................................................................ 1  
Changes from Revision * (March 2014) to Revision A (March 2014)  
Page  
将“说明”中的器件型号从 TPS2511-Q 更改为 TPS2511-Q1........................................................................... 1  
Changed CURRENT LIMIT values in Electrical Characteristics table ...............................................................5  
Changed Equation 1 ........................................................................................................................................12  
Revised 10-2 graph......................................................................................................................................12  
Changed Equation 2 ........................................................................................................................................13  
Changed resistor value from 33.2 kΩ to 33.6 kΩ ...........................................................................................13  
Changed Equation 3 ........................................................................................................................................13  
Changed Equation 4 ........................................................................................................................................14  
Changed current-limit threshold from 4 316 mA to 4 406 mA ..........................................................................14  
Changed values in 10-2 .............................................................................................................................. 14  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
 
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
5 Device Comparison Table  
MAX. OPERATING  
CURRENT (A)  
DEVICE  
OUTPUTS  
ENABLES  
TYPICAL rDS(on) (mΩ)  
TPS2556-Q1  
TPS2557-Q1  
TPS2561A-Q1  
5
5
1
1
2
Active-low  
Active-high  
Active-high  
22  
22  
44  
2.5  
6 Terminal Configuration and Functions  
1
2
3
4
8
7
6
5
GND  
IN  
FAULT  
OUT  
OUT  
ILIM  
Thermal  
Pad  
IN  
EN  
EN = Active-low for the TPS2556-Q1  
EN = Active-high for the TPS2557-Q1  
6-1. 8-Terminal S-PVSON With Thermal Pad DRB Package (Top View)  
Terminal Functions  
TERMINAL  
TPS2556-Q1  
4
I/O  
DESCRIPTION  
NAME  
TPS2557-Q1  
EN  
I
I
Enable input, logic low turns on power switch.  
Enable input, logic high turns on power switch.  
Ground connection; connect externally to PowerPAD.  
4
EN  
GND  
1
1
Input voltage; connect a 0.1 μF or greater ceramic capacitor from  
IN to GND as close to the IC as possible.  
IN  
2, 3  
2, 3  
I
Active-low open-drain output, asserted during overcurrent or  
overtemperature conditions.  
FAULT  
OUT  
8
6, 7  
5
8
6, 7  
5
O
O
O
Power-switch output.  
External resistor used to set current-limit threshold; recommended  
20 kR(ILIM) 187 k.  
ILIM  
Internally connected to GND; used to heat-sink the part to the  
circuit board traces. Connect therma pad to GND terminal  
externally.  
Thermal pad  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range unless otherwise noted(1) (2)  
MIN  
0.3  
7  
MAX(2)  
UNIT  
V
Voltage range on IN, OUT, EN or EN, ILIM, FAULT  
Voltage range from IN to OUT  
7
7
V
I
Continuous output current  
Continuous FAULT sink current  
ILIM source current  
Internally limited  
25  
mA  
mA  
°C  
Internally limited  
Internally limited  
TJ  
Maximum junction temperature  
40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
 
 
 
 
 
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Voltages are referenced to GND unless otherwise noted.  
7.2 Handling Ratings  
PARAMETER  
MIN  
65  
2  
MAX UNIT  
Tstg  
Storage temperature range  
150  
2
°C  
kV  
V
Human-body model (HBM) ESD stress voltage(2)  
Charged-device model (CDM) ESD stress voltage(3)  
750  
8
750  
8  
(1)  
V(ESD)  
Contact discharge  
Air discharge  
System level(4)  
kV  
15  
15  
(1) Electrostatic discharge (ESD) to measure device sensitivity or immunity to damage caused by assembly-line electrostatic discharges  
into the device.  
(2) The passing level per AEC-Q100 Classification H2.  
(3) The passing level per AEC-Q100 Classification C5.  
(4) Surges per EN61000-4-2, 1999 applied between USB connection for V(BUS) and ground of the TPS2556EVM (HPA423, replacing  
TPS2556 with TPS2556-Q1) evaluation module (SLUU393). These were the test levels, not the failure threshold.  
7.3 Recommended Operating Conditions  
MIN  
2.5  
0
MAX UNIT  
V(IN)  
V( EN )  
V(EN)  
VIH  
Input voltage, IN  
Enable voltage  
6.5  
6.5  
6.5  
V
TPS2556-Q1  
TPS2557-Q1  
V
0
High-level input voltage on EN or EN  
Low-level input voltage on EN or EN  
Continuous output current, OUT  
Continuous FAULT sink current  
Operating junction temperature  
Recommendedlimit-resistor range  
1.1  
V
VIL  
0.66  
5
I(OUT)  
0
0
A
10  
mA  
°C  
TJ  
125  
187  
40  
20  
R(ILIM)  
kΩ  
7.4 Thermal Information  
TPS2556-Q1,  
TPS2557-Q1  
THERMAL METRIC(1)  
UNIT  
DRB  
8 TERMINALS  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
41.5  
56  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
16.4  
0.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJT  
16.5  
3.5  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
 
 
 
 
 
 
 
 
 
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics  
over recommended operating conditions, VEN = 0 V, or VEN = VIN (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP MAX UNIT  
POWER SWITCH  
TJ = 25°C  
22  
25  
35  
Static drain-source on-state  
resistance  
rDS(on)  
m  
40 °C TJ 125°C  
ENABLE INPUT EN OR EN  
Enable terminal turnon or turnoff  
0.66  
1.1  
0.5  
V
threshold  
Hysteresis  
Input current  
55(2)  
mV  
I(EN)  
V(EN) = 0 V or 6.5 V, or V( EN) = 0 V or 6.5 V  
0.5  
μA  
CURRENT LIMIT  
4180  
1610  
945  
4500 4745  
1805 1980  
1110 1270  
R(ILIM) = 24.9 kΩ  
Current-limit threshold (maximum dc output current I(OUT) delivered to  
load) and short-circuit current, OUT connected to GND  
IOS  
mA  
R(ILIM) = 61.9 kΩ  
R(ILIM) = 100 kΩ  
SUPPLY CURRENT  
I(IN_off)  
I(IN_on)  
I(REV)  
Supply current, low-level output  
V(IN) = 6.5 V, no load on OUT, V( EN) = 6.5 V or V(EN) = 0 V  
0.1  
95  
2.5  
120  
110  
1
μA  
μA  
μA  
μA  
R(ILIM) = 24.9 kΩ  
V(IN) = 6.5 V, no load on OUT  
R(ILIM) = 100 kΩ  
Supply current, high-level output  
85  
Reverse leakage current  
V(OUT) = 6.5 V, VIN = 0 V  
TJ = 25 °C  
0.01  
UNDERVOLTAGE LOCKOUT  
V(UVLO)  
Low-level input voltage, IN  
V(IN) rising  
2.35 2.45  
35(2)  
V
Hysteresis, IN  
mV  
FAULT FLAG  
VOL  
Output low voltage, FAULT  
Off-state leakage  
I( FAULT) = 1 mA  
V( FAULT) = 6.5 V  
180  
1
mV  
μA  
ms  
FAULT deglitch  
FAULT assertion or de-assertion due to overcurrent condition  
6
9
13  
THERMAL SHUTDOWN  
T(OTSD2) Thermal shutdown threshold  
155  
135  
°C  
°C  
°C  
Thermal shutdown threshold in  
current-limit  
T(OTSD)  
Hysteresis  
20(2)  
(1) Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account  
separately.  
(2) These parameters are provided for reference only, and do no constitute part of TI's published specifications for purposes of TI's  
product warranty.  
7.6 Switching Characteristics  
MIN TYP MAX UNIT  
VIN = 6.5 V  
VIN = 2.5 V  
VIN = 6.5 V  
VIN = 2.5 V  
2
1
3
2
4
3
tr  
tf  
Rise time, output  
Fall time, output  
CL = 1 μF, RL = 100 ,  
(see 8-1)  
ms  
0.6  
0.4  
0.8  
0.6  
1.0  
0.8  
9
ton  
Turnon time  
ms  
ms  
μs  
CL = 1 μF, RL = 100 , (see 8-1)  
V(IN) = 5 V (see 8-2)  
toff  
Turnoff time  
6
t(IOS)  
Response time to short circuit  
3.5(1)  
(1) These parameters are provided for reference only, and do no constitute part of TI's published specifications for purposes of TI's  
product warranty  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
 
 
 
 
 
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
7.7 Typical Characteristics  
2.335  
2.330  
2.325  
2.320  
700  
600  
500  
400  
300  
200  
100  
0
V(IN) = 2.5 V  
V(IN) = 6.5 V  
UVLO Rising  
UVLO Falling  
2.315  
2.310  
2.305  
2.300  
2.295  
2.290  
œ100  
0
50  
100  
150  
0
50  
100  
150  
œ50  
œ50  
Junction Temperature (°C)  
Junction Temperature (°C)  
C001  
C002  
7-1. UVLO Undervoltage Lockout V  
7-2. IIN Supply Current, Output Disabled nA  
120  
1.20E-04  
1.10E-04  
1.00E-04  
9.00E-05  
8.00E-05  
100  
80  
60  
40  
V(IN) = 2.5 V  
V(IN) = 3.3 V  
TJ = t40°C  
7.00E-05  
20  
0
T=25°C  
J
V
= 5 V  
(IN)
TJ = 125°C  
V(IN) = 6.5 V  
6.00E-05  
2
3
4
5
6
7
0
50  
100  
150  
œ50  
Input Voltage (V)  
C004  
Junction Temperature (°C)  
C003  
R(ILIM) = 24.9 kΩ  
R(ILIM) = 24.9 kΩ  
7-4. IIN Supply Current, Output Enabled –  
μA  
7-3. IIN Supply Current, Output Enabled –  
μA  
35  
30  
25  
20  
15  
10  
5
1.200  
1.000  
0.800  
0.600  
0.400  
T = t40°C  
J
0.200  
0.000  
T = 25°C  
J
T = 125°C  
J
0
0
50  
100  
150  
0
50  
100  
150  
200  
œ50  
Junction Temperature (°C)  
V(IN) t V(OUT) (mV)  
C005  
C0067  
7-5. MOSFET rDS(on) Versus Junction  
R(ILIM) = 100 kΩ  
Temperature  
7-6. Switch Current Versus Drain-Source  
Voltage Across Switch  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
 
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
5.000  
4.500  
4.000  
3.500  
3.000  
2.500  
2.000  
1.500  
1.000  
0.500  
0.000  
TJ = t40°C  
TJ = t40°C  
T = 25°C  
J
TJ = 25°C  
TJ = 125°C  
TJ = 125°C  
0.0  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
V(IN) œ V(OUT) (mV)  
V(IN) œ V(OUT) (mV)  
C007  
C010  
R(ILIM) = 24.9 kΩ  
R(ILIM) = 61.9 kΩ  
7-8. Switch Current Versus Drain-Source  
7-7. Switch Current Versus Drain-Source  
Voltage Across Switch  
Voltage Across Switch  
8 Parameter Measurement Information  
OUT  
tr  
V(OUT)  
tf  
RL  
CL  
90%  
10%  
90%  
10%  
TEST CIRCUIT  
V(EN)  
50%  
50%  
50%  
ton  
50%  
V(EN)  
toff  
tonn  
toff  
90%  
90%  
V(OUT)  
V(OUT)  
10%  
10%  
VOLTAGE WAVEFORMS  
8-1. Test Circuit and Voltage Waveforms  
IOS  
I(OUT)  
t(IOS)  
8-2. Response Time to Short-Circuit Waveform  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
 
 
 
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
Decreasing  
Load Resistance  
V
(OUT)  
Decreasing  
Load Resistance  
I
(OUT)  
I
OS  
8-3. Output Voltage Versus Current-Limit Threshold  
9 Detailed Description  
9.1 Overview  
The TPS2556-Q1 and TPS2557-Q1 are current-limited, power-distribution switches using N-channel MOSFETs  
for applications that might encounter short circuits or heavy capacitive loads . This device allows the user to  
program the current-limit threshold between 500 mA and 5 A (typical) via an external resistor. This device  
incorporates an internal charge pump and the gate-drive circuitry necessary to drive the N-channel MOSFET.  
The charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the  
MOSFET above the source. The charge pump operates from input voltages as low as 2.5 V and requires little  
supply current. The driver controls the gate voltage of the power switch. The driver incorporates circuitry that  
controls the rise and fall times of the output voltage to limit large current and voltage surges and provides built-in  
soft-start functionality. The TPS2556-Q1 and TPS2557-Q1 family limits the output current to the programmed  
current-limit threshold IOS during an overcurrent or short-circuit event by reducing the charge-pump voltage  
driving the N-channel MOSFET and operating it in the linear range of operation. The result of limiting the output  
current to IOS reduces the output voltage at OUT by no longer fully enhancing the N-channel MOSFET.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
 
 
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
9.2 Functional Block Diagram  
CS  
OUT  
IN  
Current  
Sense  
Charge  
Pump  
Current  
Limit  
Driver  
EN  
FAULT  
UVLO  
GND  
Thermal  
Sense  
8-ms Deglitch  
ILIM  
9.3 Feature Description  
9.3.1 Overcurrent Conditions  
The TPS2556-Q1 and TPS2557-Q1 devices respond to overcurrent conditions by limiting their output current to  
IOS. On detecting an overcurrent condition, the device maintains a constant output current, and the output  
voltage reduces accordingly. Two possible overload conditions can occur.  
The first condition is when a short circuit or partial short circuit is present on a powered-up and enabled device.  
With the output voltage held near zero potential with respect to ground, the TPS2556-Q1 or TPS2557-Q1 device  
ramps the output current to IOS. The TPS2556-Q1 and TPS2557-Q1 devices limit the current to IOS until removal  
of the overload condition or until the device begins to cycle thermally.  
The second condition is when a short circuit, partial short circuit, or transient overload occurs while the device is  
enabled and powered on. The device responds to the overcurrent condition within time t(IOS) (see 8-2).  
Overdriving the current-sense amplifier during this time and momentarily disables the internal N-channel  
MOSFET. The current-sense amplifier recovers and ramps the output current to IOS. Similar to the previous  
case, the TPS2556-Q1 and TPS2557-Q1 devices limit the current to IOS until removal of the overload condition  
or until the device begins to cycle thermally.  
The TPS2556-Q1 and TPS2557-Q1 cycle thermally if an overload condition is present long enough to activate  
thermal limiting in any of the above cases. The device turns off when the junction temperature exceeds 135°C  
(minimum) while in current limit. The device remains off until the junction temperature cools 20°C (typical) and  
then restarts. The TPS2556-Q1 and TPS2557-Q1 cycle on and off until removal of the overload (see 10-7).  
9.3.2 FAULT Response  
Assertion (active-low) of the FAULT open-drain output occurs during an overcurrent or overtemperature  
condition. The TPS2556-Q1 and TPS2557-Q1 devices assert the FAULT signal until removal of the fault  
condition and the resumption of normal device operation. Design of the TPS2556-Q1 and TPS2557-Q1 devices  
eliminates false FAULT reporting by using an internal delay (9-ms typical) deglitch circuit for overcurrent  
conditions without the need for external circuitry. This avoids accidental FAULT assertion due to normal  
operation, such as starting into a heavy capacitive load. The deglitch circuitry delays entering and leaving  
current-limit-induced fault conditions. Deglitching of the FAULT signal does not occur when an overtemperature  
condition disables the MOSFET, but does occur after the device has cooled and begins to turn on. This  
unidirectional deglitch prevents FAULT oscillation during an overtemperature event.  
9.3.3 Thermal Sense  
The TPS2556-Q1 and TPS2557-Q1 devices self-protect by using two independent thermal sensing circuits that  
monitor the operating temperature of the power switch and disable operation if the temperature exceeds  
recommended operating conditions. The TPS2556-Q1 and TPS2557-Q1 devices operate in constant-current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
 
 
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
mode during an overcurrent condition, which increases the voltage drop across power switch. The power  
dissipation in the package is proportional to the voltage drop across the power switch, which increases the  
junction temperature during an overcurrent condition. The first thermal sensor (OTSD) turns off the power switch  
when the die temperature exceeds 135°C (min) and the part is in current limit. Hysteresis is built into the thermal  
sensor, and the switch turns on after the device has cooled approximately 20°C.  
The TPS2556-Q1 and TPS2557-Q1 devices also have a second thermal sensor (OTSD2). This thermal sensor  
turns off the power switch when the die temperature exceeds 155°C (minimum) regardless of whether the power  
switch is in current limit, and turns on the power switch after the device has cooled approximately 20°C. The  
TPS2556-Q1 and TPS2557-Q1 devices continue to cycle off and on until the fault is removed.  
9.4 Device Functional Modes  
9.4.1 Undervoltage Lockout (UVLO)  
The undervoltage lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO  
turnon threshold. Built-in hysteresis prevents unwanted on-and-off cycling due to input voltage droop during  
turnon.  
9.4.2 Enable ( EN OR EN)  
The logic enable controls the power switch and device supply current. The supply current is reduced to less than  
2 μA when a logic high is present on EN or when a logic low is present on EN. A logic low input on EN or a logic  
high input on EN enables the driver, control circuits, and power switch. The enable input is compatible with both  
TTL and CMOS logic levels.  
9.4.3 Auto-Retry Functionality  
Some applications require that an overcurrent condition disable the device momentarily during a fault condition  
and re-enables it after a preset time. This auto-retry functionality can be implemented with an external resistor  
and capacitor. During a fault condition, FAULT pulls EN low. Pulling EN below the turnoff threshold disables the  
part is disabled, and FAULT goes into the high-impedance state, allowing CRETRY to begin charging. The device  
re-enables when the voltage on EN reaches the turnon threshold. The resistor-capacitor time constant  
determines the auto-retry time. The device continues to cycle in this manner until removal of the fault condition.  
TPS2557-Q1  
Input  
RFAULT  
100 kW  
Output  
CLOAD  
0.1 µF  
IN  
OUT  
RLOAD  
ILIM  
RILIM  
20 kW  
FAULT  
EN  
1 kW  
GND  
CRETRY  
0.22 µF  
Thermal Pad  
9-1. Auto-Retry Functionality  
Some applications require auto-retry functionality and the ability to enable and disable with an external logic  
signal. 9-2 shows how an external logic signal can drive EN through RFAULT and maintain auto-retry  
functionality. The resistor-capacitor time constant determines the auto-retry time-out period.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
 
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
TPS2557-Q1  
Input  
Output  
IN  
OUT  
0.1 µF  
CLOAD  
RLOAD  
ILIM  
External Logic  
Signal and Driver  
RILIM  
20 kΩ  
RFAULT  
100 kΩ  
FAULT  
EN  
GND  
CRETRY  
0.22 µF  
Thermal Pad  
9-2. Auto-Retry Functionality With External EN Signal  
9.4.4 Two-Level Current-Limit Circuit  
Some applications require different current-limit thresholds depending on external system conditions. 9-3  
shows an implementation for an externally controlled, two-level current-limit circuit. The current-limit threshold is  
set by the total resistance from ILIM to GND (see Programming the Current-Limit Threshold). A logic-level input  
enables and disables MOSFET Q1 and changes the current-limit threshold by modifying the total resistance from  
ILIM to GND. One can use additional MOSFET and resistor combinations in parallel with Q1 and R2 to increase  
the number of additional current-limit levels.  
CAUTION  
Never drive ILIM directly with an external signal.  
TPS2556-Q1, TPS2557-Q1  
0.1 µF  
Input  
Output  
IN  
OUT  
RFAULT  
100 kΩ  
CLOAD  
RLOAD  
R1  
187 kΩ  
ILIM  
R2  
22.1 kΩ  
FAULT Signal  
FAULT  
EN  
GND  
Control Signal  
Thermal Pad  
Q1  
Current-Limit  
Control Signal  
9-3. Two-Level Current-Limit Circuit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
 
 
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
10 Applications and Implementation  
10.1 Application Information  
The devices are current-limited, power-distribution switches. They limit the output current to IOS when  
encountering short circuits or heavy capacitive loads.  
10.2 Typical Application, Design for Current Limit  
The use of theTPS2556-Q1 and TPS2557-Q1 devices is as a power switch to limit the output current. FAULT is  
an open drain pulled high to V(IN) with a resistor, a host can use to monitor overcurrent or thermal shutdown.  
TPS2556-Q1  
V(OUT)  
RLOAD  
0.1 µF  
V(IN) = 5 V  
OUT  
IN  
RFAULT  
100 kW  
150 µF  
ILIM  
FAULT Signal  
Enable Signal  
FAULT  
EN  
24.9 kW  
GND  
Thermal Pad  
10-1. Application Schematic for Current Limit, TPS2556-Q1  
10.2.1 Design Requirements  
For this design example, use the following as the input parameters.  
10-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Input voltage  
5 V  
3 A  
5 A  
Minimum current limit  
Maximum current limit  
10.2.2 Detailed Design Procedure  
10.2.2.1 Determine Design Parameters  
Beginning the design process requires deciding on a few parameters. The designer must know the following:  
Input voltage  
Minimum current limit  
Maximum current limit  
10.2.2.2 Programming the Current-Limit Threshold  
The overcurrent threshold is user-programmable via an external resistor. The TPS2556-Q1 and TPS2557-Q1  
devices use an internal regulation loop to provide a regulated voltage on the ILIM terminal. The current-limit  
threshold is proportional to the current sourced out of ILIM. The recommended 1% resistor range for RILIM is  
20 kR(ILIM) 187 kto ensure stability of the internal regulation loop. Many applications require that the  
minimum current limit be above a certain current level or that the maximum current limit be below a certain  
current level, so it is important to consider the tolerance of the overcurrent threshold when selecting a value for  
RILIM. The following equations approximate the resulting overcurrent threshold for a given value of external  
resistor RILIM. Consult the Electrical Characteristics table for specific current-limit settings. The traces routing the  
RILIM resistor to the TPS2556-Q1 and TPS2557-Q1 devices should be as short as possible to reduce parasitic  
effects on the current-limit accuracy.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
 
 
 
 
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
101 810 V  
0.9538  
IOS(max)(mA) =  
R(ILIM)  
kW  
113 849 V  
1.0049  
IOS(nom)(mA) =  
IOS(min)(mA) =  
R(ILIM)  
kW  
125 477 V  
1.058  
R(ILIM)  
kW  
(1)  
6000  
5500  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
I
OS(min)  
IOS(typ)  
I
OS(max)  
0
20 30 40 50 60 70 80 90 100 110 120 130 140 150  
RILIM (k)  
C002  
10-2. Current-Limit Threshold versus R(ILIM)  
10.2.2.3 Selecting Current-Limit Resistor 1  
Some applications require that current limiting not occur below a certain threshold. For this example, assume  
that 3 A must be delivered to the load so that the minimum desired current-limit threshold is 3 000 mA. Use the  
IOS equations and 10-2 to select R(ILIM)  
.
IOS(min)(mA) = 3 000 mA  
125 477 V  
1.058  
IOS(min)(mA) =  
R(ILIM)  
kW  
1
æ
ç
ç
ç
ç
ö1.058  
125 477 V  
÷
÷
÷
÷
R
R
(ILIM)(kW) =  
I
mA÷  
ç
è OS(min)  
ø
(ILIM)(kW) = 34 kW  
(2)  
Select the closest 1% resistor less than the calculated value: R(ILIM) = 33.6 k. This sets the minimum current-  
limit threshold at 3 000 mA . Use the IOS equations, 10-2, and the previously calculated value for R(ILIM) to  
calculate the maximum resulting current-limit threshold.  
RILIM(kW) = 33.6 kW  
101810 V  
0.9538  
IOS(max)(mA) =  
R(ILIM)  
kW  
101810 V  
33.60.9538 kW  
IOS(max)(mA) =  
IOS(max)(mA) = 3 564 mA  
(3)  
The resulting maximum current-limit threshold is 3 564 mA with a 33.6-kresistor.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
 
 
 
 
 
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
10.2.2.4 Selecting Current-Limit Resistor 2  
Some applications require that current limiting must occur below a certain threshold. For this example, assume  
that the desired upper current-limit threshold must be below 5,000 mA to protect an upstream power supply. Use  
the IOS equations and 10-2 to select R(ILIM)  
.
IOS(max)(mA) = 5 000 mA  
101 810 V  
0.9538  
IOS(max)(mA) =  
R(ILIM)  
kW  
1
æ
ç
ç
ç
ç
ö0.9538  
101 810 V  
÷
÷
÷
÷
R
R
(ILIM)(kW) =  
I
mA÷  
ç
è OS(max)  
ø
(ILIM)(kW) = 23.6 kW  
(4)  
Select the closest 1% resistor greater than the calculated value: R(ILIM) = 23.7 k. This sets the maximum  
current-limit threshold at 5 000 mA . Use the IOS equations, 10-2, and the previously calculated value for RILIM  
to calculate the minimum resulting current-limit threshold.  
R(ILIM)(kW) = 23.7 kW  
125 477 V  
1.058  
R(ILIM)  
IOS(min)(mA) =  
125 477 V  
23.71.058  
IOS(min)(mA) =  
IOS(min)(mA) = 4 406 mA  
(5)  
The resulting minimum current-limit threshold is 4 406 mA with a 23.7-kresistor.  
10.2.2.5 Accounting for Resistor Tolerance  
The previous sections described the selection of RILIM given certain application requirements and the importance  
of understanding the current-limit threshold tolerance. The analysis focused only on the TPS2556-Q1 and  
TPS2557-Q1 device performance and assumed an exact resistor value. However, resistors sold in quantity are  
not exact and are bounded by an upper and lower tolerance centered around a nominal resistance. The  
additional RILIM resistance tolerance directly affects the current-limit threshold accuracy at a system level. The  
following table shows a process that accounts for worst-case resistor tolerance assuming 1% resistor values.  
Step one follows the selection process outlined in the foregoing application examples. Step two determines the  
upper and lower resistance bounds of the selected resistor. Step three uses the upper and lower resistor bounds  
in the IOS equations to calculate the threshold limits. It is important to use tighter tolerance resistors, for example  
0.5% or 0.1%, when precision current limiting is desirable.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
 
 
 
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
10-2. Common RILIM Resistor Selections  
Resistor Tolerance  
Actual Limits  
Ideal Resistor Closest 1%  
Desired Nominal  
Current Limit (mA)  
(k)  
Resistor (k)  
IOS MIN (mA) IOS NOM (mA) IOS MAX (mA)  
1% low (k) 1% high (k)  
750  
148.1  
111.3  
89.1  
74.3  
63.7  
55.8  
49.6  
44.7  
40.7  
37.3  
34.4  
32.0  
29.9  
28.0  
26.4  
24.9  
23.6  
22.4  
21.4  
20.4  
147  
110  
145.5  
108.9  
87.8  
74.3  
62.8  
55.6  
49.4  
43.8  
39.8  
37.0  
34.5  
31.3  
29.8  
27.7  
25.8  
24.7  
23.5  
22.4  
21.3  
20.3  
148.5  
111.1  
89.6  
75.8  
64.0  
56.8  
50.4  
44.6  
40.6  
37.8  
35.1  
31.9  
30.4  
28.3  
26.4  
25.1  
23.9  
22.8  
21.7  
20.7  
632  
756  
881  
1000  
1250  
1500  
1750  
2000  
2250  
2500  
2750  
3000  
3250  
3500  
3750  
4000  
4250  
4500  
4750  
5000  
5250  
5500  
859  
1011  
1256  
1486  
1760  
1986  
2238  
2528  
2781  
2991  
3215  
3542  
3720  
4000  
4293  
4501  
4730  
4961  
5216  
5472  
1161  
1426  
1673  
1964  
2203  
2468  
2770  
3033  
3249  
3480  
3816  
3997  
4282  
4579  
4789  
5020  
5253  
5509  
5765  
88.7  
75  
1079  
1289  
1540  
1749  
1983  
2255  
2493  
2691  
2904  
3216  
3386  
3655  
3937  
4138  
4360  
4585  
4834  
5083  
63.4  
56.2  
49.9  
44.2  
40.2  
37.4  
34.8  
31.6  
30.1  
28  
26.1  
24.9  
23.7  
22.6  
21.5  
20.5  
10.2.2.6 Power Dissipation and Junction Temperature  
The low on-resistance of the N-channel MOSFET allows small surface-mount packages to pass large currents. It  
is good design practice to estimate power dissipation and junction temperature. The following analysis gives an  
approximation for calculating junction temperature based on the power dissipation in the package. However, it is  
important to note that thermal analysis is strongly dependent on additional system-level factors. Such factors  
include air flow, board layout, copper thickness and surface area, and proximity to other devices that dissipate  
power. Good thermal design practice must include all system-level factors in addition to individual component  
analysis.  
Begin by determining the rDS(on) of the N-channel MOSFET relative to the input voltage and operating  
temperature. As an initial estimate, use the highest operating ambient temperature of interest and read rDS(on)  
from the typical characteristics graph. Using this value, calculate the power dissipation by:  
2
PD = rDS(on) × IOUT  
where:  
PD = Total power dissipation (W)  
rDS(on) = Power-switch on-resistance ()  
I(OUT) = Maximum current-limit threshold (A)  
This step calculates the total power dissipation of the N-channel MOSFET.  
Finally, calculate the junction temperature:  
TJ = PD × RθJA + TA  
where:  
TA = Ambient temperature (°C)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
 
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
RθJA = Thermal resistance (°C/W)  
PD = Total power dissipation (W)  
Compare the calculated junction temperature with the initial estimate. If they are not within a few degrees, repeat  
the calculation using the refined rDS(on) from the previous calculation as the new estimate. Two or three iterations  
are generally sufficient to achieve the desired result. The final junction temperature is highly dependent on  
thermal resistance RθJA, and thermal resistance is highly dependent on the individual package and board  
layout. The Thermal Information table lists thermal resistances of the device that one can use to help calculate  
the thermal performance of the board design.  
10.2.3 Application Curves  
V
V
OUT  
2 V/div  
OUT  
2 V/div  
V
V
EN_bar  
5 V/div  
EN_bar  
5 V/div  
I
I
IN  
2 A/div  
IN  
2 A/div  
t - Time - 2 ms/div  
t - Time - 2 ms/div  
10-3. Turnon Delay and Rise Time  
10-4. Turnoff Delay and Fall Time  
V
V
EN_bar  
5 V/div  
OUT  
2 V/div  
FAULT_bar  
5 V/div  
FAULT_bar  
5 V/div  
I
I
IN  
2 A/div  
IN  
5 A/div  
t - Time - 2 ms/div  
t - Time - 5 ms/div  
10-5. Device Enabled Into Short Circuit  
10-6. Full-Load to Short-Circuit Transient  
Response  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
V
OUT  
2 V/div  
FAULT_bar  
5 V/div  
I
IN  
5 A/div  
t - Time - 5 ms/div  
10-7. Short-Circuit to Full-Load Recovery Response  
11 Power Supply Recommendations  
Design of the devices is for operation from an input voltage supply range of 2.5 V to 6.5 V. The current capability  
of the power supply should exceed the maximum current limit of the power switch.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
 
 
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
For all applications, TI recommends a 0.1-µF or greater ceramic bypass capacitor between IN and GND as  
close to the device as possible for local noise decoupling. This precaution reduces ringing on the input due to  
power-supply transients. The application may require additional input capacitance on the input to prevent  
voltage overshoot from exceeding the absolute-maximum voltage of the device during heavy transient  
conditions.  
Output capacitance is not required, but TI recommends placing a high-value electrolytic capacitor on the  
output pin when there is an expectation of large transient currents on the output.  
The traces routing the RILIM resistor to the device should be as short as possible to reduce parasitic effects  
on the current limit accuracy.  
Connect the thermal pad directly to PCB ground plane using wide and short copper trace.  
12.2 Layout Example  
VIA to Power Ground Plane  
Power  
Ground  
FAULT  
1
2
3
4
8
7
6
5
High Frequency  
Bypass Capacitor  
IN  
OUT  
ILIM  
12-1. TPS2556-Q1 and TPS2557-Q1 Board Layout  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
 
 
 
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Related Links  
The following table lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
13-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
TPS2556-Q1  
TPS2557-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
13.2 Trademarks  
所有商标均为其各自所有者的财产。  
13.3 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.4 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
 
 
 
 
 
TPS2556-Q1, TPS2557-Q1  
ZHCSC61B MARCH 2014 REVISED SEPTEMBER 2020  
www.ti.com.cn  
14 Mechanical, Packaging, and Orderable Information  
The following packaging information and addendum reflect the most-current data available for the designated  
devices. This data is subject to change without notice and without revision of this document.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS2556-Q1 TPS2557-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS2556QDRBRQ1  
TPS2556QDRBTQ1  
TPS2557QDRBRQ1  
TPS2557QDRBTQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SON  
SON  
SON  
SON  
DRB  
DRB  
DRB  
DRB  
8
8
8
8
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2556Q  
NIPDAU  
NIPDAU  
NIPDAU  
2556Q  
2557Q  
2557Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS2556QDRBRQ1  
TPS2556QDRBTQ1  
TPS2557QDRBRQ1  
TPS2557QDRBTQ1  
SON  
SON  
SON  
SON  
DRB  
DRB  
DRB  
DRB  
8
8
8
8
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS2556QDRBRQ1  
TPS2556QDRBTQ1  
TPS2557QDRBRQ1  
TPS2557QDRBTQ1  
SON  
SON  
SON  
SON  
DRB  
DRB  
DRB  
DRB  
8
8
8
8
3000  
250  
346.0  
210.0  
346.0  
210.0  
346.0  
185.0  
346.0  
185.0  
33.0  
35.0  
33.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRB0008B  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
1.65 0.05  
(0.2) TYP  
4
5
2X  
1.95  
2.4 0.05  
8
1
6X 0.65  
0.35  
0.25  
8X  
PIN 1 ID  
0.1  
C A B  
C
0.5  
0.3  
8X  
(OPTIONAL)  
0.05  
4218876/A 12/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRB0008B  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
SYMM  
8X (0.6)  
1
8
8X (0.3)  
(2.4)  
(0.95)  
6X (0.65)  
4
5
(R0.05) TYP  
(0.575)  
(2.8)  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218876/A 12/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRB0008B  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
METAL  
TYP  
8X (0.6)  
8X (0.3)  
1
8
(0.63)  
SYMM  
(1.06)  
6X (0.65)  
5
4
(R0.05) TYP  
(1.47)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
81% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218876/A 12/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS2556DRB

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, PLASTIC, SON-8, Power Management Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2556DRBR

PRECISION ADJUSTABLE CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2556DRBT

PRECISION ADJUSTABLE CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2556QDRB

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2556QDRBRQ1

低电平有效的汽车类 0.5-5A 可调节 ILIMIT 2.5-6.5V、22mΩ USB 电源开关

| DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2556QDRBTQ1

低电平有效的汽车类 0.5-5A 可调节 ILIMIT 2.5-6.5V、22mΩ USB 电源开关

| DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2557

高电平有效的 0.5-5A 可调节 ILIMIT、2.5-6.5V、22mΩ USB 电源开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2557-Q1

高电平有效的汽车类 0.5-5A 可调节 ILIMIT、2.5-6.5V、22mΩ USB 电源开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2557DRB

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, PLASTIC, SON-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2557DRBR

PRECISION ADJUSTABLE CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2557DRBT

PRECISION ADJUSTABLE CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2557QDRBRQ1

高电平有效的汽车类 0.5-5A 可调节 ILIMIT、2.5-6.5V、22mΩ USB 电源开关

| DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI