TPS25855-Q1 [TI]

具有甩负荷功能的 2.2MHz 单路 3A USB Type-C® 充电端口控制器;
TPS25855-Q1
型号: TPS25855-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有甩负荷功能的 2.2MHz 单路 3A USB Type-C® 充电端口控制器

控制器
文件: 总59页 (文件大小:3508K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
具有同步降压直流/直流转换器和可编程电流限制TPS25854-Q1 TPS25855-  
Q1 3A USB Type-C® 充电端口  
1 特性  
2 应用  
• 符合面向汽车应用AEC-Q100 标准:  
USB 媒体中心  
USB 充电端口  
售后市USB 充电器  
– 温度等1TA 40°C +125°C  
HBM ESD 分类等H2  
CDM ESD 分类等C5  
• 针对超EMI 要求进行了优化:  
3 说明  
TPS2585x-Q1 是一款集成式 USB 充电端口解决方  
其中包括一个同步高效直流/直流转换器而且它  
还集成了检测和控制功能可充当 USB 电池充电 1.2  
Type-C 端口。  
– 符CISPR25 5 类标准  
HotRod封装可更大限度地减少开关节点振铃  
– 展频可降低峰值发射  
• 同步降压稳压器  
器件信息(1)  
400 KHz 下的高效率VIN = 12VIBUS = 3A 时  
96%  
器件型号  
封装  
封装尺寸标称值)  
3.50mm × 4.50mm  
3.50mm × 4.50mm  
18m/10mRDS(ON) 降压稳压MOSFET  
– 工作电压范围5.5V 26V可承36V 输入  
– 频率可调节200kHz 3MHz (TPS25855-Q1)  
– 频率可调节200kHz 800kHz (TPS25854-  
Q1)  
TPS25854-Q1  
TPS25855-Q1  
VQFN-HR (25)  
VQFN-HR (25)  
(1) 如需了解所有不同可用选件的详细器件型号请参阅数据表末  
尾的可订购产品附录。  
– 具有展频频谱抖动FPWM  
5.1V 固定输出电压  
• 内部电源路径:  
7m/7mRDS(ON) USB MOSFET  
USB 端口的高精度可编程电流限制3.4A 下为  
±10%  
OUT用于辅助负载5.1V200mA 电源  
USB 数据线压降补偿可编程400mV  
• 符USB-IF 标准  
Type-C 1.3 版  
CC 上具3A 电流通告能力  
VBUS 应用和放电  
VCONN 拉电流200mA  
USB 电缆极性保(POL)  
– 自DCP 模式:  
简化版原理图TPS25845-Q1 TPS25855-Q1  
• 符BC1.2 YD/T 1591 2009 要求的短路  
模式  
1.2V 模式  
2.7V 分压3 模式  
• 甩负荷和可编TA  
• 故障标志报告USB 过流、热关断  
• 用于实现可编程热过载保护的热警告标志  
• 器TJ 范围40°C +150°C  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFJ9  
 
 
 
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
Table of Contents  
10.2 Functional Block Diagram.......................................20  
10.3 Feature Description.................................................21  
10.4 Device Functional Modes........................................36  
11 Application and Implementation................................ 37  
11.1 Application Information............................................37  
11.2 Typical Applications.................................................37  
12 Power Supply Recommendations..............................46  
13 Layout...........................................................................47  
13.1 Layout Guidelines................................................... 47  
13.2 Layout Example...................................................... 48  
13.3 Ground Plane and Thermal Considerations............48  
14 Device and Documentation Support..........................50  
14.1 接收文档更新通知................................................... 50  
14.2 支持资源..................................................................50  
14.3 Trademarks.............................................................50  
14.4 Electrostatic Discharge Caution..............................50  
14.5 术语表..................................................................... 50  
15 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Device Comparison Table...............................................4  
7 Pin Configuration and Functions...................................5  
8 Specifications.................................................................. 7  
8.1 Absolute Maximum Ratings ....................................... 7  
8.2 ESD Ratings .............................................................. 7  
8.3 Recommended Operating Conditions ........................7  
8.4 Thermal Information ...................................................8  
8.5 Electrical Characteristics ............................................8  
8.6 Timing Requirements ............................................... 11  
8.7 Switching Characteristics .........................................12  
8.8 Typical Characteristics..............................................14  
9 Parameter Measurement Information..........................18  
10 Detailed Description....................................................19  
10.1 Overview.................................................................19  
Information.................................................................... 51  
4 Revision History  
DATE  
REVISION  
NOTES  
September 2021  
*
Initial release.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
5 说明)  
TPS2585x-Q1 是一款高度集成USB Type-C® 充电控制器适用于单端口应用。  
该器件集成了一个具有内部功MOSFET 的单片、同步、整流、降压开关模式转换器和一个具有充电端口自动检  
测功能的 USB 限流开关。TPS2585x-Q1 提供了一种紧凑型高效解决方案可在宽输入电源电压范围内实现出色  
的负载和线路调节。该同步降压稳压器具有峰值电流模式控制而且采用了内部补偿可简化设计。对于  
TPS25854-Q1FREQ 引脚上有一个电阻器可用于200kHz 800KHz 之间设置开关频率。对TPS25855-  
Q1FREQ 引脚上有一个电阻器可用于在 200kHz 3MHz 之间设置开关频率。在低于 400kHz 的频率下运行  
可实现更高的系统效率。在高于 2.1MHz 的频率下运行则可以避开 AM 无线电频带并且能够使用较小的电感  
器。  
TPS2585x-Q1 集成了标USB Type-C 端口控制器功能包括用3A 1.5A 电流广播的配置通(CC) 逻辑。  
电池充电1.2 集成提供了利用 USB 数据线信号来确定 USB 端口拉电流能力的传统非 Type-C USB 设备所  
需的电气特性。  
TPS2585x-Q1 支持智能热调节。输出电流可根据外TS 阈值进行调节。此外该器件还集成了 VCONN 电源,  
可满USB3.1 电源要求。由于系统集成度高且占用空间小该器件特别适用于单端口应用。  
TPS2585x-Q1 输出电压固定为 5.1V。该器件还集成了一个精密电流检测放大器用于实现用户可编程电缆压降  
补偿和电流限制调整最大电缆补偿电压限制为 400mV。电缆补偿可使降压稳压器输出电压随负载电流线性改  
以抵消由于汽车电缆布线中的导线电阻引起的压降从而帮助便携式设备在重载下实现更理想的电流和电压  
充电。无论负载电流如何在连接的便携式器件上测得的总线电压都保持大致恒定这样便携式器件的电池充  
电器就能够保持理想工作状态。  
TPS2585x-Q1 提供针对 USB 充电和系统运行的多种安全特性包括外部负热敏电阻监控、逐周期电流限制、断  
续短路保护、欠压锁定、总线过流和裸片过热保护。  
该器件系列采25 3.5mm x 4.5mm QFN 封装。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
6 Device Comparison Table  
DEVICE NUMBER  
TPS25854-Q1  
TPS25855-Q1  
Type-C ports number  
Single  
Single  
DC/DC converter switching frequency range 200 kHz to approximately 800 kHz  
200 kHz to approximately 3 MHz  
Thermistor Input (TS)  
Fault event indication  
Thermal warning indication  
External clock synchronization  
BC1.2 DCP  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes, range 200 kHz to 800 kHz  
Yes, range 200 kHz to 3 MHz  
Yes  
Yes  
Apple or Samsung charging scheme  
Cable compensation  
Yes  
Yes  
Yes, maximum 400 mV  
Yes, maximum 400 mV  
Selectable output voltage  
Adjustable output short current limit  
FPWM/PFM  
No(1)  
No(1)  
Yes  
Yes  
FPWM  
FPWM  
DCDC always ON (EN pull High)  
Spread spectrum  
Yes  
Yes  
Yes  
Yes  
Package  
QFN-25 3.5 mm × 4.5mm  
QFN-25 3.5 mm × 4.5 mm  
(1) Default 5.1-V output voltage  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
7 Pin Configuration and Functions  
7-1. TPS2585x-Q1 RPQ Package 25-Pin (QFN) Top View  
7-1. Pin Functions for TPS25854/5 RPQ Package  
PIN  
TYPE (1)  
DESCRIPTION  
NAME  
NC  
NO  
1, 12  
2
A
A
No connection  
TS  
Temperature sense terminal. Connect the TS input to the NTC thermistor.  
Input of internal bias supply, must connect to the SENSE pin directly, power the internal  
circuit.  
BIAS  
3
P
DP  
DM  
4
5
6
7
8
A
A
P
A
A
D+ data line. Connect to the USB connector.  
Ddata line. Connect to the USB connector.  
AGND  
CC1  
CC2  
Analog ground terminal. Connect AGND to PGND.  
Connect to Type-C CC1 pin. Analog input, output, or both.  
Connect to Type-C CC2 pin. Analog input, output, or both.  
Current limit program. Connect a resistor to set the current limit threshold. Short to GND to  
set the default 3.55-A current limit.  
ILIM  
BUS  
9
A
P
P
10  
11  
BUS Output  
Output voltage sensing, external load on this pin is strictly prohibited. Connect to the other  
side of the external inductor.  
SENSE  
Output pin, provide 5.1-V voltage to power external load with maximum 200-mA capability.  
The voltage follows the VSENSE.  
OUT  
13  
14  
15  
P
A
A
USB output current monitor. Connect a resistor to set the maximum cable comp voltage at  
full load current.  
IMON  
Thermal warning indication. Active LOW open-drain output. Asserted when voltage at the  
TS pin increases above the thermal warning threshold.  
THERM_WARN  
PGND  
Power ground terminal, connected to the source of LS FET internally. Connect to system  
ground, AGND, and the ground side of CIN and COUT capacitors. Path to CIN must be as  
short as possible.  
16, 24, 25  
17  
P
A
Cable polarity indication. Active low open-drain logic output, signals which Type-C CC pin  
is connected to the CC line. This gives the information needed to mux the super speed  
lines. Asserted when the CC2 pin is connected to the CC line in cable.  
POL  
Fault indication. Active low open-drain logic output, Asserted during overcurrent or  
overtemperature conditions.  
FAULT  
18  
19  
A
A
Switching frequency program and external clock input. Connect a resistor from FREQ to  
GND to set the switching frequency.  
FREQ/ SYNC  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
7-1. Pin Functions for TPS25854/5 RPQ Package (continued)  
PIN  
TYPE (1)  
DESCRIPTION  
NAME  
NO  
Enable pin. Precision enable controls the regulator switching action and type-C. Do not  
float. High = on, Low = off. Can be tied to SENSE directly. Precision enable input allows  
adjustable UVLO by external resistor divider if tied to IN pin.  
EN/UV  
20  
A
P
P
P
Bootstrap capacitor connection. Internally, the BOOT is connected to the cathode of the  
booststrap diode. Connect the 0.1-μF bootstrap capacitor from SW to BOOT.  
BOOT  
IN  
21  
22  
23  
Input power. Connected to external DC supply. Expected range of bypass capacitors is 1  
μF to 10 μF. Connect from IN to PGND. Withstand up to 36 V without damage, but  
operating is suspended if VIN is above the 26-V OVP threshold.  
Switching output of the regulator. Internally connected to source of the HS FET and drain  
of the LS FET. Connect to output inductor.  
SW  
(1) A = Analog, P = Power, G = Ground.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
8 Specifications  
8.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range of -40°C to +150°C and AGND = PGND (unless otherwise  
noted)(1)  
PARAMETER  
IN to PGND  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
3.5  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
MAX  
40(2)  
35  
6
UNIT  
IN to SW  
BIAS, SENSE to PGND  
EN to AGND  
V
Input voltage  
11  
6
FREQ/SYNC to AGND  
ILIM, IMON to AGND  
AGND to PGND  
6
0.3  
35  
35  
6
V
V
SW to PGND  
SW to PGND (less than 10 ns transients)  
BOOT to SW  
Output voltage  
Voltage range  
BUS, OUT to PGND  
CC1, CC2 to AGND  
DP, DM to AGND  
6
6
6
V
TS to AGND  
6
FAULT, POL, THERM_WARN to AGND  
6
V
A
Pin positive sink current, ISNK CC1, CC2 (while applying VCONN)  
1
I/O current  
DP to DM in BC1.2 DCP Mode  
Junction temperature  
35  
150  
150  
mA  
°C  
°C  
35  
-40  
TJ  
Tstg  
Storage temperature  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) VIN rising slew rate below 20 V/ms if in 0-V to 40-V transient, room temperature, maximum 500 uF cap at SENSE.  
8.2 ESD Ratings  
VALUE  
±2000(2)  
±750(3)  
±750(3)  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
V(ESD) Electrostatic discharge  
Corner pins  
V
Charged device model (CDM), per  
AEC Q100-011  
Other pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) The passing level per AEC-Q100 Classification H2.  
(3) The passing level per AEC-Q100 Classification C5  
8.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of -40°C to 150°C. Voltages are with respect to GND (unless  
otherwise noted)  
MIN  
5.5  
0
NOM  
MAX UNIT  
IN to PGND  
26  
EN  
VSENSE  
VI  
Input voltage  
V
TS  
0
VSENSE  
3.3  
FREQ/SYNC when driven by external clock  
0
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
 
 
 
 
 
 
 
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
8.3 Recommended Operating Conditions (continued)  
Over the recommended operating junction temperature range of -40°C to 150°C. Voltages are with respect to GND (unless  
otherwise noted)  
MIN  
NOM  
MAX UNIT  
VPU  
VO  
Pull up voltage  
Output voltage  
FAULT, POL, THERM_WARN  
0
5
VSENSE  
V
V
A
A
BUS, OUT  
5.5  
3
BUS  
0
OUT  
0
0.2  
15  
IO  
Output current  
Source current  
DP to DM Continuous current in BC1.2 DCP Mode  
15  
mA  
CC1 or CC2 source current when supplying  
VCONN  
ISRC  
250  
RILIM  
0
0
100  
100  
kΩ  
kΩ  
uF  
REXT  
External resistnace  
External capacitance  
RFREQ  
CEXT  
TJ  
CBOOT  
0.1  
Operating junction temperature  
150  
°C  
40  
8.4 Thermal Information  
TPS2585x-Q1  
RPQ (VQFN)  
25 PINS  
37.7  
THERMAL METRIC(1) (2)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
17.2  
8.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ΨJT  
8.8  
ΨJB  
RθJC(bot)  
20.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Power rating at a specific ambient temperature TA should be determined with a maximum junction temperature of 150 °C.  
8.5 Electrical Characteristics  
Limits apply over the recommended operating junction temperature (TJ) range of -40°C to +150°C; VIN = 13.5 V, fSW = 400  
kHz unless otherwise stated. Minimum and maximum limits are specified through test, design or statistical correlation. Typical  
values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY VOLTAGE (IN PIN)  
Shutdown quiescent current;  
measured at IN pin.  
ISD  
IQ  
34  
63  
200  
uA  
µA  
VEN/UV = 0, 40TJ 85℃  
Operating quiescent current (DCDC  
disable)  
VEN = VSENSE, CCx = open, 40≤  
TJ 85℃  
Voltage on VIN pin when buck  
regulator stops switching  
VOVLO_R  
26.6  
1.26  
27.5  
0.5  
28.4  
V
V
VOVLO_HYS  
Hysteresis  
ENABLE AND UVLO (EN/UVLO PIN)  
Rising threshold for not in External  
UVLO  
VEN/UVLO_R  
VEN/UV rising threshold  
VEN/UVLO falling  
1.3  
1.34  
V
VEN/UVLO_HYS  
BOOTSTRAP  
VBTST_UVLO  
Hysteresis  
100  
mV  
Bootstrap voltage UVLO threshold  
2.2  
V
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
 
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
8.5 Electrical Characteristics (continued)  
Limits apply over the recommended operating junction temperature (TJ) range of -40°C to +150°C; VIN = 13.5 V, fSW = 400  
kHz unless otherwise stated. Minimum and maximum limits are specified through test, design or statistical correlation. Typical  
values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
RBOOT  
Bootstrap pull-up resistence  
VSENSE - BOOT = 0.1 V  
7.7  
BUCK REGULATOR  
IL-SC-HS  
IL-SC-LS  
IL-NEG-LS  
IZC  
High-side current limit  
BOOT - SW = 5 V  
SENSE = 5 V  
10.2  
8.5  
11.4  
10  
12.6  
11.5  
-3  
A
A
A
A
Low-side current limit  
Low-side negative current limit  
Zero current detector threshold  
SENSE = 5 V  
-5  
7  
0.01  
CC1 or CC2 pulldown resistance = Rd,  
TJ = 25℃  
VSENSE  
BUCK Output voltage  
5.1  
+1%  
2
V
%
V
1%  
2  
CC1 or CC2 pulldown resistance = Rd,  
-40TJ 150℃  
VSENSE  
BUCK Output voltage accuracy  
SENSE input level to enable DCDC  
switching  
VSENSE rising, CC1 or CC2 pull down  
resistance = Rd  
VDCDC_UVLO_R  
VDCDC_UVLO_HYS  
VDROP  
3.85  
4
0.4  
300  
18  
4.15  
VSENSE falling, CC1 or CC2 pull down  
resistance = Rd  
Hysteresis  
V
VIN = VSENSE + VDROP, VSENS = 5.1 V,  
IPA_BUS = 3 A, IPB_BUS = 3 A  
Dropout voltage ( VIN - VSENSE  
)
mV  
IBUS = 3 A, BOOT - SW = 5 V, -40℃≤  
TJ 150℃  
RDS-ON-HS  
High-side MOSFET ON-resistance  
Low-side MOSFET ON-resistance  
34  
mΩ  
mΩ  
IBUS = 3 A, VSENSE = 5 V, 40℃≤  
TJ 150℃  
RDS-ON-LS  
9.5  
18.5  
POWER SWITCH AND CURRENT LIMIT  
USB Load Switch MOSFET ON-  
RDS-ON_USB  
6.8  
11.73  
I_BUS = 3 A; 40℃≤TJ150℃  
mΩ  
mΩ  
resistance  
OUT Load Switch MOSFET ON-  
resistance  
RDS-ON_OUT  
IOUT = 0.3 A  
230  
RDS-ON_VCONN  
RDS-ON_VCONN  
On-state resistance  
On-state resistance  
TJ = 25°C, ICCn = 0.25 A  
410  
410  
550  
740  
mΩ  
mΩ  
40°C TJ 150°C, ICCn = 0.25 A  
Voltage on SENSE pin that will enable  
the USB Load Switch  
VUSBLS_UVLO_R  
3.95  
4.1  
200  
500  
4.25  
V
VUSBLS_UVLO_HYS Hysteresis  
mV  
Ω
Discharge resistance for Port A or Port Apply 5 V on PA_BUS or PB_BUS,  
B BUS  
RBUS_DCHG  
250  
670  
750  
730  
CC1 or CC2 = Rd  
Rising threshold voltage for BUS not  
discharged  
VTH_R_BUS_DCHGb  
700  
100  
150  
mV  
mV  
KΩ  
VTH_HYS_BUS_DCHG Hysteresis  
VPx_BUS = 4 V, No sink termination on  
CC lines, Time>tW_BUS_DCHG  
VBUS_DCHG_BLEED BUS bleed resistance  
100  
200  
849  
2434  
3018  
3748  
4040  
4876  
4828  
4265  
1061  
2704  
3354  
4165  
4490  
5418  
5680  
4490  
1273  
2974  
3689  
4581  
4938  
5960  
6532  
4714  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
RILIM = 48.7 KΩ  
RILIM = 19.1 KΩ  
RILIM = 15.4 KΩ  
RILIM = 12.4 KΩ  
BUS output short-circuit secondary  
current limit  
IOS_HI  
RILIM = 11.5 KΩ  
RILIM = 9.53 KΩ  
RILIM = 0 (short to GND)  
RILIM = 11.5 K, TJ =25℃  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
Limits apply over the recommended operating junction temperature (TJ) range of -40°C to +150°C; VIN = 13.5 V, fSW = 400  
kHz unless otherwise stated. Minimum and maximum limits are specified through test, design or statistical correlation. Typical  
values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only.  
PARAMETER  
TEST CONDITIONS  
MIN  
530.4  
1521  
TYP  
MAX UNIT  
663  
800  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
RILIM = 48.7 KΩ  
1690  
1859  
RILIM = 19.1 KΩ  
1886.4  
2342.7  
2525.4  
3047.4  
3017.5  
2666  
2096 2305.6  
2603 2863.3  
2806 3086.6  
3386 3724.6  
3550 4082.5  
RILIM = 15.4 KΩ  
RILIM = 12.4 KΩ  
IOS_BUS  
BUS output short-circuit current limit  
RILIM = 11.5 KΩ  
RILIM = 9.53 KΩ  
RILIM = 0 (short to GND)  
RILIM =11.5 K, TJ =25℃  
Short circuit current limit  
2806  
450  
2946  
495  
IOS_OUT  
OUT output short-circuit current limit  
390  
VCONN output short-circuit current  
limit  
IOS_VCONN  
Short circuit current limit  
240  
300  
360  
mA  
CABLE COMPENSATION VOLTAGE  
0
39.5  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
IBUS=2.4A, RIMON=0Ω  
IBUS=2.4A, RIMON=0.976KΩ  
IBUS=2.4A, RIMON=2.94KΩ  
IBUS=2.4A, RIMON=4.99KΩ  
IBUS=2.4A, RIMON=6.98KΩ  
IBUS=2.4A, RIMON=8.87KΩ  
IBUS=2.4A, RIMON=9.76KΩ  
119.2  
202.4  
283.1  
360  
VDROP_COM  
Cable compensation voltage  
396  
CC CONNECT MANAGEMENT  
ISRC_CC_3A  
Sourcing current  
304  
167  
330  
180  
356  
194  
µA  
µA  
CC pin voltage: 0 V VCCn 2.45 V  
Sourcing current in thermal  
management(Temp warm)  
CC pin voltage: 0 V VCCn 1.5 V ,  
TA> 85℃  
ISRC_CC_1.5A  
Sourcing current in thermal  
management(Temp hot)  
CC pin voltage: 0 V VCCn 1.5 V ,  
TA> 85℃  
ISRC_CC_DFLT  
64  
80  
105  
10  
µA  
µA  
CCx is the CC pin under test, CCy is  
the other CC pin. CC pin voltage  
VCCx = 5.5 V, CCy floating, VEN_UV  
0 V or VSENSE, 0 V VIN 26 V  
IREV is current into CCx pin  
=
IREV  
Reverse leakage current  
2.75  
Rising threshold voltage for VCONN  
not discharged  
CC pin that was providing VCONN in  
previous SINK state  
VTH_R  
670  
700  
100  
730  
mV  
mV  
VTH_HYS  
Hysteresis  
FAULT, POL, THERM_WARN  
VOL  
IOFF  
VOL  
IOFF  
VOL  
IOFF  
FAULT Output low voltage  
ISNK_PIN = 1 mA  
VPIN = 5.5 V  
250  
2.2  
250  
1.8  
250  
10  
mV  
µA  
FAULT Off-state leakage  
POL Output low voltage  
ISNK_PIN = 1 mA  
VPIN = 5.5 V  
mV  
µA  
POL Off-state leakage  
THERM_WARN Output low voltage  
THERM_WARN Off-state leakage  
ISNK_PIN = 1 mA  
VPIN = 5.5 V  
mV  
µA  
BC 1.2 DOWNSTREAM CHARGING PORT  
RDPM_SHORT  
DIVIDER 3 MODE  
VDP_DIV3  
DP and DM shorting resistance  
70  
200  
Ω
DP output voltage  
2.57  
2.7  
2.84  
V
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
8.5 Electrical Characteristics (continued)  
Limits apply over the recommended operating junction temperature (TJ) range of -40°C to +150°C; VIN = 13.5 V, fSW = 400  
kHz unless otherwise stated. Minimum and maximum limits are specified through test, design or statistical correlation. Typical  
values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only.  
PARAMETER  
TEST CONDITIONS  
MIN  
2.57  
24  
TYP  
2.7  
30  
MAX UNIT  
VDM_DIV3  
RDP_DIV3  
RDM_DIV3  
1.2-V MODE  
VDP_1.2V  
DM output voltage  
DP output impedance  
DM output impedance  
2.84  
36  
V
IDP_IN = 5 µA  
kΩ  
kΩ  
24  
30  
36  
IDM_IN = 5 µA  
DP output voltage  
1.12  
1.12  
84  
1.2  
1.2  
1.26  
1.26  
126  
126  
V
V
VDM_1.2V  
RDP_1.2V  
RDM_1.2V  
DM output voltage  
DP output impedance  
DM output impedance  
100  
100  
IDP_IN = 5 µA  
IDM_IN = 5 µA  
kΩ  
kΩ  
84  
FREQ/SYNC THRESHOLD  
FREQ/SYNC high threshold for  
Amplitude of SYNC clock AC signal  
(measured at FREQ/SYNC pin)  
VIH_FREQ/SYNC  
2
V
V
external clock synchronization  
FREQ/SYNC low threshold for  
external clock synchronization  
Amplitude of SYNC clock AC signal  
(measured at FREQ/SYNC pin)  
VIL_FREQ/SYNC  
0.8  
0.525  
0.683  
TEMPERATURE SENSING  
VWARN_HIGH Temperature warning threshold rising As percentage to VSENSE  
VWARN_HYS  
0.475  
0.618  
0.5  
0.1  
V/V  
V/V  
Hysteresis  
As percentage to VSENSE  
As percentage to VSENSE  
As percentage to VSENSE  
Temperature Hot assert threshold  
rising to reduce SENS voltage  
VHOT_HIGH  
VHOT_HYS  
VR_VSENS  
0.65  
0.1  
V/V  
V/V  
V
Hysteresis  
VSENSE voltage decay when  
Temperature Hot assert  
TS pin voltage rise above 0.65 *  
VSENSE  
4.77  
THERMAL SHUTDOWN  
TLS_SD USB Load Switch Over Temperature  
Shutdown threshold  
Recovery threshold  
Shutdown threshold  
Recovery threshold  
160  
150  
166  
154  
°C  
°C  
°C  
°C  
TSD  
Thermal shutdown  
8.6 Timing Requirements  
Over the recommended operating junction temperature range of -40 °C to 150 °C (unless otherwise noted)  
MIN NOM MAX UNIT  
2.94 4.1 5.42 ms  
11.09 16.38 23.03 ms  
(Thermal SD Fault assertion is  
instantaneous, not subject to this timing)  
tDEGLA_FAULT Asserting deglitch time  
tDEGLD_FAULT De-asserting deglitch time  
BUS DISCHARGE  
tDEGA_BUS_DC  
Discharge asserting deglitch  
5.6  
12.3 21.2 ms  
260 360 ms  
HG  
VBUS discharge time after sink termination  
removed from CC lines  
VBUS = 1 V, time ISNK_OUT > 1 mA after sink  
termination removed from CC lines  
tW_BUS_DCHG  
170  
POWER SWITCH TIMING  
Deglitch time for USB power switch current  
limit enable  
tIOS_HI_DEG  
tIOS_HI_RST  
tr_USB  
USB port enter overcurrent (per ILIM setting) 1.228 2.048 2.867 ms  
9.6 16 22.4 ms  
1.67 ms  
MFI OCP reset timing  
CL = 1 µF, RL = 100 Ω(measured from 10%  
to 90% of final value)  
PA_BUS, PB_BUS voltage rise time  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
8.6 Timing Requirements (continued)  
Over the recommended operating junction temperature range of -40 °C to 150 °C (unless otherwise noted)  
MIN NOM MAX UNIT  
CL = 1 µF, RL = 100 Ω(measured from 90%  
to 10% of final value)  
tf_USB  
PA_BUS, PB_BUS voltage fall time  
0.49  
ms  
ton_USB  
toff_USB  
PA_BUS, PB_BUS voltage turnon-time  
PA_BUS, PB_BUS voltage turnoff-time  
2.59  
2.07  
ms  
ms  
CL = 1 µF, RL = 100 Ω  
CL = 1 µF, RL = 100 Ω  
PA_BUS, PB_BUS short-circuit response  
time  
tIOS_USB  
tr_OUT  
1
us  
CL = 1 µF, RL = 1 Ω  
CL = 1 µF, RL = 100 Ω(measured from 10%  
to 90% of final value)  
OUT voltage rise time  
OUT voltage fall time  
0.12  
0.16  
0.2 0.28 ms  
0.22 0.28 ms  
CL = 1 µF, RL = 100 Ω(measured from 90%  
to 10% of final value)  
tf_OUT  
ton_OUT  
OUT voltage turnon-time  
0.6  
1.1 1.65 ms  
0.54 0.62 ms  
CL = 1 µF, RL = 100 Ω  
CL = 1 µF, RL = 100 Ω  
CL = 1 µF, RL = 1 Ω  
CL = 1 µF, RL = 1 Ω  
toff_OUT  
OUT voltage turnoff-time  
0.45  
tIOS_OUT  
tIOS_VCONN  
OUT short-circuit response time  
CC-VCONN short circuit response time  
1.4  
1
4
us  
3.5 µs  
CL = 1 µF, RL = 100 Ω(measured from 10%  
to 90% of final value); 5.1Kon CC1 and  
1Kon CC2  
tr_VCONN  
VCONN output voltage rise time  
VCONN output voltage fall time  
0.2  
0.28 0.36 ms  
0.23 0.28 ms  
CL = 1 µF, RL = 100 Ω(measured from 90%  
to 10% of final value); 5.1Kon CC1 and  
1Kon CC2  
tf_VCONN  
0.18  
CL = 1 µF, RL = 100 Ω; 5.1Kon CC1 and  
1Kon CC2  
ton_VCONN  
VCONN output voltage turnon time  
VCONN output voltage turnoff time  
0.7  
1.2  
1.7 ms  
CL = 1 µF, RL = 100 Ω; 5.1Kon CC1 and  
1Kon CC2  
toff_VCONN  
0.37  
0.44 0.51 ms  
HICCUP MODE  
THICP_ON  
OUT, PA_BUS, PB_BUS output hiccup mode  
ON time  
OC, VOUT, VPA_BUS, VPB_BUS drop 10%  
2.94  
367  
4.1 5.42 ms  
OUT, PA_BUS, PB_BUS output hiccup mode OC, OUT, PA_BUS, PB_BUS connect to  
OFF time GND  
THICP_OFF  
524  
715 ms  
8.7 Switching Characteristics  
Over the recommended operating junction temperature range of -40 °C to 150 °C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SW (SW PIN)  
TON_MIN  
Minimum turnon-time  
84  
6
ns  
µs  
Maximum turnon-time, HS timeout in  
dropout  
TON_MAX  
TOFF_MIN  
Dmax  
Minimum turnoff time  
81  
98  
ns  
%
Maximum switch duty cycle  
TIMING RESISTOR AND INTERNAL CLOCK  
Switching frequency range using  
fSW_RANGE  
200  
200  
800  
kHz  
kHz  
9 kΩRFREQ99 kΩ  
FREQ mode (TPS25854-Q1)  
Switching frequency range using  
fSW_RANGE  
3000  
9 kΩRFREQ99 kΩ  
FREQ mode (TPS25855-Q1)  
228  
360  
253  
400  
278  
440  
kHz  
kHz  
kHz  
RFREQ = 80.6 kΩ  
RFREQ = 49.9 kΩ  
RFREQ = 8.45 kΩ  
fSW  
fSW  
Switching frequency  
Switching frequency (TPS25855-Q1)  
1980  
2200  
2420  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
8.7 Switching Characteristics (continued)  
Over the recommended operating junction temperature range of -40 °C to 150 °C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Frequency span of spread spectrum  
operation  
FSSS  
±6  
%
EXTERNAL CLOCK(SYNC)  
Switching frequency using external  
fFREQ/SYNC  
clock on FREQ/SYNC pin (TPS25854-  
Q1)  
200  
200  
800  
kHz  
kHz  
Switching frequency using external  
clock on FREQ/SYNC pin (TPS25855-  
Q1)  
fFREQ/SYNC  
3000  
fSYNC = 400kHz, VFREQ/SYNC  
>
TSYNC_MIN  
TLOCK_IN  
Minimum SYNC input pulse width  
PLL lock time  
VIH_FREQ/SYNC, VFREQ/SYNC < VIL_FREQ/  
100  
100  
ns  
µs  
SYNC  
CC - CONNECT MANAGEMENT - ATTACH AND DETACH DEGLITCH  
Attach asserting deglitch in the  
tDEGA_CC_ATT_DETM  
1.29  
8.2  
2.05  
128  
3.05  
18  
ms  
µs  
Detached Mode  
Attach asserting deglitch in the  
Detached Mode  
Fast clock test mode  
tDEGA_CC_DETACH_S Detach asserting deglitch for exiting  
12.5  
0.96  
ms  
ms  
SINK Mode  
INKM  
Detach asserting deglitch for exiting  
SINK Mode  
Fast clock test mode  
Fast clock test mode  
tDEGA_CC_SHORT  
tDEGA_CC_LONG  
Detach, Rd and Ra asserting deglitch  
Long deglitch  
92  
192  
148  
288  
339  
200  
µs  
ms  
us  
103  
Long deglitch  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
8.8 Typical Characteristics  
Unless otherwise specified the following conditions apply: VIN = 13.5 V, fSW = 2.1 MHz, L = 2.2 µH, CSENSE = 66 µF, C_BUS  
1 µF, TA = 25 °C.  
=
70  
60  
50  
40  
30  
20  
200  
180  
160  
140  
120  
100  
-40C  
25C  
150C  
-40C  
25C  
150C  
4
8
12  
16 20  
Input Voltage (V)  
24  
28  
32  
4
8
12  
16 20  
Input Voltage (V)  
24  
28  
32  
VEN/EULVO = 0 V  
8-1. Shutdown Quiescent Current  
CC1 = Rd  
VEN/UVLO = VSENSE  
8-2. Standby Quiescent Current  
CC1/2 = OPEN  
1.36  
1.34  
1.32  
1.3  
5.13  
5.12  
5.11  
5.1  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
5.09  
5.08  
5.07  
1.28  
1.26  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
Temperature (C)  
100  
125  
150  
Temperature (C)  
8-4. VSENSE Voltage vs Junction Temperature  
8-3. Precision Device Enable Threshold  
3.94  
11.7  
-40C  
25C  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
3.96  
3.98  
4
150C  
11.6  
11.5  
11.4  
11.3  
11.2  
4.02  
4.04  
4.06  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
4
8
12  
16  
Input Voltage (V)  
20  
24  
28  
8-6. High-side Current Limit vs Input Voltage  
VEN/EULVO = VSENSE  
8-5. DCDC UVLO Threshold  
CC1= Rd  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
8.8 Typical Characteristics (continued)  
Unless otherwise specified the following conditions apply: VIN = 13.5 V, fSW = 2.1 MHz, L = 2.2 µH, CSENSE = 66 µF, C_BUS  
=
1 µF, TA = 25 °C.  
10.3  
40  
35  
30  
25  
20  
15  
-40C  
25C  
150C  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
10.2  
10.1  
10  
9.9  
9.8  
4
8
12  
16  
Input Voltage (V)  
20  
24  
28  
-50  
-25  
0
25  
50  
75  
Temperature (C)  
100  
125  
150  
8-7. Low-side Current Limit vs Input Voltage  
I_BUS = 3 A  
8-8. High-side MOSFET on Resistance vs Junction  
Temperature  
18  
16  
14  
12  
3640  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
3600  
3560  
3520  
3480  
3440  
3400  
10  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
8
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
IBUS = 3 A  
ILIM = GND  
8-9. Low-side MOSFET on Resistance vs Junction  
8-10. USB Power Switch Current Limit vs Junction  
Temperature  
Temperature  
3520  
2200  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
3480  
3440  
3400  
3360  
3320  
3280  
2160  
2120  
2080  
2040  
2000  
1960  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
RILIM = 9.53 kΩ  
RILIM = 15.4 kΩ  
8-11. USB Power Switch Current Limit vs Junction  
8-12. USB Power Switch Current Limit vs Junction  
Temperature  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
8.8 Typical Characteristics (continued)  
Unless otherwise specified the following conditions apply: VIN = 13.5 V, fSW = 2.1 MHz, L = 2.2 µH, CSENSE = 66 µF, C_BUS  
1 µF, TA = 25 °C.  
=
520  
500  
480  
460  
440  
420  
400  
328  
320  
312  
304  
296  
288  
280  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
8-13. OUT Power Switch Current Limit vs Junction  
8-14. VCONN Power Switch Current Limit vs Junction  
Temperature  
Temperature  
100  
96  
92  
88  
84  
80  
9.6  
8.8  
8
7.2  
6.4  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
5.6  
4.8  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
8-16. USB Power Switch On Resistance vs Junction  
IBUS = 2.4 A  
RIMON=2.21 kΩ  
Temperature  
8-15. Cable Compensation Voltage vs Junction Temperature  
400  
600  
550  
500  
450  
400  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
360  
320  
280  
240  
200  
160  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
350  
300  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
8-17. OUT Power Switch On Resistance vs Junction  
8-18. VCONN Power Switch On Resistance vs Junction  
Temperature  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
8.8 Typical Characteristics (continued)  
Unless otherwise specified the following conditions apply: VIN = 13.5 V, fSW = 2.1 MHz, L = 2.2 µH, CSENSE = 66 µF, C_BUS  
=
1 µF, TA = 25 °C.  
424  
416  
408  
400  
392  
384  
2280  
2240  
2200  
2160  
2120  
2080  
2040  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
Vin = 5.5V  
Vin = 13.5V  
Vin = 26V  
376  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
RFREQ = 49.9 kΩ  
RFREQ = 8.45 kΩ  
8-19. Switching Frequency vs Junction Temperature  
8-20. Switching Frequency vs Junction Temperature  
450  
0.56  
UFP 1.5A  
UFP 3A  
400  
0.54  
0.52  
0.5  
350  
300  
250  
200  
150  
0.48  
0.46  
0.44  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
8-21. CC Sourcing Current vs Junction Temperature  
8-22. TS Temperature Wam Threshold vs Junction  
Temperature  
0.72  
0.7  
4.82  
4.8  
0.68  
0.66  
0.64  
0.62  
0.6  
4.78  
4.76  
4.74  
4.72  
4.7  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (C)  
50  
75  
100  
125  
150  
8-23. TS Temperature Hot Threshold vs Junction  
8-24. SENSE Voltage in Temperature Hot vs Junction  
Temperature  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
9 Parameter Measurement Information  
OUT  
90%  
R(L)  
tr  
C(L)  
tf  
V(OUT)  
10%  
9-1. OUT Rise-Fall Test Load Figure  
9-2. Power-On and -Off Timing  
V(EN)  
50%  
50%  
5 V  
ton  
toff  
t(DCHG)  
V(OUT)  
90%  
V(OUT)  
0 V  
10%  
9-3. OUT Discharge During Mode Change  
9-4. Enable Timing, Active-High Enable  
IOS  
I(OUT)  
t(IOS)  
9-5. Output Short-Circuit Parameters  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
10 Detailed Description  
10.1 Overview  
The TPS2585x-Q1 is full-featured solution for implementing a compact USB charging port with support for both  
Type-C and BC1.2 standards. Both devices contain an efficient buck regulator power source. For single Type-C  
port, the TPS2585x-Q1 is capable of providing 3.4 A of output current at 5.1 V (nominal), which is 3 A for Type-C  
port, 200 mA for OUT pin, and 200 mA for VCONN power. The TPS2585x-Q1 is an automotive-focused USB  
charging controller, to offer a robust solution, TI recommends to add adequate protection (TVS3300 equivalent  
or better but auto quality) on IN pin to protect systems from high power transients or lightning strikes.  
System designers can optimize efficiency or solution size through careful selection of switching frequency in the  
range of 200 kHz2400 kHz with sufficient margin to operate above or below the AM radio frequency band.  
TPS2585x-Q1 protects itself with internal thermal sensing circuits that monitor the operating temperature of the  
junction and disables operation if the temperature exceeds the Thermal Shutdown threshold, so in high ambient  
temperature application, the 3.4-A output current capability is not assured. In the TPS2585x-Q1, the buck  
regulator operates in forced PWM mode, ensuring fixed switching frequency regardless of load current. Spread-  
spectrum frequency dithering reduces harmonic peaks of the switching frequency, potentially simplifying EMI  
filter design and easing compliance.  
Current sensing through a precision FET current sense amplifier on USB port enables an accurate, user  
programmable over-current limit setting, and programmable linear cable compensation to overcome IR losses  
when powering remote USB ports.  
TPS2585x-Q1 includes a TS input for user programmable thermal protection using a negative temperature  
coefficient (NTC) resistor. The TPS25855-Q1 has THERM_WARN flag to indicate the NTC temperature is warm  
before it enters the temperature hot range.  
Both devices can support the USB Type-C protocol, and also support the legacy Battery Charging Specification  
Rev 1.2 (BC1.2) DCP mode with auto-detect feature to charge not only BC1.2 compliant hand-held devices but  
also popular phones and tablets that incorporate their own propriety charging algorithm. The TPS2585x-Q1 also  
supports USB cable polarity detection and fault condition detection.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
10.2 Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
10.3 Feature Description  
10.3.1 Power Down or Undervoltage Lockout  
The device is in power down mode if the IN terminal voltage is less than VUVLO. The part is considered dead  
and all the terminals are high impedance. Once the IN voltage rises above the VUVLO threshold, the IC enters  
sleep mode or active mode depending on the EN/UVLO voltage.  
The voltage on the EN/UVLO pin controls the ON/OFF operation of TPS2585x-Q1. An EN/UVLO pin voltage  
higher than VEN/UVLO-H is required to start the internal regulator and begin monitoring the CCn lines for a valid  
Type-C connection. The internal USB monitoring circuitry is on when VIN is within the operation range and the  
EN/UVLO threshold is cleared. The buck regulator starts to operate, however, the USB ports load switch remain  
OFF until a valid Type-C detection has been made. This feature ensures the cold socket (0 V) USB Type-C VBUS  
requirement is met.  
The EN/UVLO pin is an input and cannot be left open or floating. The simplest way to enable the operation of the  
TPS2585x-Q1 is to connect the EN to SENSE. This connection allows self-start-up of the TPS2585x-Q1 when  
VIN is within the operation range. Note that cannot connect the EN to IN pin directly for self-start-up.  
Many applications benefit from the employment of an enable divider RENT and RENB to establish a precision  
system UVLO level for the TPS2585x-Q1, shown in 10-1. The system UVLO can be used for sequencing,  
ensuring reliable operation, or supply protection, such as a battery discharge level. To ensure the USB ports  
VBUS is within the 5-V operating range as required for USB compliance (for the latest USB specifications and  
requirements, refer to USB.org), TI suggests that the RENT and RENB resistors be chosen such that the  
TPS2585x-Q1 enables when VIN is approximately 6 V. Considering the drop out voltage of the buck regulator  
and IR loses in the system, 6 V provides adequate margin to maintain VBUS within USB specifications. If system  
requirements such as a warm crank (start) automotive scenario require operation with VIN < 6 V, the values of  
RENT and RENB can be calculated assuming a lower VIN. An external logic signal can also be used to drive EN/  
UVLO input when a microcontroller is present and it is desirable to enable or disable the USB port remotely for  
other reasons.  
IN  
RENT  
EN  
RENB  
10-1. System UVLO by Enable Divider  
UVLO configuration using external resistors is governed by the following equations:  
(1)  
(2)  
Example:  
VIN(ON) = 6V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
RENT = 20 kΩ  
RENB = [(VEN-VOUT-H) / (VIN(ON) VEN)] × RENT  
(3)  
RENB = 5 kΩ  
Therefore VIN(OFF) = 5.5 V  
10.3.2 Input Overvoltage Protection (OVP) - Continuously Monitored  
The operation voltage range for TPS2585x-Q1 is up to 26 V. If the input source applies an overvoltage, the buck  
regulator HSFET/LSFET turns off immediately. Thus, the USB ports and OUT pin loses their power as well.  
Once the overvoltage returns to a normal voltage, the buck regulator continues switching and provide power on  
the USB ports and OUT pin.  
During the overvoltage condition, the internal regulator regulates the SENSE voltage at 5 V, so the SENSE  
always has power for internal bias circuit and external NTC pull-up reference.  
10.3.3 Buck Converter  
The following operating description of the TPS2585x-Q1 refers to the Functional Block Diagram. The TPS2585x-  
Q1 integrates a monolithic, synchronous, rectified, step-down, switch-mode converter with internal power  
MOSFETs and USB current-limit switches with charging ports auto-detection. The TPS2585x-Q1 offers a  
compact and high efficiency solution with excellent load and line regulation over a wide input supply range. The  
TPS2585x-Q1 supplies a regulated output voltage by turning on the high-side (HS) and low-side (LS) NMOS  
switches with controlled duty cycle. During high-side switch ON time, the SW pin voltage swings up to  
approximately VIN, and the inductor current, iL, increase with linear slope (VIN VOUT ) / L. When the HS switch  
is turned off by the control logic, the LS switch is turned on after an anti-shoot-through dead time. Inductor  
current discharges through the LS switch with a slope of VOUT / L. The control parameter of a buck converter  
is defined as Duty Cycle D = tON / TSW, where tON is the high-side switch ON time and TSW is the switching  
period, shown in 10-2. The regulator control loop maintains a constant output voltage by adjusting the duty  
cycle D. In an ideal buck converter, where losses are ignored, D is proportional to the output voltage and  
inversely proportional to the input voltage: D = VOUT / VIN.  
VSW  
D = tON/ TSW  
VIN  
tON  
tOFF  
t
0
-VD  
TSW  
iL  
ILPK  
IOUT  
DiL  
t
0
10-2. SW Node and Inductor Current Waveforms in Continuous Conduction Mode (CCM)  
The TPS2585x-Q1 operates in a fixed-frequency, peak-current-mode control to regulate the output voltage. A  
voltage feedback loop is used to get accurate DC voltage regulation by adjusting the peak current command  
based on voltage offset. The peak inductor current is sensed from the high-side switch and compared to the  
peak current threshold to control the ON time of the high-side switch. The voltage feedback loop is internally  
compensated, which allows for fewer external components, makes it easy to design, and provides stable  
operation with a reasonable combination of output capacitors. TPS2585x-Q1 operates in FPWM mode for low  
output voltage ripple, tight output voltage regulation, and constant switching frequency.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
10.3.4 FREQ/SYNC  
The switching frequency of the TPS2585x-Q1 can be programmed by the resistor RFREQ from the FREQ/SYNC  
pin and AGND pin. Use 方程4 to determine the FREQ resistance, for a given switching frequency.  
-1.0483  
RFREQ kW = 26660ì ƒ  
kHz  
(
)
(
)
SW  
(4)  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
200 400 600 800 1000 1200 1400 1600 1800 2000 2200  
Switching Frequency (kHz)  
D024  
10-3. FREQ Set Resistor vs Switching Frequency  
The normal method of setting the buck regulator switching frequency is by selecting an appropriate value FREQ  
resistor. 10-1 lists the typical FREQ resistors value.  
10-1. Setting the Switching Frequency with FREQ  
SWITCHING FREQUENCY (KHz)  
FREQ (KΩ)  
80.6  
253  
400  
49.9  
19.1  
1000  
2100  
2200  
8.87  
8.45  
The FREQ/SYNC pin can be used to synchronize the internal oscillator to an external clock. The internal  
oscillator can be synchronized by AC coupling a positive edge into the FREQ/SYNC pin. When using a low  
impedance signal source, the frequency setting resistor FREQ is connected in parallel with an AC coupling  
capacitor, CCOUP, to a termination resistor, RTERM (for example, 50 Ω). The two resistors in series provide the  
default frequency setting resistance when the signal source is turned off. A 10-pF ceramic capacitor can be used  
for CCOUP. The AC coupled peak-to-peak voltage at the FREQ/SYNC pin must exceed the SYNC amplitude  
threshold of 1.2 V (typical) to trip the internal synchronization pulse detector, and the minimum SYNC clock  
HIGH and LOW time must be longer than 100 ns (typical). A 2.5-V or higher amplitude pulse signal coupled  
through a 1-nF capacitor, CSYNC, is a good starting point. 10-4 shows the device synchronized to an external  
system clock. The external clock must be off before start-up to allow proper start-up sequencing.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
CCOUP  
RT  
PLL  
PLL  
Lo-Z  
Clock  
Hi-Z  
Clock  
Source  
FREQ/  
SYNC  
FREQ/  
SYNC  
RTERM  
RT  
Source  
10-4. Synchronize to External Clock  
The TPS25854-Q1 switching action can be synchronized to an external clock from 200 KHz to 800 KHz, and the  
TPS25855-Q1 switching action can be synchronized to an external clock from 200 KHz to 3 MHz. Even the  
switching frequency can be set to higher than 2.4 MHz, but TI recommends to set the switching frequency below  
2.4 MHz due to the power dissipation, the higher switching frequency results in more power loss on IC, causing  
the junction temperature and also the board temperature rising, then the device can enter load shedding under  
high ambient temperature.  
10.3.5 Bootstrap Voltage (BOOT)  
The TPS2585x-Q1 provides an integrated bootstrap voltage regulator. A small capacitor between the BOOT and  
SW pins provides the gate drive voltage for the high-side MOSFET. The BOOT capacitor is refreshed when the  
high-side MOSFET is off and the low-side switch conducts. The recommended value of the BOOT capacitor is  
100 nF. A ceramic capacitor with an X7R or X5R grade dielectric with a voltage rating of 10 V or higher is  
recommended for stable performance over temperature and voltage. The BOOT rail has a UVLO to protect the  
chip from operation with too little bias, and is typically 2.2 V. If the BOOT capacitor voltage drops below UVLO  
threshold, then the device initiates a charging sequence using the low-side FET before attempting to turn on the  
high-side device.  
10.3.6 Minimum ON-time, Minimum OFF-time  
Minimum ON-time, TON_MIN, is the smallest duration of time that the HS switch can be on. TON_MIN is typically 84  
ns in the TPS2585x-Q1. Minimum OFF-time, TOFF_MIN, is the smallest duration that the HS switch can be off.  
TOFF_MIN is typically 81 ns in the TPS2585x-Q1. In CCM (FPWM) operation, TON_MIN and TOFF_MIN limit the  
voltage conversion range given a selected switching frequency.  
The minimum duty cycle allowed is:  
DMIN = TON_MIN × fSW  
(5)  
And the maximum duty cycle allowed is:  
DMAX = 1 TOFF_MIN × fSW  
(6)  
Given fixed TON_MIN and TOFF_MIN, the higher the switching frequency the narrower the range of the allowed duty  
cycle.  
Given an output voltage, the choice of the switching frequency affects the allowed input voltage range, solution  
size and efficiency. The maximum operation supply voltage can be found by:  
VOUT  
V
=
IN_MAX  
f
ì TON_MIN  
(
)
SW  
(7)  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
At lower supply voltage, the switching frequency is limited by TOFF_MIN. The minimum VIN can be approximated  
by:  
VOUT  
V
=
IN_MIN  
1- f  
(
ì TOFF _MIN  
)
SW  
(8)  
Taking considerations of power losses in the system with heavy load operation, VIN_MAX is higher than the result  
calculated in 方程7.  
If minimum ON-time or minimum OFF-time do not support the desired conversion ratio, frequency is reduced  
automatically allowing regulation to maintain during load dump and with very low dropout during cold crank even  
with high operating-frequency setting.  
10.3.7 Internal Compensation  
The TPS2585x-Q1 is internally compensated. The internal compensation is designed such that the loop  
response is stable over the specified operating frequency and output voltage range. The TPS25854-Q1 is  
optimized for transient response over the range 200 kHz fsw 800 kHz, and the TPS25855-Q1 is optimized  
for transient response over the range 200 kHz fsw 3000 kHz.  
10.3.8 Current Limit and Short Circuit Protection  
For maximum versatility, TPS2585x-Q1 includes both a precision, programmable current limit as well as cycle-  
by-cycle current limit to protect the USB port from extreme overload conditions. The RILIM resistor determines the  
overload threshold on the USB ports in the event ILIM is shorted to ground to set the default USB current limit.  
The cycle-by-cycle current limit serves as a backup means of protection.  
10.3.8.1 USB Switch Programmable Current Limit (ILIM)  
Because the TPS2585x-Q1 integrates an USB current-limit switches, it provides adjustable current limit to  
prevent USB port overheating. The device engages the two-level current limit scheme, which has one typical  
current limit, IOS_BUS, and the secondary current limit, IOS_HI. The secondary current limit, IOS_HI, is 1.6 times the  
primary current limit, IOS_BUS. The secondary current limit acts as the current limit threshold for a deglitch time,  
t
IOS_HI_DEG, then the USB power switch current limit threshold is set back to IOS_BUS. 方程式 9 calculates the  
value of resistor for adjusting the typical current limit.  
32273  
RILIM K=  
(
)
IOS _BUS (mA)  
(9)  
This equation assumes an ideal-no variation-external adjusting resistor. To take resistor tolerance into account,  
first determine the minimum and maximum resistor values based on its tolerance specifications and use these  
values in the equations. Because of the inverse relationship between the current limit and the adjusting resistor,  
use the maximum resistor value in the IOS(min) equation and the minimum resistor value in the IOS(max) equation.  
10-2 lists the typical RILIM resistor value.  
10-2. Setting the Current Limit with RILIM  
IOS_BUS - Current Limit Threshold (mA)  
RILIM (KΩ)  
19.1  
1690  
2096  
2806  
3386  
3550  
15.4  
11.5  
9.53  
Short to GND  
For the normal application, it can short the ILIM pin to GND directly, which sets a default 3.55-A current limit with  
a maximum ±15% variation on each USB port to follow the Type-C specification. The TPS2585x-Q1 provides  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
built-in soft-start circuitry that controls the rising slew rate of the output voltage to limit inrush current and voltage  
surges.  
The secondary current limit, IOS_HI, allows the USB port pull out a larger current for a short time during transient  
overload conditions, which can bring benefits for USB port special overload testing like MFi OCP. In a normal  
application, once the device is powered on and USB port is not in UVLO, the USB port current limit threshold is  
overridden by the secondary current limit, IOS_HI, so the USB port can output as high as a 1.6 × IOS_BUS current  
for typically 2 ms. After the deglitch time, tIOS_HI_DEG, the current limit threshold is set back to the typical current  
with IOS_BUS. The secondary current limit threshold does not resume until after the tIOS_HI_RST deglitch time,  
which is typically 16 ms. If there is an inrush current higher than the IOS_HI threshold, the current limit is set back  
to IOS_BUS immediately, without waiting for a tIOS_HI_DEG  
.
The TPS2585x-Q1 responds to overcurrent conditions by limiting output current to IOS_BUS as shown in previous  
equation. When an overload condition occurs, the device maintains a constant output current and the output  
voltage reduces accordingly. Three possible overload conditions can occur:  
The first condition is when a short circuit or overload is applied to the USB output when the device is powered  
up or enabled. There can be inrush current and once it triggers the approximate 8-A threshold, a fast turnoff  
circuit is activated to turn off the USB power switch within tIOS_USB before the current limit control loop is able  
to respond (shown in 10-5). After the fast turnoff is triggered, the USB power switch current-sense  
amplifier is over-driven during this time and momentarily disables the internal N-channel MOSFET to turn off  
USB port. The current-sense amplifier then recovers and ramps the output current with a soft start. If the USB  
port is still in overcurrent condition, the short circuit and overload hold the output near zero potential with  
respect to ground and the power switch ramps the output current to IOS_BUS. If the overcurrent limit condition  
lasts longer than 4.1 ms, the corresponding USB channel enters hiccup mode with 524 ms of off-time and 4.1  
ms of on-time.  
IBUS  
IOS_BUS  
t
hiccup OFF  
hiccup ON  
tIOS  
10-5. Response Time to BUS Short-Circuit  
The second condition is the load current increases above IOS_BUS but below the IOS_HI setting. The device  
allows the USB port to output this large current for tIOS_HI_DEG, without limiting the USB port current to  
IOS_BUS. After the tIOS_HI_DEG deglitch time, the device limits the output current to IOS_BUS and works in a  
constant current-limit mode. If the load demands a current greater than IOS_BUS, the USB output voltage  
decreases to IOS_BUS × RLOAD for a resistive load, which is shown in 10-6. If the overcurrent limit condition  
lasts longer than 4.1 ms, the corresponding USB channel enters hiccup mode with 524 ms of off-time and 4.1  
ms of on-time. Another USB channel still works normally.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
I
BUS(A)  
V
BUS(V)  
5
IOS_HI  
IOS_BUS  
0
hiccup OFF  
hiccup OFF  
hiccup ON  
hiccup ON  
tIOS_HI_DEG  
t
10-6. BUS Overcurrent Protection  
The third condition is the load current increases just over the IOS_HI setting. In this case, the load current does  
not trigger the fast turnoff. The USB power switch current limit threshold is set back to the primary current  
limit, IOS_BUS, immediately. If the load still demands a current greater than IOS_BUS, the USB output voltage  
decreases to IOS_BUS × RLOAD for a resistive load, which is shown in 10-7. If the overcurrent limit condition  
lasts longer than 4.1 ms, the corresponding USB channel enters hiccup mode with 524 ms of off-time and 4.1  
ms of on-time. Another USB channel still works normally.  
I
BUS(A)  
V
BUS(V)  
5
IOS_HI  
IOS_BUS  
0
hiccup OFF  
hiccup OFF  
hiccup ON  
hiccup ON  
t
10-7. BUS Overcurrent Protection: Two-Level Current Limit  
The TPS2585x-Q1 thermal cycles if an overload condition is present long enough to activate thermal limiting in  
any of the previously mentioned cases. Thermal limiting turns off the internal NFET and starts when the NFET  
junction temperature exceeds 160°C (typical). The device remains off until the NFET junction temperature cools  
10°C (typical) and then restarts. This extra thermal protection mechanism can help prevent further junction  
temperature rise, which can cause the device to turn off due to junction temperature exceeding the main thermal  
shutdown threshold, TSD  
.
10.3.8.2 Cycle-by-Cycle Buck Current Limit  
The buck regulator cycle-by-cycle current limit on both the peak and valley of the inductor current.  
High-side MOSFET overcurrent protection is implemented by the nature of the peak current mode control. The  
HS switch current is sensed when the HS is turned on after a set blanking time. The HS switch current is  
compared to the output of the Error Amplifier (EA) minus slope compensation every switching cycle. The peak  
current of HS switch is limited by a clamped maximum peak current threshold IHS_LIMIT which is constant. So the  
peak current limit of the high-side switch is not affected by the slope compensation and remains constant over  
the full duty cycle range.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
The current going through LS MOSFET is also sensed and monitored. When the LS switch turns on, the inductor  
current begins to ramp down. The LS switch does not turn OFF at the end of a switching cycle if its current is  
above the LS current limit ILS_LIMIT. The LS switch is be kept ON so that inductor current keeps ramping down,  
until the inductor current ramps below the LS current limit ILS_LIMIT. Then the LS switch turns OFF and the HS  
switch turns on after a dead time. This action is somewhat different than the more typical peak current limit, and  
results in 方程10 for the maximum load current.  
V
IN - VOUT  
(
)
ì
VOUT  
IOUT _MAX = ILS _LIMIT  
+
2ì fSW ìL  
V
IN  
(10)  
10.3.8.3 OUT Current Limit  
TPS2585x-Q1 can provide 200mA current at OUT pin, to power the external load such as the HUB. The OUT  
regulator input comes from the buck output, so the voltage is the same with the SNESE pin.  
If the OUT current reaches the current limit level, the OUT pin MOSFET works in a constant current-limit mode.  
If the over-current limit condition lasts longer than 4.1 ms (VOUT does not drop too low), it enters hiccup mode  
with 4.1 ms of on-time and 524 ms of off-time.  
10.3.9 Cable Compensation  
When a load draws current through a long or thin wire, there is an IR drop that reduces the voltage delivered to  
the load. In the vehicle from the voltage regulator output VOUT to VBUS (input voltage of portable device), the total  
resistance of PCB trace, connector, and cable resistances causes an IR drop at the portable device input, so the  
charging current of most portable devices is less than their expected maximum charging current. The voltage  
drop shows in 10-8.  
5.x  
V(DROP)  
VOUT with compensation  
VBUS with compensation  
VBUS without compensation  
3
1
2
Output Current (A)  
10-8. Voltage Drop  
To handle this case, TPS2585x-Q1 builds in the cable compensation function, which increases the voltage at the  
SENSE pin to compensate the IR drop in the charging path according to the gain set by RIMON, to maintain a  
fairly constant output voltage at the load-side voltage.  
TPS2585x-Q1 use the switch current-sense output voltage to compensate for the line drop voltage. The cable  
compensation amplitude increases linearly as the load current increases. It also has an upper limit that the  
maximum cable compensation voltage is 400 mV, the voltage at USB port clamps below 5.5 V. The cable  
compensation voltage is programmable through an external resistor at IMON pin. RIMON is then chosen by RIMON  
= ΔVIMON × 1000 / (IBUS × 0.0169), where ΔVOUT is the desired cable droop compensation voltage at full load.  
See below 10-3 and 10-9.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
10-3. TPS2585x-Q1 Cable Compensation Setting  
Resistor at IMON pin  
Cable Compensation Voltage at 2.4 A  
0
RIMON = 0 Ω  
39.5 mV  
119 mV  
202 mV  
283 mV  
360 mV  
396 mV  
RIMON = 0.976 KΩ  
RIMON = 2.94 KΩ  
RIMON = 4.99 KΩ  
RIMON = 6.98 KΩ  
RIMON = 8.87 KΩ  
RIMON = 9.76 KΩ  
10-9. TPS2585x-Q1 Cable Compensation  
10.3.10 Thermal Management With Temperature Sensing (TS) and OTSD  
The TS input pin allows for user-programmable thermal protection (for the TS pin thresholds, see the Electrical  
Characteristics). The TS input pin threshold is ratiometric with VSENSE. The external resistor divider setting, VTS,  
must be connected to the TPS2585x-Q1 SENSE pin to achieve accurate results (refer to the 10-10). When  
VTS = 0.5 × VSENSE, the TPS2585x-Q1 performs below action:  
If operating with 3-A Type-C advertisement, the Px_CC1, Px_CC2 pin automatically reduces advertisement to  
the 1.5-A level.  
VSENSE  
RSER  
VSENSE  
RPARA  
RNTC  
RB  
TS  
CC override  
(3A -> 1.5A)  
Vth9 0.5 x VSENSE  
Vhys 500mV  
TS_TEMP_HOT  
Vth9 0.65 x VSENSE  
Vhys 500mV  
10-10. TS Input  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
 
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
If the overtemperature condition persists, causing VTS = 0.65 × VSENSE, the TPS2585x-Q1 performs below  
actions:  
Broadcasts the default USB power mode, in default USB power, the charging is ideally reduced further per  
the USB2.0 and USB3.0 specification.  
Buck regulator output voltage at the SENS pin is reduced to 4.77 V.  
If the overtemperature condition persists, causing TJ to reach the OTSD threshold, then the device thermal shuts  
down. 10-11 shows the TPS2585x-Q1 behavior when TS pin voltage trigger the Temp Warm and Temp Hot  
threshold.  
ICCx (uA)  
VBUS (V)  
BUS Voltage  
5.1  
4.77  
330  
CC Broad Current  
180  
80  
T1(Temp Warm)  
T2(Temp Hot)  
OTSD  
10-11. TPS2585x-Q1 Behavior When Trigger Temp Warm/Hot Threshold  
The NTC thermistor must be placed near the hottest point on the PCB. In most cases, this placement is close to  
the SW node of the TPS2585x-Q1, near the buck inductor.  
Tuning the VNTC threshold levels of VTEMP_WARM and VTEMP_HOT is achieved by adding RSER, RPARA, or both  
RSER and RPARA in conjunction with RNTC. 10-12 is an example illustrating how to set the VTEMP_WARM  
threshold between 81°C and 90°C with a ΔT between TEMP_WARM assertion and TEMP_HOT assertion of  
18°C to 29°C. Consult the chosen NTC manufacturer's specification for the value of β. Establishing the desired  
warning and shutdown thresholds can take some iteration.  
Below is NTC spec and resistor value used in 10-12 example.  
R0 = 470 kΩ. β= 4750. RNTC = R0 × exp β× (1/T 1/T0).  
RPARA = 100 kΩ.  
RSER = 5.1 kΩ.  
RB = RNTC(at TEMP_WARM) = 27 kΩ.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
5
4.5  
4
3.5  
3
VTS (V)  
VTS w/ top ser (V)  
VTS w/ top || (V)  
VTS w/ para + ser (V)  
TEMP_WARM  
TEMP_HOT  
2.5  
2
1.5  
1
0.5  
0
0
20  
40  
60  
80  
100  
120  
140  
NTC Temperature (°C)  
T NTC (°C)  
90  
Rising Thresholds  
Temp Warm  
Temp Hot  
V (V)  
T NTC || (°C) T NTC ser (°C) T NTC || + ser (°C)  
=VSENSE * 0.5  
=VSENSE * 0.65  
2.55  
3.315  
81  
103  
22  
95  
121  
26  
89  
108  
118  
TEMP_HOT - TEMP_WARM  
18  
29  
10-12. VTS Threshold Design Examples  
10.3.11 Thermal Shutdown  
The device has an internal over temperature shutdown threshold, TSD to protect the device from damage and  
overall safety of the system. When device temperature exceeds TSD, the device is turned off when thermal  
shutdown activates. Once the die temperature falls below 154°C (typical), the device re initiates the power up  
sequence controlled by the internal soft-start circuitry.  
10.3.12 FAULT Indication  
For the TPS25854-Q1 and TPS25855-Q1, FAULT is the fault indication pins for USB port. FAULT is in an open-  
drain state during shutdown, start-up, or normal condition. When the USB switch enters hiccup mode, or over-  
temperature thermal shutdown (OTSD) is triggered, FAULT is pulled low. FAULT asserts (logic low) on an  
individual USB switch during an over-current or over-temperature condition. FAULT switches high after the fault  
condition is removed, and the USB output voltage goes high again.  
The device features an active-low, open-drain fault output. Connect a 100-kΩ pull-up resistor from FAULT to  
SENSE or other suitable I/O voltage. FAULT can be left open or tied to GND when not used.  
10-4 summarizes the conditions that generate a fault and actions taken by the device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
10-4. Fault Conditions  
EVENT  
CONDITION  
ACTION  
BUS load switch enter hiccup mode. The fault indicator  
asserts with a 4.1-ms deglitch and de-asserts with a 16.4-ms  
deglitch. The fault indicator remains asserted during the BUS  
overload condition.  
Overcurrent on BUS  
IBUS > Programmed IILIM  
The device immediately disables and asserts fault indicator  
with no deglitch. The device attempts to power up once the  
die temperature decreases below the thermal hysteresis  
threshold as specified.  
TPS2585x-Q1  
overtemperature  
TJ > TSD  
10.3.13 USB Specification Overview  
All USB ports are capable of providing a 5-V output making them a convenient power source for operating and  
charging portable devices. USB specification documents outline specific power requirements to ensure  
interoperability. In general, a USB 2.0 port host port is required to provide up to 500 mA; a USB 3.0 or USB 3.1  
port is required to provide up to 900 mA; Ports adhering to the USB Battery Charging 1.2 Specification provide  
up to 1500 mA; And newer Type-C ports can provide up to 3000 mA. Though USB standards governing power  
requirements exist, some manufacturers of popular portable devices created their own proprietary mechanisms  
to extend allowed available current beyond the 1500-mA maximum per BC 1.2. While not officially part of the  
standards maintained by the USB-IF, these proprietary mechanisms are recognized and implemented by  
manufacturers of USB charging ports.  
The TPS2585x-Q1 device supports five of the most-common USB-charging schemes found in popular handheld  
media and cellular devices.  
USB Type-C (1.5-A and 3-A advertisement)  
USB Battery Charging Specification BC1.2 DCP mode  
Chinese Telecommunications Industry Standard YD/T 1591-2009  
Divider 3 mode  
1.2-V mode  
10.3.14 USB Type-C® Basics  
For a detailed description of the Type-C specification, refer to the USB-IF website to download the latest  
released version. Some of the basic concepts of the Type-C spec that pertains to understanding the operation of  
the TPS2585x-Q1 (a DFP device) are described as follows.  
USB Type-C removes the need for different plug and receptacle types for host and device functionality. The  
Type-C receptacle replaces both the Type-A and Type-B receptacles because the Type-C cable is plug-able in  
either direction between the host and device. A host-to-device logical relationship is maintained by the  
configuration channel (CC). Optionally, hosts and devices can be either providers or consumers of power when  
USB PD communication is used to swap roles.  
All USB Type-C ports operate in one of following data modes:  
Host mode: the port can only be a host (provider of power).  
Device mode: the port can only be a device (consumer of power).  
Dual-Role mode: the port can be either a host or device.  
Port types:  
DFP (Downstream Facing Port): host  
UFP (Upstream Facing Port): device  
DRP (Dual-Role Port): host or device  
Valid DFP-to-UFP connections:  
10-5 describes valid DFP-to-UFP connections.  
Host-to-Host or Device-to-Device have no functions.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
10-5. DFP-to-UFP Connections  
DEVICE-MODE  
HOST-MODE PORT  
DUAL-ROLE PORT  
PORT  
Host-Mode port  
No function  
Works  
Works  
Works  
Works  
Device-Mode port  
Dual-Role port  
No function  
Works  
Works  
Works(1)  
(1) This port can be automatic or manually driven.  
10.3.14.1 Configuration Channel  
The function of the configuration channel is to detect connections and configure the interface across the USB  
Type-C cables and connectors.  
Functionally the Configuration Channel (CC) is used to serve the following purposes:  
Detect connect to the USB ports  
Resolve cable orientation and twist connections to establish USB data bus routing  
Establish DFP and UFP roles between two connected ports  
Discover and configure power: USB Type-C current modes or USB Power Delivery  
Discovery and configure optional Alternate and Accessory modes  
Enhance flexibility and ease of use  
Typical flow of DFP to UFP configuration is shown in 10-13:  
10-13. Flow of DFP to UFP Configuration  
10.3.14.2 Detecting a Connection  
DFPs and DRPs fulfill the role of detecting a valid connection over USB Type-C. 10-14 shows a DFP-to-UFP  
connection made with a Type-C cable. As shown in 10-14, the detection concept is based on being able to  
detect terminations in the product that have been attached. A pull-up and pull-down termination model is used. A  
pull-up termination can be replaced by a current source.  
In the DFP-UFP connection, the DFP monitors both CC pins for a voltage lower than the unterminated  
voltage.  
An UFP advertises Rd on both its CC pins (CC1 and CC2).  
A powered cable advertises Ra on only one of the CC pins of the plug. Ra is used to inform the source to  
apply VCONN.  
An analog audio device advertises Ra on both CC pins of the plug, which identifies it as an analog audio  
device. VCONN is not applied on either CC pin in this case.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
 
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
UFP monitors for  
connection  
DFP monitors for  
connection  
Cable  
CC  
Rp  
Rp  
Rds  
Rds  
Ra  
Ra  
DFP monitors for  
connection  
UFP monitors for  
connection  
10-14. DFP-UFP Connection  
For USB Type-C solutions, two pins (CC1, CC2) on the connector are used to establish and manage the source-  
to-sink connection. The general concept for setting up a valid connection between a source and a sink is based  
on being able to detect terminations residing in the product being attached. To aid in defining the functional  
behavior of CC, a pull-up (Rp) and pull-down (Rd 5.1 k) termination model is used based on a pull-up resistor  
and pull-down resistor.  
Initially, a source exposes independent Rp terminations on its CC1 and CC2 pins, and a sink exposes  
independent Rd terminations on its CC1 and CC2 pins. The source-to-sink combination of this circuit  
configuration represents a valid connection. To detect this connection, the source monitors CC1 and CC2 for a  
voltage lower than its unterminated voltage. The choice of Rp is a function of the pull-up termination voltage and  
the detection circuit of the source. This choice indicates that either a sink, a powered cable, or a sink connected  
by a powered cable has been attached. Prior to the application of VCONN, a powered cable exposes Ra  
(typically 1 k) on its VCONN pin. Ra represents the load on VCONN plus any resistive elements to ground. In  
some cable plugs, this can be a pure resistance, and in others, it can simply be the load.  
The source must be able to differentiate between the presence of Rd and Ra to know whether there is a sink  
attached and where to apply VCONN. The source is not required to source VCONN unless Ra is detected. Two  
special termination combinations on the CC pins as seen by a source are defined for directly attached accessory  
modes: Ra/Ra for audio adapter accessory mode and Rd/Rd for debug accessory mode.  
10.3.14.3 Plug Polarity Detection  
Reversible Type-C plug orientation is reported by the POL pin when a UFP is connected. However when no UFP  
is attached, POL remains de-asserted irrespective of cable plug orientation. 10-6 describes the POL state  
based on which device CC pin detects VRD from an attached UFP pull-down.  
10-6. Plug Polarity Detection  
CC1  
Rd  
CC2  
Open  
Rd  
POL  
STATE  
Hi-Z  
UFP connected  
Open  
Asserted (pulled low)  
UFP connected with reverse plug orientation  
10.3.15 USB Port Operating Modes  
10.3.15.1 USB Type-C® Mode  
The TPS2585x-Q1 is a Type-C controller that supports all Type-C functions in a downstream facing port. The  
TPS2585x-Q1 is also used to manage current advertisement and protection to a connected UFP and active  
cable. When VSENSE exceeds the undervoltage lockout threshold, the device samples the EN pin. A high level on  
this pin enables the device and normal operation begins. Having successfully completed its start-up sequence,  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
the device now actively monitors its CC1 and CC2 pins for attachment to a UFP. When a UFP is detected on  
either the CC1 or CC2 pin the USB power switch turn-ons. If Ra is detected on the other CC pin (not connected  
to UFP), VCONN is applied to allow current to flow to the CC pin connected to Ra.  
10.3.15.2 Dedicated Charging Port (DCP) Mode  
A DCP only provides power and does not support data connection to an upstream port. As shown in the  
following sections, a DCP is identified by the electrical characteristics of the data lines. The TPS2585x-Q1 only  
emulates one state, DCP-auto state. In the DCP-auto state, the device charge-detection state machine is  
activated to selectively implement charging schemes involved with the shorted, Divider 3 and 1.2-V modes. The  
shorted DCP mode complies with BC1.2 and Chinese Telecommunications Industry Standard YD/T 1591-2009,  
whereas the Divider 3 and 1.2-V modes are employed to charge devices that do not comply with the BC1.2 DCP  
standard.  
10.3.15.2.1 DCP BC1.2 and YD/T 1591-2009  
Both standards specify that the D+ and Ddata lines must be connected together with a maximum series  
impedance of 200 Ω, as shown in 10-15.  
VBUS  
5 V  
D–  
200 Ω  
(ma x.)  
D+  
GND  
10-15. DCP Supporting BC1.2 and YD/T 1591-2009  
10.3.15.2.2 DCP Divider-Charging Scheme  
The device supports Divider 3, as shown in 10-16. In the Divider 3 charging scheme, the device applies 2.7 V  
and 2.7 V to D+ and Ddata lines.  
VBUS  
5 V  
D–  
D+  
2.7 V  
2.7 V  
GND  
10-16. Divider 3 Mode  
10.3.15.2.3 DCP 1.2-V Charging Scheme  
The DCP 1.2-V charging scheme is used by some handheld devices to enable fast charging at 2 A. The  
TPS2585x-Q1 device supports this scheme in DCP-auto state before the device enters BC1.2 shorted mode. To  
simulate this charging scheme, the D+ and Dlines are shorted and pulled up to 1.2 V for a fixed duration.  
Then the device moves to DCP shorted mode as defined in the BC1.2 specification and as shown in 10-17.  
VBUS  
5 V  
200 Ω (ma x.) D–  
D+  
1.2 V  
GND  
10-17. 1.2-V Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
 
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
10.3.15.3 DCP Auto Mode  
The TPS2585x-Q1 device integrates an auto-detect state machine that supports all the DCP charging schemes  
as shown in 10-18. The auto-detect state machine starts in the Divider 3 scheme. If a BC1.2 or YD/T  
1591-2009 compliant device is attached, the TPS2585x-Q1 device responds by turning the power switch back  
on without output discharge and operating in 1.2-V mode briefly before entering BC1.2 DCP mode. Then, the  
auto-detect state machine stays in that mode until the device releases the data line, in which case, the auto-  
detect state machine goes back to the Divider 3 scheme. When a Divider 3-compliant device is attached, the  
TPS2585x-Q1 device stays in the Divider 3 state.  
5 V  
S1  
Divider 3 Mode  
VBUS  
S1, S2: ON  
S3, S4: OFF  
DM_IN  
DP_IN  
GND  
D–  
D+  
S2  
S3  
S4  
Shorted Mode  
S4 ON  
S1, S2, S3: OFF  
GND  
1.2-V Mode  
S1, S2: OFF  
S3, S4: ON  
2.7 V 2.7 V 1.2 V  
10-18. DCP Auto Mode  
10.4 Device Functional Modes  
10.4.1 Shutdown Mode  
The EN pin provides electrical ON and OFF control for the TPS2585x-Q1. When VEN is below 1.2 V (typical), the  
device is in shutdown mode. The TPS2585x also employs VIN overvoltage lock out protection and VSENSE  
undervoltage lock out protection. If VIN voltage is above its respective OVLO level VOVLO, or VSENSE voltage is  
below its respective UVLO level VDCDC_UVLO, the DC/DC converter turns off.  
10.4.2 Active Mode  
The TPS2585x-Q1 is in active mode when VEN is above the precision enable threshold, VSENSE is above its  
respective UVLO levels and a valid detection has been made on the CC lines. The simplest way to enable the  
TPS2585x-Q1 is to connect the EN pin to SENSE pin. This connection allows self startup when the input voltage  
is in the operating range (5.5 V to 26 V) and a UFP detection is made.  
In active mode, the TPS2585x-Q1 buck regulator operates even though Rd is not inserted. Then the buck  
regulator operates with Forced Pulse Width Modulation (FPWM), also referred to as Forced Continuous  
Conduction Mode (FCCM). This action ensures the buck regulator switching frequency remains constant under  
all load conditions. FPWM operation provides low output voltage ripple, tight output voltage regulation, and  
constant switching frequency. Built-in spread-spectrum modulation aids in distributing spectral energy across a  
narrow band around the switching frequency programmed by the FREQ/SYNC pin. Under light load conditions  
the inductor current is allowed to go negative. A negative current limit of IL-NEG-LS is imposed to prevent damage  
to the regulator's low side FET. During operation, the TPS2585x-Q1 synchronizes to any valid clock signal on the  
FREQ/SYNC input.  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
11 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
11.1 Application Information  
The TPS2585x-Q1 is a step down DC-to-DC regulator and USB charge port controller. The device is typically  
used in automotive systems to convert a DC voltage from the vehicle battery to 5-V DC with a maximum output  
current of 3.4-A in Single Type-C port applications. The TPS2585x-Q1 engages a high efficiency buck converter,  
letting the device operate as high as 85°C ambient temperature with full load. The following design procedure  
can be used to select components for the TPS2585x-Q1.  
11.2 Typical Applications  
The TPS2585x-Q1 only requires a few external components to convert from a wide voltage range supply to a 5-  
V output for powering USB devices. 11-1 shows the TPS25855-Q1 typical application schematic for Media  
HUB.  
11-1. TPS2585x-Q1 Typical Application Circuit for 400-KHz fSW  
As a quick start guide, 11-1 provides typical component values for some of the most common configurations.  
The values given in the table are typical. Other values can be used to enhance certain performance criterion as  
required by the application. The integrated buck regulator of TPS2585x-Q1 is internally compensated and  
optimized for a reasonable selection of external inductance and capacitance. The external components have to  
fulfill the needs of the application, but also the stability criteria of the control loop of the device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
 
 
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
11-1. L and COUT Typical Values  
VOUT Without Cable  
Compensation  
fSW  
L
CHF + CIN  
CBOOT  
Rated COUT  
400 KHZ  
2.1 MHz  
5.1 V  
10 uH  
1 × 100 nF + 1 × 22 uF  
1 × 100 nF + 1 × 10 uF  
1 × 100 nF  
1 × 100 nF  
3 × 47 uF  
3 × 22 uF  
5.1 V  
2.2 uH  
1. Inductance value is calculated based on max VIN = 18 V.  
2. All the COUT values are after derating and use low ESR ceramic capacitors.  
3. The COUT is the buck regulator output capacitors at the SENSE pin.  
11.2.1 Design Requirements  
The detailed design procedure is described based on a design example. For this design example, use the  
parameters listed in 11-2 as the input parameters.  
11-2. Design Example Parameters  
Input voltage, VIN  
13.5-V typical, range from 8 V to 18 V  
Output voltage, VSENSE  
Maximum output current  
Switching frequency, fSW  
5.1 V  
3.4 A  
400 KHz  
11.2.2 Detailed Design Procedure  
11.2.2.1 Output Voltage Setting  
In TPS2585x-Q1, the output voltage is internally fixed at 5.1 V. Cable compensation can be used to increase the  
voltage on the SENSE pin linearly with increasing load current. Refer to 10-3 for more details on cable  
compensation setting, and if cable compensation is not desired, use a 0-ΩRIMON resistor.  
11.2.2.2 Switching Frequency  
The recommended switching frequency of the TPS25854-Q1 is in the range of 250400 KHz for high efficiency  
while for TPS25855-Q1, it is capable of operating at 2.2 MHz with high efficiency. Choose RFREQ = 49.9 kΩ for  
400-KHz operation. To choose a different switching frequency, refer to 10-1.  
The choice of switching frequency is a compromise between conversion efficiency and overall solution size.  
Lower switching frequency implies reduced switching losses and usually results in higher system efficiency.  
However, higher switching frequency allows the use of smaller inductors and output capacitors, and hence a  
more compact design. In automotive USB charging applications, it tends to operate at either 400 kHz, below the  
AM band or 2.1 MHz, above the AM band. In this example, 400 KHz is chosen.  
11.2.2.3 Inductor Selection  
The most critical parameters for the inductor are the inductance, saturation current and the rated current. The  
inductance is based on the desired peak-to-peak ripple current ΔiL. Because the ripple current increases with  
the input voltage, the maximum input voltage is always used to calculate the minimum inductance LMIN. Use 方  
程式 12 to calculate the minimum value of the output inductor. KIND is a coefficient that represents the amount of  
inductor ripple current relative to the maximum output current of the device. A reasonable value of KIND must be  
20% to 40%. Note that selecting the ripple current for applications with much smaller maximum load than the  
maximum available from device, the maximum device current must still be used. During an instantaneous short  
or over current operation event, the RMS and peak inductor current can be high. The inductor current rating  
must be higher than the current limit of the device.  
VOUT ì V  
- VOUT  
(
)
IN_MAX  
DiL =  
VIN_MAX ìL ì fSW  
(11)  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
V
- VOUT  
VOUT  
IN_MAX ì fSW  
IN_MAX  
LMIN  
=
ì
IOUT ìKIND  
V
(12)  
In general, choose lower inductance in switching power supplies because it usually corresponds to faster  
transient response, smaller DCR, and reduced size for more compact designs. Too low of an inductance can  
generate too large of an inductor current ripple such that overcurrent protection at the full load can be falsely  
triggered. Too low of an inductance also generates more conduction loss and inductor core loss. Larger inductor  
current ripple also implies larger output voltage ripple with the same output capacitors. With peak current mode  
control, TI does not recommend to have too small of an inductor current ripple. A larger peak current ripple  
improves the comparator signal to noise ratio.  
For this design example, choose KIND = 0.3, and find an inductance of approximately 8.95 µH. Select the next  
standard value of 10 μH.  
11.2.2.4 Output Capacitor Selection  
The output capacitor(s), COUT, must be chosen with care because it directly affects the steady state output  
voltage ripple, loop stability and the voltage overshoot or undershoot during load current transients.  
The value of the output capacitor, and its ESR, determine the output voltage ripple and load transient  
performance. The output capacitor is usually limited by the load transient requirements rather than the output  
voltage ripple if the system requires tight voltage regulation with presence of large current steps and fast slew  
rate. When a fast large load increase happens, output capacitors provide the required charge before the inductor  
current can slew up to the appropriate level. The control loop of the regulator usually needs four or more clock  
cycles to respond to the output voltage droop. The output capacitance must be large enough to supply the  
current difference for four clock cycles to maintain the output voltage within the specified range. 11-3 can be  
used to find output capacitors for a few common applications. In this example, good transient performance is  
desired giving 3 x 47 µF ceramic as the output capacitor.  
11-3. Selected Output Capacitor  
FREQUENCY  
2.1 MHz  
COUT  
SIZE and COST  
TRANSIENT PERFORMANCE  
3 × 22-uF ceramic  
Small size  
Good  
Better  
2.1 MHz  
2 × 47-uF ceramic  
Small size  
2.1 MHz  
2 × 22-uF ceramic  
Smallest size  
Small size  
Minimum  
Better  
400 KHz  
400 KHz  
400 KHz  
3 × 47-uF ceramic  
2 × 47-uF ceramic  
Small size  
Good  
Larger size, low cost  
Better  
4 × 22 uF + 1 × 260 uF, < 50-melectrolytic  
1 × 4.7uF + 2 × 10 uF + 1 × 260 uF, < 50-mΩ  
400 KHz  
Lowest cost  
Minimum  
electrolytic  
11.2.2.5 Input Capacitor Selection  
The TPS2585x-Q1 device requires a high frequency input decoupling capacitor or capacitors, depending on the  
application. TI recommends a high-quality ceramic capacitor type X5R or X7R with sufficient voltage rating. The  
ceramic input capacitors provide a low impedance source to the converter in addition to supplying the ripple  
current and isolating switching noise from other circuits. The typical recommended value for the high frequency  
decoupling capacitor is 10 μF of ceramic capacitance. This value must be rated for at least the maximum input  
voltage that the application requires; preferably twice the maximum input voltage. This capacitance can be  
increased to help reduce input voltage ripple, maintain the input voltage during load transients, or both. In  
addition, a small case size 100-nF ceramic capacitor must be used at IN and PGND, immediately adjacent to the  
converter. This action provides a high frequency bypass for the control circuits internal to the device. For this  
example a 10-μF, 50-V, X7R (or better) ceramic capacitor is chosen, and the 100-nF ceramic capacitor must  
also be rated at 50 V with an X7R or better dielectric.  
Additionally, an electrolytic capacitor on the input in parallel with the ceramics can be required, especially if long  
leads from the automotive battery to the IN pin of the TPS2585x-Q1, cold or warm engine crank requirements,  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
and so forth. The moderate ESR of this capacitor is used to provide damping to the voltage spike due to the lead  
inductance of the cable or the trace.  
11.2.2.6 Bootstrap Capacitor Selection  
The TPS2585x-Q1 design requires a bootstrap capacitor (CBOOT). The recommended capacitor is 100 nF and  
rated 16 V or higher. The bootstrap capacitor is located between the SW pin and the BOOT pin. The bootstrap  
capacitor stores energy that is used to supply the gate drivers for the power MOSFETs. The bootstrap capacitor  
must be a high-quality ceramic type with an X7R or X5R grade dielectric for temperature stability.  
11.2.2.7 Undervoltage Lockout Set-Point  
The system undervoltage lockout (UVLO) is adjusted using the external voltage divider network of RENT and  
RENB. The UVLO has two thresholds, one for power up when the input voltage is rising and one for power down  
or brownouts when the input voltage is falling. 方程13 can be used to determine the VIN UVLO level.  
RENT + RENB  
RENB  
V
= VENH ì  
IN_RISING  
(13)  
The EN rising threshold (VENH) for the TPS2585x-Q1 is set to be 1.3 V (typical). Choose 10 kΩ for RENB to  
minimize input current from the supply. If the desired VIN UVLO level is at 6.0 V, then the value of RENT can be  
calculated using 方程14:  
V
IN_RISING  
RENT  
=
-1 ìR  
÷
ENB  
÷
VENH  
«
(14)  
方程式 14 yields a value of 36.1 kΩ. The resulting falling UVLO threshold equals 5.5 V and can be calculated by  
方程15, where EN hysteresis (VEN_HYS) is 0.1 V (typical).  
RENT + RENB  
RENB  
V
= VENH - VEN_HYS  
(
ì
)
IN_FALLING  
(15)  
Note that it cannot connect EN to IN pin directly for self-start up. Because the voltage rating of EN pin is 11 V,  
tying it to VIN directly damages the device. The simplest way to enable the operation of the TPS2585x-Q1 is to  
connect the EN to VSENSE. This connection allows the automatic start up when VIN is within the operation range.  
11.2.2.8 Cable Compensation Set-Point  
For TPS2585x-Q1, it needs connect a resistor at the IMON pin to set the cable compensation voltage, the  
voltage increases linearly as the load current increases. For example, choose a 4.99-K resistor at IMON pin, this  
can give an approximate 202-mV voltage compensation when USB port loading is 2.4 A and 252-mV voltage  
compensation when USB port loading is 3 A. To choose a different cable compensation rating, refer to 10.3.9  
section.  
11.2.2.9 FAULT, POL, and THERM_WARN Resistor Selection  
The FAULT, POL and THERM_WARN pins are open-drain output flags. The pins can be connected to the  
TPS2585x-Q1 VSENSE with 100-kΩ resistors or connected to another suitable I/O voltage supply if actively  
monitored by a USB HUB or MCU. The pins can be left floating if unused.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
11.2.3 Application Curves  
Unless otherwise specified the following conditions apply: VIN = 13.5 V, fSW = 2100 kHz, L = 2.2 µH, CSENSE = 66 µF, CBUS  
1 µF, ILIM = GND, TA = 25 °C.  
=
100  
95  
90  
85  
80  
75  
70  
65  
60  
VIN = 6 V  
VIN = 13.5 V  
VIN = 18 V  
0.1  
0.2  
0.3 0.4 0.5 0.7  
1
2
3
Load Current (A)  
fSW = 400 kHz  
L = 10 uH  
fSW = 2100 kHz  
L = 2.2 uH  
11-2. Buck Only Efficiency  
11-3. Buck Only Efficiency  
IBUS = 3A  
fSW = 2100 kHz  
L = 2.2 uH  
IBUS = 3A  
fSW = 400 kHz  
L = 10 uH  
11-4. 2.1-MHz EMI Results (Without CM Filter)  
11-5. 400-KHz EMI Results (Without CM Filter)  
0.4  
0.2  
0
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1.2  
-1  
Load = 1 A  
Load = 2 A  
Load = 3 A  
VIN = 6 V  
VIN = 13.5 V  
VIN = 18 V  
-1.4  
-1.6  
-1.2  
-1.4  
5
10  
15  
VIN (V)  
20  
25  
0
1
2
3
Load Current (A)  
fSW = 2100 kHz  
fSW = 2100 kHz  
11-7. Line Regulation  
11-6. Load Regulation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
IBUS = 0 A to 3 A  
fSW = 2100  
kHZ  
IBUS = 0.75 A to  
2.25 A  
fSW = 400  
kHZ  
11-8. Load Transient Without Cable  
Compensation  
11-9. Load Transient Without Cable  
Compensation  
IBUS = 0 A to 3 A  
fSW = 2100  
kHZ  
IBUS = 0.75 A to 2.25 A  
fSW = 400  
kHZ  
11-10. Load Transient With Cable Compensation 11-11. Load Transient With Cable Compensation  
5.2  
5.15  
5.1  
5.05  
5
Load = 1 A  
Load = 2 A  
Load = 3 A  
4.95  
4.9  
5.5  
10.5  
15.5  
VIN (V)  
20.5  
25.5  
IBUS = 3 A  
fSW = 2100  
kHZ  
11-12. Dropout Characteristic  
11-13. 6-A Output Ripple  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
IBUS = 0 A  
fSW = 2100  
kHZ  
IBUS = 0.1 A  
fSW = 2100  
kHZ  
11-15. No Load Output Ripple  
11-14. 100-mA Output Ripple  
VIN = 0 V to 13.5 V CC1 = Rd  
IBUS = 3 A  
VIN = 13.5 V to 0 V CC1 = Rd  
IBUS = 3 A  
11-16. Startup Relate to VIN  
11-17. Shutdown Relate to VIN  
EN = 0 V to 5 V  
CC1 = Rd  
IBUS = 3 A  
EN = 5 V to 0 V  
CC1 = Rd  
IBUS = 3 A  
11-18. Startup Relate to EN  
11-19. Shutdown Relate to EN  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
CC1 = Rd to Open CC2 = Open  
IBUS = 3 A  
CC1 = Open to Rd  
CC2 = Open  
IBUS = 3 A  
11-21. Rd Desert  
11-20. Rd Assert  
EN to High  
BUS = GND  
A.  
EN is High BUS removed from  
GND  
11-22. Enable Into Short  
11-23. Short Circuit Recovery  
CC1 = Rd  
CC2 = Ra  
11-24. VBUS Hot Short to GND  
11-25. CC2 Hot Short to GND  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
CC1 = Rd  
BUS NO LOAD  
CC1 = Rd  
OUT = GND  
BUS NO LOAD  
OUT = 5.1 Ω  
11-27. OUT Hot Short to GND  
11-26. OUT short to 5.1-ΩLoad  
VTS = 0 V to 4 V  
CC1 = Rd  
CC2 = OPEN  
VTS = 0 V to 2.6 V CC1 = Rd  
CC2 = OPEN  
11-29. Thermal Sensing - NTC Temperature HOT  
11-28. Thermal Sensing - NTC Temperature  
Behavior  
WARM Behavior  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
12 Power Supply Recommendations  
The input supply must be able to withstand the maximum input current and maintain a stable voltage. The  
resistance of the input supply rail must be low enough that an input current transient does not cause a high  
enough drop at the TPS2585x-Q1 supply voltage that it causes a false UVLO fault triggering and system reset. If  
the TPS2585x-Q1 is connected to the input supply through long wires or PCB traces, special care is required to  
achieve good performance. An additional bulk capacitance can be required in addition to the ceramic input  
capacitors. The amount of bulk capacitance is not critical, but a 100-μF electrolytic capacitor is a typical choice.  
The input voltage must not be allowed to fall below the output voltage. In this scenario, such as a shorted input  
test, the output capacitors discharge through the internal parasitic diode found between the VIN and SW pins of  
the device. During this condition, the current can become uncontrolled, possibly causing damage to the device. If  
this scenario is considered likely, then a Schottky diode between the input supply and the output must be used.  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
13 Layout  
13.1 Layout Guidelines  
The PCB layout of any bulk converter is critical to the optimal performance of the design. Bad PCB layout can  
disrupt the operation of an otherwise good schematic design. Even if the converter regulates correctly, bad PCB  
layout can mean the difference between a robust design and one that cannot be mass produced. Furthermore,  
the EMI performance of the converter is dependent on the PCB layout to a great extent. The following guidelines  
will help users design a PCB with the best power conversion performance, thermal performance, and minimized  
generation of unwanted EMI.  
1. The input bypass capacitor, CIN, must be placed as close as possible to the IN and PGND pins. The high  
frequency ceramic bypass capacitors at the input side provide a primary path for the high di/dt components  
of the pulsing current. Use a wide VIN plane on a lower layer to connect both of the VIN pairs together to the  
input supply. Grounding for both the input and output capacitors must consist of localized top-side planes  
that connect to the PGND pin and PAD.  
2. Use ground plane in one of the middle layers as noise shielding and heat dissipation path.  
3. Use wide traces for the CBOOT capacitor. Place the CBOOT capacitor as close to the device with short, wide  
traces to the BOOT and SW pins.  
4. The SW pin connecting to the inductor must be as short as possible, and just wide enough to carry the load  
current without excessive heating. Short, thick traces or copper pours (shapes) must be used for a high  
current conduction path to minimize parasitic resistance. The output capacitors must be placed close to the  
V
SENSE end of the inductor and closely grounded to PGND pin and exposed PAD.  
5. RILIM and RFREQ resistors must be placed as close as possible to the ILIM and FREQ pins and connected to  
AGND. If needed, these components can be placed on the bottom side of the PCB with signals routed  
through small vias, and the traces need far away from noisy nets like SW, BOOT.  
6. Make VIN, VSENSE, and ground bus connections as wide as possible. This action reduces any voltage drops  
on the input or output paths of the converter and maximizes efficiency.  
7. Provide enough PCB area for proper heat sinking. Enough copper area must be used to ensure a low RθJA  
commensurate with the maximum load current and ambient temperature. Make the top and bottom PCB  
layers with two-ounce copper; and no less than one ounce. If the PCB design uses multiple copper layers  
(recommended), thermal vias can also be connected to the inner layer heat-spreading ground planes. Note  
that the package of this device dissipates heat through all pins. Wide traces must be used for all pins except  
where noise considerations dictate minimization of area.  
,
8. Use an array of heat-sinking vias to connect the exposed pad to the ground plane on the bottom PCB layer.  
If the PCB has multiple copper layers, these thermal vias can also be connected to inner layer heat-  
spreading ground planes. Ensure enough copper area is used for heat-sinking to keep the junction  
temperature below 150°C.  
9. Keep the CC lines close to the same length. Do not create stubs or test points on the CC lines.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
13.2 Layout Example  
13-1. Layout Example  
13.3 Ground Plane and Thermal Considerations  
TI recommends to use one of the middle layers as a solid ground plane. Ground plane provides shielding for  
sensitive circuits and traces. Ground plane also provides a quiet reference potential for the control circuitry. The  
AGND and PGND pins must be connected to the ground plane using vias right next to the bypass capacitors.  
The PGND pin is connected to the source of the internal low-side MOSFET switch, and also connected directly  
to the grounds of the input and output capacitors. The PGND net contains noise at the switching frequency and  
can bounce due to load variations. The PGND trace, as well as VIN and SW traces, must be constrained to one  
side of the ground plane. The other side of the ground plane contains much less noise and must be used for  
sensitive routes.  
TI recommends to provide adequate device heat sinking by using the PAD of the IC as the primary thermal path.  
Use a minimum 4 × 2 array of 12-mil thermal vias to connect the PAD to the system ground plane heat sink. The  
vias must be evenly distributed under the PAD. Use as much copper as possible, for system ground plane, on  
the top and bottom layers for the best heat dissipation. Use a four-layer board with the copper thickness for the  
four layers, starting from the top of 2 oz / 1 oz / 1 oz / 2 oz. Four layer boards with enough copper thickness  
provide low current conduction impedance, proper shielding, and lower thermal resistance.  
The thermal characteristics of the TPS2585x-Q1 are specified using the parameter θJA, which characterizes the  
junction temperature of silicon to the ambient temperature in a specific system. Although the value of θJA is  
dependent on many variables, it still can be used to approximate the operating junction temperature of the  
device. To obtain an estimate of the device junction temperature, one can use the following relationship:  
TJ = PD × θJA + TA  
(16)  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
where  
TJ = Junction temperature in °C  
PD = VIN × IIN × (1 Efficiency) 1.1 × IOUT 2 × DCR in Watt  
DCR = Inductor DC parasitic resistance in Ω  
• θJA = Junction-to-ambient thermal resistance of the device in °C/W  
TA = Ambient temperature in °C  
The maximum operating junction temperature of the TPS2585x-Q1 is 150°C. θJA is highly related to PCB size  
and layout, as well as environmental factors such as heat sinking and air flow.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
TPS25855-Q1, TPS25854-Q1  
ZHCSP14 SEPTEMBER 2021  
www.ti.com.cn  
14 Device and Documentation Support  
14.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
14.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
14.3 Trademarks  
HotRodand TI E2Eare trademarks of Texas Instruments.  
USB Type-C® is a registered trademark of USB Implementers Forum.  
所有商标均为其各自所有者的财产。  
14.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
14.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
 
 
 
 
 
TPS25855-Q1, TPS25854-Q1  
www.ti.com.cn  
ZHCSP14 SEPTEMBER 2021  
15 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPS25855-Q1 TPS25854-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS25854QRPQRQ1  
TPS25855QRPQRQ1  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
RPQ  
RPQ  
25  
25  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-45 to 125  
-45 to 125  
T25854  
T25855  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS25854QRPQRQ1  
TPS25855QRPQRQ1  
VQFN-  
HR  
RPQ  
RPQ  
25  
25  
3000  
3000  
330.0  
12.4  
3.8  
4.8  
1.18  
8.0  
12.0  
Q1  
VQFN-  
HR  
330.0  
12.4  
3.8  
4.8  
1.18  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS25854QRPQRQ1  
TPS25855QRPQRQ1  
VQFN-HR  
VQFN-HR  
RPQ  
RPQ  
25  
25  
3000  
3000  
367.0  
367.0  
367.0  
367.0  
38.0  
38.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RPQ0025A  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
A
B
PIN 1 INDEX AREA  
4.6  
4.4  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
1.0  
0.8  
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.325 0.1  
0.75  
0.55  
PINS 7,8,14 & 15  
0.975  
0.775  
4X  
2X 1  
8X (0.25)  
10  
EXPOSED  
THERMAL PAD  
SYMM  
(DIM A) TYP  
12  
9
13  
1.45  
1.25  
3X  
0.65 0.1  
PKG  
25  
2X 4  
0.7  
0.5  
PINS 3 &19  
PIN 1 ID  
20X 0.5  
0.3  
24X  
0.2  
1
21  
24  
22  
0.1  
C A B  
1.8  
1.6  
0.725  
0.525  
PINS 2 & 20  
3X  
0.05  
0.9  
0.7  
PINS 4-6 & 16-18  
4224966/B 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RPQ0025A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.1)  
(3.05)  
(1.325)  
4X (1.075)  
4X (0.675)  
3X  
(1.9)  
SYMM  
24  
22  
4X (0.575)  
21  
2X (0.825)  
1
4X (0.25)  
2X (0.8)  
20X (0.5)  
6X (1)  
(1.5)  
PKG  
25  
(0.65)  
(R0.05) TYP  
(1.675)  
20X (0.25)  
4X (0.85)  
SEE SOLDER MASK  
DETAIL  
13  
9
10  
12  
3X  
(1.55)  
(2.9)  
(3.075)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224966/B 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RPQ0025A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.1)  
(3.05)  
4X (1.075)  
4X (0.675)  
SYMM  
6X (0.85)  
22  
24  
4X (0.575)  
21  
1
2X (0.825)  
4X (0.25)  
20X (0.5)  
2X (0.8)  
(2.025)  
6X (1)  
(0.975)  
2X  
(0.563)  
PKG  
25  
2X (0.325)  
(1.237)  
2X (0.65)  
26X (0.25)  
(2.112)  
4X (0.85)  
13  
9
(R0.05) TYP  
10  
12  
6X  
(0.675)  
EXPOSED METAL  
TYP  
(0.763)  
(2.9)  
(3.075)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 25  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224966/B 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS25855QRPQRQ1

具有甩负荷功能的 2.2MHz 单路 3A USB Type-C® 充电端口控制器 | RPQ | 25 | -45 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25858-Q1

TPS25858-Q1 and TPS25859-Q1 Low EMI Dual 3-A USB Type-C® Charging Ports Converter With Programmable Current Limit and Thermal Management

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25858-Q1_V01

TPS25858-Q1 and TPS25859-Q1 Low EMI Dual 3-A USB Type-C® Charging Ports Converter With Programmable Current Limit and Thermal Management

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25858QRPQRQ1

TPS25858-Q1 and TPS25859-Q1 Low EMI Dual 3-A USB Type-C® Charging Ports Converter With Programmable Current Limit and Thermal Management

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25859-Q1

TPS25858-Q1 and TPS25859-Q1 Low EMI Dual 3-A USB Type-C® Charging Ports Converter With Programmable Current Limit and Thermal Management

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25859QRPQRQ1

TPS25858-Q1 and TPS25859-Q1 Low EMI Dual 3-A USB Type-C® Charging Ports Converter With Programmable Current Limit and Thermal Management

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25860-Q1

TPS2586x-Q1 2.2-MHz, Low EMI Dual USB Type-A and Type-C® Charging Ports Controller With Sync DC/DC Converter and Programmable Current Limit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25860QRPQRQ1

TPS2586x-Q1 2.2-MHz, Low EMI Dual USB Type-A and Type-C® Charging Ports Controller With Sync DC/DC Converter and Programmable Current Limit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25862-Q1

TPS2586x-Q1 2.2-MHz, Low EMI Dual USB Type-A and Type-C® Charging Ports Controller With Sync DC/DC Converter and Programmable Current Limit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25862QRPQRQ1

TPS2586x-Q1 2.2-MHz, Low EMI Dual USB Type-A and Type-C® Charging Ports Controller With Sync DC/DC Converter and Programmable Current Limit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25864-Q1

具有甩负荷功能和 2.2MHz 频率的汽车双路 2.4A USB Type-A 充电端口控制器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25864QRPQRQ1

具有甩负荷功能和 2.2MHz 频率的汽车双路 2.4A USB Type-A 充电端口控制器 | RPQ | 25 | -45 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI