TPS259230DRCT [TI]

具有用于外部阻断 FET 的驱动器的 4.5V 至 5.5V、28mΩ、1A 至 5A 电子保险丝 | DRC | 10 | -40 to 85;
TPS259230DRCT
型号: TPS259230DRCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有用于外部阻断 FET 的驱动器的 4.5V 至 5.5V、28mΩ、1A 至 5A 电子保险丝 | DRC | 10 | -40 to 85

电子 驱动 驱动器
文件: 总34页 (文件大小:2069K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS259230, TPS259231  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
TPS25923x 具有过压保护和阻断 FET 控制功能的 5V 电子熔丝  
1 特性  
3 说明  
1
5V 电子熔丝,VABSMAX = 20V  
TPS25923x 系列电子熔丝是采用小型封装的高度集成  
电路保护和电源管理解决方案。 该器件使用极少的外  
部组件并可提供多重保护模式。 它们能够有效地防止  
过载、短路、电压浪涌、过高浪涌电流和反向电流。  
集成 28m导通金属氧化物半导体场效应晶体管  
(MOSFET)  
6.1V 固定过压钳位  
1A 5A 可调电流 ILIMIT  
±8% ILIMIT 精度(3.7A 时)  
支持反向电流阻断  
电流限制级别可通过一个外部电阻设定。 内部钳位电  
路可将过电压限制在一个安全的固定最大值,无需使用  
外部组件。 具有特殊电压斜坡要求的应用可以使用单  
个电容来设定 dV/dT,以确保达到适当的输出斜坡速  
率。  
可编程 OUT(输出)转换率,欠压闭锁 (UVLO)  
内置热关断  
UL2367 认证正在处理中  
单点故障测试期间安全 (UL60950)  
许多系统(例如 SSD)禁止将储存的电容能量通过  
FET 二极管倒流到降压或短路输入总线。 BFET 引脚  
专用于这类系统。 外部 NFET 可与 TPS25923x 输出  
形成背靠背 (B2B)”连接,而由 BFET 驱动的栅极可防  
止电流从负载流回电源(请参见Figure 43)。  
小型封装尺寸 - 10L (3mm x 3mm) 超薄小外形尺寸  
无引线封装 (VSON)  
2 应用  
适配器供电器件  
器件信息(1)  
硬盘 (HDD) 和固态硬盘 (SSD)  
机顶盒  
器件型号  
TPS259230  
TPS259231  
封装  
封装尺寸(标称值)  
服务器/辅助 (AUX) 电源  
风扇控制  
VSON (10)  
3.00mm × 3.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
PCI/PCIe 卡  
应用电路原理图  
瞬态:输出短路  
hÜÇ  
hÜÇ  
ëLb  
ëLb  
w1  
28mW  
hÜÇ  
9b/Üë[h  
dë/dÇ  
.C9Ç  
L[La  
w2  
w[La  
dëdÇ  
Db5  
Çt{25923x  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCV0  
 
 
 
 
TPS259230, TPS259231  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ..................................... 4  
7.2 ESD Ratings ............................................................ 4  
7.3 Recommended Operating Conditions...................... 4  
7.4 Thermal Information ................................................. 5  
7.5 Electrical Characteristics.......................................... 5  
7.6 Timing Requirements ............................................... 6  
7.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagram ....................................... 13  
8.3 Feature Description................................................. 13  
8.4 Device Functional Modes........................................ 16  
9
Application and Implementation ........................ 17  
9.1 Application Information............................................ 17  
9.2 Typical Applications ............................................... 17  
10 Power Supply Recommendations ..................... 23  
10.1 Transient Protection.............................................. 23  
10.2 Output Short-Circuit Measurements ..................... 23  
11 Layout................................................................... 24  
11.1 Layout Guidelines ................................................. 24  
11.2 Layout Example .................................................... 24  
12 器件和文档支持 ..................................................... 25  
12.1 器件支持 ............................................................... 25  
12.2 文档支持 ............................................................... 25  
12.3 相关链接................................................................ 25  
12.4 社区资源................................................................ 25  
12.5 ....................................................................... 25  
12.6 静电放电警告......................................................... 25  
12.7 Glossary................................................................ 25  
13 机械、封装和可订购信息....................................... 25  
8
4 修订历史记录  
Changes from Original (August 2015) to Revision A  
Page  
已更改 产品预览至量产数据 ................................................................................................................................................... 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS259230, TPS259231  
www.ti.com.cn  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
5 Device Comparison Table  
PART NUMBER  
TPS259231  
UV  
OV CLAMP  
6.1 V  
FAULT RESPONSE  
Auto Retry  
STATUS  
Active  
4.3 V  
4.3 V  
TPS259230  
6.1 V  
Latched  
Active  
6 Pin Configuration and Functions  
DRC Package  
10-Pin VSON  
Top View  
1
dV/dT  
10 ILIM  
EN/UVLO  
BFET  
OUT  
OUT  
GND  
VIN  
VIN  
VIN  
6
5
OUT  
Pin Functions  
PIN  
NUMBER  
DESCRIPTION  
NAME  
BFET  
Connect this pin to the gate of a blocking NFET. See the Feature Description section. Leave this pin floating  
9
if it is not used.  
dV/dT  
1
2
Tie a capacitor from this pin to GND to control the ramp rate of OUT at device turn-on.  
EN/UVLO  
This is a dual function control pin. When used as an ENABLE pin and pulled down, it shuts off the internal  
pass MOSFET and pulls BFET to GND. When pulled high, it enables the device and BFET.  
As an UVLO pin, it can be used to program different UVLO trip point via external resistor divider.  
GND  
ILIM  
OUT  
VIN  
Thermal Pad  
GND  
10  
6-8  
3-5  
A resistor from this pin to GND will set the overload and short circuit limit.  
Output of the device  
Input supply voltage  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS259230, TPS259231  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)  
(1) (2)  
MIN  
MAX  
20  
UNIT  
VIN  
Supply voltage(1)  
–0.3  
V
VIN (10 ms Transient)  
22  
OUT  
Output voltage  
–0.3  
VIN + 0.3  
V
V
OUT (Transient < 1 µs)  
-1.2  
7
ILIM  
–0.3  
–0.3  
–0.3  
–0.3  
-65  
EN/UVLO  
7
Voltage  
V
dV/dT  
7
BFET  
30  
150  
Storage temperature range, Tstg  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions  
is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to network ground terminal.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN TYP  
MAX UNIT  
VIN  
4.5  
0
5
5.5  
BFET  
VIN+6  
Input voltage range  
V
6
dV/dT, EN/UVLO  
0
ILIM  
IOUT  
0
3
Continuous output current  
Resistance  
0
5
162  
A
ILIM  
OUT  
dV/dT  
10  
0.1  
100  
1
kΩ  
µF  
nF  
°C  
°C  
1000  
1000  
125  
External capacitance  
1
Operating junction temperature range, TJ  
Operating Ambient temperature range, TA  
–40  
–40  
25  
25  
85  
4
Copyright © 2015, Texas Instruments Incorporated  
 
TPS259230, TPS259231  
www.ti.com.cn  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
7.4 Thermal Information(1)  
over operating free-air temperature range (unless otherwise noted)  
TPS25923x  
THERMAL METRIC  
DRC (VSON)  
10 PINS  
45.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
RθJCtop  
RθJB  
53  
21.2  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.2  
ψJB  
21.4  
RθJCbot  
5.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Electrical Characteristics  
–40°C TJ 125°C, VIN = 5 V, VEN /UVLO = 2 V, RILIM = 100 kΩ, CdVdT = OPEN. All voltages referenced to GND (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
4.15  
0.35  
TYP  
MAX  
UNIT  
VIN (INPUT SUPPLY)  
VUVR  
UVLO threshold, rising  
UVLO hysteresis(1)  
4.3  
5%  
4.45  
V
VUVhyst  
IQON  
Enabled: EN/UVLO = 2 V  
0.47  
0.1  
0.6  
mA  
mA  
Supply current  
IQOFF  
EN/UVLO = 0 V  
0.225  
VIN > 6.75 V, IOUT = 10 mA,  
–40TJ 85℃  
5.5  
6.1  
6.1  
6.75  
6.75  
VOVC  
Over-voltage clamp  
V
VIN > 6.75 V, IOUT = 10 mA,  
–40TJ 125℃  
5.25  
EN/UVLO (ENABLE/UVLO INPUT)  
VENR  
VENF  
IEN  
EN Threshold voltage, rising  
1.37  
1.32  
–100  
1.4  
1.35  
0
1.44  
1.39  
100  
V
V
EN Threshold voltage, falling  
EN Input leakage current  
0 V VEN 5 V  
nA  
dV/dT (OUTPUT RAMP CONTROL)  
IdVdT  
dV/dT Charging current(1)  
VdVdT = 0 V  
220  
75  
nA  
Ω
RdVdT_disch  
VdVdTmax  
GAINdVdT  
dV/dT Discharging resistance  
dV/dT Max capacitor voltage(1)  
dV/dT to OUT gain(1)  
EN/UVLO = 0 V, IdVdT = 10 mA sinking  
50  
100  
5.5  
V
ΔVdVdT  
4.85  
V/V  
ILIM (CURRENT LIMIT PROGRAMMING)  
IILIM  
ILIM Bias current(1)  
10  
1.02  
2.10  
3.75  
5.1  
µA  
A
RILIM = 10 kΩ, VVIN-OUT = 1 V  
RILIM = 45.3 kΩ, VVIN-OUT = 1 V  
RILIM = 100 kΩ, VVIN-OUT = 1 V  
RILIM = 150 kΩ, VVIN-OUT = 1 V  
1.79  
3.46  
4.5  
2.42  
4.03  
5.7  
IOL  
Overload current limit(2)  
RILIM = 0 Ω, Shorted Resistor Current Limit (Single Point  
IOL-R-Short  
IOL-R-Open  
0.84  
0.73  
A
A
Failure Test: UL60950)(1)  
RILIM = OPEN, Open Resistor Current Limit (Single Point  
Failure Test: UL60950)(1)  
RILIM = 10 kΩ, VVIN-OUT = 5 V  
RILIM = 45.3 kΩ, VVIN-OUT = 5 V  
RILIM = 100 kΩ, VVIN-OUT = 5 V  
RILIM = 150 kΩ, VVIN-OUT = 5 V  
1.01  
2.05  
3.56  
4.95  
1.72  
3.14  
4.22  
2.42  
3.98  
5.69  
ISCL  
Short-circuit current limit(2)  
A
(1) These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's  
product warranty.  
(2) Pulsed testing techniques used during this test maintain junction temperature approximately equal to ambient temperature.  
Copyright © 2015, Texas Instruments Incorporated  
5
TPS259230, TPS259231  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
–40°C TJ 125°C, VIN = 5 V, VEN /UVLO = 2 V, RILIM = 100 kΩ, CdVdT = OPEN. All voltages referenced to GND (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Fast-Trip comparator level w.r.t.  
overload current limit(1)  
RATIOFASTRIP  
VOpenILIM  
IFASTRIP : IOL  
160%  
ILIM Open resistor detect  
threshold(1)  
VILIM Rising, RILIM = OPEN  
3.1  
V
OUT (PASS FET OUTPUT)  
TJ = 25°C  
21  
28  
39  
0
37  
48  
RDS(on)  
FET ON resistance  
mΩ  
TJ = 125°C  
IOUT-OFF-LKG  
IOUT-OFF-SINK  
BFET (BLOCKING FET GATE DRIVER)  
VEN/UVLO = 0 V, VOUT = 0 V (Sourcing)  
VEN/UVLO = 0V, VOUT = 300 mV (Sinking)  
–5  
10  
1.2  
20  
OUT Bias current in off state  
µA  
15  
IBFET  
BFET Charging current(1)  
VBFET = VOUT  
2
µA  
V
VVIN  
+
6.4  
VBFETmax  
BFET Clamp voltage(1)  
BFET Discharging resistance to  
GND  
RBFETdisch  
VEN/UVLO = 0 V, IBFET = 100 mA  
15  
26  
36  
Ω
TSD (THERMAL SHUT DOWN)  
TSHDN  
TSD Threshold, rising(1)  
TSD Hysteresis(1)  
150  
10  
°C  
°C  
TSHDNhyst  
TPS259230  
TPS259231  
LATCHED  
AUTO-RETRY  
Thermal fault: latched or autoretry  
7.6 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
220  
0.4  
MAX UNIT  
EN/UVLO H to IVIN = 100 mA, 1-A resistive load at  
TON  
Turn-on delay(1)  
Turn off delay(1)  
µs  
µs  
OUT  
tOFFdly  
ENto BFET, CBFET = 0  
dV/dT (OUTPUT RAMP CONTROL)  
EN/UVLO H to OUT = 4.9 V, CdVdT = 0  
0.28  
0.4  
5
0.52  
ms  
tdVdT Output ramp time  
EN/UVLO H to OUT = 4.9 V,  
CdVdT = 1 nF(1)  
ILIM (CURRENT LIMIT PROGRAMMING)  
tFastOffDly  
Fast-Trip comparator delay(1)  
BFET (BLOCKING FET GATE DRIVER)  
IOUT > IFASTRIP to IOUT = 0 (Switch Off)  
300  
ns  
EN/UVLO H to VBFET = 12 V, CBFET = 1 nF  
EN/UVLO H to VBFET = 12 V, CBFET = 10 nF  
EN/UVLO L to VBFET = 1 V, CBFET = 1 nF  
EN/UVLO L to VBFET = 1 V, CBFET = 10 nF  
4.2  
42  
tBFET-ON  
BFET Turn-On duration(1)  
BFET Turn-Off duration(1)  
ms  
µs  
0.4  
1.4  
tBFET-OFF  
THERMAL SHUT DOWN (TSD)  
Retry Delay after TSD Recovery,  
tTSDdly  
TPS259231 Only  
100  
µs  
TJ < [TSHDN - 10oC](1)  
(1) These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's  
product warranty.  
6
Copyright © 2015, Texas Instruments Incorporated  
TPS259230, TPS259231  
www.ti.com.cn  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
7.7 Typical Characteristics  
TJ = 25°C, VVIN = 5 V, VEN/UVLO = 2 V, RILIM = 100 kΩ, CVIN = 0.1 µF, COUT = 1 µF, CdVdT = OPEN (unless stated otherwise)  
4.35  
4.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
4.25  
4.2  
4.15  
4.1  
125 °C  
85 °C  
25 °C  
-40 °C  
4.05  
4
-50  
0
50  
100  
150  
0
5
10  
15  
20  
C001  
C002  
Temperature (°C)  
VIN (V)  
Figure 1. Input UVLO vs Temperature  
Figure 2. IQ-OFF vs VIN  
1
0.8  
0.6  
0.4  
0.2  
0
6.6  
6.4  
6.2  
6
5.8  
5.6  
5.4  
125 °C  
85 °C  
25 °C  
-40 °C  
10 mA  
0
5
10  
15  
20  
C004  
VIN (V)  
-50  
0
50  
100  
150  
Temperature (oC)  
Figure 3. IVIN-ON vs VIN  
Figure 4. VOVC vs Temperature  
45  
40  
35  
30  
25  
20  
250  
230  
210  
190  
170  
150  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (oC)  
Temperature (oC)  
Figure 5. RDSON vs Temperature  
Figure 6. TON vs Temperature  
Copyright © 2015, Texas Instruments Incorporated  
7
TPS259230, TPS259231  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
TJ = 25°C, VVIN = 5 V, VEN/UVLO = 2 V, RILIM = 100 kΩ, CVIN = 0.1 µF, COUT = 1 µF, CdVdT = OPEN (unless stated otherwise)  
230  
225  
220  
215  
210  
205  
60  
50  
40  
30  
20  
10  
0
125 °C  
85 °C  
25 °C  
-40 °C  
-50  
0
50  
100  
150  
0
2
4
6
8
10  
C010  
C014  
Temperature (°C)  
CdVdT (nF)  
Figure 7. IdVdT vs Temperature  
Figure 8. TdVdT vs CdVdT  
1.41  
1.4  
100  
10  
1
1.39  
1.38  
1.37  
1.36  
1.35  
1.34  
Rising  
Falling  
125°C  
85°C  
25°C  
-40°C  
0.1  
0
1
2
3
4
5
-50  
0
50  
Temperature (oC)  
100  
150  
V
(V)  
EN  
Figure 9. VEN-VIH, VEN-VIL vs Temperature  
Figure 10. IEN (Leakage Current) vs VEN  
6
5
4
3
2
1
4
3.5  
3
2.5  
2
125oC  
125oC  
85oC  
25oC  
-40oC  
85oC  
25oC  
-40oC  
1.5  
1
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
V
(V)  
V
(V)  
VIN-OUT  
VIN-OUT  
RILIM = 150 kΩ  
RILIM = 100 kΩ  
Figure 11. IVOUT vs VVIN-OUT  
Figure 12. IVOUT vs VVIN-OUT  
8
Copyright © 2015, Texas Instruments Incorporated  
TPS259230, TPS259231  
www.ti.com.cn  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
Typical Characteristics (continued)  
TJ = 25°C, VVIN = 5 V, VEN/UVLO = 2 V, RILIM = 100 kΩ, CVIN = 0.1 µF, COUT = 1 µF, CdVdT = OPEN (unless stated otherwise)  
2.2  
2
0
2
-2  
1.8  
1.6  
1.4  
1.2  
1
-4  
-6  
IOL-150k  
ISC-150k  
-8  
-10  
-12  
-14  
-16  
125oC  
85oC  
25oC  
-40oC  
0
0.5  
1
1.5  
2
-50  
0
50  
100  
150  
Temperature (oC)  
V
(V)  
VIN-OUT  
RILIM = 150 kΩ  
RILIM = 45.3 kΩ  
Figure 14. IOL, ISC vs Temperature  
Figure 13. IVOUT vs VVIN-OUT  
2
0
1
0
-2  
-1  
-2  
-3  
-4  
-5  
-4  
IOL-45.3k  
ISC-45.3k  
IOL-100k  
-6  
ISC-100k  
-8  
-10  
-12  
-50  
-6  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (oC)  
Temperature (oC)  
RILIM = 100 kΩ  
RILIM = 45.3 kΩ  
Figure 15. IOL, ISC vs Temperature  
Figure 16. IOL, ISC vs Temperature  
0.95  
0.9  
0.8  
0.75  
0.7  
0.85  
0.8  
0.75  
-50  
0.65  
-50  
0
50  
100  
150  
0
50  
100  
150  
Temperature (oC)  
Temperature (oC)  
D001  
D001  
RILIM = 0Ω  
RILIM = OPEN  
Figure 17. IOL-R-Short vs Temperature  
Figure 18. IOL-R-Open vs Temperature  
Copyright © 2015, Texas Instruments Incorporated  
9
TPS259230, TPS259231  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
TJ = 25°C, VVIN = 5 V, VEN/UVLO = 2 V, RILIM = 100 kΩ, CVIN = 0.1 µF, COUT = 1 µF, CdVdT = OPEN (unless stated otherwise)  
3.1  
3.09  
3.08  
3.07  
3.06  
3.05  
35  
30  
25  
20  
15  
10  
5
0
-50  
0
50  
100  
150  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Temperature (oC)  
Overload Current Limit (A)  
D001  
Figure 19. VOpenILIM vs Temperature  
Figure 20. Accuracy vs Overload Current Limit  
6
5
4
3
2
1
0
10000  
1000  
100  
10  
TA = -40oC  
TA = 25oC  
TA = 85oC  
TA = 125oC  
1
0.1  
0
20  
40  
60  
80  
100  
120  
140  
160  
0.1  
1
10  
100  
RILIM Resistor (kW)  
Power Dissipation (W)  
D001  
D001  
Figure 21. Overload Current Limit vs RILIM Resistor  
Figure 22. Thermal Shutdown Time vs Power Dissipation  
EN  
EN  
VIN  
VIN  
C1  
C1  
VOUT  
C2  
C3  
C2  
C3  
VOUT  
I_IN  
I-IN  
C4  
C4  
CdVdT = OPEN, COUT = 4.7 µF  
CdVdT = 1 nF, COUT = 10 µF, ROUT = 2.5 Ω  
Figure 23. Transient: Output Ramp  
Figure 24. Transient: Output Ramp  
10  
Copyright © 2015, Texas Instruments Incorporated  
TPS259230, TPS259231  
www.ti.com.cn  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
Typical Characteristics (continued)  
TJ = 25°C, VVIN = 5 V, VEN/UVLO = 2 V, RILIM = 100 kΩ, CVIN = 0.1 µF, COUT = 1 µF, CdVdT = OPEN (unless stated otherwise)  
VIN  
VOUT  
C2  
C3  
EN ↓  
Figure 25. Transient: Turn Off Delay  
Figure 26. Transient: Over Voltage Clamp  
RILIM = 150 kΩ  
RILIM = 150 kΩ  
Figure 27. Transient: Output Short Circuit  
Figure 28. Short Circuit (Zoom): Fast-Trip Comparator  
TPS259231  
TPS259231  
Figure 29. Transient: Recovery From Short Circuit / Over  
Current  
Figure 30. Transient: Wake Up to Short Circuit  
Copyright © 2015, Texas Instruments Incorporated  
11  
TPS259230, TPS259231  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
TJ = 25°C, VVIN = 5 V, VEN/UVLO = 2 V, RILIM = 100 kΩ, CVIN = 0.1 µF, COUT = 1 µF, CdVdT = OPEN (unless stated otherwise)  
TPS259231  
ILOAD Stepped from 65% to 125%, Back to 65%  
Figure 32. Transient: Thermal Fault Auto-Retry  
Figure 31. Transient: Overload Current Limit  
EN ↓  
TPS259230  
Figure 34. Turn Off Delay to BFET  
Figure 33. Transient: Thermal Fault Latched  
VIN ↓  
Figure 35. Turn Off Delay to BFET  
12  
Copyright © 2015, Texas Instruments Incorporated  
TPS259230, TPS259231  
www.ti.com.cn  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
8 Detailed Description  
8.1 Overview  
The TPS25923x is an e-fuse with integrated power switch that is used to manage current/voltage/start-up voltage  
ramp to a connected load. The device starts its operation by monitoring the VIN bus. When VIN exceeds the  
undervoltage-lockout threshold (VUVR), the device samples the EN/UVLO pin. A high level on this pin enables  
the internal MOSFET. As VIN rises, the internal MOSFET of the device will start conducting and allow current to  
flow from VIN to OUT. When EN/UVLO is held low (below VENF), internal MOSFET is turned off. User also has  
the ability to modify the output voltage ramp time by connecting a capacitor between dV/dT pin and GND.  
After a successful start-up sequence, the device now actively monitors its load current and input voltage,  
ensuring that the adjustable overload current limit IOL is not exceeded and input voltage spikes are safely  
clamped to VOVC level at the output. This keeps the output device safe from harmful voltage and current  
transients. The device also has built-in thermal sensor. In the event device temperature (TJ) exceeds TSHDN  
,
typically 150°C, the thermal shutdown circuitry will shut down the internal MOSFET thereby disconnecting the  
load from the supply. In TPS259230, the output will remain disconnected (MOSFET open) until power to device  
is recycled or EN/UVLO is toggled (pulled low and then high). The TPS259231 device will remain off during a  
cooling period until device temperature falls below TSHDN – 10°C, after which it will attempt to restart. This ON  
and OFF cycle will continue until fault is cleared.  
8.2 Functional Block Diagram  
OUT  
VIN  
6,  
7,  
8
3,  
4,  
5
Current  
Sense  
28mW  
+
UVLO  
4.3V  
Charge  
Pump  
4.08V  
EN/  
2mA  
2
+
UVLO  
EN  
BFET  
1.4V  
Over  
Voltage  
9
1.35V  
SWEN  
6V  
GATE  
CONTROL  
SWEN  
22W  
Thermal  
Shutdown  
6V  
TSD  
VIN  
220nA  
10mA  
+
ILIMIT  
dV/dT  
GND  
ILIM  
1
4.8x  
10  
+
+
70pF  
SWEN  
Fast Trip  
Comp  
80W  
EP  
1.6*ILIMIT  
8.3 Feature Description  
8.3.1 GND  
This is the most negative voltage in the circuit and is used as a reference for all voltage measurements unless  
otherwise specified.  
Copyright © 2015, Texas Instruments Incorporated  
13  
TPS259230, TPS259231  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
Feature Description (continued)  
8.3.2 VIN  
Input voltage to the TPS25923x. A ceramic bypass capacitor close to the device from VIN to GND is  
recommended to alleviate bus transients. The recommended operating voltage range is 4.5 V to 5.5 V for  
TPS25923x. The device can continuously sustain a voltage of 20 V on VIN pin. However, above the  
recommended maximum bus voltage, the device will be in over-voltage protection (OVP) mode, limiting the  
output voltage to VOVC. The power dissipation in OVP mode is PD_OVP = (VVIN - VOVC) x IOUT, which can  
potentially heat up the device and cause thermal shutdown.  
8.3.3 dV/dT  
Connect a capacitor from this pin to GND to control the slew rate of the output voltage at power-on. This pin can  
be left floating to obtain a predetermined slew rate (minimum TdVdT) on the output. Equation governing slew rate  
at start-up is shown below:  
dVOUT  
IdVdT ´GAINdVdT  
=
dt  
CdVdT + CINT  
(1)  
Where:  
IdVdT = 220 nA (TYP)  
CINT = 70 pF (TYP)  
GAINdVdT = 4.85  
dVOUT  
= Desired output slew rate  
dT  
The total ramp time (TdVdT) for 0 to VIN can be calculated using the following equation:  
TdVdT = 106 ´ V ´ C  
+70 pF  
dVdT  
(
)
IN  
(2)  
For details on how to select an appropriate charging time/rate, refer to the applications section Setting Output  
Voltage Ramp Time (TdVdT).  
8.3.4 BFET  
Connect this pin to an external NFET that can be used to disconnect input supply from rest of the system in the  
event of power failure at VIN. The BFET pin is controlled by either input UVLO (VUVR) event or EN/UVLO (see  
Table 1). BFET can source charging current of 2 µA (TYP) and sink (discharge) current from the gate of the  
external FET via a 26-internal discharge resistor to initiate fast turn-off, typically <1 µs. Due to 2 µA charging  
current, it is recommended to use >10 MΩ impedance when probing the BFET node.  
Table 1. BFET  
EN/UVLO > VENR  
VIN > VUVR  
BFET MODE  
Charge  
H
X
L
H
L
Discharge  
Discharge  
X
8.3.5 EN/UVLO  
As an input pin, it controls both the ON/OFF state of the internal MOSFET and that of the external blocking FET.  
In its high state, the internal MOSFET is enabled and charging begins for the gate of external FET. A low on this  
pin will turn off the internal MOSFET and pull the gate of the external FET to GND via the built-in discharge  
resistor. High and Low levels are specified in the parametric table of the datasheet. The EN/UVLO pin is also  
used to clear a thermal shutdown latch in the TPS259230 by toggling this pin (HL).  
The internal de-glitch delay on EN/UVLO falling edge is intentionally kept low (1 us typical) for quick detection of  
power failure. When used with a resistor divider from supply to EN/UVLO to GND, power-fail detection on  
EN/UVLO helps in quick turn-off of the BFET driver, thereby stopping the flow of reverse current (see typical  
application diagram, Figure 43). For applications where a higher de-glitch delay on EN/UVLO is desired, or when  
the supply is particularly noisy, it is recommended to use an external bypass capacitor from EN/UVLO to GND.  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS259230, TPS259231  
www.ti.com.cn  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
8.3.6 ILIM  
The device continuously monitors the load current and keeps it limited to the value programmed by RILIM. After  
start-up event and during normal operation, current limit is set to IOL (over-load current limit).  
IOL = 0.7 + 3´10-5 ´RILIM  
(
)
(3)  
When power dissipation in the internal MOSFET [PD = (VVIN – VOUT) × IOUT] exceeds 10 W, there is a 2% – 12%  
thermal foldback in the current limit value so that IOL drops to ISC. In each of the two modes, MOSFET gate  
voltage is regulated to throttle short-circuit and overload current flowing to the load. Eventually, the device shuts  
down due to over temperature.  
0
-2  
-4  
-6  
-8  
-10  
-12  
-14  
0
10  
20  
30  
40  
50  
60  
Power (W)  
Figure 36. Thermal Foldback in Current Limit  
During a transient short circuit event, the current through the device increases very rapidly. The current-limit  
amplifier cannot respond very quickly to this event due to its limited bandwidth. Therefore, the TPS2592  
incorporates a fast-trip comparator, which shuts down the pass device very quickly when IOUT > IFASTRIP, and  
terminates the rapid short-circuit peak current. The trip threshold is set to 60% higher than the programmed over-  
load current limit (IFASTRIP = 1.6 x IOL). After the transient short-circuit peak current has been terminated by the  
fast-trip comparator, the current limit amplifier smoothly regulates the output current to IOL (see figure below).  
Figure 38. Fast-Trip and Current Limit Amplifier Response  
for Short Circuit  
Figure 37. Fast-Trip Current  
Copyright © 2015, Texas Instruments Incorporated  
15  
TPS259230, TPS259231  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
8.4 Device Functional Modes  
The TPS25923x is  
a hot-swap controller with integrated power switch that is used to manage  
current/voltage/start-up voltage ramp to a connected load. The device starts its operation by monitoring the VIN  
bus. When VVIN exceeds the undervoltage-lockout threshold (VUVR), the device samples the EN/UVLO pin. A high  
level on this pin enables the internal MOSFET and also start charging the gate of external blocking FET (if  
connected) via the BFET pin. As VIN rises, the internal MOSFET of the device and external FET (if connected)  
will start conducting and allow current to flow from VIN to OUT. When EN/UVLO is held low (that is, below VENF),  
the internal MOSFET is turned off and BFET pin is discharged, thereby, blocking the flow of current from VIN to  
OUT. User also has the ability to modify the output voltage ramp time by connecting a capacitor between dV/dT  
pin and GND.  
Having successfully completed its start-up sequence, the device now actively monitors its load current and input  
voltage, ensuring that the adjustable overload current limit IOL is not exceeded and input voltage spikes are safely  
clamped to VOVC level at the output. This keeps the output device safe from harmful voltage and current  
transients. The device also has built-in thermal sensor. In the event device temperature (TJ) exceeds TSHDN  
,
typically 150°C, the thermal shutdown circuitry will shut down the internal MOSFET thereby disconnecting the  
load from the supply. In the TPS259230, the output will remain disconnected (MOSFET open) until power to  
device is recycled or EN/UVLO is toggled (pulled low and then high). The TPS259231 device will remain off  
during a cooling period until device temperature falls below TSHDN – 10°C, after which it will attempt to restart.  
This ON and OFF cycle will continue until fault is cleared.  
16  
Copyright © 2015, Texas Instruments Incorporated  
TPS259230, TPS259231  
www.ti.com.cn  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPA25923x is a smart eFuse. It is typically used for Hot-Swap and Power rail protection applications. It  
operates from 4.5 V to 18 V with programmable current limit and undervoltage protection. The device aids in  
controlling the in-rush current and provides precise current limiting during overload conditions for systems such  
as Set-Top-Box, DTVs, Gaming Consoles, SSDs/HDDs and Smart Meters. The device also provides robust  
protection for multiple faults on the sub-system rail.  
The following design procedure can be used to select component values for the device. Alternatively, the  
WEBENCH® software may be used to generate a complete design. The WEBENCH® software uses an iterative  
design procedure and accesses a comprehensive database of components when generating a design.  
Additionally, a spreadsheet design tool TPS2592xx Design Calculator (SLUC570) is available on web folder. This  
section presents a simplified discussion of the design process.  
9.2 Typical Applications  
9.2.1 Simple 3.7-A eFuse Protection for Set Top Boxes  
ëLb = 4.ꢁ to 18 ë  
ëhÜÇ, LhÜÇ < 3.4!  
Lb  
hÜÇ  
*
/
ëLb  
w1  
1aO  
/
1µC  
hÜÇ  
28mO  
0.1µC  
9bꢀÜë[h  
**  
ꢂC9Ç  
L[La  
w2  
dëdÇ  
Db5  
Çt{25923x  
wL[La  
100kO  
**hptional & only needed for external Üë[h  
*hptional & only for noise suppression  
Figure 39. Typical Application Schematic: Simple 3.7-A eFuse for STBs  
9.2.1.1 Design Requirements  
Table 2. Design Parameters  
DESIGN PARAMETER  
Input voltage range, VIN  
EXAMPLE VALUE  
5 V  
Undervoltage lockout set point, V(UV)  
Overvoltage protection set point, V(OV)  
Load at start-up, RL(SU)  
Default: VUVR = 4.3 V  
Default: VOVC = 6.1 V  
2 Ω  
3.7 A  
1 µF  
85°C  
Current limit, IOL = IILIM  
Load capacitance, COUT  
Maximum ambient temperature, TA  
Copyright © 2015, Texas Instruments Incorporated  
17  
TPS259230, TPS259231  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
9.2.1.2 Detailed Design Procedure  
The following design procedure can be used to select component values for the TPS25923x.  
9.2.1.2.1 Step by Step Design Procedure  
This design procedure below seeks to control the junction temperature of device under both static and transient  
conditions by proper selection of output ramp-up time and associated support components. The designer can  
adjust this procedure to fit the application and design criteria.  
9.2.1.2.2 Programming the Current-Limit Threshold: RILIM Selection  
The RILIM resistor at the ILIM pin sets the over load current limit, this can be set using Equation 4.  
I
- 0.7  
ILIM  
R
=
ILIM  
-5  
3 x 10  
(4)  
For IOL = IILIM = 3.7 A, from Equation 4, RILIM = 100 kΩ. Choose closest standard value resistor with 1%  
tolerance.  
9.2.1.2.3 Undervoltage Lockout Set Point  
The undervoltage lockout (UVLO) trip point is adjusted using the external voltage divider network of R1 and R2 as  
connected between IN, EN/UVLO and GND pins of the device. The values required for setting the undervoltage  
are calculated solving Equation 5.  
R +R  
1
2
V
=
´ V  
ENR  
(UV)  
R
2
(5)  
Where VENR = 1.4 V, is enable voltage rising threshold.  
Since R1 and R2 will leak the current from input supply (VIN), these resistors should be selected based on the  
acceptable leakage current from input power supply (VIN). The current drawn by R1 and R2 from the power  
supply {IR12 = VIN/(R1 + R2)}.  
However, leakage currents due to external active components connected to the resistor string can add error to  
these calculations. So, the resistor string current, IR12 must be chosen to be 20x greater than the leakage current  
expected.  
For default UVLO of VUVR = 4.3 V, select R2 = OPEN, and R1 = 1 MΩ. Since EN/UVLO pin is rated only to 7 V, it  
cannot be connected directly to VIN > 7 V. It has to be connected through R1 = 1 MΩ only, so that the pull-up  
current for EN/UVLO pin is limited to < 20 µA.  
The power failure threshold is detected on the falling edge of supply. This threshold voltage is 4% lower than the  
rising threshold, VUVR. This is calculated using Equation 6.  
V(PFAIL) = 0.96 x VUVR  
(6)  
Where VUVR is 4.3V, Power fail threshold set is : V(PFAIL) = 4.1 V.  
9.2.1.2.4 Setting Output Voltage Ramp Time (TdVdT  
)
For a successful design, the junction temperature of device should be kept below the absolute-maximum rating  
during both dynamic (start-up) and steady state conditions. Dynamic power stresses often are an order of  
magnitude greater than the static stresses, so it is important to determine the right start-up time and in-rush  
current limit required with system capacitance to avoid thermal shutdown during start-up with and without load.  
The ramp-up capacitor CdVdT needed is calculated considering the two possible cases:  
9.2.1.2.4.1 Case 1: Start-Up without Load: Only Output Capacitance COUT Draws Current During Start-Up  
During start-up, as the output capacitor charges, the voltage difference as well as the power dissipated across  
the internal FET decreases. The average power dissipated in the device during start-up is calculated using  
Equation 8.  
For TPS25923x, the inrush current is determined as,  
V
(IN)  
I
= C x  
(OUT)  
(INRUSH)  
T
dVdT  
(7)  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
 
TPS259230, TPS259231  
www.ti.com.cn  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
Power dissipation during start-up is:  
P
= 0.5 x V x I  
(IN) (INRUSH)  
D(INRUSH)  
(8)  
Equation 8 assumes that load does not draw any current until the output voltage has reached its final value.  
9.2.1.2.4.2 Case 2: Start-Up with Load: Output Capacitance COUT and Load Draws Current During Start-Up  
When load draws current during the turn-on sequence, there will be additional power dissipated. Considering a  
resistive load during start-up (RL(SU)), load current ramps up proportionally with increase in output voltage during  
TdVdT time. The average power dissipation in the internal FET during charging time due to resistive load is given  
by:  
2
V
æ
ö
÷
÷
ø
1
6
(IN)  
÷
x
÷
ç
P
=
ç
D(LOAD)  
ç
è
R
L(SU)  
(9)  
(10)  
(11)  
Total power dissipated in the device during startup is:  
P
=
P + P  
D(INRUSH) D(LOAD)  
D(STARTUP)  
Total current during startup is given by:  
I
=
I
+ I (t)  
(STARTUP)  
(INRUSH) L  
If I(STARTUP) > IOL, the device limits the current to IOL and the current limited charging time is determined by:  
é
ê
ê
ê
ê
ê
ê
ê
ë
ù
ö
æ
ç
ç
ç
ç
ç
ç
ç
ç
ç
çI  
÷
ú
÷
÷
ú
÷
I
÷
I
(INRUSH)  
ú
÷
OL  
÷
ú
÷
÷
T
=
C
x R  
L(SU)  
x
-1+LN  
dVdT(Current-Limited)  
OUT  
V
I
ú
(IN)  
÷
(INRUSH)  
÷
-
ú
÷
OL  
ç
÷
ú
÷
L(SU) ø  
û
R
ç
è
(12)  
The power dissipation, with and without load, for selected start-up time should not exceed the shutdown limits as  
shown in Figure 40.  
10000  
1000  
100  
10  
TA = -40oC  
1
TA = 25oC  
TA = 85oC  
TA = 125oC  
0.1  
0.1  
1
10  
100  
Power Dissipation (W)  
D001  
Figure 40. Thermal Shutdown Limit Plot  
For the design example under discussion, select ramp-up capacitor CdVdT = OPEN. Then, using Equation 2.  
6
T
= 10 x 5 x 0 + 70 pF = 350 ms  
)
(
dVdT  
(13)  
The inrush current drawn by the load capacitance (COUT) during ramp-up using Equation 7.  
5
I
= 1 mF x  
= 14.3 mA  
(INRUSH)  
350 ms  
(14)  
(15)  
The inrush Power dissipation is calculated, using Equation 8.  
P
= 0.5 x 5 x 14.3 m = 36 mW  
D(INRUSH)  
Copyright © 2015, Texas Instruments Incorporated  
19  
 
 
 
 
TPS259230, TPS259231  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
For 36 mW of power loss, the thermal shut down time of the device should not be less than the ramp-up time  
TdVdT to avoid the false trip at maximum operating temperature. From thermal shutdown limit graph Figure 40 at  
TA = 85°C, for 36 mW of power, the shutdown time is infinite. So it is safe to use 350 µs as start-up time without  
any load on output.  
Considering the start-up with load 2 Ω, the additional power dissipation, when load is present during start up is  
calculated, using Equation 9.  
5 x 5  
P
=
= 2.08 W  
D(LOAD)  
6 ´ 2  
(16)  
The total device power dissipation during start up, using Equation 10 is:  
P
= 2.08 + 36 m = 2.44 W  
D(STARTUP)  
(17)  
From thermal shutdown limit graph at TA = 85°C, the thermal shutdown time for 2.44 W is more than 100 ms. So  
it is well within acceptable limits to use no external capacitor (CdV/dT) with start-up load of 2 Ω.  
If, due to large COUT, there is a need to decrease the power loss during start-up, it can be done with increase of  
CdVdT capacitor.  
9.2.1.2.5 Support Component Selection - CVIN  
CVIN is a bypass capacitor to help control transient voltages, unit emissions, and local supply noise. Where  
acceptable, a value in the range of 0.001 μF to 0.1 μF is recommended for CVIN  
.
9.2.1.3 Application Curves  
Figure 41. Output Ramp without Load on Output  
Figure 42. Output Ramp with 2-Ω Load at Start Up  
9.2.2 Inrush and Reverse Current Protection for Hold-Up Capacitor Application (for example, SSD)  
.locking C9Ç  
ëLb  
w1  
hÜÇ  
ëhÜÇ, LhÜÇ < 2ꢀ7!  
ëLb  
*
Ih[5-Üt  
4700mC  
ëLb  
0ꢀ1mC  
28mW  
ꢁ{516411  
C[Çꢃ  
1aW  
9b/Üë[h  
dëdÇ  
.C9Ç  
L[La  
w2  
4ꢂ3kW  
ùóa61t03C  
wL[La  
76ꢀ8kW  
dëdÇ  
22nC  
Db5  
Çt{25923x  
*hptional & only for noise suppression  
Figure 43. Inrush and Reverse Current Protection for Hold-Up Capacitor Application (for example, SSD)  
(TPS25923x UVLO is used as power fail comparator)  
20  
Copyright © 2015, Texas Instruments Incorporated  
TPS259230, TPS259231  
www.ti.com.cn  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
9.2.2.1 Design Requirements  
Table 3. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Input voltage range, VIN  
Undervoltage lockout set point, V(UV)  
Overvoltage protection set point, V(OV)  
Load at start-up, RL(SU)  
5 V  
4.5 V  
Default: VOVC = 6.1 V  
1000 Ω  
Current limit, IOL= IILIM  
3 A  
Load capacitance, COUT  
4700 µF  
85°C  
Maximum ambient temperature, TA  
9.2.2.2 Detailed Design Procedure  
9.2.2.2.1 Programming the Current-Limit Threshold: RILIM Selection  
The RILIM resistor at the ILIM pin sets the over load current limit, this can be set using Equation 4.  
For IOL= IILIM = 3 A, from Equation 4, RILIM = 76.8 kΩ, choose closest standard value resistor with 1% tolerance.  
9.2.2.2.2 Undervoltage Lockout Set Point  
The undervoltage lockout (UVLO) trip point is adjusted using the external voltage divider network of R1 and R2 as  
connected between IN, EN/UVLO and GND pins of the device. The values required for setting the undervoltage  
are calculated solving Equation 5.  
For UVLO of V(UV) = 4.5 V, select R2 = 453 kΩ, and R1 = 1 MΩ.  
The power failure threshold is detected on the falling edge of supply. This threshold voltage is 4% lower than the  
rising threshold, V(UV). This is calculated using Equation 6.  
Where V(UV) = 4.5 V, Power fail threshold set is V(PFAIL) = 4.33 V.  
9.2.2.2.3 Setting Output Voltage Ramp Time (TdVdT  
)
For a successful design, the junction temperature of device should be kept below the absolute-maximum rating  
during both dynamic (start-up) and steady state conditions. Dynamic power stresses often are an order of  
magnitude greater than the static stresses, so it is important to determine the right start-up time and in-rush  
current limit required with system capacitance to avoid thermal shutdown during start-up with and without load.  
For the design example under discussion, select ramp-up capacitor CdVdT = 22 nF. Then, using Equation 2.  
6
T
= 10 x 5 x 22 nF + 70 pF = 110 ms  
)
(
dVdT  
(18)  
The inrush current drawn by the load capacitance (COUT) during ramp-up using Equation 7.  
5
I
= 4700 mF x  
= 213 mA  
(INRUSH)  
110 ms  
(19)  
(20)  
The inrush Power dissipation is calculated, using Equation 8.  
P
= 0.5 x 5 x 213 m = 533 mW  
D(INRUSH)  
Considering the start-up with load 1000 Ω, the additional power dissipation, when load is present during start up  
is calculated, using Equation 9.  
5 x 5  
P
=
= 4.2 mW  
D(LOAD)  
6 ´ 1000  
(21)  
The total device power dissipation during start up is:  
P
= 533 + 4.2 = 537 mW  
D(STARTUP)  
(22)  
From thermal shutdown limit graph at TA = 85°C, the thermal shutdown time for 537 mW is more than 300 ms.  
So the device will start safely.  
Copyright © 2015, Texas Instruments Incorporated  
21  
TPS259230, TPS259231  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
9.2.2.2.4 Support Component Selection - CVIN  
CVIN is a bypass capacitor to help control transient voltages, unit emissions, and local supply noise. Where  
acceptable, a value in the range of 0.001 μF to 0.1 μF is recommended for CVIN  
.
9.2.2.3 Application Curves  
COUT = CHOLD-UP  
=
CdVdT = 22 nF  
COUT = CHOLD-UP  
=
V(PFAIL) = 4.33 V  
RLOAD = 5 Ω  
4700 µF  
4700 µF  
Figure 44. Output Ramp Up  
Figure 45. Hold-Up Power when VIN fails  
22  
Copyright © 2015, Texas Instruments Incorporated  
TPS259230, TPS259231  
www.ti.com.cn  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
10 Power Supply Recommendations  
The device is designed for supply voltage range of 4.5 V VIN 18 V. If the input supply is located more than a  
few inches from the device an input ceramic bypass capacitor higher than 0.1 μF is recommended. Power supply  
should be rated higher than the current limit set to avoid voltage droops during over current and short-circuit  
conditions.  
10.1 Transient Protection  
In case of short circuit and over load current limit, when the device interrupts current flow, input inductance  
generates a positive voltage spike on the input and output inductance generates a negative voltage spike on the  
output. The peak amplitude of voltage spikes (transients) is dependent on value of inductance in series to the  
input or output of the device. Such transients can exceed the Absolute Maximum Ratings of the device if steps  
are not taken to address the issue.  
Typical methods for addressing transients include:  
Minimizing lead length and inductance into and out of the device  
Using large PCB GND plane  
Schottky diode across the output to absorb negative spikes  
A low value ceramic capacitor (C(IN) = 0.001 µF to 0.1 µF) to absorb the energy and dampen the transients.  
The approximate value of input capacitance can be estimated with Equation 23.  
L
(IN)  
V
= V  
(IN)  
+ I x  
(LOAD)  
SPIKE(Absolute)  
C
(IN)  
(23)  
Where:  
V(IN) is the nominal supply voltage  
I(LOAD) is the load current  
L(IN) equals the effective inductance seen looking into the source  
C(IN) is the capacitance present at the input  
Some applications may require the addition of a Transient Voltage Suppressor (TVS) to prevent transients from  
exceeding the Absolute Maximum Ratings of the device.  
The circuit implementation with optional protection components (a ceramic capacitor, TVS and schottky diode) is  
shown in Figure 46.  
ëLb  
ëhÜÇ  
Lb  
hÜÇ  
*
/
ëLb  
28mO  
w1  
/
hÜÇ  
0.1µC  
9bꢀÜë[h  
dëdÇ  
*
*
ꢁC9Ç  
L[La  
w2  
/
dëdÇ  
Db5  
Çt{25923x  
*hptional components for  
transient suppression  
wL[La  
Figure 46. Circuit Implementation with Optional Protection Components  
10.2 Output Short-Circuit Measurements  
It is difficult to obtain repeatable and similar short-circuit testing results. Source bypassing, input leads, circuit  
layout and component selection, output shorting method, relative location of the short, and instrumentation all  
contribute to variation in results. The actual short itself exhibits a certain degree of randomness as it  
microscopically bounces and arcs. Care in configuration and methods must be used to obtain realistic results. Do  
not expect to see waveforms exactly like those in the data sheet; every setup differs.  
Copyright © 2015, Texas Instruments Incorporated  
23  
 
 
TPS259230, TPS259231  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For all applications, a 0.01-µF or greater ceramic decoupling capacitor is recommended between IN terminal  
and GND. For hot-plug applications, where input power path inductance is negligible, this capacitor can be  
eliminated/minimized.  
The optimum placement of decoupling capacitor is closest to the IN and GND terminals of the device. Care  
must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN terminal, and the  
GND terminal of the IC. See Figure 47 for a PCB layout example.  
High current carrying power path connections should be as short as possible and should be sized to carry at  
least twice the full-load current.  
The GND terminal must be tied to the PCB ground plane at the terminal of the IC. The PCB ground should be  
a copper plane or island on the board.  
Locate all support components: RILIM, CdVdT and resistors for EN/UVLO, close to their connection pin. Connect  
the other end of the component to the GND pin of the device with shortest trace length. The trace routing for  
the RILIM and CdVdT components to the device should be as short as possible to reduce parasitic effects on  
the current limit and soft start timing. These traces should not have any coupling to switching signals on the  
board.  
Protection devices such as TVS, snubbers, capacitors, or diodes should be placed physically close to the  
device they are intended to protect, and routed with short traces to reduce inductance. For example, a  
protection Schottky diode is recommended to address negative transients due to switching of inductive loads,  
and it should be physically close to the OUT pins.  
Obtaining acceptable performance with alternate layout schemes is possible; however this layout has been  
shown to produce good results and is intended as a guideline.  
11.2 Layout Example  
Çop layer  
.ottom layer signal ground plane  
ëia to signal ground plane  
Dround -  
.ottom  
layer  
1
2
3
4
5
dëꢄdÇ  
ꢂbꢄÜë[ꢀ  
ëLb  
10  
9
L[Lꢃ  
.CꢂÇ  
8
ꢀÜÇ  
ꢀÜÇ  
ꢀÜÇ  
7
6
ëLb  
ëLb  
ëLb  
ëhÜÇ  
*
*
ëLb  
Iigh Crequency  
.ypass /apacitor  
tower Dround  
* ꢀptional: beeded only to suppress the transients caused ꢁy inductive load switching  
Figure 47. Layout Example  
24  
版权 © 2015, Texas Instruments Incorporated  
 
TPS259230, TPS259231  
www.ti.com.cn  
ZHCSE39A AUGUST 2015REVISED AUGUST 2015  
12 器件和文档支持  
12.1 器件支持  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 文档支持  
12.2.1 相关文档  
TPS2592xx 设计计算器》(文献编号:SLUC570)  
12.3 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
4. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TPS259230  
TPS259231  
12.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS259230DRCR  
TPS259230DRCT  
TPS259231DRCR  
TPS259231DRCT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
259230  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
259230  
259231  
259231  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS259230DRCR  
TPS259230DRCT  
TPS259231DRCR  
TPS259231DRCR  
TPS259231DRCT  
TPS259231DRCT  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
10  
10  
3000  
250  
330.0  
180.0  
330.0  
330.0  
180.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
3000  
250  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS259230DRCR  
TPS259230DRCT  
TPS259231DRCR  
TPS259231DRCR  
TPS259231DRCT  
TPS259231DRCT  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
10  
10  
3000  
250  
367.0  
210.0  
367.0  
346.0  
210.0  
210.0  
367.0  
185.0  
367.0  
346.0  
185.0  
185.0  
35.0  
35.0  
35.0  
33.0  
35.0  
35.0  
3000  
3000  
250  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS259231DRCR

具有用于外部阻断 FET 的驱动器的 4.5V 至 5.5V、28mΩ、1A 至 5A 电子保险丝 | DRC | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259231DRCT

具有用于外部阻断 FET 的驱动器的 4.5V 至 5.5V、28mΩ、1A 至 5A 电子保险丝 | DRC | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25924

具有用于外部阻断 FET 的驱动器的 4.5V 至 13.8V、28mΩ、1A 至 5A 电子保险丝

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259240DRCR

具有用于外部阻断 FET 的驱动器的 4.5V 至 13.8V、28mΩ、1A 至 5A 电子保险丝 | DRC | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259240DRCT

具有用于外部阻断 FET 的驱动器的 4.5V 至 13.8V、28mΩ、1A 至 5A 电子保险丝 | DRC | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259241DRCR

具有用于外部阻断 FET 的驱动器的 4.5V 至 13.8V、28mΩ、1A 至 5A 电子保险丝 | DRC | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259241DRCT

具有用于外部阻断 FET 的驱动器的 4.5V 至 13.8V、28mΩ、1A 至 5A 电子保险丝 | DRC | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS25925

4.5V 至 5.5V、30mΩ、2A 至 5A 电子保险丝

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259250DRCR

4.5V 至 5.5V、30mΩ、2A 至 5A 电子保险丝 | DRC | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259250DRCT

4.5V 至 5.5V、30mΩ、2A 至 5A 电子保险丝 | DRC | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259251DRCR

4.5V 至 5.5V、30mΩ、2A 至 5A 电子保险丝 | DRC | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS259251DRCT

4.5V 至 5.5V、30mΩ、2A 至 5A 电子保险丝 | DRC | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI