TPS259530DSGR [TI]

采用小型 WSON 封装、具有过压保护功能的 2.7V 至 18V、34mΩ、0.5A 至 4A 电子保险丝 | DSG | 8 | -40 to 125;
TPS259530DSGR
型号: TPS259530DSGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用小型 WSON 封装、具有过压保护功能的 2.7V 至 18V、34mΩ、0.5A 至 4A 电子保险丝 | DSG | 8 | -40 to 125

电子 光电二极管
文件: 总49页 (文件大小:5565K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
TPS2595xx 2.7V 18V4A34mΩ 电子保险丝,具有快速过压保护  
1 特性  
3 说明  
1
宽输入电压范围:2.7V 18V  
TPS2595xx 系列电子保险丝(集成式 FET 热插拔设  
备)是小型封装内高度集成电路的保护和电源管理解决  
方案。这些设备只需很少的外部组件即可提供多种保护  
模式,能够非常有效地抵御过载、短路、电压浪涌和过  
多浪涌电流。  
绝对最大值为 20V  
TPS2595x5 版本:3V 18V  
低导通电阻:RON = 34mΩ(典型值)  
快速过压保护钳位(3.8V5.7V 13.7V),响应  
时间 5µs(典型值)  
输出电流限制级别可通过单个外部电阻设定。还可能通  
过测量整个电流限制电阻的压降实现对输出负载电流的  
准确感应。对 浪涌电流有特别要求的应用可以通过单  
个外部电容器设定输出转换率。过压事件由内部钳位电  
路快速限制在一个安全的固定最大值,而无需外部组  
件。TPS259573 型号提供可以设置用户定义过压截止  
阈值的选项。  
TPS2595x0TPS2595x1TPS2595x5:带有可  
调节欠压锁定 (UVLO) 的高电平有效使能输入  
TPS2595x3:带有可调节过压锁定 (OVLO) 的低电  
平有效使能输入  
配备负载电流监控器输出 (ILM) 的可调节电流限制  
电流范围:0.5A 4A  
电流限制准确度:±7.5%  
可调节的输出转换率控制 (dVdt)  
过热保护 (OTP)  
TPS2595x5 型号中,可通过将 OUT 引脚连接到  
QOD 引脚实施快速输出放电功能。  
故障指示引脚 (FLT)  
这些器件的独特运行温度范围为 –40°C +125°C。  
UL 2367 认证 文件号E169910  
器件信息(1)  
RILM >= 487(最大电流 4.42A)  
器件型号  
封装  
WSON (8)  
封装尺寸(标称值)  
IEC 62368-1 认证  
TPS2595xxDSG  
2.00mm x 2.00mm  
单点故障测试期间安全 (IEC 62368-1)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
ILM 引脚断开/短路检测  
2 应用  
热插拔  
适配器供电型系统  
多功能打印机  
固态硬盘 (SSD) 和硬盘 (HDD)  
工业系统  
白色家电  
机顶盒  
数字电视  
简化原理图  
TPS25953x 过压钳位响应时间  
TPS2595xx  
Power  
Supply  
IN  
OUT  
VFLT  
RVL1  
RFLT  
0.7 μs  
EN/UVLO  
dVdt  
FLT  
ILM  
Fault  
CIN  
COUT  
ROUT  
GND  
RVL2  
CdVdt  
RILM  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSE57  
 
 
 
 
 
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 25  
Application and Implementation ........................ 27  
9.1 Application Information............................................ 27  
9.2 Typical Application ................................................. 27  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings ............................................................ 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information ................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Switching Characteristics.......................................... 8  
7.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 18  
8.1 Overview ................................................................. 18  
8.2 Functional Block Diagram ....................................... 18  
8.3 Feature Description................................................. 18  
9
10 Power Supply Recommendations ..................... 33  
10.1 Transient Protection.............................................. 33  
10.2 Output Short-Circuit Measurements ..................... 34  
11 Layout................................................................... 34  
11.1 Layout Guidelines ................................................. 34  
11.2 Layout Example .................................................... 35  
12 器件和文档支持 ..................................................... 36  
12.1 文档支持................................................................ 36  
12.2 接收文档更新通知 ................................................. 36  
12.3 社区资源................................................................ 36  
12.4 ....................................................................... 36  
12.5 静电放电警告......................................................... 36  
12.6 术语表 ................................................................... 36  
13 机械、封装和可订购信息....................................... 37  
8
4 修订历史记录  
Changes from Revision B (March 2018) to Revision C  
Page  
已添加 将 (IEC 62368-1) 添加到特性 部分中的单点故障测试期间安全 .................................................................................. 1  
Changed UL 60950 to IEC 62368-1 in the Specifications Electrical Characteristics table .................................................... 5  
Changes from Revision A (December 2017) to Revision B  
Page  
已更改 multiplication symbol to an equal symbol before 229.2 mW in 公式 15 ................................................................... 29  
Changes from Original (June 2017) to Revision A  
Page  
将状态从预告信息更改成了生产数据 ..................................................................................................................................... 1  
2
Copyright © 2017–2018, Texas Instruments Incorporated  
 
TPS2595  
www.ti.com.cn  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
5 Device Comparison Table  
RESPONSE TO THERMAL  
SHUTDOWN (TSD)  
QUICK OUTPUT  
ENABLE  
DEVICE NUMBER  
OUTPUT VOLTAGE CLAMP  
DISCHARGE  
TPS259520DSG  
TPS259521DSG  
TPS259530DSG  
TPS259531DSG  
TPS259533DSG  
TPS259540DSG  
TPS259541DSG  
TPS259570DSG  
TPS259571DSG  
3.8 V (typ)  
3.8 V (typ)  
Latch-off  
Auto-retry  
Latch-off  
Auto-retry  
Auto-retry  
Latch-off  
Auto-retry  
Latch-off  
Auto-retry  
Active high  
Active high  
Active high  
Active high  
Active low  
Active high  
Active high  
Active high  
Active high  
No  
No  
No  
No  
No  
No  
No  
No  
No  
5.7 V (typ)  
5.7 V (typ)  
5.7 V (typ)  
13.7 V (typ)  
13.7 V (typ)  
No OV clamp  
No OV clamp  
Programmable Overvoltage  
Lockout  
TPS259573DSG  
Auto-retry  
Active low  
No  
TPS259525DSG  
TPS259535DSG  
3.8 V (typ)  
5.7 V (typ)  
Auto-retry  
Auto-retry  
Active high  
Active high  
Yes  
Yes  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
 
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
www.ti.com.cn  
6 Pin Configuration and Functions  
TPS2595x0/1 DSG Package  
8-Pin WSON  
TPS2595x5 DSG Package  
8-Pin WSON  
Top View  
Top View  
GND  
dVdt  
8
1
GND  
dVdt  
8
1
7
6
2
3
ILM  
FLT  
EN/UVLO  
IN  
7
6
2
ILM  
EN/UVLO  
IN  
GND  
(PAD)  
GND  
(PAD)  
3
QOD  
OUT  
OUT  
5
4
IN  
5
4
IN  
TPS2595x3 DSG Package  
8-Pin WSON  
Top View  
GND  
dVdt  
8
1
7
6
2
ILM  
FLT  
EN/OVLO  
IN  
GND  
(PAD)  
3
OUT  
5
4
IN  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
A capacitor from this pin to GND sets the output turn on slew rate. Leave this pin  
floating for the fastest turn on slew rate. (See Switching Characteristics).  
1
dVdt  
Analog I/O  
Active high enable for the TPS2595x0, TPS2595x1, TPS2595x5 variants. A resistor  
divider can be used to adjust the undervoltage lockout threshold. Do not leave floating.  
EN/UVLO  
EN/OVLO  
2
Analog input  
Active low enable for the TPS2595x3 variants. A resistor divider can be used to adjust  
the overvoltage lockout threshold. Do not leave floating.  
3,4  
5
IN  
Power  
Power  
Power input  
OUT  
Power output  
TPS2595x0, TPS2595x1, TPS2595x3: Fault event indicator which is pulled low when a  
fault is detected. It is an open drain output that requires an external pull up resistance.  
FLT  
6
7
Digital output  
TPS2595x5: Quick Output Discharge Pin, when tied to OUT directly or through external  
resistor.  
QOD  
This is a dual function pin used to limit and monitor the output current. An external  
resistor from this pin to GND sets the output current limit. The pin voltage can also be  
used to monitor the output load current. Do not leave floating.  
ILM  
Analog I/O  
Ground  
8
GND  
GND  
Ground  
PAD  
Thermal/Ground The exposed pad is used primarily for heat dissipation and must be connected to GND.  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
TPS2595  
www.ti.com.cn  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–1.2  
–0.3  
MAX  
20  
UNIT  
VIN  
Maximum input voltage  
IN  
V
V
V
V
VOUT  
VOUT,PLS  
VEN  
Maximum output voltage  
OUT  
OUT  
VIN + 0.3  
Minimum output voltage pulse (< 1 µs)  
Maximum enable pin voltage  
EN/UVLO or  
EN/OVLO  
7
VFLTB  
VQOD  
VdVdt  
IFLTB  
Maximum fault pin voltage (TPS2595x0/1/3)  
Maximum QOD pin voltage (TPS2595x5)  
Maximum dVdt pin voltage  
FLT  
–0.3  
–0.3  
7
7
V
V
QOD  
dVdt  
2.5  
10  
V
Maximum fault pin sink current  
Maximum continuous switch current  
Maximum junction temperature  
Maximum lead temperature  
FLT  
mA  
IMAX  
IN to OUT  
Internally limited  
Internally limited  
300  
–65 150  
TJ,MAX  
TLEAD  
TSTG  
°C  
°C  
Storage temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
(1)  
VIN  
Input voltage range (TPS2595x0/1/3)  
Input voltage range (TPS2595x5)  
Output voltage  
IN  
2.7  
3.0  
0
18  
V
V
V
VIN  
IN  
18(1)  
VOUT  
OUT  
VIN + 0.3  
EN/UVLO or  
EN/OVLO  
VEN  
Enable pin voltage  
0
6(2)  
V
VFLTB  
VQOD  
Fault pin voltage (TPS2595x0/1/3)  
Fault pin voltage (TPS2595x5)  
FLT  
0
0
6
6
V
V
QOD  
Continuous output current (TJ = –40 to 125οC)  
Continuous output current (TJ = –40 to 105οC)  
ILM pin resistance (Active Current Limiting Operation)  
dVdt capacitor value  
IN to OUT  
IN to OUT  
ILM  
4
5(3)  
A
IMAX  
A
RILM  
CdVdt  
VdVdt  
TJ  
487  
3300  
4
5000  
Ω
dVdt  
pF  
V
dVdt pin capacitor voltage rating  
dVdt  
Operating junction temperature  
–40  
125  
°C  
(1) The nominal input voltage should be limited to the output clamp voltage for the selected device option as listed in the Electrical  
Characteristics section  
(2) For supply voltages below 6V, it is okay to pull up the EN pin to IN directly. For supply voltages greater than 6V, it is recommended to  
use an appropriate resistor divider between IN, EN and GND to ensure the voltage at the EN pin is within the specified limits.  
(3) Guaranteed by design. Not tested at production.  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
www.ti.com.cn  
7.4 Thermal Information  
TPS2595x  
(1)  
THERMAL METRIC  
DSG (WSON)  
UNIT  
8 PINS  
65.6  
73.3  
28.3  
2
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
28.4  
9.8  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
TPS2595  
www.ti.com.cn  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
7.5 Electrical Characteristics  
(Test conditions unless otherwise noted) –40°C TJ 125°C, VIN = 12 V for TPS25954x/7x, VIN = 5 V for TPS25953x, VIN  
=
3.3 V for TPS25952x, VEN = 5 V (= 0 V for TPS2595x3 only) , RILM = 487 Ω , CdVdT = Open, OUT = Open. All voltages  
referenced to GND.  
PARAMETER  
INPUT SUPPLY (IN)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TPS2595x0/1/5  
TPS2595x3  
V
EN VUVLO  
EN VOVLO  
IQ  
IN quiescent current  
175  
250  
µA  
V
V
IN 5 V  
0.04  
0.45  
45  
µA  
µA  
µA  
V
TPS2595x0/1/5  
VEN < 0.5V  
ISD  
IN shutdown current  
5 V < VIN 18 V  
2
65  
TPS2595x3  
VEN > 2 V  
VIN Rising  
VIN Falling  
VIN Rising  
VIN Falling  
TPS2595x5  
2.7  
2.58  
2.44  
2.33  
2.8  
2.9  
TPS2595x5  
2.68  
2.54  
2.43  
2.78  
2.64  
2.53  
V
IN Undervoltage Protection  
Threshold  
VUVP  
TPS2595x0/1/3  
TPS2595x0/1/3  
V
V
OUTPUT VOLTAGE CLAMP (OUT)  
TPS25952x  
TPS25953x  
TPS25954x  
TPS25952x  
3.65  
5.5  
3.87  
5.7  
4.1  
5.9  
V
V
VOVC  
Overvoltage clamp threshold(1)  
VIN Rising, ROUT = 10 kΩ  
VIN VOVC, IOUT = 10 mA  
13.3  
3.4  
13.7  
3.6  
14.3  
3.8  
V
V
VCLAMP  
Output voltage while clamping(1) TPS25953x  
5.2  
5.45  
5.7  
V
TPS25954x  
13 13.55  
14.1  
V
IOUT = 4 A  
5
µs  
µs  
tOVC  
Output clamp response time(1)  
TPS25952x/3x/4x  
IOUT = 100 mA  
10  
OUTPUT CURRENT LIMIT AND MONITOR (ILM)  
Current monitor gain as  
measured on ILM pin  
IOUT = 4 A  
254  
276  
276  
299 µA/A  
304 µA/A  
GIMON  
IOUT = 1 A  
249  
(IILM / IOUT  
)
RILM = 487 Ω  
3.87  
1.09  
0.46  
4.17  
1.17  
0.49  
0
4.42  
1.24  
0.52  
A
A
A
A
RILM = 1780 Ω  
RILM = 4420 (3)  
ILIMIT  
IOUT Current limit(2)  
RILM = Open (Single Point Failure Test IEC 62368-1)  
IOUT Circuit Breaker Threshold  
during RILM Short condition  
RILM = Short to GND (Single Point Failure Test IEC 62368-  
1)  
ICB  
3
A
tLIM  
tSC  
Current limit response time(2)  
Short circuit response time(4)  
IOUT > ILIMIT + 20% to IOUT ILIMIT  
IOUT > ISC to IOUT ILIMIT  
250  
5
µs  
µs  
ON-RESISTANCE (IN - OUT)  
TJ = 25°C  
VIN = 4 V to 18 V TJ = –40°C to 85°C  
TJ = –40°C to 125°C  
34  
36  
37  
47  
53  
40  
51  
58  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
RON  
ON state resistance  
TJ = 25°C  
VIN = 2.7 V to 4 V TJ = –40°C to 85°C  
TJ = –40°C to 125°C  
(1) Refer to Fig 49  
(2) Refer to Fig 50  
(3) Guaranteed by design and characterization. Not tested at production.  
(4) Refer to Fig 52  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
(Test conditions unless otherwise noted) –40°C TJ 125°C, VIN = 12 V for TPS25954x/7x, VIN = 5 V for TPS25953x, VIN  
3.3 V for TPS25952x, VEN = 5 V (= 0 V for TPS2595x3 only) , RILM = 487 Ω , CdVdT = Open, OUT = Open. All voltages  
referenced to GND.  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ENABLE / UNDERVOLTAGE LOCKOUT (EN/UVLO) - TPS2595x0/1/5  
IEN  
EN/UVLO pin leakage current  
Undervoltage lockout threshold  
–0.1  
1.13  
1.03  
0.1  
1.27  
1.17  
µA  
VUVLO(R)  
VUVLO(F)  
VEN rising  
VEN falling  
1.2  
1.1  
V
V
ENABLE / OVERVOLTAGE LOCKOUT (EN/OVLO) - TPS2595x3  
IEN  
EN/OVLO pin leakage current  
–0.1  
1.13  
1.03  
0.1  
1.27  
1.17  
µA  
V
VOVLO(R)  
VOVLO(F)  
VEN rising  
VEN falling  
1.2  
1.1  
Overvoltage lockout threshold  
V
Overvoltage lockout response  
time  
tOVLO  
VEN > VOVLO to FLT ↓  
3
µs  
FAULT INDICATION (FLT ) - TPS2595x0/1/3  
RFLTB  
IFLTB  
FLT pin resistance  
FLT ↓  
12  
Ω
FLT pin leakage current  
VEN = 2 V, VFLTB = 0 V to 6 V  
–0.1  
0.1  
µA  
QUICK OUTPUT DISCHARGE (QOD) - TPS2595x5  
RQOD  
QOD effective resistance  
IN connected to EN, OUT connected to QOD, ENto 1V  
19  
Ω
OVERTEMPERATURE PROTECTION (TSD)  
TSD  
Thermal shutdown  
TJ Rising  
TJ Falling  
157  
5
°C  
°C  
TSDHYS  
Thermal shutdown hysteresis  
Thermal Shutdown Auto-Retry  
Interval  
Device Enabled and TJ < TSD -  
tTSD,RST  
TPS2595x1/3/5  
TSDHYS  
93  
ms  
7.6 Switching Characteristics  
Typical Values are taken at TJ = 25°C unless specifically noted otherwise. ROUT = 100 , COUT = 1 µF  
PARAMETER  
VIN  
3.3 V  
5 V  
CdVdt = Open  
16.3  
21.9  
38.2  
147  
CdVdt = 3300pF  
10.0  
UNIT  
SRON  
tD,ON  
tR  
Output Rising slew rate  
11.6  
V/ms  
µs  
12 V  
3.3 V  
5 V  
12.4  
254  
Turn on delay  
Rise time  
149  
289  
12 V  
3.3 V  
5 V  
153  
335  
157  
259  
179  
349  
µs  
12 V  
3.3 V  
5 V  
248  
763  
11.6  
11.3  
11.0  
11.6  
tD,OFF  
Turn off delay  
11.5  
µs  
12 V  
11.4  
8
版权 © 2017–2018, Texas Instruments Incorporated  
TPS2595  
www.ti.com.cn  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
VEN/UVLO  
EN/UVLO  
UVLO  
0
tON  
tD,OFF  
90%  
VIN  
SRON  
OUT  
10%  
0 V  
tR  
tD,ON  
tF  
Time  
1. TPS2595x0, TPS2595x1, TPS2595x5 Switching Times  
VEN/UVLO  
EN/OVLO  
OVLO  
0
tON  
tD,OFF  
90%  
VIN  
SRON  
OUT  
10%  
0 V  
tR  
tD,ON  
tF  
Time  
2. TPS2595x3 Switching Times  
版权 © 2017–2018, Texas Instruments Incorporated  
9
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
www.ti.com.cn  
7.7 Typical Characteristics  
60  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.7 V  
3.3 V  
5 V  
12 V  
18 V  
50  
40  
30  
20  
2.7 V  
3.3 V  
5 V  
12 V  
18 V  
-0.1  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D008  
D002  
IOUT = 0.5A , Different Input Voltages  
3. On-resistance vs Temperature  
TPS2595x0/1/5, EN=GND, OUT=Open, Different Input Voltages  
4. Shutdown Current vs Temperature  
2.82  
2.8  
2.56  
2.54  
2.52  
2.5  
2.78  
2.76  
2.74  
2.72  
2.7  
2.48  
Rising  
Falling  
2.46  
2.44  
2.42  
2.4  
2.68  
2.66  
2.64  
Rising  
Falling  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Temperature (èC)  
D004  
D005  
TPS2595x5  
TPS2595x0/1/3  
5. UVP Threshold vs Temperature  
6. UVP Threshold vs Temperature  
1.22  
1.2  
1.22  
1.2  
Rising  
Rising  
1.18  
1.16  
1.14  
1.12  
1.1  
1.18  
1.16  
1.14  
1.12  
1.1  
2.7 V  
5 V  
18 V  
2.7 V  
5 V  
2.7 V  
5 V  
18 V  
2.7 V  
5 V  
18 V  
18 V  
Falling  
Falling  
-25  
1.08  
-50  
1.08  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Temperature (èC)  
D006  
D007  
TPS2595x0/1/5, Different Input Voltages  
7. UVLO Threshold vs Temperature  
TPS259573, Different Input Voltages  
8. OVLO Threshold vs Temperature  
10  
版权 © 2017–2018, Texas Instruments Incorporated  
TPS2595  
www.ti.com.cn  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
Typical Characteristics (接下页)  
210  
13.7  
13.65  
13.6  
200  
190  
180  
170  
160  
150  
13.55  
13.5  
10 mA  
1 A  
3 A  
13.45  
13.4  
13.35  
13.3  
13.25  
13.2  
-40 èC  
25 èC  
85 èC  
105 èC  
125 èC  
140  
13.15  
0
5
10  
15  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Input Voltage (V)  
Temperature (èC)  
D003  
D009  
TPS25954x, Different Output Load Currents  
10. OVC Threshold vs Temperature  
9. Quiescent Current vs Input Voltage  
5.55  
5.5  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
5.45  
5.4  
10 mA  
1 A  
3 A  
5.35  
5.3  
5.25  
5.2  
5.15  
5.1  
10 mA  
1 A  
3 A  
5.05  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Temperature (èC)  
D010  
D011  
TPS25953x, Different Output Load Currents  
TPS25952x, Different Output Load Currents  
12. OVC Threshold vs Temperature  
11. OVC Threshold vs Temperature  
10  
6
5.5  
5
4420 W  
1780 W  
1020 W  
681 W  
487 W  
4.5  
4
3.5  
3
1
2.5  
2
1.5  
1
0.21  
0.5  
100  
1000  
10000  
-50  
0
50  
100  
150  
RILM (W)  
Temperature (èC)  
D012  
D013  
VIN = 12V, Different RILM values  
13. Output Current Limit (ILIMIT) vs RILM  
14. Output Current Limit (ILIMIT) vs Temperature  
版权 © 2017–2018, Texas Instruments Incorporated  
11  
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
6
3
2
487 W  
681 W  
1020 W  
1780 W  
4420 W  
5.5  
5
4.5  
4
1
3.5  
3
0
2.5  
2
-1  
-2  
-3  
1.5  
1
-40 èC  
25 èC  
85 èC  
125 èC  
0.5  
0
1
2
3
4
5
0
1
2
3
4
5
VDS (V)  
Output Current Limit (A)  
D023  
D027  
Different RILM values  
VIN = 5 V  
15. Output Current Limit vs VDS  
16. Output Current Limit Accuracy vs Output Current  
Limit  
4
3
4
3
4420 W  
1780 W  
1020 W  
681 W  
487 W  
4420 W  
1780 W  
1020 W  
681 W  
487 W  
2
2
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (èC)  
Temperature (èC)  
D028  
D029  
VIN = 3.3 V, Different RILM values  
VIN = 5 V, Different RILM values  
17. Output Current Limit Accuracy vs Temperature  
18. Output Current Limit Accuracy vs Temperature  
281  
4
3
4420 W  
1780 W  
1020 W  
681 W  
487 W  
280  
279  
278  
277  
276  
275  
274  
2
1
0
0.5 A  
1 A  
2 A  
3 A  
4 A  
-1  
-2  
-3  
-50  
0
50  
100  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Temperature (èC)  
D030  
D020  
VIN = 12 V, Different RILM values  
Different Output Load Currents  
19. Output Current Limit Accuracy vs Temperature  
20. Load Current Monitor Gain vs Temperature  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
TPS2595  
www.ti.com.cn  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
Typical Characteristics (接下页)  
20  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Maximum  
Typical  
Minimum  
Open  
3300 pF  
4700 pF  
6800 pF  
15  
10  
5
0
-5  
-10  
-15  
0
1
2
3
4
5
0
5
10  
15  
20  
IOUT (A)  
Input Voltage (V)  
D031  
D022  
Normalized to reference value of GIMON = 276uA/A  
Different CdVdt values  
22. Turn on Delay vs Input Voltage  
Open  
21. Load Current Monitor Gain Accuracy vs Load Current  
40  
1800  
1600  
1400  
1200  
1000  
800  
Open  
3300 pF  
4700 pF  
6800 pF  
3300 pF  
4700 pF  
6800 pF  
35  
30  
25  
20  
15  
10  
5
600  
400  
200  
0
0
2.5  
Different CdVdt values  
23. ON Slew Rate vs Input Voltage  
5
7.5  
10  
12.5  
2.5  
5
7.5  
10  
12.5  
Input Voltage (V)  
Input Voltage (V)  
D024  
D025  
Different CdVdt values  
24. Rise Time vs Input Voltage  
12  
11  
10  
9
10000  
1000  
100  
10  
-40 èC  
25 èC  
85 èC  
125 èC  
8
Open  
1
3300 pF  
4700 pF  
6800 pF  
7
6
0.1  
2.5  
Different CdVdt values  
25. Turn OFF Delay vs Input Voltage  
5
7.5  
10  
12.5  
1
10  
100  
Input Voltage (V)  
Power Dissipation (W)  
D026  
D001  
26. Thermal Shutdown Time vs Power Dissipation  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
98  
2.7 V  
3.3 V  
5 V  
12 V  
18 V  
96  
94  
92  
90  
88  
86  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
D019  
TPS2595x1/3/5, Different Input Voltages  
27. Thermal Shutdown Auto-Retry Interval vs Temperature  
VIN = 12 V, COUT = 10 µF, RILM = 487 Ω, VEN = 5 V  
VIN = 12 V, COUT = 10 µF, RILM = 487 Ω, VEN = 5 V  
28. Output Voltage Ramp and Inrush Current at Start Up,  
29. Output Voltage Ramp and Inrush Current at Start Up,  
CdVdT = Open  
CdVdT = 22 nF  
VIN = 12 V, COUT = 1 µF, RILM = 487 Ω, ROUT = 100 Ω  
31. Turn OFF Delay  
VIN = 12 V, COUT = 1 µF, RILM = 487 Ω, ROUT = 100 Ω  
30. Turn ON Delay  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
TPS2595  
www.ti.com.cn  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
Typical Characteristics (接下页)  
VIN = 12 V, COUT = 1 µF, RILM = 487 Ω, ROUT varied from 12 Ω to  
2 Ω to 12 Ω  
VIN = 12 V, COUT = 1 µF, RILM = 487 Ω, ROUT varied from 12 Ω to  
2 Ω to 12 Ω  
33. TPS2595x0 Overcurrent Response  
32. TPS2595x1, TPS2595x3, TPS2595x5 OverCurrent  
Response  
VIN = 12 V, COUT = 1 µF, RILM = 487 Ω  
VIN = 12 V, COUT = 1 µF, RILM = 487 Ω  
34. Output Hot Short to GND Response  
35. Output Hot Short to GND Response (Zoomed In)  
VIN = 12 V, COUT = 1 µF, RILM = 487 Ω  
VIN = 12 V, COUT = 1 µF, RILM = 487 Ω  
36. Wake Up With Output Short to GND  
37. Wake Up With Output Short to GND (Zoomed In)  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
VIN = 12 V, COUT = 1 µF, RILM = 487 Ω, FLT = 3.3 V through 10  
kΩ  
VIN = 12 V, COUT = 1 µF, RILM = 487 Ω, IOUT stepped from 4 A to  
4.8 A  
39. Hot Plug Response  
38. Output Load Transient Response  
VIN stepped from 12 V to 18 V, COUT = 1 µF, RILM = 487 Ω, FLT =  
3.3 V through 10 kΩ, ROUT = 100 Ω  
VIN stepped from 12 V to 18 V, COUT = 1 µF, RILM = 487 Ω, FLT =  
3.3 V through 10 kΩ, ROUT = 100 Ω  
40. TPS259573 Overvoltage Lockout Response  
41. TPS259573 Overvoltage Lockout FLT Response  
VIN stepped from 3 V to 6 V, COUT = 1 µF, RILM = 487 Ω, FLT= 3.3  
V through 10 kΩ, ROUT = 10 Ω  
VIN stepped from 5 V to 8 V, COUT = 1 µF, RILM = 487 Ω, FLT =  
3.3 V through 10 kΩ, ROUT = 10 Ω  
42. TPS25952x Overvoltage Clamp Response  
43. TPS25953x Overvoltage Clamp Response  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
TPS2595  
www.ti.com.cn  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
Typical Characteristics (接下页)  
VIN Stepped from 12 V to 15 V, COUT = 1 µF, RILM = 487 Ω, FLT =  
3.3 V through 10 kΩ, ROUT = 20 Ω  
VIN = 5 V, COUT = 1 µF, RILM = 487 Ω  
45. TPS2595x5 Quick Output Discharge, EN stepped from  
44. TPS25954x Overvoltage Clamp Response  
5 V to 0 V  
VIN  
VOUT  
EN  
VIN = 5 V, COUT = 1 µF, RILM = 487 Ω  
46. TPS2595x5 Quick Output Discharge, EN stepped from 5 V to 1 V  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS2595xx devices are integrated eFuse that are used to manage load voltage and load current. The  
device provides various factory programmed settings and user manageable settings, which allow device  
configuration for handling different transient and steady state supply and load fault conditions, thereby protecting  
the input supply and the downstream circuits connected to the device. The device also uses an in-built thermal  
shutdown mechanism to protect itself during these fault events.  
8.2 Functional Block Diagram  
3
4
5
7
IN  
IN  
OUT  
ILM  
+
Current  
Limit &  
Monitor  
Charge  
Pump  
œ
OVC(4)  
Driver  
UVP  
+
EN/UVLO(1)  
2
Control  
Logic  
1
6
8
dVdt  
œ
UVLO(3)  
FLT (2)  
Over Temperature  
Protection  
GND  
(1) For TPS2595x3, this pin is EN/OVLO  
(2) For TPS2595x5, this pin is QOD  
(3) For TPS2595x3, this voltage is OVLO  
(4) This block is not available in the TPS25957x  
8.3 Feature Description  
8.3.1 Undervoltage Protection (UVP) and Undervoltage Lockout (UVLO)  
All the TPS2595xx devices constantly monitor the input supply to ensure that the load is powered up only when  
the voltage is at a sufficient level. During the start-up condition, the device waits for the input supply to rise above  
a fixed threshold VUVP before it proceeds to turn ON the FET. Similarly, during the ON condition, if the input  
supply falls below the UVP threshold, the FET is turned OFF. The UVP rising and falling thresholds are slightly  
different, thereby providing some hysteresis and ensuring stable operation around the threshold voltage.  
The TPS2595x0, TPS2595x1, TPS2595x5 devices provide an user programmable UVLO mechanism to ensure  
that the load is powered up only when the voltage is at a sufficient level. This can be achieved by dividing the  
input supply and feeding it to the EN/UVLO pin. Whenever the voltage at the EN/UVLO pin falls below a  
threshold VUVLO, the device turns OFF the FET. The FET is turned ON again when the voltage rises above the  
threshold. The rising and falling thresholds on this pin are slightly different, thereby providing some hysteresis  
and ensuring stable operation around the threshold voltage.  
The user must choose the resistor divider values appropriately to map the desired input undervoltage level to the  
UVLO threshold of the part. See 47.  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
TPS2595  
www.ti.com.cn  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
Feature Description (接下页)  
VIN  
R1  
R2  
EN  
47. Undervoltage Lockout  
VUVLO ì R1+ R2  
(
)
VSUPPLY  
=
R2  
(1)  
8.3.2 Overvoltage Protection  
The TPS2595xx devices provide 2 ways to handle an input overvoltage condition.  
8.3.2.1 Overvoltage Lockout (OVLO)  
The TPS259573 device provides an user programmable OVLO mechanism to ensure that the supply to the load  
is cut off if the input supply voltage exceeds a certain level. This can be achieved by dividing the input supply  
and feeding it to the EN/OVLO pin. Whenever the voltage at the EN/OVLO pin rises above a threshold VOVLO, the  
device turns OFF the FET. When the voltage at the EN/OVLO pin falls below the threshold, the FET is turned  
ON again.  
The user should choose the resistor divider values appropriately to map the desired input overvoltage level to the  
OVLO threshold of the part.  
VIN  
R1  
EN  
R2  
48. Overvoltage Lockout  
8.3.2.2 Overvoltage Clamp (OVC)  
The TPS25952x, TPS25953x, TPS25954x devices provide a mechanism to clamp the output voltage to a  
predefined level quickly if the input voltage crosses a certain threshold. This ensures the load is not exposed to  
high voltages on any overvoltage at the input supply, and lowers the dependency on external protection devices  
(such as TVS/Zener diodes) in this condition. Once the input supply voltage rises above the OVC threshold  
voltage VOVC, the device responds by clamping the voltage to VCLAMP within a very short response time tOVC. As  
long as an overvoltage condition is present on the input, the output voltage will be clamped to VCLAMP. When the  
input drops below the output clamp threshold VOVC, the clamp releases the output voltage. See 49.  
During the overvoltage clamp condition, there could be significant heat dissipation in the internal FET depending  
on the VIN - VOUT voltage drop and the current through the FET leading to a thermal shutdown if the condition  
persists for an extended period of time. In this case, the device would either stay latched-off or start a auto retry  
cycle as explained in the Overtemperature Protection (OTP) section.  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
www.ti.com.cn  
Feature Description (接下页)  
VUVLO  
EN  
0
Input  
Overvoltage  
Event  
Auto-Restart  
with Input  
Overvoltage  
Input  
Overvoltage  
Removed  
IN  
VOVC  
0
tOVC  
VCLAMP  
OUT  
FLT  
0
VFLT  
tTSD,RST  
0
TSD  
TSDHYS  
TJ  
TJ  
Time  
49. TPS2595xx Overvoltage Clamp Response (Auto-Retry)  
Multiple device options are offered with different clamping voltage thresholds. See the Device Comparison Table  
for list of available voltage clamp options.  
8.3.3 Inrush Current, Overcurrent and Short Circuit Protection  
The TPS2595xx devices incorporates three levels of protection against overcurrent:  
Adjustable slew rate for inrush current control (dVdt).  
Active current limiting (ILIMIT) for overcurrent protection.  
A fast short circuit limit (ISC) to protect against hard short circuits.  
8.3.3.1 Slew Rate and Inrush Current Control (dVdt)  
The inrush current during turn on is directly proportional to the load capacitance and rising slew rate. 公式 2 can  
be used to find the slew rate SRON required to limit the inrush current IINRUSH for a given load capacitance COUT  
.
IINRUSH mA  
(
)
V
SR ON  
=
«
÷
ms  
COUT mF  
(
)
(2)  
For loads requiring a slower rising slew rate, a capacitance can be added to the dVdt pin to adjust the rising slew  
rate and lower the inrush current during turn on. The required CdVdt capacitance to produce a given slew rate can  
be calculated using 公式 3.  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
 
TPS2595  
www.ti.com.cn  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
Feature Description (接下页)  
42000  
C dVdt pF =  
(
)
V
SR ON ∆  
÷
ms  
«
(3)  
8.3.3.2 Active Current Limiting  
The load current is monitored during start-up and normal operation. When the load current exceeds the current  
limit trip point ILIMIT programmed by RILM resistor, the device regulates the current to the set limit ILIMIT within tLIM  
.
The device exits current limiting when the load current falls below limit. 公式 4 can be used to find the RILM value  
for a desired current limit.  
2000  
RILM  
=
I
- 0.04  
(
)
LIMIT  
(4)  
In the current limiting state, the output voltage drops resulting in increased power dissipation in the internal FET  
leading to a thermal shutdown if the condition persists for an extended period of time. In this case, the device  
either stays latched-off or starts an auto retry cycle as explained in the Overtemperature Protection (OTP)  
section.  
Soft Short on VOUT  
Auto Retry  
Into Short  
Auto Retry  
(Short Removed)  
IOUT  
ILIMIT  
0
VIN  
OUT  
FLT  
0
tLIM  
VFLTB  
tTSD,RST  
tTSD,RST  
0
TSD  
TSDHYS  
TJ  
TJ  
Time  
50. TPS2595x1, TPS2595x3, TPS2595x5 Overcurrent Response (Auto-Retry)  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
 
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
www.ti.com.cn  
Feature Description (接下页)  
VUVLO  
EN  
0
Soft Short on VOUT  
Short  
Removed  
Manual Restart  
(Device Re-enabled)  
ILIMIT  
IOUT  
0
VIN  
OUT  
FLT  
0
tLIM  
VFLTS  
0
TSD  
TSDHYS  
TJ  
TJ  
Time  
51. TPS2595x0 Overcurrent Response (Latch-Off)  
8.3.3.3 Short Circuit Protection  
The current through the device increases very rapidly during a transient short circuit event. The short circuit  
threshold ISC is adjusted based on the selected current limit. When a short circuit is detected, the device quickly  
limits the current to ILIMIT. The device stops limiting the current once the load current falls below the programmed  
ILIMIT threshold. See 52.  
The output voltage drops in the current limiting state, resulting in increased power dissipation in the internal FET  
and leads to a thermal shutdown if the condition persists for an extended period of time. In this case, the device  
either stays latched-off or starts an auto retry cycle as explained in the Overtemperature Protection (OTP)  
section.  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
TPS2595  
www.ti.com.cn  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
Feature Description (接下页)  
VEN/UVLO  
EN  
0
Hard Short on VOUT  
Short Removed  
IOUT  
ILIM  
0
VIN  
OUT  
0
tSC  
VFLTB  
FLT  
0
TJ  
TJ  
Time  
52. TPS2595xx Short Circuit Response  
8.3.4 Overtemperature Protection (OTP)  
Thermal shutdown occurs when the junction temperature TJ exceeds TSD. When the TPS2595x0 detects a  
thermal overload, it shuts down and remains latched off until the device is re-enabled or power cycled. When the  
TPS2595x1, TPS2595x3, TPS2595x5 devices detects a thermal overload, it remains off until the TJ decreases by  
TSDHYS and then waits for an additional delay of tTSD,RST after which it automatically retries to turn on if it is still  
enabled. See 1.  
1. TPS2595xx Thermal Shutdown  
Device  
Enter TSD  
Exit TSD  
TJ < TSD and Device Power Cycled or re-  
enabled using EN/UVLO pin  
TPS2595x0 (Latch-off)  
TJ TSD  
TPS2595x1, TPS2595x3, TPS2595x5 (Auto-  
retry)  
TJ < TSD – TSDHYS and tTSD,RST Timer  
Expired  
TJ TSD  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
 
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
www.ti.com.cn  
8.3.5 Fault Indication (FLT )  
2 summarizes the protection response to various fault conditions.  
2. TPS2595x0, TPS2595x1, TPS2595x3 Fault Summary  
EVENT / FAULT  
PROTECTION RESPONSE  
FLT INDICATION  
Overtemperature  
Shutdown  
Yes  
Output Voltage Clamp (OVC)  
(TPS25952x,TPS25953x,TPS25954x only)  
Overvoltage  
Overvoltage  
No  
Shutdown (OVLO)  
(TPS259573 only)  
Yes  
Undervoltage  
Overcurrent  
Short circuit  
ILM pin open  
ILM pin short  
Shutdown (UVP or UVLO)  
Current Limiting  
No  
No  
Current Limiting  
No  
No  
Shutdown  
Shutdown If IOUT > ICB  
Yes If IOUT > ICB  
When the TPS2595x0, TPS2595x1, TPS2595x3 devices are turned off as a result of a fault as described in the  
table above, the FLT pin is pulled low.  
All faults will be cleared if the device loses power or if it is re-enabled using the EN/UVLO (or EN/OVLO) pin.  
8.3.6 Quick Output Discharge (QOD)  
Some applications require the output capacitor to be discharged quickly when the eFuse is turned off. This  
prevents any unpredictable behavior from the downstream devices as the capacitor discharges slowly. The  
TPS2595x5 device provides a Quick Output Discharge feature that can be enabled by connecting OUT pin to  
QOD pin. An internal FET provides a fast discharge path for the output capacitor resulting in the OUT voltage  
falling to 0 V in a short time. The FET initially operates in saturation region and provides a constant current  
discharge. After the FET enters linear region, it offers a discharge path similar to a resistor.  
It is possible to model this as a simple equivalent resistance, which would discharge a given capacitor charged to  
a given voltage in the same time as the overall discharge circuit. This parameter is specified as the effective  
QOD resistance RQOD for the device. It takes a time equivalent to 5 time constants (τ = R × C) to discharge a  
capacitor by 99.3%. For example, with an effective QOD resistance of 19 Ω, the time taken to discharge a 100-  
µF capacitor from 5 V to 35 mV can be calculated as in 公式 5.  
tDischarge = 5 × 19 Ω × 100 µF = 9.5 ms  
(5)  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
TPS2595  
www.ti.com.cn  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
8.4 Device Functional Modes  
The features of the device depend on the operating mode.  
8.4.1 Enable and Fault Pin Functional Mode 1: Single Device, Self-Controlled  
In this mode of operation, the device is enabled by the VIN voltage without the need of an external processor to  
drive the ENABLE pin. The FLT pin is optionally monitored by an external host. See 53.  
TPS2595  
VIN  
VFLT  
IN  
R1  
RFLT  
EN  
FLT  
GPIO  
R2  
Copyright © 2017, Texas Instruments Incorporated  
53. Single Device, Self-Controlled  
8.4.2 Enable and Fault Pin Functional Mode 2: Single Device, Host-Controlled  
In this mode of operation, the device enable pin is driven by an external host. The pin can be driven directly from  
a GPIO without the need for any glue logic. The FLT pin is optionally monitored by the host. See 54.  
TPS2595  
VIN  
VFLT  
IN  
RFLT  
FLT  
Copyright © 2017, Texas Instruments Incorporated  
GPIO  
GPIO  
EN  
54. Single Device, Host-Controlled  
8.4.3 Enable and Fault Pin Functional Mode 2: Multiple Devices, Self-Controlled  
In this mode of operation, the devices are self-controlled (no host present). The EN and FLT pins are shorted  
together, and connected with up to three total devices as shown in 55. In this configuration, when any one of  
the TPS2595xx devices detects a fault, it automatically disables the other TPS2595xx devices in the system.  
This configuration is only applicable to the Active High Enable variants TPS2595x0,  
TPS2595x1, TPS2595x5.  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
 
 
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
www.ti.com.cn  
Device Functional Modes (接下页)  
TPS2595  
VIN  
R1  
R2  
FLT  
EN  
EN  
TPS2595  
FLT  
EN  
FLT  
TPS2595  
Copyright © 2017, Texas Instruments Incorporated  
55. Multiple Devices, Self-Controlled  
VOUT1  
VOUT2  
VOUT1  
VOUT2  
EN  
IIN  
EN  
IIN  
56. TPS259541 Self-controlled Mode Response with  
Overload Fault on OUT1 Followed by Auto-retry with  
Persistent Fault  
57. TPS259541 Self-controlled Mode Response with  
Overload on OUT1 Followed by Recovery with Fault  
Removed  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
TPS2595  
www.ti.com.cn  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS2595xx device is an integrated eFuse that is typically used for hot-swap and power rail protection  
applications. The device operates from 2.7 V to 18 V with programmable current limit and undervoltage  
protection. The device aids in controlling the in-rush current and provides precise current limiting during overload  
conditions for systems such as set-top box, DTVs, gaming consoles, SSDs, HDDs, and smart meters. The  
device also provides robust protection for multiple faults on the sub-system rail.  
The following design procedure can be used to select the supporting component values based on the application  
requirement. Additionally, a spreadsheet design tool TPS2595xx Design Calculation Tool is available.  
9.2 Typical Application  
3.3 V  
VIN = 2.7 to 18 V  
IN  
OUT  
VOUT  
(1)  
CIN  
0.1 µF  
34 m  
COUT  
1 µF  
R1  
1 MΩ  
R3  
10 kΩ  
FLT  
ILM  
EN/UVLO  
dVdt  
ADC  
TPS259541  
GND  
R2  
387 kΩ  
CdVDt  
3.3 nF  
RILM  
546 Ω  
Copyright © 2017, Texas Instruments Incorporated  
(1) CIN is optional and 0.1 µF is recommended to suppress transients due to the inductance of PCB routing or from input  
wiring.  
58. Typical Application Schematic: Simple e-Fuse for Set-Top Boxes  
9.2.1 Design Requirements  
3 lists the TPS25954x design requirements.  
3. Design Parameters  
DESIGN PARAMETER  
Input voltage , VIN  
EXAMPLE VALUE  
12 V  
Undervoltage lockout set point, VUV  
Overvoltage protection set point , VOV  
Load at start-up, RL(SU)  
4.3 V  
Default: VOVC = 13.7 V  
4 Ω  
3.7 A  
1 µF  
85°C  
Current limit, ILIMIT  
Load capacitance, COUT  
Maximum ambient temperatures, TA  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
 
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
The designer must know the following:  
Normal input operation voltage  
Maximum output capacitance  
Maximum current Limit  
Load during start-up  
Maximum ambient temperature of operation  
This design procedure seeks to control the junction temperature of device under both static and transient  
conditions by proper selection of output ramp-up time and associated support components. The designer can  
adjust this procedure to fit the application and design criteria.  
9.2.2.1 Programming the Current-Limit Threshold: RILM Selection  
The RILM resistor at the ILM pin sets the over load current limit, this can be set using 公式 6.  
2000  
RILM  
=
I LIMIT - 0.04  
(6)  
For ILIMIT = 3.7 A, from 公式 6, RILM is 546 Ω, choose closest standard value resistor with 1% tolerance.  
9.2.2.2 Undervoltage Lockout Set Point  
The undervoltage lockout (UVLO) trip point is adjusted using the external voltage divider network of R1 and R2 as  
connected between IN, EN/UVLO and GND pins of the device. The values required for setting the undervoltage  
are calculated solving 公式 7.  
R1+ R2  
VUV  
=
ì VUVLO(R)  
R2  
(7)  
Where VUVLO(R) is UVLO rising threshold (1.2 V). Because R1 and R2 leak the current from input supply VIN,  
these resistors must be selected based on the acceptable leakage current from input power supply VIN.  
The current drawn by R1 and R2 from the power supply is IR12 = VIN / (R1 + R2).  
However, leakage currents due to external active components connected to the resistor string can add error to  
these calculations. So, the resistor string current, IR12 must be chosen to be 20 times greater than the leakage  
current expected.  
To set the UVLO at VUVR = 4.3 V, select R2 = 387 k, and R1 = 1 MΩ.  
9.2.2.3 Setting Output Voltage Ramp Time (TdVdT  
)
For a successful design, the junction temperature of device must be kept below the absolute maximum rating  
during both dynamic (start-up) and steady state conditions. Dynamic power stresses often are an order of  
magnitude greater than the static stresses, so it is important to determine the right start-up time and in-rush  
current limit required with system capacitance to avoid thermal shutdown during start-up with and without load.  
The required ramp-up capacitor CdVdT is calculated considering the two possible cases (see Case 1: Start-Up  
Without Load. Only Output Capacitance COUT Draws Current and Case 2: Start-Up With Load. Output  
Capacitance COUT and Load Draw Current ).  
9.2.2.3.1 Case 1: Start-Up Without Load. Only Output Capacitance COUT Draws Current  
During start-up, as the output capacitor charges, the voltage drop as well as the power dissipated across the  
internal FET decreases. The average power dissipated in the device during start-up is calculated using 公式 9.  
For TPS2592xx device, the inrush current is determined as shown in 公式 8.  
VIN  
IINRUSH = COUT  
ì
TdVdT  
(8)  
Power dissipation during start-up is shown in 公式 9.  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
 
TPS2595  
www.ti.com.cn  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
PD(INRUSH) = 0.5 ì V ì IINRUSH  
IN  
(9)  
公式 9 assumes that load does not draw any current until the output voltage has reached its final value.  
9.2.2.3.2 Case 2: Start-Up With Load. Output Capacitance COUT and Load Draw Current  
When the load draws current during the turnon sequence, there is additional power dissipated. Considering a  
resistive load during start-up RL(SU), load current ramps up proportionally with increase in output voltage during  
TdVdT time. 公式 10 to 公式 13 show the average power dissipation in the internal FET during charging time due  
to resistive load.  
V2  
1
≈ ’  
IN  
PD(LOAD)  
=
ì
∆ ÷  
6
« ◊  
RL(SU)  
(10)  
(11)  
(12)  
Total power dissipated in the device during start-up is 公式 11.  
PD(STARTUP) = PD(INRUSH) + PD(LOAD)  
Total current during start-up is given by 公式 12.  
ISTARTUP = IINRUSH +IL (t)  
If ISTARTUP > ILIMIT, the device limits the current to ILIMIT and the current-limited charging time is determined by 公  
13.  
»
ÿ
Ÿ
Ÿ
Ÿ
Ÿ
÷
÷
÷
ILIMIT  
IINRUSH  
TdvdT(Current-Limited) = COUT ìRL(SU)  
ì
-1+LN  
V
IINRUSH  
IN  
ILIMIT  
-
«
÷
RL(SU)  
(13)  
The power dissipation, with and without load, for selected start-up time must not exceed the shutdown limits as  
shown in 59.  
10000  
-40 èC  
25 èC  
85 èC  
125 èC  
1000  
100  
10  
1
0.1  
1
10  
100  
Power Dissipation (W)  
D001  
59. Thermal Shutdown Limit Plot  
For the design example under discussion, select ramp-up capacitor CdVdt = OPEN. The default slew rate for CdVdt  
= OPEN is 38.2 mV/µs. With slew rate of 38.2 mV/µs, the ramp-up time TdVdt for 12 V input is 248 µs.  
The inrush current drawn by the load capacitance COUT during ramp-up using 公式 14.  
1F × 38.2 mV  
I INRUSH  
=
= 38.2 mA  
s  
(14)  
(15)  
The inrush power dissipation is calculated using 公式 15.  
P
= 0.5 ì 12 ì 38.2 m = 229.2 mW  
D(INRUSH)  
For 229.2 mW of power loss, the thermal shutdown time of the device must not be less than the ramp-up time  
TdVdt to avoid the false trip at the maximum operating temperature. 59 shows the thermal shutdown limit at TA  
= 85°C, for 229.2 mW of power, the shutdown time is infinite. Therefore, it is safe to use 248 µs as the start-up  
time without any load on the output.  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
 
 
 
 
 
 
 
 
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
www.ti.com.cn  
The additional power dissipation when a 4 Ω load is present during start-up is calculated using 公式 10.  
12 x 12  
P
=
= 6 W  
D(LOAD)  
6 ´ 4  
(16)  
(17)  
The total device power dissipation during start-up is given in 公式 17.  
PD(STARTUP) = 6 + 229.2 m = 6.229 W  
The 59 shows TA = 85°C and the thermal shutdown time for 6.229 W is more than 10 ms, which is well within  
the acceptable limits to not use an external capacitor CdVdt with a start-up load of 4 Ω.  
When COUT is large, there is a need to decrease the power dissipation during start-up. This can be done by  
increasing the value of the CdVdt capacitor.  
9.2.3 Support Component Selection: CIN  
CIN is a bypass capacitor to help control transient voltages, unit emissions, and local supply noise. Where  
acceptable, a value in the range from 0.001 μF to 0.1 μF is recommended for CIN.  
9.2.4 Application Curves  
VIN  
VIN  
VOUT  
VOUT  
EN  
IIN  
EN  
IIN  
61. Output Ramp with 4 Ω Load at Start-up  
60. Output Ramp without Any Load  
9.2.5 Controlled Power Down (Quick Output Discharge) using TPS2595x5  
When the TPS2595x5 device is disabled, the output voltage is left floating and the power-down profile is entirely  
dictated by the load. In some applications, this can lead to undesired activity because the load is not powered  
down to a defined state. Controlled output discharge can ensure the load is completely turned off and is not in an  
undefined operational state. The QOD pin in the TPS2595x5 device can be connected to the OUT pin to facilitate  
the Quick Output Discharge function, as shown in 62. When the TPS2595x5 device is disabled, the QOD pin  
is pulled low and provides a quick discharge path for the output capacitor. The output voltage discharge rate is  
dictated by the output capacitor COUT, the total discharge path resistance (internal plus external), and the load.  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
 
TPS2595  
www.ti.com.cn  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
VOUT  
VIN = 5 V  
IN  
OUT  
CIN  
0.1 µF  
34 m  
COUT  
100 µF  
RLOAD  
1000 Ω  
RQODEXT  
QOD  
ILM  
from µC  
EN/UVLO  
dVdt  
TPS2595x5  
GND  
RILM  
CdVDt  
487 Ω  
3.3 nF  
Copyright © 2017, Texas Instruments Incorporated  
62. Circuit Implementation with Quick Output Discharge Function using TPS2595x5  
VIN  
VIN  
VOUT  
VOUT  
EN  
EN  
63. Output Voltage Discharge using TPS259535 without  
QOD [VIN = 5 V, EN = H L, COUT = 100 µF, RLOAD = 1000  
Ω, RQODEXT = OPEN]  
64. Output Voltage Discharge using TPS259535 with  
QOD [VIN = 5 V, EN = H L, COUT = 100 µF, RLOAD = 1000  
Ω, RQODEXT = Short]  
9.2.6 Overvoltage Lockout using TPS259573  
The TPS259573 device incorporates a circuit to protect the system during overvoltage conditions. A resistor  
divider connected from the supply to the EN/OVLO pin to GND (as shown in 65) programs the overvoltage  
threshold. A voltage more than VOVLO on the EN/OVLO pin turns off the internal FET and protects the  
downstream load. 66 shows overvoltage cut-off at the input voltage of 15 V.  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
www.ti.com.cn  
3.3 V  
VOUT  
VIN = 2.7 to 18 V  
IN  
OUT  
CIN  
0.1 µF  
34 m  
R3  
10 kΩ  
COUT  
1 µF  
RLOAD  
100 Ω  
R1  
1 MΩ  
FLT  
ILM  
EN/OVLO  
dVdt  
TPS259573  
GND  
R2  
86.9 kΩ  
CdVDt  
3.3 nF  
RILM  
487 Ω  
Copyright © 2017, Texas Instruments Incorporated  
65. Circuit Implementation for Overvoltage Lockout using TPS259573  
66. Overvoltage Lockout Response using TPS259573  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
TPS2595  
www.ti.com.cn  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
10 Power Supply Recommendations  
The TPS2595xx devices are designed for a supply voltage range of 2.7 V VIN 18 V. An input ceramic bypass  
capacitor higher than 0.1 μF is recommended if the input supply is located more than a few inches from the  
device. The power supply must be rated higher than the set current limit to avoid voltage droops during  
overcurrent and short-circuit conditions.  
10.1 Transient Protection  
In the case of a short circuit and overload current limit when the device interrupts current flow, the input  
inductance generates a positive voltage spike on the input, and the output inductance generates a negative  
voltage spike on the output. The peak amplitude of voltage spikes (transients) is dependent on the value of  
inductance in series to the input or output of the device. Such transients can exceed the absolute maximum  
ratings of the device if steps are not taken to address the issue. Typical methods for addressing transients  
include:  
Minimize lead length and inductance into and out of the device.  
Use a large PCB GND plane.  
Use a Schottky diode across the output to absorb negative spikes.  
Use a low-value ceramic capacitor CIN = 0.001 μF to 0.1 μF to absorb the energy and dampen the transients.  
The approximate value of input capacitance can be estimated with 公式 18:  
L(IN  
)
VSPIKE Absolute = V IN + I(LOAD) ì  
(
)
(
)
C(IN  
)
where  
V(IN) is the nominal supply voltage  
I(LOAD) is the load current  
L(IN) equals the effective inductance seen looking into the source  
C(IN) is the capacitance present at the input  
(18)  
Some applications may require the addition of a Transient Voltage Suppressor (TVS) to prevent transients from  
exceeding the absolute maximum ratings of the device.  
The circuit implementation with optional protection components (a ceramic capacitor, TVS and Schottky diode) is  
shown in 67.  
3.3 V  
VOUT  
VIN = 2.7 to 18 V  
IN  
OUT  
CIN  
0.1 µF  
34 m  
R3  
10 kΩ  
COUT  
1 µF  
RLOAD  
100 Ω  
R1  
1 MΩ  
FLT  
ILM  
EN/UVLO  
dVdt  
TPS2595xx  
GND  
R2  
86.9 kΩ  
CdVDt  
3.3 nF  
RILM  
487 Ω  
Copyright © 2017, Texas Instruments Incorporated  
67. Circuit Implementation with Optional Protection Components  
版权 © 2017–2018, Texas Instruments Incorporated  
33  
 
 
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
www.ti.com.cn  
10.2 Output Short-Circuit Measurements  
It is difficult to obtain repeatable and similar short-circuit testing results. The following contribute to variation in  
results:  
Source bypassing  
Input leads  
Circuit layout  
Component selection  
Output shorting method  
Relative location of the short  
Instrumentation  
The actual short exhibits a certain degree of randomness because it microscopically bounces and arcs. Ensure  
that configuration and methods are used to obtain realistic results. Do not expect to see waveforms exactly like  
those in this data sheet because every setup is different.  
11 Layout  
11.1 Layout Guidelines  
For all applications, a ceramic decoupling capacitor of 0.01 µF or greater is recommended between the IN  
terminal and GND terminal. For hot-plug applications, where input power-path inductance is negligible, this  
capacitor can be eliminated or minimized.  
The optimal placement of the decoupling capacitor is closest to the IN and GND terminals of the device. Care  
must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN terminal, and the  
GND terminal of the IC. See 68 for a PCB layout example.  
High current-carrying power-path connections must be as short as possible and must be sized to carry at  
least twice the full-load current.  
The GND terminal must be tied to the PCB ground plane at the terminal of the IC. The PCB ground must be a  
copper plane or island on the board.  
Locate the following support components close to their connection pins:  
RILM  
CdVdT  
Resistors for the EN/UVLO (or EN/OVLO) pin  
Connect the other end of the component to the GND pin of the device with shortest trace length. The trace  
routing for the RILM and CdVdT components to the device must be as short as possible to reduce parasitic  
effects on the current limit and soft start timing. These traces must not have any coupling to switching signals  
on the board.  
Protection devices such as TVS, snubbers, capacitors, or diodes must be placed physically close to the  
device they are intended to protect. These protection devices must be routed with short traces to reduce  
inductance. For example, a protection Schottky diode is recommended to address negative transients due to  
switching of inductive loads, and it must be physically close to the OUT pins.  
Obtaining acceptable performance with alternate layout schemes is possible; Layout Example has been  
shown to produce good results and is intended as a guideline.  
34  
版权 © 2017–2018, Texas Instruments Incorporated  
TPS2595  
www.ti.com.cn  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
11.2 Layout Example  
Top Layer  
Bottom Layer Ground Plane  
Via to Bottom Ground Plane  
Power Ground  
dVdt  
EN/UVLO  
IN  
1
2
3
4
8
7
6
5
GND  
ILM  
Bottom  
Ground  
Layer  
GND  
FLT  
VIN  
VOUT  
IN  
OUT  
*
*
High  
Frequency  
Bypass  
Capacitor  
Power Ground  
(1) Optional: Needed only to suppress the transients caused by inductive load switching  
68. TPS2595xx Layout  
版权 © 2017–2018, Texas Instruments Incorporated  
35  
TPS2595  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
TPS2595EVM 电子保险丝评估板  
TPS2595xx 设计计算工具  
12.1.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即购买的快速链接。  
4. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
工具和软件  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
TPS259520  
TPS259521  
TPS259530  
TPS259531  
TPS259533  
TPS259540  
TPS259541  
TPS259570  
TPS259571  
TPS259573  
TPS259525  
TPS259535  
12.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。单击右上角的通知我 进行注册,即可每  
周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
36  
版权 © 2017–2018, Texas Instruments Incorporated  
TPS2595  
www.ti.com.cn  
ZHCSHV0C JUNE 2017REVISED APRIL 2018  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请参阅左侧的导航栏。  
版权 © 2017–2018, Texas Instruments Incorporated  
37  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS259520DSGR  
TPS259520DSGT  
TPS259521DSGR  
TPS259521DSGT  
TPS259525DSGR  
TPS259525DSGT  
TPS259530DSGR  
TPS259530DSGT  
TPS259531DSGR  
TPS259531DSGT  
TPS259533DSGR  
TPS259533DSGT  
TPS259535DSGR  
TPS259535DSGT  
TPS259540DSGR  
TPS259540DSGT  
TPS259541DSGR  
TPS259541DSGT  
TPS259570DSGR  
TPS259570DSGT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
ES20  
ES20  
ES21  
ES21  
ES25  
ES25  
ES30  
ES30  
ES31  
ES31  
ES33  
ES33  
ES35  
ES35  
ES40  
ES40  
ES41  
ES41  
ES70  
ES70  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
250  
RoHS & Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Apr-2023  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS259571DSGR  
TPS259571DSGT  
TPS259573DSGR  
TPS259573DSGT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
ES71  
ES71  
ES73  
ES73  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Apr-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Nov-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS259520DSGR  
TPS259520DSGT  
TPS259521DSGR  
TPS259521DSGT  
TPS259525DSGR  
TPS259525DSGT  
TPS259530DSGR  
TPS259530DSGT  
TPS259531DSGR  
TPS259531DSGT  
TPS259533DSGR  
TPS259533DSGT  
TPS259535DSGR  
TPS259535DSGT  
TPS259540DSGR  
TPS259540DSGT  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Nov-2022  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS259541DSGR  
TPS259541DSGT  
TPS259570DSGR  
TPS259570DSGT  
TPS259571DSGR  
TPS259571DSGT  
TPS259573DSGR  
TPS259573DSGT  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
8
8
8
8
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Nov-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS259520DSGR  
TPS259520DSGT  
TPS259521DSGR  
TPS259521DSGT  
TPS259525DSGR  
TPS259525DSGT  
TPS259530DSGR  
TPS259530DSGT  
TPS259531DSGR  
TPS259531DSGT  
TPS259533DSGR  
TPS259533DSGT  
TPS259535DSGR  
TPS259535DSGT  
TPS259540DSGR  
TPS259540DSGT  
TPS259541DSGR  
TPS259541DSGT  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
3000  
250  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Nov-2022  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS259570DSGR  
TPS259570DSGT  
TPS259571DSGR  
TPS259571DSGT  
TPS259573DSGR  
TPS259573DSGT  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
8
8
3000  
250  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
3000  
250  
Pack Materials-Page 4  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS259530DSGT

采用小型 WSON 封装、具有过压保护功能的 2.7V 至 18V、34mΩ、0.5A 至 4A 电子保险丝 | DSG | 8 | -40 to 125
TI

TPS259531DSGR

采用小型 WSON 封装、具有过压保护功能的 2.7V 至 18V、34mΩ、0.5A 至 4A 电子保险丝 | DSG | 8 | -40 to 125
TI

TPS259531DSGT

采用小型 WSON 封装、具有过压保护功能的 2.7V 至 18V、34mΩ、0.5A 至 4A 电子保险丝 | DSG | 8 | -40 to 125
TI

TPS259533DSGR

采用小型 WSON 封装、具有过压保护功能的 2.7V 至 18V、34mΩ、0.5A 至 4A 电子保险丝 | DSG | 8 | -40 to 125
TI

TPS259533DSGT

采用小型 WSON 封装、具有过压保护功能的 2.7V 至 18V、34mΩ、0.5A 至 4A 电子保险丝 | DSG | 8 | -40 to 125
TI

TPS259535DSGR

采用小型 WSON 封装、具有过压保护功能的 2.7V 至 18V、34mΩ、0.5A 至 4A 电子保险丝 | DSG | 8 | -40 to 125
TI

TPS259535DSGT

采用小型 WSON 封装、具有过压保护功能的 2.7V 至 18V、34mΩ、0.5A 至 4A 电子保险丝 | DSG | 8 | -40 to 125
TI

TPS259540DSGR

采用小型 WSON 封装、具有过压保护功能的 2.7V 至 18V、34mΩ、0.5A 至 4A 电子保险丝 | DSG | 8 | -40 to 125
TI

TPS259540DSGT

采用小型 WSON 封装、具有过压保护功能的 2.7V 至 18V、34mΩ、0.5A 至 4A 电子保险丝 | DSG | 8 | -40 to 125
TI

TPS259541DSGR

采用小型 WSON 封装、具有过压保护功能的 2.7V 至 18V、34mΩ、0.5A 至 4A 电子保险丝 | DSG | 8 | -40 to 125
TI

TPS259541DSGT

采用小型 WSON 封装、具有过压保护功能的 2.7V 至 18V、34mΩ、0.5A 至 4A 电子保险丝 | DSG | 8 | -40 to 125
TI

TPS259570DSGR

采用小型 WSON 封装、具有过压保护功能的 2.7V 至 18V、34mΩ、0.5A 至 4A 电子保险丝 | DSG | 8 | -40 to 125
TI