TPS26622DRCT [TI]

具有集成输入和输出反极性保护功能的 4.5V 至 60V、478mΩ、0.025A 至 0.88A 电子保险丝

| DRC | 10 | -40 to 125;
TPS26622DRCT
型号: TPS26622DRCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成输入和输出反极性保护功能的 4.5V 至 60V、478mΩ、0.025A 至 0.88A 电子保险丝

| DRC | 10 | -40 to 125

电子 光电二极管
文件: 总46页 (文件大小:4453K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS2662  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
TPS2662x 具有集成输入和输出反极性保护功能60V 800mA 工业电子保险丝  
1 特性  
3 说明  
• 工作电压4.5V 60V,  
绝对最大值62V  
• 集成反向输入极性保护低至  
60V  
• 集成反向输出极性保护低至  
(60 VIN)TPS26624 TPS26625)  
RON 478mΩ集成背对MOSFET  
25mA 880mA 可调节电流限制  
880mA 时精度±5%)  
TPS2662x 系列高电压电子保险丝设计紧凑功能丰  
且具有一整套保护功能。4.5V 60V 的宽电源输  
入范围可实现对众多常用直流总线电压的控制。该器件  
可以承受并保护由高±60V 的正负电源供电的负载。  
TPS26624 TPS26625 器件支持输入和输出反极性  
保护功能。集成的背对背 FET 可提供反向电流阻断功  
因此该器件适用于在电源故障和欠压条件下要求保  
持输出电压的系统。负载、电源和器件保护具有许多可  
调特性包括过流、输出压摆率和过压、欠压阈值。  
TPS2662x 系列内部可靠的保护控制模块以及高额定电  
压有助于简化针对浪涌保护的系统设计。  
• 使用最少的外部组件在浪涌期间提供负载保(IEC  
61000-4-5)  
• 符IEC 61000-4-4 标准的电气快速瞬变抗扰度  
• 快速反向电流阻断响(0.3µs)  
• 可调UVLOOVP 切断、  
输出压摆率控制用于浪涌电流限制  
38V 固定过压钳位  
TPS26622 TPS26623)  
• 低静态电流工作时340µA,  
关断时12µA)  
TPS26620TPS26622 TPS26624 具有闭锁功能,  
TPS26621TPS26623 TPS26625 具有自动重试功  
用于应对过热和过流故障事件。  
这些器件采用 3mm × 3mm 10 引脚 SON 封装额定  
工作温度范围40°C +125°C。  
器件信息(1)  
封装尺寸标称值)  
器件型号  
TPS26620  
封装  
• 小尺- 10L (3mm × 3mm) VSON  
• 通UL 2367 认证  
TPS26621  
TPS26622  
TPS26623  
TPS26624  
TPS26625  
– 文件编169910  
RILIM 7.5kΩ最大电流0.91A)  
• 通IEC 62368-1 认证  
SON (10)  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
PLC I/O 模块  
• 交流和伺服驱动器  
• 传感器和控制  
• 恒温器  
PoE 高侧保护  
VIN  
VIN: 4.5 V - 60 V  
OUT  
VOUT  
IN  
COUT  
CIN  
478 mΩ  
R1  
R4  
Health  
UVLO  
OVP  
VOUT  
FLT  
Monitor  
TPS2662x  
R2  
ON/OFF  
Control  
SHDN  
MODE  
dVdT  
RTN  
IIN  
ILIM  
R3  
CdVdT  
GND  
RILIM  
60V 电源时的反向输入极性保护  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDT4  
 
 
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
Table of Contents  
10 Application and Implementation................................25  
10.1 Application Information........................................... 25  
10.2 Typical Application.................................................. 25  
10.3 System Examples................................................... 31  
10.4 Do's and Don'ts.......................................................32  
11 Power Supply Recommendations..............................33  
11.1 Transient Protection................................................ 33  
12 Layout...........................................................................35  
12.1 Layout Guidelines................................................... 35  
12.2 Layout Example...................................................... 36  
13 Device and Documentation Support..........................37  
13.1 Documentation Support.......................................... 37  
13.2 接收文档更新通知................................................... 37  
13.3 支持资源..................................................................37  
13.4 Trademarks.............................................................37  
13.5 Electrostatic Discharge Caution..............................37  
13.6 术语表..................................................................... 37  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................4  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................6  
7.6 Timing Requirements..................................................8  
7.7 Typical Characteristics................................................9  
8 Parameter Measurement Information..........................14  
9 Detailed Description......................................................15  
9.1 Overview...................................................................15  
9.2 Functional Block Diagram.........................................16  
9.3 Feature Description...................................................16  
9.4 Device Functional Modes..........................................24  
Information.................................................................... 37  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision E (August 2019) to Revision F (December 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Moved ISHDN from Source Current to Sink Current row in the Absolute Maximum Ratings table.......................5  
Changed External Capacitance min from 0.1 to 0.01 in Recommended Operating Conditions table................ 5  
Deleted OVPMAX row in Electrical Characteristics table..................................................................................... 6  
Changed I(FLT) test condition in Electrical Characteristics table..........................................................................6  
Deleted UVLO_tREC row in Timing Requirements table..................................................................................... 8  
Updated the Parameter Measurement Information section..............................................................................14  
Added tCL_Dly description to Overvoltage Protection (OVP) section................................................................. 17  
Changed device mention to TPS2662x to include all variants in Input Side Reverse Polarity Protection section  
..........................................................................................................................................................................19  
Added UVLO back to the Overload Protection section.....................................................................................20  
Added more description and clarification for the tCL(dly) parameter in the Overload Protection section............20  
Added minimum voltage to FAULT Response section......................................................................................23  
Changes from Revision D (February 2019) to Revision E (August 2019)  
Page  
• 将特性部分中的“UL 2367 认证正在处理中”更改为“通UL 2367 认证”和“通IEC 62368-1 认证”.... 1  
Replaced TPS26623 with TPS26624 for Pin No. 4 SHDN in the Pin Functions table........................................4  
Added UVLO Recovery Time in the Timing Requirements table in the Specifications section.......................... 5  
Changed Input voltage range MAX from 60 V to 62 V in tne Absolute Maximum Ratings table in the  
Specifications section......................................................................................................................................... 5  
Changed Input voltage MAX from 57 V to 60 V in the Recommended Operating Conditions table in the  
Specifications section......................................................................................................................................... 5  
Updated the Parameter Measurement Information graph to explain the UVLO_tREC ..................................... 14  
Updated the Feature Description Undervoltage Lockout (UVLO) section to explain the UVLO_tREC timer..... 16  
Updated the Feature Description Undervoltage Lockout (UVLO) section ....................................................... 16  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS2662  
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
Removed UVLO from the Overload Protection section ................................................................................... 20  
Changes from Revision C (July 2018) to Revision D (February 2019) Page  
Changed SHDN pin voltage MAX from 4 V to 6 V in the Recommended Operating Conditions table in the  
Specifications section ........................................................................................................................................ 5  
Changes from Revision B (April 2018) to Revision C (July 2018)  
Page  
• 将状态从“预告信息”更改为“量产数据”....................................................................................................... 1  
Changes from Revision A (March 2018) to Revision B (April 2018)  
Page  
Changed Repinse to Response in the Device Comparison table header ..........................................................4  
Changes from Revision * (October 2017) to Revision A (March 2018)  
Page  
• 将一页更改为整个数据表.................................................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS2662  
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
5 Device Comparison Table  
OVERLOAD and THERMAL FAULT  
RESPONSE  
PART NUMBER  
OVERVOLTAGE PROTECTION  
REVERSE POLARITY PROTECTION  
TPS26620  
TPS26621  
TPS26622  
TPS26623  
TPS26624  
TPS26625  
Overvoltage cut-off, adjustable  
Overvoltage cut-off, adjustable  
Overvoltage clamp, fixed (38 V)  
Overvoltage clamp, fixed (38 V)  
Overvoltage cut-off, adjustable  
Overvoltage cut-off, adjustable  
Latch Off  
Auto-Retry  
Latch Off  
Input side  
Input side  
Input side  
Auto-Retry  
Latch Off  
Input side  
Input and Output side  
Input and Output side  
Auto-Retry  
6 Pin Configuration and Functions  
10  
9
OUT  
FLT  
1
2
IN  
UVLO  
3
4
5
8
dVdT  
OVP  
PowerPad TM  
SHDN  
7
6
ILIM  
RTN  
GND  
6-1. DRC Package 10-Pin VSON Top View  
6-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
1
IN  
Power  
Input supply voltage  
Resistor programmable undervoltage lockout threshold setting input. An undervoltage event  
opens the internal FET. If the Undervoltage Lock Out function is not needed, the UVLO terminal  
must be connected to the IN terminal with at least a 1-Mresistor. UVLO pin is 5-V rated and  
this resistor limits the UVLO pin current to < 60 µA.  
2
UVLO  
I
Resistor programmable overvoltage protection threshold. An overvoltage event opens internal  
FET. In TPS26620, TPS26621, TPS26624, TPS26625 devices, if overvoltage protection feature  
is not to be used then connect OVP terminal to RTN. For overvoltage clamp response  
(TPS26622 and TPS26623 only) connect OVP to RTN externally.  
3
4
OVP  
I
I
Shutdown pin. Pulling the pin low makes the device to enter into low power shutdown mode.  
Cycling SHDN low and then back high resets the device that has latched off (TPS26620,  
TPS26622, TPS26624 only) due to a fault condition.  
SHDN  
5
6
RTN  
GND  
Reference ground for all internal voltages  
System ground  
A resistor from this pin to RTN sets the overload and short-circuit current limit. See the Overload  
and Short Circuit Protection section.  
7
8
ILIM  
I/O  
I/O  
A capacitor from this pin to RTN sets output voltage slew rate. See the Hot Plug-In and In-Rush  
Current Control section.  
dVdT  
9
FLT  
O
Fault event indicator. This pin is an open drain output. If unused, leave floating.  
Output voltage  
10  
OUT  
Power  
Connect PowerPAD to RTN plane for heat sinking. Do not use PowerPAD as the only electrical  
connection to RTN.  
PowerPAD™  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS2662  
 
 
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range, all voltages referred to GND (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
62  
62  
70  
62  
5
IN, INOUT  
60  
OUT (TPS26624 and TPS26625 Only)  
(60VIN)  
70  
IN, INOUT (10 ms transient), TA = 25 ℃  
[IN, OUT, FLT, SHDN] to RTN  
[UVLO, OVP, dVdT, ILIM] to RTN  
RTN  
Input voltage range  
V
0.3  
0.3  
0.3  
10  
60  
Sink current  
IFLT, IdVdT  
mA  
°C  
Source current  
IdVdT, IILIM, ISHDN  
Internally limited  
Operating junction  
temperature  
150  
40  
TJ  
Transient junction  
temperature  
T(TSD)  
150  
°C  
°C  
65  
65  
Storage temperature  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001, all pins(1)  
±1500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
0
NOM  
MAX  
60  
UNIT  
V
IN  
Input voltage  
Input voltage  
OUT, FLT  
60  
V
UVLO, OVP,  
dVdT, ILIM  
Input voltage  
0
4
V
SHDN  
ILIM  
Input voltage  
Resistance  
0
7.5  
6
V
267  
kΩ  
µF  
nF  
°C  
IN, OUT  
dVdT  
Tj  
0.01  
6.8  
External capacitance  
Operating junction temperature  
25  
125  
40  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS2662  
 
 
 
 
 
 
 
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
7.4 Thermal Information  
TPS2662  
DRC (VSON)  
10 PINS  
44.8  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
39.5  
20.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ΨJT  
20.7  
ΨJB  
RθJC(bot)  
3.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
40°C TA = TJ +125°C, V(IN) = 24 V, V( SHDN) = 2 V, R(ILIM) = 267 kΩ, FLT = OPEN, C(OUT) = 1 µF, C(dVdT) = OPEN. (All  
voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY VOLTAGE  
V(IN)  
Operating input voltage  
Internal POR threshold, rising  
Internal POR hysteresis  
4.5  
60  
V
V
V(PORR)  
V(PORHys)  
IQ(ON)  
IQ(OFF)  
I(VINR)  
3.54  
3.73  
110  
343  
11.5  
50  
4.2  
mV  
µA  
µA  
µA  
Enabled: V( SHDN) = 2 V  
482  
25  
Supply current  
V( SHDN) = 0 V  
Reverse Input supply current  
Over voltage clamp  
130  
V(IN) = 24 V, V(OUT) = 0 V  
V(IN) > 40 V, ILOAD = 10 mA,TPS26622,  
TPS26623 Only  
V(OVC)  
36  
37.5  
40  
V
UNDERVOLTAGE LOCKOUT (UVLO) INPUT  
V(UVLOR)  
V(UVLOF)  
I(UVLO)  
UVLO threshold voltage, rising  
UVLO threshold, Falling  
1.18  
1.09  
1.2  
1.1  
0
1.23  
1.135  
100  
V
V
UVLO Input Leakage Current  
UVLO Input Leakage Current  
nA  
µA  
0 V V(UVLO) 3.5 V  
100  
I(UVLO)  
V(UVLO) = 5 V  
18.8  
38  
OVER VOLTAGE PROTECTION (OVP) INPUT  
V(OVPR)  
V(OVPF)  
I(OVP)  
Overvoltage threshold voltage, rising  
Overvoltage threshold, falling  
OVP Input Leakage Current  
1.18  
1.09  
1.2  
1.12  
0
1.23  
1.135  
100  
V
V
nA  
0 V V(OVP) 5 V  
100  
LOW IQ SHUTDOWN ( SHDN) INPUT  
V( SHDN)  
V(SHUTF)  
Output voltage  
I( SHDN) = 0.1 µA  
2.39  
0.9  
2.781  
3.1  
1.8  
V
V
SHDN Threshold Voltage for Low  
IQ Shutdown, Falling  
V(SHUTR)  
I( SHDN)  
SHDN Threshold, rising  
Input current  
V
V( SHDN) = 0.4 V  
V(dVdT) = 0V  
µA  
10  
2.4  
OUTPUT RAMP CONTROL (dVdT)  
I(dVdT)  
dVdT Charging Current  
1.68  
1.98  
13.1  
2.33  
22  
µA  
V( SHDN) = 0 V, with I(dVdT) = 10mA  
sinking  
R(dVdT)  
dVdT Discharging Resistance  
Ω
V(dVdTmax)  
GAIN(dVdT)  
dVdT Max Capacitor Voltage  
dVdT to OUT Gain  
4
4.34  
24.6  
4.75  
25.2  
V
V(OUT) /V(dVdT)  
23.9  
V/V  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS2662  
 
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
7.5 Electrical Characteristics (continued)  
40°C TA = TJ +125°C, V(IN) = 24 V, V( SHDN) = 2 V, R(ILIM) = 267 kΩ, FLT = OPEN, C(OUT) = 1 µF, C(dVdT) = OPEN. (All  
voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CURRENT LIMIT PROGRAMMING (ILIM)  
V(ILIM)  
ILIM bias voltage  
1
0.025  
0.152  
0.25  
0.5  
V
0.032  
0.02  
0.145  
0.237  
0.47  
R(ILIM) = 267 kΩ, V(IN) V(OUT) = 1 V  
R(ILIM) = 44.2 kΩ, V(IN) V(OUT) = 1 V  
R(ILIM) = 26.7 kΩ, V(IN) V(OUT) = 1 V  
R(ILIM) = 13.3 kΩ, V(IN) V(OUT) = 1 V  
R(ILIM) = 8.25 kΩ, V(IN) V(OUT) = 1 V  
R(ILIM) = 7.5 kΩ, V(IN) V(OUT)= 1 V  
0.159  
0.257  
A
0.52  
I(OL)  
0.757  
0.83  
0.8  
0.827  
0.91  
Overload Current Limit  
0.88  
R(ILIM)= OPEN, Open Resistor Current  
Limit (single point failure test: UL60950)  
I(OL_R-OPEN)  
8
15.5  
39.3  
27  
51  
mA  
mA  
R(ILIM)= SHORT, Shorted Resistor  
Current Limit (single point failure test:  
UL60950)  
I(OL_R-SHORT)  
31  
I(SCL)  
Short-Circuit Current Limit  
0.885  
1.6  
A
A
R(ILIM) = 7.5 kΩ, V(IN) V(OUT)= 24 V  
I(FAST-TRIP)  
Fast-Trip Comparator Threshold  
PASS FET OUTPUT (OUT)  
0.025 A I(OUT) 0.8 A, TJ = 25°C,  
R(ILIM) = 7.5 kΩ  
435  
250  
478  
626  
521  
685  
0.025 A I(OUT) 0.8A, TJ = 85°C,  
R(ILIM) = 7.5 kΩ  
RON  
mΩ  
0.025 A I(OUT) 0.8A, 40°C TJ  
125°C, R(ILIM) = 7.5 kΩ  
478  
4.38  
7.27  
800  
12  
V(IN) = 57 V, V( SHDN)= 0 V, V(OUT) = 0 V,  
Sourcing  
V(IN) = 0 V, V( SHDN)= 0 V, V(OUT) = 24 V,  
Sinking  
102  
168  
OUT Leakage Current in Off State  
Ilkg(OUT)  
µA  
V(IN) = 57V, V( SHDN)= 0V, V(OUT)  
=
0V, Sinking  
OUT leakage current under output  
reverse polarity condition  
V(IN) = 24 V, V(OUT) = 24 V, V( SHDN)  
2 V, TP26624, TPS26625 Only  
=
450  
54  
15  
V
(IN) V(OUT) threshold for reverse  
V(REVTH)  
V(FWDTH)  
mV  
mV  
71  
40  
protection comparator, falling  
V
(IN) V(OUT) threshold for reverse  
1.4  
30  
protection comparator, rising  
FAULT FLAG ( FLT): ACTIVE LOW  
R( FLT)  
I( FLT)  
FLT Pull-Down Resistance  
FLT Input Leakage Current  
V(OVP) = 2 V, I( FLT) = 5mA sinking  
45  
82.3  
0
145  
100  
Ω
nA  
0 V V( FLT) 60 V  
100  
THERMAL SHUT DOWN (TSD)  
T(TSD)  
TSD Threshold, rising  
TSD Hysteresis  
155  
10  
°C  
°C  
T(TSDhyst)  
TPS26620, TPS26622, TPS26624  
TPS26621, TPS26623, TPS26625  
Latch  
Thermal Fault (Latch or Auto-Retry)  
Auto–  
retry  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS2662  
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
7.6 Timing Requirements  
40°C TA = TJ +125°C, V(IN) = 24 V, V( SHDN) = 2 V, R(ILIM) = 267 kΩ, FLT = OPEN, C(OUT) = 1 µF, C(dVdT) = OPEN. (All  
voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
IN and UVLO INPUT  
UVLO (100 mV above V(UVLOR)) to V(OUT) = 100  
mV, C(dVdT) = Open  
51  
µs  
UVLO_tON(dly)  
UVLO_toff(dly)  
UVLO Turnon Delay  
UVLO Turnoff delay  
51 +  
27.4 x  
C(dVdT)  
UVLO(100 mV above V(UVLOR)) to V(OUT) = 100  
mV, C(dVdT) > 4.7 nF, [C(dVdT) in nF]  
µs  
µs  
6.14  
UVLO(100 mV below V(UVLOF)) to FLT↓  
SHDNto V(OUT) = 100 mV, C(dVdT) = Open  
SHUTDOWN CONTROL INPUT ( SHDN)  
156  
µs  
µs  
µs  
156 +  
27.4 x  
C(dVdT)  
SHUTDOWN exit delay  
tSD(dly)  
SHDNto V(OUT) = 100 mV, C(dVdT) > 4.7 nF,  
[C(dVdT) in nF]  
SHUTDOWN entry delay  
6.83  
SHDN(below SHUTF) to FLT↓  
OVER VOLTAGE PROTECTION INPUT (OVP)  
OVP(20 mV below V(OVPF)) to V(OUT) = 100 mV,  
TPS26620/21/24/25 Only  
OVP Exit delay  
77  
µs  
µs  
tOVP(dly)  
OVP(20mV above V(OVPR)) to FLT,  
TPS26620/21/24/25 Only  
OVP Disable delay  
4.84  
CURRENT LIMIT  
tCL(dly)  
Maximum duration in current limit  
Fast-Trip Comparator Delay  
512  
1.5  
ms  
µs  
I(ILIM) < I(OUT) < I(FAST-TRIP), V(IN) V(OUT) < 2.6 V  
I(OUT) > I(FAST-TRIP), V(IN) V(OUT) = 2 V  
I(OUT) > I(FAST-TRIP), 4.5 V < V(IN) 6 V, V(IN)  
(OUT) 2.6 V  
1.4  
µs  
ns  
tFAST-TRIP(dly)  
V
I(OUT) > I(FAST-TRIP), 6 V < V(IN) 57 V, V(IN)  
(OUT) 2.6 V  
220  
V
REVERSE PROTECTION COMPARATOR  
(V(IN) V(OUT)) (10 mV overdrive below  
V(REVTH)) to internal FET turn OFF  
15  
3.71  
0.31  
45  
(V(IN) V(OUT)) (1 V overdrive below V(REVTH)  
to internal FET turn OFF  
)
tREV(dly)  
(V(IN) V(OUT)) 2.6 V to internal FET turn  
OFF  
Reverse Protection Comparator  
µs  
Delay  
(V(IN) V(OUT)) (150 mV overdrive below  
V(REVTH)) to FLT↓  
(V(IN) V(OUT)) (100 mV overdrive above  
V(FWDTH)) to FLT↑  
tFWD(dly)  
63  
THERMAL SHUTDOWN  
Retry Delay in  
TSD  
512  
ms  
ms  
OUTPUT RAMP CONTROL (dVdT)  
11  
SHDN to V(OUT) = 23.9 V, with C(dVdT) = 22 nF  
SHDN to V(OUT) = 23.9 V, with C(dVdT) = open  
tdVdT  
Output Ramp Time  
0.664  
FAULT FLAG ( FLT)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS2662  
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
7.6 Timing Requirements (continued)  
40°C TA = TJ +125°C, V(IN) = 24 V, V( SHDN) = 2 V, R(ILIM) = 267 kΩ, FLT = OPEN, C(OUT) = 1 µF, C(dVdT) = OPEN. (All  
voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
875  
1.4  
MAX UNIT  
tPGOODF  
Falling edge  
µs  
Rising edge, C(dVdT) = Open  
ms  
PGOOD Delay  
750 +  
573 x  
tPGOODR  
Rising edge, C(dVdT) > 4.7 nF, [C(dVdT) in nF]  
µs  
C(dVdT)  
7.7 Typical Characteristics  
800  
700  
600  
500  
400  
300  
200  
100  
0
1.22  
1.2  
1.18  
1.16  
1.14  
V(UVLOR)  
V(UVLOF)  
1.12  
0.8 A  
0.4 A  
0.025 A  
1.1  
1.08  
-50  
0
50  
Temperature (èC)  
100  
150  
-50 -30 -10 10  
30  
50  
70  
90 110 130 150  
Temperature (èC)  
D001  
D002  
7-1. On-Resistance vs Temperature Across Load Current  
7-2. UVLO Threshold Voltage vs Temperature  
1.22  
-50  
-51  
-52  
-53  
-54  
-55  
-56  
-57  
-58  
-59  
-60  
1.2  
1.18  
1.16  
V(OVPR)  
V(OVPF)  
1.14  
1.12  
1.1  
-50  
0
50  
Temperature (èC)  
100  
150  
-50  
0
50  
Temperature (èC)  
100  
150  
D003  
D005  
7-3. OVP Threshold Voltage vs Temperature  
7-4. Reverse Voltage Threshold vs Temperature  
25  
40  
39.5  
39  
23  
21  
19  
17  
15  
13  
11  
9
38.5  
38  
37.5  
37  
36.5  
36  
7
35.5  
35  
5
-50  
0
50  
Temperature (Cè)  
100  
150  
-50  
0
50  
Temperature (èC)  
100  
150  
D006  
D023  
7-5. V(FWDTH) vs Temperature  
7-6. Overvoltage Clamp Threshold vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS2662  
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
7.7 Typical Characteristics (continued)  
4
20  
15  
10  
5
V(PORR)  
V(PORF)  
3.95  
3.9  
3.85  
3.8  
3.75  
3.7  
3.65  
3.6  
125  
85  
25  
-40  
3.55  
3.5  
0
-50  
0
50  
Temperature (èC)  
100  
150  
0
10  
20  
30 40  
Input Voltage (V)  
50  
60  
70  
D008  
D021  
7-7. Internal POR Threshold Voltage vs Temperature  
7-8. Input Supply Current vs Supply Voltage in Shutdown  
500  
450  
400  
350  
300  
250  
200  
5
-5  
-15  
-25  
-35  
150  
100  
50  
-45  
125  
85  
25  
125  
85  
25  
-40  
-55  
-40  
0
-65  
-70  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Input Voltage (V)  
-60  
-50  
-40  
-30  
Input Voltage (V)  
-20  
-10  
0
10  
D020  
D027  
7-9. Input Supply Current vs Supply Voltage During Normal  
V(OUT) = 0 V  
Operation  
7-10. Input Supply Current vs Reverse Supply Voltage, V(IN)  
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
-50  
0
50  
Temperature (èC)  
100  
150  
-50  
0
50  
Temperature (èC)  
100  
150  
D022  
D012  
7-11. OVP Disable Delay vs Temperature  
7-12. Shutdown Entry Delay vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS2662  
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
7.7 Typical Characteristics (continued)  
1.19  
1.185  
1.18  
540  
538  
536  
534  
532  
530  
1.175  
1.17  
1.165  
1.16  
1.155  
1.15  
-50  
0
50  
Temperature (èC)  
100  
150  
-50  
0
50  
Temperature (èC)  
100  
150  
D013  
D019  
7-13. Shutdown Threshold Voltage Shutdown vs Temperature 7-14. Max Duration in Current Limiting t(CL) vs Temperature  
2%  
1.75%  
1.5%  
20%  
15%  
10%  
5%  
44.2 k  
26.7 k  
13.3 k  
8.25 k  
7.5 k  
1.25%  
1%  
0.75%  
0.5%  
0.25%  
0
-0.25%  
-0.5%  
-0.75%  
-1%  
0
-5%  
-10%  
-1.25%  
-1.5%  
267 k  
150  
-50  
0
50  
Temperature (èC)  
100  
150  
-50  
0
50  
Temperature (èC)  
100  
D014  
D015  
7-15. Current Limit (% Normalized) vs Temperature  
7-16. Current Limit (% Normalized) vs Temperature  
1.2  
0.05  
0.045  
0.04  
267 kW  
44.2 kW  
26.7 kW  
13.3 kW  
8.25 kW  
7.5 kW  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
R(ILIM) = Open  
R(ILIM) = Short  
0.005  
0
-50 -30 -10 10  
30  
50  
70  
90 110 130 150  
-50  
0
50  
Temperature (èC)  
100  
150  
Temperature (èC)  
D009  
D004  
7-17. Over Load Current Limit vs Temperature  
7-18. Current Limit for R(ILIM) = Open and Short vs  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS2662  
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
7.7 Typical Characteristics (continued)  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
30  
25  
20  
15  
10  
5
0
-50  
0
50  
Temperature (èC)  
100  
150  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Current Limit (A)  
1
D017  
D024  
7-19. Fast-Trip Comparator Threshold I(FAST-TRIP) vs  
7-20. Current Limit Accuracy vs Current Limit, I(OL)  
Temperature Threshold  
7
6.8  
6.6  
6.4  
6.2  
6
100  
10  
1
0.1  
-50  
0
50  
Temperature (èC)  
100  
150  
1
10  
100  
Vrev_overdrive (mV)  
1000  
10000  
D016  
D026  
7-21. UVLO Turnoff Delay vs Temperature  
7-22. Reverse Current Blocking Response Time vs Reverse  
Comparator Overdrive Voltage  
100000  
10000  
1000  
100  
Temp = -40èC  
Temp = 25èC  
Temp = 85èC  
Temp = 105èC  
Temp = 125èC  
VIN  
VOUT  
FLTb  
IIN  
10  
1
0.2  
1
10  
Power Dissipation (W)  
50  
D025  
RILIM = 7.5 kΩ  
RFLTb = 100 kΩ  
RLOAD = 80 Ω  
Taken on 2-Layer board, 2 oz.(0.08-mm thick) with RTN plane  
area: 0.8 cm2 (Top) and 4.5 cm2 (Bottom)  
OVP setting at 33 V  
7-24. OVP Overvoltage Cut-Off Response  
7-23. Thermal Shutdown Time vs Power Dissipation  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS2662  
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
7.7 Typical Characteristics (continued)  
VIN  
VOUT  
FLTb  
IIN  
RILIM = 7.5 kΩ  
RFLTb = 100 kΩ  
RLOAD = 80 Ω  
RILIM = 7.5 kΩ  
RFLTb = 100 kΩ  
7-25. OV Clamp Response (TPS26602 Only)  
7-26. Hot-Short: Fast-Trip Response and Current Regulation  
VIN  
SHDNb  
VOUT  
VOUT  
FLTb  
IIN  
IIN  
RILIM = 7.5 kΩ  
RILIM = 7.5 kΩ  
RFLTb = 100 kΩ  
RLOAD = 80 Ω  
7-27. Hot-Short: Fast-Trip Response (Zoomed)  
7-28. Turnon Control With SHDN  
SHDNb  
VOUT  
FLTb  
IIN  
RILIM = 7.5 kΩ  
RFLTb = 100 kΩ  
7-29. Turnoff Control With SHDN  
RLOAD = 80 Ω  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS2662  
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
8 Parameter Measurement Information  
V(OUT)  
VUVLO  
V(UVLOF)-0.1 V  
0.1 V  
VUVLO  
FLT  
V(UVLOR)+0.1V  
10%  
time  
0
time  
0
UVLO_tON(dly)  
UVLO_toff(dly)  
-54 mV  
15 mV  
V(IN) -V(OUT)  
V(IN) -V(OUT)  
90%  
FLT  
FLT  
10%  
0
time  
tREV(dly)  
0
time  
tFWD(dly)  
I(FASTRIP)  
V(OVPR)+0.1V  
V(OVP)  
I(SCL)  
I(OUT)  
FLT  
10%  
0
time  
0
time  
tOVP(dly)  
tFASTRIP(dly)  
8-1. Timing Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS2662  
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
9 Detailed Description  
9.1 Overview  
The TPS2662x is a family of high voltage industrial eFuses with integrated back-to-back MOSFETs and  
enhanced built-in protection circuitry. The device provides robust protection for all systems and applications  
powered from 4.5 V to 60 V. The device can withstand ±60-V positive and negative supply voltages without  
damage. The device features fully integrated reverse polarity protection and require zero additional power  
components. For hot-pluggable boards, the device provides hot-swap power management with in-rush current  
control. Load, source, and device protections are provided with many programmable features including  
overcurrent, overvoltage, undervoltage. The precision overcurrent limit (±5% at 880 mA) helps to minimize over  
design of the input power supply, while the fast response short-circuit protection 220 ns (typical) immediately  
isolates the faulty load from the input supply when a short circuit is detected.  
The internal robust protection control blocks of the TPS2662x along with its ±60-V rating helps to simplify the  
system designs for the surge compliance ensuring complete protection of the load and the device. TPS2662x  
devices are immune to noise tests like Electrical Fast Transients that are common in industrial applications and  
simplifies the system design that require criterion-A performance during this test.  
The device provides precise monitoring of voltage bus for brown-out and overvoltage conditions and asserts fault  
signal for the downstream system. The TPS2662x monitor functions threshold accuracy of ±3% ensures tight  
supervision of the supply bus, eliminating the need for a separate supply voltage supervisor chip.  
The device monitors V(IN) and V(OUT) to provide true reverse current blocking when a reverse condition or input  
power failure condition is detected.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS2662  
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
9.2 Functional Block Diagram  
OUT  
IN  
478mΩ  
-54mV  
15mV  
+
PORb  
Charge  
Pump  
3.8V  
3.7V  
CP  
+
UVLO  
UVLOb  
1.2V  
1.1V  
REVERSE  
4.4V  
SWEN  
Gate Control Logic  
Current Limit Amp  
TSD  
Thermal  
Shutdown  
* TPS26620/1/4/5 Only  
+
OVP  
Fast-Trip Comp  
(I(FASTTRIP), VIN, VOUT)  
OVP  
1.2V  
1.1V  
* TPS26622/3 Only  
1V  
Over Voltage  
Clamp detect  
(38V)  
SHDNb  
ILIM  
Short detect  
Ramp Control  
24.6x  
SWEN  
FLT  
Avdd  
I(LOAD) ≥ I(OL)  
* TPS26620/2/4 Only  
512msec  
timer  
SET  
Timeout  
82Ω  
1.98µA  
S
Q
dVdT  
UVLOb  
PORb  
TSD  
CLR  
R
Q
1.4 msec  
875 µs  
13Ω  
PORb  
Fault Latch  
RTN  
SHDNb  
Gate Enhanced (tPGOOD  
)
Avdd  
Reverse Polarity Protection  
circuit  
0.9V  
GND  
SHDNb  
+
RTN  
TPS2662x  
SHDN  
9.3 Feature Description  
9.3.1 Undervoltage Lockout (UVLO)  
When the voltage at UVLO pin falls below V(UVLOF) during input power fail or input undervoltage fault, the internal  
FET quickly turns off and FLT is asserted. The UVLO comparator has a hysteresis of 100 mV. To set the input  
UVLO threshold, connect a resistor divider network from IN supply to UVLO terminal to RTN as shown in 9-1.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS2662  
 
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
V(IN)  
IN  
TPS26620/1/4/5  
R1  
UVLO  
+
+
UVLOb  
1.2 V  
1.1 V  
R2  
OVP  
RTN  
OVP  
1.2 V  
1.1 V  
R3  
GND  
9-1. UVLO and OVP Thresholds Set by R1, R2 and R3  
If the Undervoltage Lockout function is not needed, the UVLO terminal must be connected to the IN terminal with  
a 1-Mresistor. UVLO pin is 5-V rated and this resistor limits the UVLO pin current to < 60 µA. The UVLO  
terminal must not be left floating.  
9.3.2 Overvoltage Protection (OVP)  
The TPS2662x family incorporate circuitry to protect the system during overvoltage conditions. The TPS26620,  
TPS26621, TPS26624 and TPS26625 feature overvoltage cut off functionality. A voltage more than V(OVPR) on  
OVP pin turns off the internal FET and protects the downstream load. To program the OVP threshold externally,  
connect a resistor divider from IN supply to OVP terminal to RTN as shown in 9-1. If the overvoltage feature is  
not to be used then connect OVP terminal to RTN directly and ensure VIN is not exceeded beyond OVPMAX  
.
The TPS26622 and TPS26623 feature an internally fixed 38-V overvoltage clamp (VOVC) functionality. The OVP  
terminal of these devices must be connected to the RTN terminal directly. These devices clamp the output  
voltage to VOVC, when the input voltage exceeds 38 V. During the output voltage clamp operation, the power  
dissipation in the internal MOSFET is PD = (VIN VOVC) × IOUT. Excess power dissipation for prolonged period  
can make the device to enter into thermal shutdown. If the device temperature does not reach T(TSD), the device  
turns off the internal FETs after a delay of tCL_Dly. After the internal FETs are turned off, TPS26622 latches-off  
and TPS26623 device auto-retries. 7-25 illustrates the overvoltage clamp functionality.  
9.3.3 Hot Plug-In and Inrush Current Control  
The devices are designed to control the inrush current upon insertion of a card into a live backplane or other  
hotpower source. This design limits the voltage sag on the backplanes supply voltage and prevents  
unintended resets of the system power. The controlled start-up also helps to eliminate conductive and radiative  
interferences. An external capacitor connected from the dVdT pin to RTN defines the slew rate of the output  
voltage at power-on as shown in 9-2 and Figure 9-3.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS2662  
 
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
TPS2662x  
4.34 V  
1.98µA  
dVdT  
RTN  
13 Ω  
SWENb  
C(dVdT)  
GND  
9-2. Output Ramp Up Time tdVdT is Set by C(dVdT)  
The dVdT pin can be left floating to obtain a predetermined slew rate (tdVdT) on the output. When the terminal is  
left floating, the devices set an internal output voltage ramp rate of 24 V/660 µs. A capacitor can be connected  
from dVdT pin to RTN to program the output voltage slew rate slower than 24 V/660 µs. Use 方程式 1 and 方程  
2 to calculate the external C(dVdT) capacitance.  
方程1 governs slew rate at start-up.  
æ
ç
ö
÷
C dVdT  
dV  
OUT  
æ
ö
÷
÷
ø
(
)
(
)
I(dVdT)  
=
´ ç  
ç
ç
è
÷
ø
Gain dVdT  
dt  
(
)
è
(1)  
where  
I(dVdT) = 1.98 µA (typical)  
dV  
(
OUT  
)
dt  
= Desired output slew rate  
Gain(dVdT) = dVdT to VOUT gain = 24.6  
The total ramp time (tdVdT) of V(OUT) for 0 to V(IN) can be calculated using 方程2.  
tdVdT = 20.5 × 103 × V(IN) × C(dVdT)  
(2)  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS2662  
 
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
VIN  
VOUT  
FLTb  
IIN  
CdVdT = 22 nF  
COUT = 22 µF  
RILIM = 7.5 kΩ  
9-3. Hot Plug-In and Inrush Current Control at 24-V Input  
9.3.4 Reverse Polarity Protection  
9.3.4.1 Input Side Reverse Polarity Protection  
TPS2662x eFuses feature fully integrated input side reverse polarity protection. The internal FETs of the eFuse  
turn OFF during the input reverse polarity event and protect the downstream loads from negative supply voltages  
that can appear due to field mis-wiring on the input power terminals. Figure 9-4 illustrates the reverse input  
polarity protection functionality.  
VIN  
VOUT  
IIN  
9-4. Reverse Input Supply Protection at 60 V  
9.3.4.2 Output Side Reverse Polarity Protection  
TheTPS26624 and TPS26625 eFuses feature fully integrated input as well as output reverse polarity protection.  
The internal FETs of the eFuse turn OFF during the output reverse polarity event and protects the upstream  
circuits from negative voltage that can appear at the output of the eFuse due to field miswiring at the output side  
with an external isolated power supplies. 9-5 illustrates the performance during output side reverse polarity  
event with V(IN) un-powered and 9-6 illustrates the performance with V(IN) powered. 9-7 illustrates the  
output recovery performance after the reverse polarity is removed.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS2662  
 
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
VIN  
VOUT  
IOUT  
9-5. Reverse Output Polarity Protection With 60 V at OUT and VIN = 0 V  
VIN  
VIN  
VOUT  
VOUT  
IIN  
IIN  
9-6. Reverse Output Polarity Protection With –  
9-7. Response During Coming Out of Output  
24 V at OUT and 24 V at IN  
Reverse Polarity Fault Condition  
9.3.5 Overload and Short-Circuit Protection  
The device monitors the load current by sensing the voltage across the internal sense resistor. The FET current  
is monitored during start-up and normal operation.  
9.3.5.1 Overload Protection  
Connect a resistor across ILIM to RTN to program the over load current limit I(OL). During overload conditions,  
the device regulates the current through it at I(OL) programmed by the R(ILIM) resistor as shown in 方程式 3 for a  
maximum duration of tCL(dly)  
.
6.636  
=
IOL  
RILIM  
(3)  
where  
I(OL) is the overload current limit in Ampere  
R(ILIM) is the current limit resistor in kΩ  
During the current limit operation the output voltage droops and this can cause the device to hit the thermal  
shutdown threshold T(TSD) before tCL(dly) time. After the thermal shutdown threshold is hit or tCL(dly) is elapsed,  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS2662  
 
 
 
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
the internal FETs of TPS2662x turns OFF. FETs in TPS26620, TPS26622 and TPS26624 remain OFF and  
latched. To reset the latch, cycle the SHDN or UVLO, or recycle the VIN. TPS26621, TPS26623 and TPS26625  
commence an auto-retry cycle after a retry time of 512 msec. The internal FETs turn back on in dVdT mode after  
this retry time. If the overload still exists, then the device regulates the current at programmed current limit, I(OL)  
.
tCL(dly) is the maximum duration for current limiting and estimated as tCL(dly) = 512 ms + [3.3 × CdVdT / 2 μA]  
(CdVdT in nF).  
VIN  
VIN  
VOUT  
VOUT  
FLTb  
FLTb  
IIN  
IIN  
Load transition from  
VIN = 24 V, RILIM  
=
Load transition from  
VIN = 24 V, RILIM =  
120 to 20 Ω  
7.5 kΩ  
20 to 120 Ω  
7.5 kΩ  
9-8. Auto-Retry Fault Behavior  
9-9. Response During Coming Out of Overload  
Fault  
9.3.5.2 Short-Circuit Protection  
During a transient output short circuit event, the current through the device increases rapidly. As the current-limit  
amplifier cannot respond quickly to this event due to its limited bandwidth, the device incorporates a fast-trip  
comparator. The fast-trip comparator architecture is designed for fast turn OFF (tFAST-TRIP(dly) = 220 ns (typical))  
of the internal FET during an output short circuit event. The fast-trip threshold is internally set to I(FAST-TRIP). The  
fast-trip circuit holds the internal FET off for only a few microseconds, after which the device turns back on  
slowly, allowing the current-limit loop to regulate the output current to I(OL). Then the device functions similar to  
the overload condition. Figure 9-10 and Figure 9-11 illustrate the behavior of the system during output short-  
circuit condition.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS2662  
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
VIN  
VOUT  
IIN  
VIN = 24 V, RILIM = 7.5 kΩ  
9-11. Hot-Short: Fast-Trip Response (Zoomed)  
9-10. Output Hot Short Functionality at 24-V  
Input  
The fast-trip comparator architecture has a supply line noise immunity resulting in a robust performance in noisy  
environments. This feature is achieved by controlling the turn OFF time of the internal FET based on the  
differential voltage across V(IN) and V(OUT) after the current through the device exceeds I(FAST-TRIP). Higher the  
voltage difference V(IN) V(OUT), faster the turn OFF time, tFAST-TRIP(dly)  
.
9.3.5.2.1 Start-Up With Short-Circuit On Output  
When the device is started with short-circuit on the output, it limits the load current to the current limit, I(OL), and  
functions similar to the overload condition. Figure 9-12 illustrates the function of the device in this condition. This  
feature helps in quick isolation of the fault and ensures stability of the DC bus.  
VIN  
VOUT  
FLTb  
IIN  
VIN = 24 V  
RILIM = 7.5 kΩ  
9-12. Start-Up With Short on Output  
9.3.6 Reverse Current Protection  
The device monitors V(IN) and V(OUT) to provide true reverse current blocking when a reverse condition or input  
power failure condition is detected. The reverse comparator turns OFF the internal FET within 310 ns (typical) as  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS2662  
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
soon as V(IN) V(OUT) falls below 2.6 V. The reverse comparator turns on within 63 µs (typical) after the  
differential forward voltage V(IN)V(OUT) exceeds 115 mV. 9-13 and 9-14 illustrate the behavior of the  
system during input hot short circuit condition.  
9-13. Input Hot Short Functionality at 24-V  
9-14. Hot-Short: Fast-Trip Response (Zoomed)  
Supply  
The reverse comparator architecture has a supply line noise immunity resulting in a robust performance in noisy  
environments. This feature is achieved by controlling the turn OFF time of the internal FET based on the over-  
drive differential voltage V(IN) V(OUT) over V(REVTH). Higher the over-drive, faster the turn OFF time, tREV(dly)  
.
Figure 7-22 shows the reverse current blocking response time versus over-drive voltage.  
9.3.7 FAULT Response  
The FLT open-drain output asserts (active low) under the following conditions:  
Fault events such as undervoltage, overvoltage, over load, reverse current and thermal shutdown conditions  
The device enters low current shutdown mode when SHDN is pulled low  
During start-up when the internal FET GATE is not fully enhanced  
The device is designed to eliminate false reporting by using an internal de-glitch circuit for fault conditions  
without the need for an external circuitry.  
The FLT signal can also be used as a Power Good indicator to the downstream loads like DC/DC converters. An  
internal Power Good (PGOOD) signal is ORd with the fault logic. During start-up, when the device is operating in  
dVdT mode, PGOOD and FLT it remains low and is de-asserted after the dVdT mode is completed and the  
internal FET is fully enhanced. The PGOOD signal has deglitch time incorporated to ensure that internal FET is  
fully enhanced before heavy load is applied by the downstream converters. Rising deglitch delay is determined  
by tPGOOD(degl) = Maximum {(750 + 573× C(dVdT)), tPGOODR}, where C(dVdT) is in nF and tPGOOD(degl) is in µs. FLT  
can be left open or connected to RTN when not used. V(IN) falling below 3.4 V resets FLT.  
9.3.8 IN, OUT, RTN, and GND Pins  
TI recommends a ceramic bypass capacitor close to the device from IN to GND to alleviate bus transients. The  
recommended input operating voltage range is 4.5 to 60 V. V(OUT), in the ON condition, is calculated using 方程  
4.  
V
(
OUT  
)
= V  
(
IN  
)
- RON ì I  
(
(
OUT  
)
)
(4)  
Where,  
RON is the total ON resistance of the internal FETs.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS2662  
 
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
GND pin must be connected to the system ground. RTN is the device ground reference for all the internal control  
blocks. Connect the TPS2662x family support components: R(ILIM), C(dVdT) and resistors for UVLO and OVP with  
respect to the RTN pin. Internally, the device has reverse input polarity protection block between RTN and the  
GND terminal. Connecting RTN pin to GND pin disables the reverse polarity protection feature and the  
TPS2662x gets permanently damaged when operated under this fault event.  
9.3.9 Thermal Shutdown  
The device has a built-in overtemperature shutdown circuitry designed to protect the internal FETs, if the junction  
temperature exceeds T(TSD). After the thermal shutdown event, depending upon the mode of fault response, the  
device either latches off or commences an auto-retry cycle 512 ms after TJ < (T(TSD) 13.5°C). During the  
thermal shutdown, the fault pin FLT pulls low to indicate a fault condition.  
9.4 Device Functional Modes  
9.4.1 Low Current Shutdown Control (SHDN)  
The internal FETs and the load current can be switched off by pulling the SHDN pin below 0.9-V threshold with a  
micro-controller GPIO pin or can be controlled remotely with an opto-isolator device as shown in 9-15 and 图  
9-16. The device quiescent current reduces to 10 μA (typical) in SHUTDOWN state. To assert SHDN low, the  
pull down must sink at least 10 µA at 400 mV. To enable the device, SHDN must be pulled up to at least 1.8 V.  
After the device is enabled, the internal FETs turn on with dVdT mode.  
ON OFF  
TPS2662x  
AVdd  
Rpu  
TPS2662x  
AVdd  
Rpu  
SHDN  
GND  
SHDN  
+
SHDNb  
from µC GPIO  
+
SHDNb  
a
k
C
E
0.9V  
0.9 V  
œ
Opto Isolator  
GND  
OFF  
ON  
9-15. Shutdown Control  
9-16. Opto-Isolator Shutdown Control  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS2662  
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
The TPS2662x family is an industrial eFuse, typically used for Hot-Swap and power rail protection applications.  
The device operates from 4.5 V to 60 V with programmable current limit, overvoltage, undervoltage and reverse  
polarity protections. The device aids in controlling inrush current and provides robust protection against reverse  
current and field miss-wiring conditions for systems such as PLC I/O modules and sensor power supplies. The  
device also provides robust protection for multiple faults on the system rail.  
The Detailed Design Procedure section can be used to select component values for the device.  
Alternatively, the WEBENCH® software can be used to generate a complete design. The WEBENCH® software  
uses an iterative design procedure and accesses a comprehensive database of components when generating a  
design. Additionally, a spreadsheet design tool, TPS2662 Design Calculator, is available in the web product  
folder.  
10.2 Typical Application  
IN: 18 V-30 V  
OUT  
IN  
OUT  
COUT  
22 µF  
CIN  
1 µF  
R1  
715 k  
RFLTb  
100 k  
478 m  
UVLO  
OVP  
Health Monitor  
TPS2662x  
R2  
20 k  
FLT  
ON/OFF Control  
SHDN  
dVdT  
RTN  
ILIM  
R3  
30.1 k  
CdVdT  
GND  
RILIM  
13.3 k  
10 nF  
10-1. 24-V, 500-mA eFuse Input Protection Circuit for PLC I/O Module  
10.2.1 Design Requirements  
10-1 shows the design requirements for TPS2662x.  
10-1. Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
24 V  
V(IN)  
V(UV)  
V(OV)  
T(SU)  
I(LIM)  
C(OUT)  
TA  
Typical input voltage  
Undervoltage lockout set point  
Overvoltage cutoff set point  
Load during start-up  
18 V  
30 V  
96 Ω  
Current limit  
500 mA  
22 µF  
Load capacitance  
Maximum ambient temperature  
125°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS2662  
 
 
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
10.2.2 Detailed Design Procedure  
10.2.2.1 Step-by-Step Design Procedure  
To begin the design process, the designer must know the following parameters:  
Input operating voltage range  
Maximum output capacitance  
Maximum current limit  
Load during start-up  
Maximum ambient temperature  
This design procedure below seeks to control junction temperature of the device in both steady state and  
start-up conditions by proper selection of the output ramp-up time and associated support components. The  
designer can adjust this procedure to fit the application and design criteria.  
10.2.2.2 Programming the Current Limit Threshold R(ILIM) Selection  
The R(ILIM) resistor at the ILIM pin sets the over load current limit. the current limit can be set using 方程5.  
6.636  
RILIM  
=
= 13.27 kW  
ILIM  
(5)  
where  
ILIM = 500 mA  
Choose the closest standard 1% resistor value: R(ILIM) = 13.3 kΩ.  
10.2.2.3 Undervoltage Lockout and Overvoltage Set Point  
The undervoltage lockout (UVLO) and overvoltage trip point are adjusted using an external voltage divider  
network of R1, R2 and R3 connected between IN, UVLO, OVP and RTN pins of the device. The values required  
for setting the undervoltage and overvoltage are calculated by solving 方程6 and 方程7.  
R3  
V(OVPR) =  
ì V(OV)  
R1+ R2 + R3  
(6)  
R2 + R3  
R1+ R2 + R3  
V(UVLOR) =  
ì V(UV)  
(7)  
For minimizing the input current drawn from the power supply {I(R123) = V(IN) / (R1+R2+R3)}, TI recommends to  
use higher value resistance for R1, R2 and R3.  
However, the leakage current due to external active components connected at resistor string can add error to  
these calculations. So, the resistor string current, I(R123) must be chosen to be 20 times greater than the leakage  
current of UVLO and OVP pins.  
From the device electrical specifications, V(OVPR) = 1.19 V and V(UVLOR) = 1.19 V. From the design requirements,  
V(OV) is 30 V and V(UV) is 18 V. To solve the equation, first choose the value of R3 = 30.1 kand use 方程式 6 to  
solve for (R1 + R2) = 728.7 k. Use 方程式 7 and value of (R1 + R2) to solve for R2 = 20.05 kand finally R1=  
708.6 k.  
Choose the closest standard 1% resistor values: R1 = 715 k, R2 = 20 k, and R3 = 30.1 k.  
10.2.2.4 Setting Output Voltage Ramp Time(tdVdT  
)
For a successful design, the junction temperature of the device must be kept below the absolut -maximum rating  
during dynamic (start-up) and steady state conditions. The dynamic power dissipation is often an order  
magnitude greater than the steady state power dissipation. It is important to determine the right start-up time and  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS2662  
 
 
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
the inrush current limit for the system to avoid thermal shutdown during start-up with and without load. The ramp-  
up capacitor C(dVdT) is calculated considering the two possible cases:  
10.2.2.4.1 Case 1: Start-Up Without LoadOnly Output Capacitance C(OUT) Draws Current During Start-Up  
During start-up, as the output capacitor charges, the voltage difference across the internal FET decreases, and  
the power dissipation decreases. Typical ramp-up of the output voltage, inrush current and instantaneous power  
dissipated in the device during start-up are shown in Figure 10-2. The average power dissipated in the device  
during start-up is equal to the area of triangular plot (red curve in Figure 10-3) averaged over tdVdT  
.
2
24  
18  
12  
6
Input Current (A)  
Power Dissipation (W)  
Output Voltage (V)  
1.5  
1
0.5  
0
0
0
20  
40 60  
Start-up Time, tdVdT (%)  
80  
100  
D029  
VIN = 24 V  
CdVdT = 10 nF  
COUT = 22 µF  
VIN = 24 V  
CdVdT = 10 nF  
COUT = 22 µF  
10-3. PD(INRUSH) Due to Inrush Current  
10-2. Start-Up Without Load  
The inrush current is determined as shown in 方程8.  
dV  
dT  
V(IN)  
tdVdT  
I = C ì  
í I(INRUSH) = C(OUT) ì  
(8)  
(9)  
Average power dissipated during start-up is given by 方程9.  
PD(INRUSH) = 0.5ì V(IN) ìI(INRUSH)  
方程9 assumes that the load does not draw any current until the output voltage reaches its final value.  
10.2.2.4.2 Case 2: Start-Up With Load Output Capacitance C(OUT) and Load Draws Current During Start-Up  
When the load draws current during the turn-on sequence, additional power is dissipated in the device.  
Considering a resistive load RL(SU) during start-up, typical ramp-up of output voltage, Figure 10-4 shows load  
current and the instantaneous power dissipation in the device. Figure 10-5 plots Instantaneous power dissipation  
with respect to time.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS2662  
 
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
5
4.5  
4
30  
Input Current (A)  
Power Dissipation (W)  
Output Voltage (V)  
27  
24  
21  
18  
15  
12  
9
3.5  
3
2.5  
2
1.5  
1
6
0.5  
0
3
0
0
20  
40 60  
Start-up Time, tdVdT (%)  
80  
100  
D030  
VIN = 24 V  
RL (SU) = 96 Ω  
VIN = 24 V  
CdVdT = 10 nF  
RL (SU) = 96 Ω  
CdVdT = 10 nF  
COUT = 22 µF  
COUT = 22 µF  
10-4. Start-Up With Load  
10-5. PD(INRUSH) Due to Inrush and Load Current  
The additional power dissipation during start-up is calculated using 方程10.  
1
6
V(IN)2  
PD(LOAD) =  
ì
RL(SU)  
(10)  
(11)  
(12)  
Total power dissipated in the device during start-up is given by 方程11.  
PD(STARTUP) = PD(INRUSH) + PD(LOAD)  
Total current during start-up is given by 方程12.  
I(STARTUP) = I(INRUSH) + IL(t)  
For the design example under discussion,  
Select the inrush current I(INRUSH) = 0.1 A and tdVdT calculated using 方程8 is 5.28 ms.  
For a given start-up time, CdVdT capacitance value calculated using 方程式 2 is 10.7 nF for tdVdT = 5.28 ms and  
VIN = 24 V.  
Choose the closest standard value: 10.0 nF and 16-V capacitor.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS2662  
 
 
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
The inrush power dissipation due to output capacitor alone is calculated using 程式 9 and it is 1.2 W.  
Considering the start-up with 96-load, the additional power dissipation calculated using 方程式 10 is 1 W. The  
total device power dissipation during start-up is 2.2 W  
The power dissipation with or without load, for a selected start-up time must not exceed the thermal shutdown  
limits as shown in 10-6.  
From the thermal shutdown limit graph, at TA = 125°C, thermal shutdown time for 2.2 W is close to 580 ms. It is  
safe to have a minimum 30% margin to allow for variation of the system parameters such as load, component  
tolerance, input voltage and layout. Selected 10-nF CdVdT capacitor and 5.28-ms start-up time (tdVdT) are well  
within the limit for successful start-up with 96-load.  
Higher value C(dVdT) capacitor can be selected to further reduce the power dissipation during start-up.  
100000  
Temp = -40èC  
Temp = 25èC  
10000  
Temp = 85èC  
Temp = 105èC  
Temp = 125èC  
1000  
100  
10  
1
0.2  
1
10  
Power Dissipation (W)  
50  
D025  
10-6. Thermal Shutdown Time vs Power Dissipation  
10.2.2.4.3 Support Component Selections RFLT and C(IN)  
The RFLT Absolute Maximum Ratings serves as pull-up for the open-drain fault output. The current sink by this  
pin must not exceed 10 mA (see the Absolute Maximum Ratings table). TI recommends typical resistance value  
in the range of 10 kΩ to 100 kΩ for RFLT. The CIN is a local bypass capacitor to suppress noise at the input. TI  
recommends typical capacitance value in the range of 0.1 µF to 1 µF for C(IN)  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS2662  
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
10.2.3 Application Curves  
VIN  
VIN  
VOUT  
VOUT  
FLTb  
FLTb  
IIN  
IIN  
10-7. Hot Plug With VIN No Load  
10-8. Hot-Plug With VIN 96-Load  
10-9. Start-Up With Shutdown Pin 96-Load  
10-10. Power Down With Shutdown Pin 96-Ω  
Load  
VIN  
VIN  
VOUT  
VOUT  
FLTb  
FLTb  
IIN  
IIN  
10-11. Over Load Response Load Stepped  
From 136-to 36-Load  
10-12. Turn ON With Short Circuit on Output  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS2662  
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
10.3 System Examples  
10.3.1 Field Supply Protection in PLC, DCS I/O Modules  
TPS26624 / TPS26625  
24-V nominal (from field  
SELV power supply)  
IN  
Power FET isolation during over  
OUT  
To Field Loads  
(Sensors & Actuators)  
Inrush Current  
Control  
voltage , Input Reverse Polarity,  
Output Reverse Polarity and short  
circuit faults  
Fault Diagnostics  
SHDN  
FLT  
FLT  
ON/OFF  
Control  
Fault  
DC/DC  
MCU  
Field side  
PLC side  
Digital Isolator  
10-13. Power Delivery Circuit Block Diagram in I/O Modules  
The PLC or Distributed Control System (DCS) I/O modules are often connected to an external field power supply  
to support higher power requirements of the field loads like sensors and actuators. Power-supply faults or  
miswiring can damage the loads or cause the loads not to operate correctly. The TPS26624 and TPS26625 can  
be used as a front end protection circuit to protect and provide stable supply to the field loads. Undervoltage,  
overvoltage, and input and output side reverse polarity protection features of these devices prevent the loads to  
experience voltages outside the operating range, which can permanently damage the loads.  
Field power supply is often connected to multiple I/O modules that can deliver more current than a single I/O  
module can handle. Overcurrent protection scheme of the TPS2662x family limits the current from the power  
supply to the module so that the maximum current does not rise above what the board is designed for. Fast  
short-circuit protection scheme isolates the faulty load from the field supply quickly and prevents the field supply  
to dip and cause interrupts in the other I/O modules connected to the same field supply. High accurate (±5% at  
0.88 A) current limit facilitates more I/O modules to be connected to field supply. Fault indication ( FLT) features  
facilitate continuous load monitoring.  
The TPS26624 and TPS26625 also acts as a smart diode with protection against reverse current during output  
side miswiring. Reverse current can potentially damage the field power supply and cause the I/O modules to run  
hot or can cause permanent damage.  
If the field power supply is connected in reverse polarity on the input side (which is not unlikely as field power  
supplies are usually connected with screw terminals), field loads can permanently get damaged due to the  
reverse voltage. Also, during the installation the field power supply can be miswired on the output side instead of  
on the input side which can damage the upstream power supply and electronics. The input and output reverse  
polarity protection feature of the TPS26624 and TPS26625 prevents the reverse voltage to appear at the load  
side as well as supply side offering complete system protection during field miswiring.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS2662  
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
10.3.2 Simple 24-V Power Supply Path Protection  
With the TPS2662x, a simple 24-V power supply path protection can be realized using a minimum of four  
external components as shown in the schematic diagram in 10-14. The external components required are: a  
1Meg R(1) resistor across IN and UVLO pins, a R(ILIM) resistor to program the current limit, C(IN) and C(OUT)  
capacitors.  
System Load  
VOUT  
COUT  
OUT  
IN  
CIN  
R1  
1Meg  
478 mΩ  
Input from a 24V  
power supply  
UVLO  
OVP  
FLT  
TPS2662x  
SHDN  
dVdT  
RTN  
ILIM  
GND  
RILIM  
10-14. TPS2662x Configured for a Simple 24-V Supply Path Protection  
Protection features with this configuration include:  
Load and device protection from reverse input polarity fault down to 60 V  
Upstream supply and device protection from reverse output polarity fault down to (60 VIN) V with  
TPS26624 and TPS26625 variants  
Protection from 60 V from the external SELV supply: overvoltage Clamp at 38 V with TPS26622 and  
TPS26623 variants  
Inrush current control with 24 V and 660-µs output voltage slew rate  
Reverse Current Blocking  
Accurate current limiting with auto-retry with TPS26621, TPS26623, TPS26625 variants  
Accurate current limiting with latch-off with TPS26620, TPS26622, TPS26624 variants  
10.3.3 Power Stealing in Smart Thermostat  
The adjustable protection features of the TPS2662x eFuse, like the inrush current limiting, overvoltage and  
overcurrent protection, simplifies the input power management design in smart thermostats. Refer to the TI  
Design report, Power Stage Reference Design for Power Stealing Thermostat, for further information.  
10.4 Do's and Don'ts  
Do not connect RTN to GND. Connecting RTN to GND disables the Reverse Polarity protection feature.  
Do connect the TPS2662x support components R(ILIM), C(dVdT), and UVLO, OVP resistors with respect to  
RTN pin.  
Do connect device PowerPAD to the RTN plane for an enhanced thermal performance.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS2662  
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
11 Power Supply Recommendations  
The TPS2662x eFuse is designed for the supply voltage range of 4.5 V VIN 60 V. If the input supply is  
located more than a few inches from the device, TI recommends an input ceramic bypass capacitor higher than  
0.1 μF. Power supply must be rated higher than the current limit set to avoid voltage droops during overcurrent  
and shor-circuit conditions.  
11.1 Transient Protection  
In case of short circuit and over load current limit, when the device interrupts current flow, input inductance  
generates a positive voltage spike on the input and output inductance generates a negative voltage spike on the  
output. The peak amplitude of voltage spikes (transients) depends on the value of inductance in series to the  
input or output of the device. These transients can exceed the Absolute Maximum Ratings of the device if steps  
are not taken to address the issue.  
Typical methods for addressing transients include:  
Minimizing lead length and inductance into and out of the device  
Using large PCB GND plane  
Use of a Schottky diode across the output and GND to absorb negative spikes in the designs with TPS26620,  
TPS26621, TPS26622, TPS26623 devices and a TVS clamp in the designs withTPS26624 and TPS26625  
devices  
A low value ceramic capacitor (C(IN) to approximately 0.1 μF) to absorb the energy and dampen the  
transients.  
The approximate value of input capacitance can be estimated with 方程13.  
L IN  
( )  
Vspike Absolute = V IN + I Load  
( ) )  
´
(
)
(
C IN  
( )  
(13)  
where  
V(IN) is the nominal supply voltage  
I(LOAD) is the load current  
L(IN) equals the effective inductance seen looking into the source  
C(IN) is the capacitance present at the input  
Some applications can require additional Transient Voltage Suppressor (TVS) to prevent transients from  
exceeding the Absolute Maximum Ratings of the device. These transients can occur during positive and  
negative surge tests on the supply lines. In such applications TI recommends to place at least 1 µF of input  
capacitor to limit the falling slew rate of the input voltage within a maximum of 20 V/µs.  
The circuit implementation with optional protection components (a ceramic capacitor, TVS and Schottky diode) is  
shown in Figure 11-1 and Figure 11-2.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS2662  
 
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
INPUT  
IN  
OUT  
OUTPUT  
CIN  
COUT  
R4  
R1  
478 m  
UVLO  
OVP  
FLT  
*
*
SHDN  
R2  
TPS26620/1/2/3  
dVdT  
RTN  
ILIM  
GND  
R3  
RILIM  
CdVdT  
* Optional components needed for suppression of transients  
11-1. Circuit Implementation With Optional Protection Components for TPS26620, TPS26621,  
TPS26622, and TPS26623  
INPUT  
IN  
OUT  
OUTPUT  
CIN  
COUT  
R4  
R1  
R2  
478 m  
UVLO  
OVP  
FLT  
*
*
TPS26624/5  
SHDN  
dVdT  
RTN  
ILIM  
GND  
R3  
RILIM  
CdVdT  
* Optional components needed for suppression of transients  
11-2. Circuit Implementation With Optional Protection Components for TPS26624 and TPS26625  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS2662  
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
12 Layout  
12.1 Layout Guidelines  
For all the applications, TI recommends a 0.1 µF or higher value ceramic decoupling capacitor between IN  
terminal and GND.  
The optimum placement of decoupling capacitor is closest to the IN and GND terminals of the device. Care  
must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN terminal, and the  
GND terminal of the IC. See 12-1 for a typical PCB layout example.  
High current carrying power path connections must be as short as possible and must be sized to carry at  
least twice the full-load current.  
RTN, which is the reference ground for the device must be a copper plane or island.  
Locate all the TPS2662x family support components R(ILIM), C(dVdT), UVLO, OVP resistors close to their  
connection pin. Connect the other end of the component to the RTN with shortest trace length.  
The trace routing for the RILIM component to the device must be as short as possible to reduce parasitic  
effects on the current limit and current monitoring accuracy. These traces must not have any coupling to  
switching signals on the board.  
Protection devices such as TVS, snubbers, capacitors, or diodes must be placed physically close to the  
device they are intended to protect, and routed with short traces to reduce inductance. For example, TI  
recommends a protection Schottky diode to address negative transients due to switching of inductive loads,  
and it must be physically close to the OUT and GND pins.  
Thermal considerations: when properly mounted, the PowerPAD package provides significantly greater  
cooling ability. To operate at rated power, the PowerPAD must be soldered directly to the board RTN plane  
directly under the device. Other planes, such as the bottom side of the circuit board can be used to increase  
heat sinking in higher current applications. Designs that do not need reverse input polarity protection can  
have RTN, GND and PowerPAD connected together. PowerPAD in these designs can be connected to the  
PCB ground plane.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS2662  
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
12.2 Layout Example  
Top Layer  
Bottom layer GND plane  
Top Layer RTN Plane  
Bottom Layer RTN Plane  
Via to Bottom Layer  
Track in bottom layer  
BOTTOM Layer GND Plane  
Top Layer  
Power GND Plane  
High  
Frequency  
Bypass cap  
VOUT PLANE  
VIN PLANE  
OUT  
FLT  
IN  
UVLO  
OVP  
dVdT  
SHDN  
RTN  
ILIM  
GND  
TOP Layer  
RTN Plane  
BOTTOM Layer RTN Plane  
12-1. Typical PCB Layout Example With a 2 Layer PCB  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS2662  
 
 
TPS2662  
www.ti.com.cn  
ZHCSI22F OCTOBER 2017 REVISED DECEMBER 2021  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
Texas Instruments, Power Stage Reference Design for Power Stealing Thermostat design guide  
13.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.4 Trademarks  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS2662  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS26620DRCR  
TPS26620DRCT  
TPS26621DRCR  
TPS26621DRCT  
TPS26622DRCR  
TPS26622DRCT  
TPS26623DRCR  
TPS26623DRCT  
TPS26624DRCR  
TPS26624DRCT  
TPS26625DRCR  
TPS26625DRCT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
ED00  
ED00  
ED01  
ED01  
ED02  
ED02  
ED03  
ED03  
ED04  
ED04  
ED05  
ED05  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Apr-2023  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS26620DRCR  
TPS26620DRCT  
TPS26621DRCR  
TPS26621DRCT  
TPS26622DRCR  
TPS26622DRCT  
TPS26623DRCR  
TPS26623DRCT  
TPS26624DRCR  
TPS26624DRCT  
TPS26625DRCR  
TPS26625DRCT  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS26620DRCR  
TPS26620DRCT  
TPS26621DRCR  
TPS26621DRCT  
TPS26622DRCR  
TPS26622DRCT  
TPS26623DRCR  
TPS26623DRCT  
TPS26624DRCR  
TPS26624DRCT  
TPS26625DRCR  
TPS26625DRCT  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
3000  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS26623DRCR

具有集成输入和输出反极性保护功能的 4.5V 至 60V、478mΩ、0.025A 至 0.88A 电子保险丝

| DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26623DRCT

具有集成输入和输出反极性保护功能的 4.5V 至 60V、478mΩ、0.025A 至 0.88A 电子保险丝

| DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26624DRCR

具有集成输入和输出反极性保护功能的 4.5V 至 60V、478mΩ、0.025A 至 0.88A 电子保险丝

| DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26624DRCT

具有集成输入和输出反极性保护功能的 4.5V 至 60V、478mΩ、0.025A 至 0.88A 电子保险丝

| DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26625DRCR

具有集成输入和输出反极性保护功能的 4.5V 至 60V、478mΩ、0.025A 至 0.88A 电子保险丝

| DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26625DRCT

具有集成输入和输出反极性保护功能的 4.5V 至 60V、478mΩ、0.025A 至 0.88A 电子保险丝

| DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2663

具有输出功率限制和浪涌保护功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26630RGER

具有输出功率限制和浪涌保护功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝 | RGE | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26630RGET

具有输出功率限制和浪涌保护功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝 | RGE | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26631PWPR

具有输出功率限制和浪涌保护功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝 | PWP | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26631PWPT

具有输出功率限制和浪涌保护功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝 | PWP | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS26631RGER

具有输出功率限制和浪涌保护功能的 4.5V 至 60V、31mΩ、0.6A 至 6A 电子保险丝 | RGE | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI