TPS27SA08CQPWPRQ1 [TI]

具有电流监测功能的汽车级 36V、8mΩ、10A 单通道智能高侧开关 | PWP | 16 | -40 to 125;
TPS27SA08CQPWPRQ1
型号: TPS27SA08CQPWPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电流监测功能的汽车级 36V、8mΩ、10A 单通道智能高侧开关 | PWP | 16 | -40 to 125

开关
文件: 总45页 (文件大小:1863K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZHCSMM0 DECEMBER 2020  
TPS27SA08-Q1  
TPS27SA08-Q1 24V10A 单通道汽车智能高侧开关  
1 特性  
3 说明  
具有典型 9mΩ RON (TJ = 25°C) 的单通道智能高侧  
开关  
TPS27SA08-Q1 器件是一款适用于 24V 电源系统的单  
通道智能高侧开关。该器件集成了强大的保护和诊断功  
可确保即使在发生短路等不利事件时也能提供输出  
端口保护。该器件通过可靠的电流限制来防止故障即  
通过将输出电流调节为设定值通常为 20A来应对  
过流事件。TPS27SA08-Q1 器件还可提供高精度模拟  
电流感应可在驱动不同负载分布的同时改进诊断。通  
过向系统 MCU 报告负载电流、器件温度和电源电压,  
该器件可实现预测性维护和负载诊断从而延长系统寿  
命。  
适用于具有 40V 负载突降的 24V 电源系统  
通过过流保护提高可靠性:  
– 电流限制阈值标称值为 20A  
– 在达到阈值时进行电流限制钳位)  
符合汽车应用标准:  
– 符合 AEC Q-100 标准  
– 器件温度等级 140°C +125°C 环境工作  
温度范围  
TPS27SA08-Q1 器件采用小型的 16 引脚 HTSSOP 封  
以减小 PCB 尺寸。  
– 器件 HBM ESD 分类等级 2  
– 器件 CDM ESD 分类等级 C4B  
强大的集成输出保护:  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
– 集成热保护  
TPS27SA08-Q1  
HTSSOP (16)  
5.00mm x 4.40mm  
– 接地短路和电源短路保护  
– 在电源反向期间 FET 自动导通  
– 发生失电和接地失效时自动关闭  
– 集成输出钳位对电感负载进行消磁  
– 可配置故障处理  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
DIA_EN  
SEL1  
SEL2  
SNS  
可对模拟检测输出进行配置以精确测量:  
– 负载电流  
µC  
ST  
– 电源电压  
TPS27SA08-Q1  
– 器件温度  
LATCH  
EN  
FLT 指示返回到 MCU  
– 在关断状态下和发生 GND 短路时进行开路负载  
检测  
24-V DC  
Power Supply  
VBB  
2 应用  
VOUT  
GND  
交流充电站  
直流充电站  
配电开关  
Load  
座椅舒适模块  
动力总成加热元件  
感性负载  
简化版原理图  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFZ1  
 
 
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
Table of Contents  
9.1 Overview...................................................................19  
9.2 Functional Block Diagram.........................................19  
9.3 Feature Description...................................................20  
9.4 Device Functional Modes..........................................31  
10 Application and Implementation................................33  
10.1 Application Information........................................... 33  
10.2 Typical Application.................................................. 35  
11 Power Supply Recommendations..............................39  
12 Layout...........................................................................40  
12.1 Layout Guidelines................................................... 40  
12.2 Layout Example...................................................... 40  
13 Device and Documentation Support..........................41  
13.1 Device Support....................................................... 41  
13.2 Trademarks.............................................................41  
13.3 Electrostatic Discharge Caution..............................41  
13.4 Glossary..................................................................41  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Summary Table................................................... 3  
6 Pin Configuration and Functions...................................4  
6.1 Recommended Connections for Unused Pins............5  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings ....................................... 6  
7.2 ESD Ratings .............................................................. 6  
7.3 Recommended Operating Conditions ........................6  
7.4 Thermal Information ...................................................7  
7.5 Electrical Characteristics ............................................7  
7.6 Switching Characteristics .........................................10  
7.7 SNS Timing Characteristics ..................................... 10  
7.8 Typical Characteristics.............................................. 11  
8 Parameter Measurement Information..........................18  
9 Detailed Description......................................................19  
Information.................................................................... 42  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
December 2020  
*
Initial release.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
5 Device Summary Table  
Full Device Number  
Current Limit (ICL  
20 A  
)
Overcurrent Behavior  
Device Qualification  
TPS27SA08C-Q1  
Clamp Current at ICL until Thermal Shutdown  
AEC Q-100 qualified  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS27SA08-Q1  
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
6 Pin Configuration and Functions  
GND  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
DIA_EN  
SEL2  
SEL1  
NC  
SNS  
LATCH  
EN  
VBB  
ST  
NC  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
6-1. PWP Package 16-Pin HTSSOP Top View  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
GND  
SNS  
1
Device ground  
O
I
2
Sense output  
3
LATCH  
EN  
Sets fault handling behavior (latched or auto-retry)  
Switch control input, active high  
Switch diagnostic feedback, active low  
Switch output  
4
I
5
ST  
O
O
--  
--  
I
6, 7, 8, 9, 10, 11  
VOUT  
NC  
12  
No Connect  
13  
NC  
No Connect  
14  
SEL1  
SEL2  
DIA_EN  
VBB  
Diagnostics Select 1  
15  
16  
I
Diagnostics Select 2  
I
Diagnostic enable, active high  
Power supply input  
Exposed pad  
I
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
6.1 Recommended Connections for Unused Pins  
The TPS27SA08-Q1 device is designed to provide an enhanced set of diagnostic and protection features.  
However, if the system design only allows for a limited number of I/O connections, some pins may be considered  
as optional.  
6-2. Connections for Optional Pins  
PIN NAME  
CONNECTION IF NOT USED  
IMPACT IF NOT USED  
SNS  
Analog sense is not available.  
Ground through 1-kΩ resistor  
With LATCH unused, the device will auto-retry after a fault. If latched  
behavior is desired it is possible to use one microcontroller output to control  
the latch function of several high-side channels.  
Float or ground through RPROT  
resistor  
LATCH  
ST  
All faults are indicated by the analog SNS pin. The ST pin provides the  
additional benefits:  
Provide fault indication when DIA_EN = 0  
Float  
Provide fault indication regardless of SELx pin conditions  
Provide fault indication to a simple digital I/O (rather than ADC or  
comparator used with the SNS signal)  
Float or ground through RPROT SEL1 selects between the VBB and TJ sensing features. With SEL1 unused,  
SEL1  
SEL2  
resistor  
only load diagnostics are available.  
Ground through RPROT  
resistor  
With SEL2 = 0 V, VBB measurement diagnostics are not available.  
Float or ground through RPROT With DIA_EN unused, analog sense, open-load and short-to-supply  
resistor diagnostics are not available.  
DIA_EN  
RPROT is used to protect the pins from excess current flow during reverse supply conditions, for more information  
please see the section on Reverse Supply protection.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS27SA08-Q1  
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX UNIT  
VBB  
Maximum continuous supply voltage  
Maxium supply voltage - long tranisent  
36  
40  
V
V
VTR1  
Duration < 300 ms  
VBB to IC GND  
Maxium transient voltage at the supply  
input  
VTR2  
54  
V
VRev  
V
V
V
V
V
V
Reverse supply voltage, VREV 3 minutes, with GND network.  
Enable pin voltage  
36  
1  
1  
1  
1  
1  
VEN  
7
7
VLATCH  
VST  
VDIA_EN  
VSNS  
LATCH pin voltage  
Status pin voltage  
7(2)  
7
Diagnostic Enable pin voltage  
Sense pin voltage  
7
VSEL1  
VSEL2  
,
Select pin voltage  
7
V
1  
IGND  
TJ  
Reverse ground current  
Maximum junction temperature  
Storage temperature  
VBB < 0 V  
mA  
°C  
50  
150  
150  
Tstg  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) These pins are adjacent to pins that will handle high-voltages. In the event of a pin-to-pin short, there will not be device damage.  
7.2 ESD Ratings  
VALUE  
UNIT  
All pins except exposed pad  
and pins 6 to 11  
±2000  
Human-body model (HBM), per AEC Q100-002(1)  
Electrostatic  
discharge  
V(ESD)  
V
Exposed pad and pins 6 to 11  
All pins  
±4000  
±750  
Charged-device model (CDM), per AEC Q100-011  
Contact/Air discharge, per IEC 61000-4-2 (2)  
Electrostatic  
discharge  
VBB (exposed pad) and  
VOUT pins  
V(ESD1)  
±8/±15  
±1000  
kV  
V
Surge protection with 42 , per IEC 61000-4-5;  
1.2/50 μs (2)  
VBB (exposed pad) and  
VOUT pins  
V(surge) Transient surge  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) Tested with the application circuit and supply voltage of 24-V DC input.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
8
MAX  
36  
UNIT  
VBB  
Nominal supply voltage  
Enable voltage  
V
V
V
V
VEN  
5.5  
5.5  
5.5  
1  
1  
1  
VLATCH  
VDIA_EN  
LATCH voltage  
Diagnostic enable voltage  
VSEL1  
VSEL2  
,
Select voltage  
Status voltage  
5.5  
5.5  
V
V
1  
VST  
0
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
 
 
 
 
 
 
 
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
7.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1  
0
MAX  
VSNSclamp  
10  
UNIT  
V
VSNS  
IMAX  
Sense voltage  
Continuous load current  
TA = 70°C  
A
7.4 Thermal Information  
TPS27SA08-Q1  
THERMAL METRIC(1) (2)  
PWP (HTSSOP)  
UNIT  
16 PINS  
32.8  
30.7  
9.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.6  
ψJT  
9.4  
ψJB  
RθJC(bot)  
1.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The thermal parameters are based on a 4-layer PCB according to the JESD51-5 and JESD51-7 standards.  
7.5 Electrical Characteristics  
VBB = 8 V to 36 V, TJ = 40°C to 125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INPUT VOLTAGE AND CURRENT  
VClamp  
VDS clamp voltage  
40  
58  
3
V
V
VBB undervoltage lockout  
falling  
VUVLOF  
2.5  
2.5  
VBB undervoltage lockout  
rising  
VUVLOR  
3
0.8  
1
V
VBB = 24 V, TJ = 25°C  
VEN = VDIA_EN = 0 V, VOUT = 0 V  
µA  
µA  
µA  
µA  
µA  
mA  
Standby current (includes  
MOSFET leakage)  
VBB = 24 V, TJ = 85°C  
VEN = VDIA_EN = 0 V, VOUT = 0 V  
ISB  
VBB = 24 V, TJ = 125°C,  
VEN = VDIA_EN = 0 V, VOUT = 0 V  
6
VBB = 24 V, TJ = 25°C  
VEN = VDIA_EN = 0 V, VOUT = 0 V  
0.01  
3
0.5  
6
IOUT_OFF  
Output leakage current  
VBB = 24 V, TJ = 125°C  
VEN = VDIA_EN = 0 V, VOUT = 0 V  
Current consumption in  
diagnostic mode  
VBB = 24 V, ISNS = 0 mA  
VEN = 0 V, VDIA_EN = 5 V, VOUT = 0 V  
IDIA  
6
VBB = 24 V  
IQ  
Quiescent current  
2.4  
20  
5.2  
mA  
ms  
VEN = 5 V VDIA_EN = 0 V, IOUT = 0 A, VSELX = 0 V  
tSTBY  
Standby mode delay time  
VEN = VDIA_EN = 0 V to Standby  
RON CHARACTERISTICS  
9
TJ = 25°C, 6 V VBB 36 V  
TJ = 150°C, 6 V VBB 36 V  
TJ = 25°C, 3 V VBB 6 V  
mΩ  
mΩ  
mΩ  
On-resistance  
Includes MOSFET and  
package  
RON  
20  
15  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS27SA08-Q1  
 
 
 
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
VBB = 8 V to 36 V, TJ = 40°C to 125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
9
TJ = 25°C, -18 V VBB ≤ –8 V  
TJ = 105°C, 18 V VBB ≤ –8 V  
mΩ  
On-resistance during  
reverse polarity  
RON(REV)  
20  
mΩ  
CURRENT SENSE CHARACTERISTICS  
Current sense ratio  
IOUT / ISNS  
KSNS  
4600  
1.74  
Current sense current and  
ISNSI  
VEN = VDIA_EN = 5 V, VSEL1  
VSEL2 = 0 V  
=
=
=
=
=
=
=
=
=
=
IOUT = 8 A  
mA  
%
current sense accuracy  
Current sense current and  
ISNSI  
VEN = VDIA_EN = 5 V, VSEL1  
VSEL2 = 0 V  
IOUT = 8 A  
5
5
5  
5  
current sense accuracy  
Current sense current and  
ISNSI  
VEN = VDIA_EN = 5 V, VSEL1  
VSEL2 = 0 V  
IOUT = 3 A  
0.65  
0.217  
0.065  
0.022  
mA  
%
current sense accuracy  
Current sense current and  
ISNSI  
VEN = VDIA_EN = 5 V, VSEL1  
VSEL2 = 0 V  
IOUT = 3 A  
current sense accuracy  
Current sense current and  
ISNSI  
VEN = VDIA_EN = 5 V, VSEL1  
VSEL2 = 0 V  
IOUT = 780 mA  
IOUT = 780 mA  
IOUT = 300 mA  
IOUT = 300 mA  
IOUT = 100 mA  
IOUT = 100 mA  
mA  
%
current sense accuracy  
Current sense current and  
ISNSI  
VEN = VDIA_EN = 5 V, VSEL1  
VSEL2 = 0 V  
5
5  
current sense accuracy  
Current sense current and  
ISNSI  
VEN = VDIA_EN = 5 V, VSEL1  
VSEL2 = 0 V  
mA  
%
current sense accuracy  
Current sense current and  
ISNSI  
VEN = VDIA_EN = 5 V, VSEL1  
VSEL2 = 0 V  
12  
42  
12  
42  
current sense accuracy  
Current sense current and  
ISNSI  
VEN = VDIA_EN = 5 V, VSEL1  
VSEL2 = 0 V  
mA  
%
current sense accuracy  
Current sense current and  
ISNSI  
VEN = VDIA_EN = 5 V, VSEL1  
VSEL2 = 0 V  
current sense accuracy  
TJ SENSE CHARACTERISTICS  
0.12  
0.85  
mA  
mA  
TJ = 40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 150°C  
VDIA_EN = 5 V, VSEL1 = 5 V,  
VSEL2 = 0 V  
ISNST  
Temperature sense current  
1.52  
mA  
2.25  
mA  
dISNST/dT  
Coefficient  
0.0112  
mA/°C  
VBB SENSE CHARACTERISTICS  
VBB = 3 V  
0.26  
0.69  
mA  
mA  
VBB = 8 V  
VDIA_EN = 5 V, VSEL1 = 5 V,  
VSEL2 = 5 V  
ISNSV  
Voltage sense current  
Coefficient  
VBB = 13.5 V  
VBB = 18 V  
VBB = 28 V  
1.17  
mA  
1.56  
mA  
2.43  
mA  
dISNSV/dV  
0.0867  
mA/V  
SNS CHARACTERISTICS  
ISNSFH  
ISNS fault high level  
VDIA_EN = 5 V, VSEL1 = 0 V, VSEL2 = 0  
VDIA_EN = 0 V  
6
0
6.9  
7.6  
1
mA  
µA  
V
ISNSleak  
VSNSclamp  
ISNS leakage  
VSNS clamp  
5.9  
Current threshold at which  
current limit loop engages  
ICL  
17  
15  
22.2  
27.8  
25  
A
TJ = 40°C  
Current threshold at which  
current limit loop engages  
ICL  
TJ = 25°C  
TJ = 25°C  
20  
24  
A
A
ICL_REG  
Current limit regulation level  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
VBB = 8 V to 36 V, TJ = 40°C to 125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Current threshold at which  
current limit loop engages  
ICL  
TJ = 125°C  
12.8  
16  
20  
A
CURRENT LIMIT CHARACTERISTICS  
FAULT CHARACTERISTICS  
VOL  
Open-load detection voltage VEN = 0 V, VDIA_EN = 5 V  
2
2.5  
4
V
From falling edge of EN  
VEN= 5 V to 0 V, VDIA_EN = 5 V, VSELx = 00  
IOUT = 0 mA, VOUT = 4 V  
OL and STB indication time  
- switch disabled  
tOL1  
300  
500  
700  
µs  
From rising edge of DIA_EN  
VEN = 0 V, VDIA_EN = 0 V to 5 V, VSELx = 00  
IOUT = 0 mA, VOUT = 4 V  
OL and STB indication time  
- switch disabled  
tOL2  
50  
50  
µs  
µs  
From rising edge of VOUT  
VEN = 0 V, VDIA_EN = 5 V, VSELx = 00  
IOUT = 0 mA, VOUT = 0 V to 4 V  
OL and STB indication time  
- switch disabled  
tOL3  
TABS  
THYS  
Thermal shutdown  
160  
1
°C  
°C  
Thermal shutdown  
hysteresis  
20  
2
Minimum time from fault shutdown to switch re-enable  
(for thermal shutdown, current limit, and energy limit)  
tRETRY  
Retry time  
3
ms  
EN PIN CHARACTERISTICS(1)  
VIL, EN  
VIH, EN  
VIHYS, EN  
IIL, EN  
Input voltage low level  
Input voltage high level  
Input voltage hysteresis  
Input current low level  
Input current high level  
Internal pulldown resistor  
0.8  
V
V
No GND network Diode  
No GND network Diode  
VEN = 0.8 V  
2
250  
0.8  
2
mV  
µA  
µA  
MΩ  
IIH, EN  
REN  
VEN = 2.0 V  
1
DIA_EN PIN CHARACTERISTICS (1)  
VIL, DIA_EN Input voltage low level  
No GND network Diode  
No GND network Diode  
0.8  
V
V
VIH, DIA_EN Input voltage high level  
2
VIHYS,  
Input voltage hysteresis  
250  
mV  
DIA_EN  
IIL, DIA_EN  
IIH, DIA_EN  
RDIA_EN  
Input current low level  
Input current high level  
Internal pulldown resistor  
VDIA_EN = 0.8 V  
VDIA_EN = 2.0 V  
0.8  
2
µA  
µA  
1
MΩ  
SEL1 AND SEL2 PIN CHARACTERISTICS (1)  
VIL, SELx  
VIH, SELx  
Input voltage low level  
Input voltage high level  
No GND network Diode  
0.8  
V
V
2
VIHYS, SELx Input voltage hysteresis  
250  
0.8  
2
mV  
µA  
µA  
MΩ  
IIL, SELx  
IIH, SELx  
RSELx  
Input current low level  
Input current high level  
Internal pulldown resistor  
VSELx = 0.8 V  
VSELx = 2.0 V  
1
LATCH PIN CHARACTERISTICS (1)  
VIL, LATCH  
VIH, LATCH  
Input voltage low level  
Input voltage high level  
No GND network Diode  
No GND network Diode  
0.8  
V
V
2
VIHYS, LATCH Input voltage hysteresis  
250  
0.8  
2
mV  
µA  
µA  
IIL, LATCH  
IIH, LATCH  
Input current low level  
Input current high level  
VLATCH = 0.8 V  
VLATCH = 2.0 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS27SA08-Q1  
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
VBB = 8 V to 36 V, TJ = 40°C to 125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
RLATCH  
Internal pulldown resistor  
1
MΩ  
ST PIN CHARACTERISTICS (1)  
VOL, ST  
ISTleak  
Output voltage low level  
Leakage current  
IST = 1 mA  
VST = 5 V  
0.4  
2
V
µA  
(1) VBB = 3 to 28 V  
7.6 Switching Characteristics  
VBB = 36 V, TJ = 40°C to 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
20  
TYP  
70  
MAX  
UNIT  
µs  
tDR  
tDF  
Turn-on delay time  
Turn-off delay time  
100  
125  
VBB = 24 V, RL = 8 Ω  
VBB = 24 V, RL = 8 Ω  
20  
50  
µs  
VBB = 24 V, 20% to 80% of VOUT  
RL = 8 Ω  
,
SRR  
SRF  
VOUT rising slew rate  
VOUT falling slew rate  
0.1  
0.2  
0.35  
0.5  
0.8  
0.9  
V/µs  
V/µs  
VBB = 24 V, 80% to 20% of VOUT  
,
RL = 8 Ω  
tON  
Turn-on time  
39  
39  
100  
90  
0
180  
180  
80  
µs  
µs  
µs  
VBB = 24 V, RL = 8 Ω  
VBB = 24 V, RL = 8 Ω  
200-µs enable pulse  
tOFF  
Turn-off time  
tON - tOFF  
Turn-on and off matching  
80  
Switching energy losses during  
turn-on  
EON  
0.4  
0.4  
mJ  
mJ  
VBB = 24 V, RL = 8 Ω  
VBB = 24 V, RL = 8 Ω  
Switching energy losses during  
turn-off  
EOFF  
7.7 SNS Timing Characteristics  
VBB = 8 to 36 V, TJ = 40°C to 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SNS TIMING - CURRENT SENSE  
VEN = 5 V, VDIA_EN = 0 V to 5 V  
RSNS = 1 kΩ, RL = 2.6 Ω  
tSNSION1  
tSNSION2  
tSNSION3  
tSNSIOFF1  
tSETTLEH  
tSETTLEL  
Settling time from rising edge of DIA_EN  
Settling time from rising edge of EN  
40  
180  
180  
20  
µs  
µs  
µs  
µs  
µs  
µs  
VEN = VDIA_EN = 0 V to 5 V  
RSNS = 1 kΩ, RL = 2.6 Ω  
VEN = 0 V to 5 V, VDIA_EN = 5 V  
RSNS = 1 kΩ, RL = 2.6 Ω  
Settling time from rising edge of EN  
VEN = 5 V, VDIA_EN = 5 V to 0 V  
RSNS = 1 kΩ, RL = 2.6 Ω  
Settling time from falling edge of DIA_EN  
Settling time from rising edge of load step  
Settling time from falling edge of load step  
VEN = 5 V, VDIA_EN = 5 V  
RSNS = 1 kΩ, IOUT = 1 A to 5 A  
20  
VEN = 5 V, VDIA_EN = 5 V  
RSNS = 1 kΩ, IOUT = 5 A to 1 A  
20  
SNS TIMING - TEMPERATURE SENSE  
VEN = 5 V, VDIA_EN = 0 V to 5 V  
RSNS = 1 kΩ  
tSNSTON1  
tSNSTON2  
tSNSTOFF  
Settling time from rising edge of DIA_EN  
40  
70  
20  
µs  
µs  
µs  
VEN = 0 V, VDIA_EN = 0 V to 5 V  
RSNS = 1 kΩ  
Settling time from rising edge of DIA_EN  
Settling time from falling edge of DIA_EN  
VEN = X, VDIA_EN = 5 V to 0 V  
RSNS = 1 kΩ  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
 
 
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
7.7 SNS Timing Characteristics (continued)  
VBB = 8 to 36 V, TJ = 40°C to 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SNS TIMING - VOLTAGE SENSE  
VEN = 5 V, VDIA_EN = 0 V to 5 V  
RSNS = 1 kΩ  
tSNSVON1  
tSNSVON2  
tSNSVOFF  
Settling time from rising edge of DIA_EN  
Settling time from rising edge of DIA_EN  
Settling time from falling edge of DIA_EN  
40  
70  
20  
µs  
µs  
µs  
VEN = 0 V, VDIA_EN = 0 V to 5 V  
RSNS = 1 kΩ  
VEN = X, VDIA_EN = 5 V to 0 V  
RSNS = 1 kΩ  
SNS TIMING - MULTIPLEXER  
Settling time from temperature sense to  
VEN= X, VDIA_EN = 5 V  
VSEL1 = 5 V to 0 V, VSEL2 = 0 V  
RSNS = 1 kΩ, RL = 2.6 Ω  
60  
60  
60  
60  
60  
60  
µs  
µs  
µs  
µs  
µs  
µs  
current sense  
VEN = X, VDIA_EN = 5 V  
VSEL1 = 5 V, VSEL2 = 0 V to 5 V  
RSNS = 1 kΩ  
Settling time from temperature sense to  
voltage sense  
VEN = X, VDIA_EN = 5 V  
VSEL1 = 5 V, VSEL2 = 5 V to 0 V  
RSNS = 1 kΩ  
Settling time from voltage sense to  
temperature sense  
tMUX  
VEN = X, VDIA_EN = 5 V  
VSEL1 = VSEL2 = 5 V to 0 V,  
RSNS = 1 kΩ, RL = 2.6 Ω  
Settling time from voltage sense to current  
sense  
VEN = X, VDIA_EN = 5 V  
VSEL1 = 0 V to 5 V, VSEL2 = 0 V  
RSNS = 1 kΩ, RL = 2.6 Ω  
Settling time from current sense to  
temperature sense  
VEN = X, VDIA_EN = 5 V  
VSEL1 = VSEL2 = 0 V to 5 V  
RSNS = 1 kΩ, RL = 2.6 Ω  
Settling time from current sense to voltage  
sense  
7.8 Typical Characteristics  
2.7  
4
VBB  
8 V  
3.5  
3
13.5 V  
18 V  
24 V  
2.65  
2.6  
2.5  
2
2.55  
2.5  
1.5  
1
0.5  
0
2.45  
-40  
-10  
20  
50 80  
Temperature (°C)  
110  
140  
-40  
-20  
0
20  
40  
60  
Temperature (°C)  
80  
100  
120  
SLVS  
SDL0V0S1  
VBB = 13.5 V to 0 V  
VEN = 5 V  
VDIAG__EN = 0 V  
ROUT = 1 kΩ  
VOUT = 0 V  
VEN = 0 V  
VDIAG_EN = 0 V  
7-2. Standby Current (ISB) vs Temperature  
7-1. Falling Undervoltage Lockout (VUVLOF) vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS27SA08-Q1  
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
3
5
4
3
2
8 V  
13.5 V  
18 V  
VBB  
8 V  
13.5 V  
18 V  
24 V  
2.5  
28 V  
2
1.5  
1
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D002  
D003  
VOUT = 0 V  
VEN = 0 V  
VDIAG_EN = 0 V  
IOUT = 0 A  
RSNS = 1 kΩ  
VEN = 5 V  
VDIAG_EN = 5 V  
VSEL1 = VSEL2 = 0 V  
7-3. Output Leakage Current (IOUT(standby)) vs Temperature  
7-4. Quiescent Current (IQ) vs Temperature  
18  
20  
VBB  
8 V  
13.5 V  
24 V  
16  
16  
12  
8
14  
12  
10  
8
-40èC  
25èC  
60èC  
85èC  
4
105èC  
125èC  
150èC  
0
6
0
4
8
12  
16  
20  
24  
28  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
VBB (V)  
Temperature (èC)  
SLVS  
D004  
IOUT = 200 mA  
VEN = 5 V  
VDIAG_EN = 0 V  
IOUT = 200 mA  
VEN = 5 V  
VDIAG_EN = 0 V  
VBB = 13.5 V  
RSNS = 1 kΩ  
RSNS = 1 kΩ  
7-6. On Resistance (RON) vs VBB  
7-5. On Resistance (RON) vs Temperature  
75  
55  
54.5  
54  
73  
71  
69  
67  
65  
53.5  
53  
52.5  
52  
51.5  
51  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Temperature (èC)  
SLVS  
Temperature (èC)  
SLVS  
VEN = 5 V to 0 V  
VBB = 13.5 V  
VDIAG_EN = 0 V  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
VEN = 0 V to 5 V  
VBB = 13.5 V  
VDIAG_EN = 0 V  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
7-8. Turn-off Delay Time (tDF) vs Temperature  
7-7. Turn-on Delay Time (tDR) vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
0.37  
0.5  
0.495  
0.49  
0.36  
0.35  
0.34  
0.33  
0.32  
0.485  
0.48  
0.475  
0.47  
0.465  
0.46  
0.455  
0.45  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Temperature (èC)  
Temperature (èC)  
SLVS  
SLVS  
VEN = 0 V to 5 V  
VBB = 13.5 V  
VDIAG_EN = 0 V  
VEN = 5 V to 0 V  
VBB = 13.5 V  
VDIAG_EN = 0 V  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
7-9. VOUT Slew Rate Rising (SRR) vs Temperature  
7-10. VOUT Slew Rate Falling (SRF) vs Temperature  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
76.5  
75  
73.5  
72  
70.5  
-40  
-15  
10  
35  
60  
85  
110  
135  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Temperature (èC)  
Temperature (èC)  
SLVS  
SLVS  
VEN = 0 V to 5 V  
VBB = 13.5 V  
VDIAG_EN = 0 V  
VEN = 5 V to 0 V  
VBB = 13.5 V  
VDIAG_EN = 0 V  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
7-11. Turn-on Time (tON) vs Temperature  
7-12. Turn-off Time (tOFF) vs Temperature  
10  
8
0.2  
-40èC  
25èC  
0.18  
0.16  
0.14  
0.12  
0.1  
60èC  
85èC  
105èC  
125èC  
150èC  
6
4
0.08  
0.06  
0.04  
0.02  
0
2
0
-40  
-15  
10  
35  
60  
85  
110  
135 150  
0
100 200 300 400 500 600 700 800 900  
ILOAD (mA), VBB=13.5  
Temperature (èC)  
SLVS  
SLVS  
VEN = 0 V to 5 V  
and 5 V to 0 V  
VDIAG_EN = 0 V  
VSEL1 = VSEL2 = 0 V  
VEN = 5 V  
VDIAG_EN = 5 V  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
VBB = 13.5 V  
RSNS = 1 kΩ  
VBB = 13.5 V  
7-14. Current Sense Output Current (ISNSI ) vs Load Current  
7-13. Turn-on and Turn-off Matching (tON - tOFF) vs  
(IOUT) across Temperature  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS27SA08-Q1  
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
0.2  
3
2.5  
2
VBB  
8 V  
13.5 V  
18 V  
0.18  
8 V  
13.5 V  
0.16  
18 V  
0.14  
0.12  
0.1  
1.5  
1
0.08  
0.06  
0.04  
0.02  
0
0.5  
0
0
100 200 300 400 500 600 700 800 900  
ILOAD (mA)  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Temperature (èC)  
SLVS  
SLVS  
VSEL1 = VSEL2 = 0 V  
VEN = 5 V  
TA = 25°C  
VDIAG_EN = 5 V  
VSEL1 = 5 V  
VSEL2 = 0 V  
VEN = 0 V  
VDIAG_EN = 5 V  
RSNS = 1 kΩ  
RSNS = 1 kΩ  
7-15. Current Sense Output Current (ISNSI) vs Load Current  
7-16. Temperature Sense Output Current (ISNST) vs  
(IOUT) across VBB  
Temperature  
2.5  
6.95  
6.9  
6.85  
-40èC  
25èC  
8 V  
13.5 V  
18 V  
60èC  
2
85èC  
105èC  
125èC  
1.5  
150èC  
6.8  
6.75  
6.7  
1
0.5  
0
6.65  
6.6  
0
4
8
12  
16  
20  
24  
28  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
VBB (V)  
Temperature (èC)  
SLVS  
SLVS  
VSEL1 = VSEL2 = 5 V  
VEN = 0 V  
IOUT = 0 A  
VDIAG_EN = 5 V  
VSEL1 = VSEL2 = 0 V  
VEN = 0 V  
VDIAG_EN = 5 V  
VOUT Floating  
RSNS = 1 kΩ  
RSNS = 500 Ω  
7-17. Voltage Sense Output Current (ISNSV) vs VBB  
7-18. Fault High Output Current (ISNSFH) vs Temperature  
6.4  
8 V  
13.5 V  
18 V  
6.3  
6.2  
6.1  
6
5.9  
5.8  
5.7  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Temperature (èC)  
SLVS  
VBB = 13.5 V  
VOUT = 0 V  
VEN = 5 V  
VDIAG_EN = 0 V  
VLATCH = 5 V  
VSEL1 = VSEL2 = 0 V  
VEN = 5 V  
IOUT = 4 A  
VDIAG_EN = 5 V  
Device Version C  
RSNS = 10 kΩ  
7-20. Current Limit (ICL) vs Temperature  
7-19. Sense Pin Clamp Voltage (VSNSCLAMP) vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
2.85  
VBB  
8 V  
1.54  
1.535  
1.53  
VBB  
8 V  
13.5 V  
18 V  
13.5 V  
18 V  
2.75  
1.525  
1.52  
2.65  
1.515  
1.51  
2.55  
2.45  
2.35  
1.505  
1.5  
1.495  
1.49  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Temperature (èC)  
Temperature (èC)  
SLVS  
SLVS  
VEN = 0 V  
VOUT = 0 V to 5 V  
IOUT = 0 A  
VEN = 3.3 V to 0 V  
VOUT = 0 V  
VDIAG_EN = 0 V  
VDIAG_EN= 5 V VSEL1 = VSEL2 = 0 V  
ROUT = 1 kΩ  
7-21. Open Load Detection Voltage (VOL) vs Temperature  
7-22. VIL vs Temperature  
1.86  
VBB  
8 V  
325  
320  
315  
310  
305  
300  
295  
290  
VBB  
8 V  
13.5 V  
18 V  
1.85  
1.84  
1.83  
1.82  
1.81  
1.8  
13.5 V  
18 V  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Temperature (èC)  
Temperature (èC)  
SLVS  
SLVS  
VEN = 0 V to 3.3 V  
VOUT = 0 V  
VDIAG_EN = 0 V  
VEN = 0 V to 3.3 V  
and 3.3 V to 0 V  
VOUT = 0 V  
VDIAG_EN = 0 V  
ROUT = 1 kΩ  
ROUT = 1 kΩ  
7-23. VIH vs Temperature  
7-24. VIHYS vs Temperature  
1.6  
1.4  
1.2  
1
3.6  
3.2  
2.8  
2.4  
2
8 V  
13.5 V  
18 V  
8 V  
13.5 V  
18 V  
0.8  
0.6  
0.4  
1.6  
1.2  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
-40  
-15  
10  
35  
60  
85  
110  
135 150  
Temperature (èC)  
Temperature (èC)  
SLVS  
SLVS  
VEN = 0.8 V  
VOUT = 0 V  
VDIAG_EN = 0 V  
VEN = 2 V  
VOUT = 0 V  
VDIAG_EN = 0 V  
ROUT = 1 kΩ  
ROUT = 1 kΩ  
7-25. IIL vs Temperature  
7-26. IIH vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS27SA08-Q1  
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
VDIA_EN = 5 V  
VDIA_EN = 5 V  
VSEL1 = VSEL2 = 0 V  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
VSEL1 = VSEL2 = 0 V  
7-27. Turn-on Time (tON  
)
7-28. Turn-off Time (tOFF) and Sense Settle Time (tSNSION2)  
VDIA_EN= 0 V to 5 V  
VSEL1 = VSEL2 = 0 V  
IOUT = 1 A to 5 A  
VDIA_EN = 5 V  
ROUT = 2.6 Ω  
RSNS = 1 kΩ  
RSNS = 1 kΩ  
VSEL1 = VSEL2 = 0 V  
7-29. ISNS Settling Time (tSNSION1) on DIA_EN Transition  
7-30. ISNS Settling Time (tSETTLEH) on Rising Load Step  
30  
25  
20  
15  
10  
5
24  
20  
16  
12  
8
IVBB (A)  
ST (V)  
SNS (V)  
EN (V)  
4
0
0
-5  
-4  
0.00075  
0
0.00015  
0.0003  
0.00045  
0.0006  
Time (s)  
C_Pe  
VOUT = VBB  
VEN = 0 V  
VSEL1 = VSEL2 = 0 V  
VBB = 13.5 V  
C Device Version  
TA = 25°C  
VOUT = 0 V  
RSNS = 1 kΩ  
VEN = 0 V to 5 V  
VDIAG_EN = 5 V  
7-32. Short Circuit Behavior  
7-31. Open Load Detection Time (tOL2) on Rising DIAG_EN  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
7.8 Typical Characteristics (continued)  
15  
10  
5
15  
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
-25  
-30  
-35  
IVBB  
VBB  
VOUT  
EN  
0.0008 0.0016 0.0024 0.0032 0.004 0.0048 0.0056  
Time (s)  
Indu  
VBB = 13.5 V  
TA = 125°C  
LOUT = 5 mH  
VEN = 0 V to 5 V, 5 V to 0 V  
7-33. Inductive Load Demagnetization  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS27SA08-Q1  
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
8 Parameter Measurement Information  
IBB  
VBB  
SNS  
LATCH  
EN  
DIA_EN  
SEL2  
IDIA_EN  
ISNS  
ISEL2  
ILATCH  
SEL1  
ISEL1  
IEN  
VOUT  
IOUT  
IST  
ST  
GND  
8-1. Parameter Definitions  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS27SA08-Q1 device is a single-channel smart high-side power switch intended for use with 24-V supply  
automotive systems. Many protection and diagnostic features are integrated in the device. Diagnostics features  
include the analog SNS output and the open-drain fault indication (ST). The analog SNS output is capable of  
providing a signal that is proportional to device temperature, supply voltage, or load current. The high-accuracy  
load current sense allows for diagnostics of complex loads.  
This device includes protection through thermal shutdown, current limit, transient withstand, and reverse supply  
operation. For more details on the protection features, refer to the Feature Description and Application  
Information sections of the document.  
9.2 Functional Block Diagram  
VBB  
VBB to GND  
Clamp  
Internal Power  
Supply  
VBB to VOUT  
Clamp  
GND  
VOUT  
Gate Driver  
Power FET  
EN  
LATCH  
DIA_EN  
SEL1  
Current Limit  
Energy Limit  
Thermal  
Shutdown  
Open-load /  
Short-to-Bat  
Detection  
SEL2  
VBB  
Voltage Sense  
Fault Indication  
Current Sense  
SNS  
SNS Mux  
ST  
Temperature  
Sense  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS27SA08-Q1  
 
 
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Protection Mechanisms  
The TPS27SA08-Q1 device is designed to operate in a rugged automotive environment. The protection  
mechanisms allow the device to be robust against many system-level events such as reverse supply, short-to-  
ground and more.  
There are additional protection features which, if triggered, will cause the switch to automatically disable:  
Thermal Shutdown  
Energy Limit  
When any of these protections are triggered, the device will enter the FAULT state. In the FAULT state, the fault  
indication will be available on both the SNS pin and the ST pin (see the diagnostic section of the data sheet for  
more details).  
The switch is no longer held off and the fault indication is reset when all of the below conditions are met:  
LATCH pin is low  
tRETRY has expired  
All faults are cleared (thermal shutdown, current limit, energy limit)  
9.3.1.1 Thermal Shutdown  
The TPS27SA08-Q1 device includes temperature sensors on the FET and inside of the device controller. When  
TJ,FET > TABS, the device will see a thermal shutdown fault. After the fault is detected, the switch will turn off. The  
fault is cleared when the switch temperature decreases by the hysteresis value, THYS  
.
9.3.1.2 Current Limit  
When IOUT reaches the current limit threshold, ICL, the device remains enabled and limits the current IOUT to  
close to the threshold, ICL . In the case that the device remains enabled and limits IOUT, the thermal shutdown  
and/or energy limit protection feature may be triggered due to the high amount of power dissipation in the  
device.  
During a short circuit event, the device will hit the ICL threshold that is listed in the Specifications and then  
regulate the output current close to the threshold value to protect the device. The device will detect a short circuit  
event when the output current exceeds ICL, however the measured maximum current may exceed the ICL  
threshold due to the finite response time of the TPS27SA08-Q1 device current limit regulation loop. The device  
is guaranteed to protect itself during a short circuit event over the nominal supply voltage range (as defined in  
the Specifications section) at 125°C.  
9.3.1.2.1 Current Limit Foldback  
The TPS27SA08-Q1 device implements a current limit foldback feature that is designed to protect the device in  
the case of a long-term fault condition. If the device undergoes three consecutive fault shutdown events (any of  
thermal shutdown, current limit, or energy limit), the current limit will be reduced to half of the original value. The  
device will revert back to the original current limit threshold if either of the following occurs:  
The device goes to Standby Delay.  
The switch turns-on and turns-off without any fault occurring.  
9.3.1.2.2 Undervoltage Lockout (UVLO)  
The device monitors the supply voltage VBB to prevent unpredicted behaviors in the event that the supply  
voltage is too low. When the supply voltage falls down to VUVLOF, the output stage is shut down automatically.  
When the supply rises up to VUVLOR, the device turns back on.  
During an initial ramp of VBB from 0 V at a ramp rate slower than 1 V/ms, VEN pin will have to be held low until  
VBB is above UVLO threshold (with respect to board ground) and the supply voltage to the device has reliably  
reached above the UVLO condition. For best operation, ensure that VBB has risen above UVLO before setting  
the VEN pin to high.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
9.3.1.2.3 VBB during Short-to-Ground  
When VOUT is shorted to ground, the module power supply (VBB) can have a transient decrease. This is caused  
by the sudden increase in current flowing through the wiring harness cables. To achieve ideal system behavior, it  
is recommended that the module maintain VBB > 3 V during VOUT short-to-ground. This is typically accomplished  
by placing bulk capacitance on the power supply node.  
9.3.1.3 Energy Limit  
The energy limiting feature is implemented to protect the switch from excessive stress. The device will  
continuously monitor the amount of energy dissipated in the FET. If the energy limit threshold is reached, the  
switch will automatically disable. In practice, the energy limit will only be reached during a fault event such as  
short-to-ground.  
Energy limit events have the same system-level behavior as thermal shutdown events.  
9.3.1.4 Voltage Transients  
The TPS27SA08-Q1 device contains two voltage clamps which protect the device against system-level voltage  
transients.  
The clamp from VBB to GND is primarily used to protect the controller from positive transients on the supply line.  
The clamp from VBB to VOUT is primarily used to limit the voltage across the FET when switching off an inductive  
load. Both clamp levels are set to protect the device during these fault conditions. If the voltage potential from  
VBB to GND exceeds the VBB clamp level, the clamp will allow current to flow through the device from VBB to  
GND (Path 2). If the voltage potential from VBB to VOUT exceeds VCLAMP, the power FET will allow current to flow  
from VBB to VOUT (Path 3).  
Ri  
Positive Supply Transient  
(e.g. ISO7637 pulse 2a/3b)  
(1)  
VBB  
VDS  
Clamp  
(3)  
(2)  
Controller  
VBB  
Clamp  
VOUT  
Load  
GND  
9-1. Current Path During Supply Voltage Transient  
9.3.1.4.1 Driving Inductive and Capacitive Loads  
When switching off an inductive load, the inductor may impose a negative voltage on the output of the switch.  
The TPS27SA08-Q1 device includes a voltage clamp to limit voltage across the FET. The maximum acceptable  
load inductance is a function of the device robustness. With a 5-mH load, the TPS27SA08-Q1 device can  
withstand a single pulse of 95 mJ inductive dissipation at 125°C and can withstand 56 mJ of inductive dissipation  
with a 10-Hz repetitive pulse. If the application parameters exceed this device limit, it is necessary to use a  
protection device like a freewheeling diode to dissipate the energy stored in the inductor. 9-2 shows the  
TPS27SA08-Q1 device discharging a 5-mH load that is driven at 5 A.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS27SA08-Q1  
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
15  
10  
5
15  
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
-25  
-30  
-35  
IVBB  
VBB  
VOUT  
EN  
0.0008 0.0016 0.0024 0.0032 0.004 0.0048 0.0056  
Time (s)  
Indu  
9-2. Inductive Discharge (5 mH, 5 A)  
In addition, the TPS27SA08-Q1 device current limit provides an ideal way to charge a capacitive load safely with  
limited inrush current. With no protection, charging a large capacitive load can lead to high inrush currents that  
pull a supply down, however by using a relatively low current limit value (regulation around 24 A), the capacitive  
load can be charged without impact to the power supply.  
For more information on driving inductive or capacitive loads, reference TI's "How To Drive Inductive, Capacitive,  
and Lighting Loads with Smart High Side Switch application report.  
9.3.1.5 Reverse supply  
In the reverse supply condition, the switch will automatically be enabled (regardless of EN status) to prevent  
power dissipation inside the MOSFET body diode. In many applications (for example, resistive load), the full load  
current may be present during reverse supply. In order to activate the automatic switch on feature, the SEL2 pin  
must have a path to module ground. This may be path 1 as shown below, or, if the SEL2 pin is unused, the path  
may be through RPROT to module ground.  
Protection features (for example, thermal shutdown) are not available during reverse supply. Care must be taken  
to ensure that excessive power is not dissipated in the switch during the reverse supply condition.  
There are two options for blocking reverse current in the system. Option 1 is to place a blocking device (FET or  
diode) in series with the supply. This will block all current paths. Option 2 is to place a blocking diode in series  
with the GND node of the high-side switch. This method will protect the controller portion of the switch (path 2),  
but it will not prevent current from flowing through the load (path 3). The diode used for Option 2 may be shared  
amongst multiple high-side switches.  
Path 1 shown in 9-3 is blocked inside of the device.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
 
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
Reverse blocking  
FET or diode  
Option 1  
BAT  
VBB  
0V  
µC  
VDD  
(3)  
(2)  
Controller  
VOUT  
GPIO  
GPIO  
VBB  
Clamp  
Load  
RPROT  
(1)  
GND  
Option 2  
13.5V  
9-3. Current Path During Reverse supply  
9.3.1.6 Fault Event Timing Diagrams  
Note  
All timing diagrams assume that the SELx pins are set to 00.  
The LATCH, DIA_EN, and EN pins are controlled by the user. The timing diagrams represent a  
possible use-case.  
9-4 shows the active current limiting behavior of TPS27SA08-Q1 device and the LATCH pin functionality. The  
switch will not shutdown until either the energy limit or the thermal shutdown is reached.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS27SA08-Q1  
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
µC resets  
the latch  
LATCH  
DIA_EN  
SNS  
ISNSFH  
Current  
Sense  
Current  
Sense  
High-z  
High-z  
High-z  
High-z  
ST  
VOUT  
EN  
TABS  
THYS  
TJ  
tRETRY  
ICL  
IOUT  
t
Load reaches limit. Current is limited. Temp Switch is disabled. Temp decreases by  
reaches limit. THYS  
Switch follows EN. Normal  
operation.  
9-4. Current Limit - Latched Behavior  
9-5 shows the active current limiting behavior of TPS27SA08-Q1 device. The switch will not shutdown until  
either thermal shutdown or energy limit is tripped. In this example, LATCH is tied to GND and the switch is  
turned ON when the FET temperature is low enough.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
DIA_EN  
ISNSFH  
ISNSFH  
Current  
Sense  
Current  
Sense  
High-z  
SNS  
ST  
High-z  
High-z  
High-z  
VOUT  
EN  
TABS  
THYS  
TJ  
tRETRY  
ICL  
IOUT  
t
Load reaches limit. Current is limited.  
Temp reaches limit.  
Switch is disabled. TJ decreases by  
THYS  
Switch follows EN. Normal operation.  
9-5. Current Limit - LATCH Pin Permanently Low  
deWhen the switch retries after a shutdown event, the SNS fault indication will remain until VOUT has risen to  
VBB 1.8 V. Once VOUT has risen, the SNS fault indication is reset and current sensing is available. ST fault  
indication is reset as soon as the switch is re-enabled (does not wait for VOUT to rise). If there is a short-to-  
ground and VOUT is not able to rise, the SNS fault indication will remain indefinitely. The following diagram  
illustrates auto-retry behavior and provides a zoomed-in view of the fault indication during retry.  
Note  
9-6 assumes that tRETRY has expired by the time that TJ reaches the hysteresis threshold.  
LATCH = 0 V and DIA_EN = 5 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS27SA08-Q1  
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
ISNSFH  
ISNSFH  
ISNSFH  
ISNSFH  
SNS  
ST  
VOUT  
EN  
TABS  
THYS  
TJ  
t
ISNSFH  
ISNSI  
SNS  
ST  
VBB œ 1.8 V  
VOUT  
EN  
TABS  
THYS  
TJ  
t
9-6. Fault Indication During Retry  
9.3.2 Diagnostic Mechanisms  
9.3.2.1 VOUT Short-to-supply and Open-Load  
9.3.2.1.1 Detection With Switch Enabled  
When the switch is enabled, the VOUT short-to-supply and open-load conditions can be detected with the current  
sense feature. In both cases, the load current will be measured through the SNS pin and will be below the  
expected value.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
9.3.2.1.2 Detection With Switch Disabled  
While the switch is disabled, if DIA_EN is high, an internal comparator will detect the condition of VOUT. If the  
load is disconnected (open load condition) or there is a short to supply theOUT voltage will be higher than the  
open load threshold (VOL,off) and a fault is indicated on the SNS pin. An internal pull-up of 1 MΩ is in series with  
an internal MOSFET switch, so no external component is required if only a completely open load needs to be  
detected. However, if there is significant leakage or other current draw even when the load is disconnected, a  
lower value pull-up resistor and switch can be added externally to set the VOUT voltage above the VOL,off during  
open load conditions.  
A. This figure assumes that the device ground and the load ground are at the same potential. In application, there may be a ground shift  
voltage of 1 V to 2 V.  
9-7. Short-to-supply and Open-Load Detection  
The detection circuitry is only enabled when DIA_EN = HIGH and EN = LOW.  
If VOUT > VOL, the SNS pin will go to the fault level.  
If VOUT < VOL, then there is no fault indication.  
The fault indication will only occur if the SEL1 pin is set to diagnose the channel.  
While the switch is disabled and DIA_EN is high, the fault indication mechanisms will continuously represent the  
present status. For example, if VOUT decreases from > VOL to < VOL, the fault indication is reset. Additionally, the  
fault indication is reset upon the falling edge of DIA_EN or the rising edge of EN.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS27SA08-Q1  
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
DIA_EN  
ISNSFH  
High-z  
High-z  
SNS  
tOL2  
Enabled  
VOUT depends on external conditions  
VOL  
VOUT  
EN  
t
Switch is disabled and DIA_EN goes  
high.  
The condition is determined by the  
internal comparator.  
The open-load fault is  
indicated.  
Device standby  
9-8. Open Load  
9.3.2.2 SNS Output  
The SNS output may be used to sense the load current, supply voltage, or device temperature. The SELx pins  
will select the desired sense signal. The sense circuit will provide a current that is proportional to the selected  
parameter. This current will be sourced into an external resistor to create a voltage that is proportional to the  
selected parameter. This voltage may be measured by an ADC or comparator.  
To ensure accurate sensing measurement, the sensing resistor should be connected to the same ground  
potential as the μC ADC.  
The SNS Output includes an internal clamp, VSNSclamp. This clamp is designed to prevent a high voltage at the  
SNS output and the ADC input.  
9-1. Analog Sense Transfer Function  
PARAMETER  
TRANSFER FUNCTION  
Load current  
ISNSI = IOUT / 4600  
Supply voltage(1)  
Device temperature  
ISNSV = (VBB) × dISNSV / dV  
ISNST = (TJ 25°C) × dISNST / dT + 0.85  
(1) Voltage potential between the VBB pin and the GND pin.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
The SNS output will also be used to indicate system faults. ISNS will go to the predefined level, ISNSFH, when  
there is a fault. This level is defined in the electrical specifications.  
9.3.2.2.1 RSNS Value  
The following factors should be considered when selecting the RSNS value:  
Current sense ratio  
Largest and smallest diagnosable load current  
Full-scale voltage of the ADC  
Resolution of the ADC  
For an example of selecting RISNS value, reference in the applications section of this data sheet.  
9.3.2.2.1.1 High Accuracy Load Current Sense  
In many systems, it is required that the high-side switch provide diagnostic information about the downstream  
load. With more complex loads, high accuracy sensing is required. A few examples follow:  
Solenoid Protection: Often solenoids are precisely controlled by low-side switches. However, in a fault  
event, the low-side switch cannot disconnect the solenoid from the power supply. A high-side switch can be  
used to continuously monitor several solenoids. If the system current becomes higher than expected, the  
high-side switch can disable the module.  
9.3.2.2.1.2 SNS Output Filter  
To achieve the most accurate current sense value, it is recommended to apply filtering to the SNS output. There  
are two methods of filtering:  
Low-Pass RC filter between the SNS pin and the ADC input. This filter is illustrated in 10-1 and typical  
values for the resistor and capacitor are given. The designer should select a CSNS capacitor value based on  
system requirements. A larger value will provide improved filtering. A smaller value will allow for faster  
transient response.  
The ADC and microcontroller can also be used for filtering. It is recommended that the ADC collects several  
measurements of the SNS output. The median value of this data set should be considered as the most  
accurate result. By performing this median calculation, the microcontroller is able to filter out any noise or  
outlier data.  
9.3.2.3 ST Pin  
The ST pin is an open-drain output. The pin indicates the status of the switch channel. The output is high-z when  
there is no fault condition. The output is pulled low when there is a fault condition.  
9.3.2.4 Fault Indication and SNS Mux  
The following faults will be communicated via the SNS and ST outputs:  
Switch shutdown, due to:  
Thermal Shutdown  
Current limit  
Energy limit  
Active current limiting  
Open-Load / VOUT shorted-to-supply  
Open-load / Short-to-supply are not indicated while the switch is enabled (though these conditions can be  
detected via the sense current). Hence, if there is a fault indication corresponding to an enabled channel, then it  
must be either switch shutdown or active current limiting.  
The SNS pin will only indicate the fault if the SELx = 00. Switch shutdown fault indication will occur on the ST pin  
regardless of the SELx pins; however, OL/STB fault indication is only available when the SELx = 00.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS27SA08-Q1  
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
9-2. SNS Mux  
INPUTS  
OUTPUTS  
DIA_EN  
SEL1  
SEL2  
FAULT DETECT(1)  
SNS  
ST  
0
0
1
1
1
1
1
1
1
1
X
X
0
0
1
1
0
0
1
1
X
X
0
1
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
High-z  
High-z  
High-z  
Pull low  
High-z  
Load current  
Not Used  
Not Used  
High-z  
Device temperature  
Supply voltage  
ISNSFH  
High-z  
Pull low  
Not Used  
Pull low  
Pull low  
Not Used  
Device temperature  
Supply voltage  
(1) Fault Detect encompasses the below conditions:  
Switch shutdown and waiting for retry  
Active current limiting  
OL / STB  
9.3.2.5 Resistor Sharing  
Multiple high-side switch channels may use the same SNS resistor as shown in 9-9 below. This reduces the  
total number of passive components in the system and the number of ADC terminals that are required of the  
microcontroller.  
Microcontroller  
GPIO  
GPIO  
GPIO  
DIA_EN  
DIA_EN  
DIA_EN  
DIA_EN  
Switch 1  
Switch 2  
Switch 3  
Switch 4  
SNS  
SNS  
SNS  
SNS  
GPIO  
ADC  
RPROT  
CSNS  
RSNS  
9-9. Sharing RSNS Among Multiple Devices  
9.3.2.6 High-Frequency, Low Duty-Cycle Current Sensing  
Some applications will operate with a high-frequency, low duty-cycle PWM. Such applications require fast  
settling of the SNS output. For example, a 250-Hz, 5% duty cycle PWM will have an on-time of only 200 µs. The  
microcontroller ADC may sample the SNS signal after the defined settling time, tSNSION3  
.
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
 
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
DIA_EN  
EN  
IOUT  
SNS  
t
tSNSION3  
9-10. Current Sensing in Low-Duty Cycle Applications  
9.4 Device Functional Modes  
9.4.1 Off  
Off state occurs when the device is not powered.  
9.4.2 Standby  
Standby state is a low-power mode used to reduce power consumption to the lowest level. Diagnostic  
capabilities are not available in Standby mode.  
9.4.3 Diagnostic  
Diagnostic state may be used to perform diagnostics while the switch is disabled.  
9.4.4 Standby Delay  
The Standby Delay state is entered when EN and DIA_EN are low. After tSTBY, if the EN and DIA_EN pins are  
still low, the device will go to Standby State.  
9.4.5 Active  
In Active state, the switch is enabled. The diagnostic functions may be turned on or off during Active state.  
9.4.6 Fault  
The Fault state is entered if a fault shutdown occurs (thermal shutdown, current limit, energy limit). After all faults  
are cleared, the LATCH pin is low, and the retry timer has expired, the device will transition out of Fault state. If  
the Enable pin is high, the switch will re-enable. If the Enable pin is low, the switch will remain off.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS27SA08-Q1  
 
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
VBB < UVLO  
OFF  
ANY STATE  
VBB > UVLO  
EN = Low  
DIA_EN = Low  
t > tSTBY  
STANDBY  
EN = Low  
DIA_EN = High  
EN = Low DIA_EN = Low  
EN = High  
DIA_EN = X  
DIAGNOSTIC  
STANDBY DELAY  
EN = Low DIA_EN = High  
EN = Low  
DIA_EN = High  
EN = High  
DIA_EN = X  
ACTIVE  
EN = Low  
DIA_EN = Low  
EN = High  
DIA_EN = X  
!OT_ABS & !OT_REL & !ILIM & !ELIMIT &  
LATCH = Low & tRETRY expired  
OT_ABS || OT_REL || ILIM ||  
ELIMIT  
FAULT  
9-11. State Diagram  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
10 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
VBB  
DIA_EN  
SEL1  
RPROT  
RPROT  
RPROT  
RPROT  
RPROT  
CVBB  
BAT  
GND  
SEL2  
EN  
RGND  
DGND  
(1)  
Microcontroller  
(1)  
LATCH  
Load  
VOUT  
COUT  
RPU  
ST  
RPROT  
Legend  
SNS  
ADC  
RPROT  
RSNS  
Chassis GND  
Module GND  
Device GND  
CSNS  
(1) With the ground protection network, the  
device ground will be offset relative to the  
microcontroller ground.  
With the ground protection network, the device ground will be offset relative to the microcontroller ground.  
10-1. System Diagram  
10-1. Recommended External Components  
COMPONENT  
RPROT  
RSNS  
TYPICAL VALUE  
PURPOSE  
Protect microcontroller and device I/O pins  
Translate the sense current into sense voltage  
Provide pull-up source for open-drain output  
Low-pass filter for the ADC input  
15 kΩ  
1 kΩ  
RPU  
10 kΩ  
CSNS  
100 pF - 10 nF  
4.7 kΩ  
RGND  
Stabilize GND potential during turn-off of inductive load  
Protects device during reverse supply  
DGND  
BAS21 Diode  
Filtering of voltage transients (for example, ESD, ISO7637-2) and improved  
emissions  
220 nF to Device GND  
CVBB  
100 nF to Module GND Stabilize the input supply and filter out low frequency noise  
22 nF Filtering of voltage transients (for example, ESD, ISO7637-2)  
COUT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS27SA08-Q1  
 
 
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
10.1.1 Ground Protection Network  
As discussed in the section regarding Reverse supply, DGND may be used to prevent excessive reverse current  
from flowing into the device during a reverse supply event. Additionally, RGND is placed in parallel with DGND if  
the switch is used to drive an inductive load. The ground protection network (DGND and RGND) may be shared  
amongst multiple high-side switches.  
A minimum value for RGND may be calculated by using the absolute maximum rating for IGND. During the reverse  
supply condition, IGND = VBB / RGND  
:
RGND VBB / IGND  
(1)  
Set VBB = 13.5 V  
Set IGND = 50 mA (absolute maximum rating)  
GND ≥ –13.5 V / 50 mA = 270 Ω  
R
In this example, it is found that RGND must be at least 270 . It is also necessary to consider the power  
dissipation in RGND during the reverse supply event:  
PRGND = VBB 2 / RGND  
(2)  
PRGND = (13.5 V)2 / 270 = 0.675 W  
In practice, RGND may not be rated for such a high power. In this case, a larger resistor value should be selected.  
10.1.2 Interface With Microcontroller  
The ground protection network will cause the device ground to be at a higher potential than the module ground  
(and microcontroller ground). This offset will impact the interface between the device and the microcontroller.  
Logic pin voltage will be offset by the forward voltage of the diode. For input pins (for example, EN), the designer  
must consider the VIH specification of the switch and the VOH specification of the microcontroller. For a system  
that does not include DGND, it is required that VOH > VIH. For a system that does include DGND, it is required that  
VOH > (VIH + VF). VF is the forward voltage of DGND  
.
For use of the status pin, ST, a similar consideration is necessary. The designer must consider the VOL, ST  
specification and the VIL specification of the microcontroller. For a system that includes DGND, it is required that  
VOL, ST + VF < VIL, µC  
.
The sense resistor, RSNS, should be terminated to the microcontroller ground. In this case, the ADC can  
accurately measure the SNS signal even if there is an offset between the microcontroller ground and the device  
ground.  
10.1.3 I/O Protection  
RPROT is used to protect the microcontroller I/O pins during system-level voltage transients such as ISO pulses  
or reverse supply. A large resistance value ensures that current through the pin is limited to a safe level.  
10.1.4 Inverse Current  
Inverse current occurs when 0 V < VBB < VOUT. In this case, current may flow from VOUT to VBB. Inverse current  
cannot be caused by a purely resistive load. However, a capacitive or inductive load can cause inverse current.  
For example, if there is a significant amount of load capacitance and the VBB node has a transient droop, VOUT  
may be greater than VBB  
.
TPS27SA08-Q1 device will not detect inverse current. When the switch is enabled, inverse current will pass  
through the switch. When the switch is disabled, inverse current may pass through the MOSFET body diode.  
The device will continue operating in the normal manner during an inverse current event.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
10.1.5 Loss of GND  
The ground connection may be lost either on the device level or on the module level. If the ground connection is  
lost, both switches will be disabled. If the switch was already disabled when the ground connection was lost, the  
switch will remain disabled. When the ground is reconnected, normal operation will resume.  
10.1.6 Thermal Information  
When outputting current, the TPS27SA08-Q1 device will heat up due to the power dissipation. 10-2 shows  
the transient thermal impedance curve that can be used to determine the device temperature during 1-W pulse  
of a given length.  
35  
30  
25  
20  
15  
10  
5
0
0.0001  
0.001 0.002 0.005 0.01 0.02  
0.05 0.1 0.2 0.3 0.5  
Time (s)  
1
2
3 4 567 10  
20 30 50 100 200 400  
TPS1  
10-2. Transient Thermal Impedance  
10.2 Typical Application  
This application example demonstrates how the TPS27SA08-Q1 device can be used to power resistive heater  
loads as in seat heaters. 10-3 shows a typical application where the load is a resistive seat heater. This  
document highlights the basics of this type of application, however for a more detailed discussion reference TI's  
Smart Power Switch Seat Heater Reference Design.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS27SA08-Q1  
 
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
12.8 V DC  
Power Supply  
DIA_EN  
SEL1  
SEL2  
SNS  
VBB  
µC  
ST  
LATCH  
EN  
TPS27SA08  
VOUT  
Heater  
Load  
GND  
10-3. Block Diagram for Powering Heater Loads  
10.2.1 Design Requirements  
For this design example, use the input parameters shown in 10-2.  
10-2. Design Parameters  
DESIGN PARAMETER  
VBB  
EXAMPLE VALUE  
12.8 V  
90-W max  
Heater Load  
Load Current Sense  
Ambient temperature  
RθJA  
100 mA to 20 A  
85°C  
32.8°C/W (depending on PCB)  
10.2.2 Detailed Design Procedure  
10.2.2.1 Thermal Considerations  
The DC current under maximum load power condition will be around 7.03 A. Power dissipation in the switch is  
calculated in 方程式 3. RON is assumed to be 20 mΩ because this is the maximum specification. In practice,  
RON will be lower.  
PFET = I2 × RON  
(3)  
(4)  
PFET = (7.03 A)2 × 20 mΩ = 0.988 W  
The junction temperature of the device can be calculated using 程式 5 and the RθJA value from the  
Specifications section.  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
 
 
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
TJ = TA + RθJA × PFET  
TJ = 85°C + 32.8°C/W × 0.988 W = 117.4°C  
(5)  
The maximum junction temperature rating for TPS27SA08-Q1 device is TJ = 150°C. Based on the above  
example calculation, the device temperature will stay below the maximum rating.  
10.2.2.2 Diagnostics  
If the resistive heating load is disconnected (heater malfunction), an alert is desired. Open-load detection can be  
performed in the switch-enabled state via the current sense feature of the TPS27SA08-Q1 device. Alternatively,  
under open load condition in off-state with diagnostics enabled, the current in the SNS pin will be the fault  
current and the can be detected from the sense voltage measurement.  
10.2.2.2.1 Selecting the RISNS Value  
10-3 shows the requirements for the load current sense in this application. The KSNS value is specified for the  
device and can be found in the Specifications section.  
10-3. RSNS Calculation Parameters  
PARAMETER  
EXAMPLE VALUE  
Current Sense Ratio (KSNS  
)
4600  
20 A  
Largest diagnosable load current  
Smallest diagnosable load current  
Full-scale ADC voltage  
50 mA  
5 V  
ADC resolution  
10 bit  
The load current measurement requirements of 20 A ensures that current can be sensed up to the 20-A current  
limit, while the low level of 100 mA allows for accurate measurement of low load currents.  
The RSNS resistor value should be selected such that the largest diagnosable load current puts VSNS at about  
90% of the ADC full-scale. With this design, any ADC value above 90% can be considered a fault. Additionally,  
the RSNS resistor value should ensure that the smallest diagnosable load current does not cause VSNS to fall  
below 1 LSB of the ADC. With the given example values, a 1-ksense resistor satisfies both requirements  
shown in 10-4.  
10-4. VSNS Calculation  
LOAD (A)  
0.050  
SENSE RATIO  
4600  
ISNS (mA)  
VSNS (V)  
0.011  
% OF 5-V ADC  
0.22%  
RSNS ()  
1000  
0.011  
20.000  
4600  
4.348  
1000  
4.348  
87%  
10.2.3 Application Curves  
10-4 shows the behavior of the TPS27SA08-Q1 device in this application when the MCU provides an enable  
pulse to beginning heating the resistive element. Shortly after the EN pin goes high, the load current begins to  
flow and the SNS pin measures the output current.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS27SA08-Q1  
 
 
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
10-4. Heater Turn-on Time  
By measuring the voltage on the SNS pin, the TPS27SA08-Q1 device can communicate back to the system  
MCU what the load current is. 10-5 shows that when the seat heater approaches full load and IOUT jumps  
from a low load current of 1 A up to a 5-A load current, the load step is mirrored on the SNS pin.  
10-5. SNS Response During Heater Load Step  
One common concern in these type of applications is that the heating element can accidentally lose connection,  
creating an open load situation. In this case, it is ideal for the TPS27SA08-Q1 device to recognize that the load  
has been removed and report a FLT to the MCU. 10-6 shows the behavior of the TPS27SA08-Q1 device  
when there is no load attached. As soon as the DIAG_EN pin is engaged, the SNS output goes high and the ST  
output engages low. By monitoring these pins, the MCU can recognize there is a fault and notify the user that  
maintenance is required.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
 
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
10-6. Open Load Detection if Heating Element is Missing  
Importantly, the TPS27SA08-Q1 device will also protect the system in the event of a short-circuit. 10-7 shows  
the behavior of the device if it is enabled into a short circuit condition. The current will be clamped to near the  
current limit threshold (ICL) until it hits an over temperature event, at which point the FET will be turned off. In this  
way, the system is protected from unchecked overcurrent in the event of a short circuit.  
30  
25  
20  
15  
10  
5
24  
20  
16  
12  
8
IVBB (A)  
ST (V)  
SNS (V)  
EN (V)  
4
0
0
-5  
-4  
0.00075  
0
0.00015  
0.0003  
0.00045  
0.0006  
Time (s)  
C_Pe  
10-7. Overcurrent Behavior During Short Circuit Event  
11 Power Supply Recommendations  
The TPS27SA08-Q1 device is designed to operate in a 24-V system. The nominal supply voltage range is 8 V to  
36 V. The device is also designed to withstand voltage transients beyond this range. When operating outside of  
the nominal voltage range, the device will exhibit normal functional behavior. However, parametric specifications  
may not be guaranteed.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS27SA08-Q1  
 
 
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
To achieve optimal thermal performance, connect the exposed pad to a large copper pour. On the top PCB layer,  
the pour may extend beyond the pad dimensions as shown in the example below. In addition to this, it is  
recommended to also have a VBB plane either on one of the internal PCB layers or on the bottom layer. Vias  
should connect this plane to the top VBB pour.  
TPS27SA08-Q1 device has 6 VOUT pins. All VOUT pins must be shorted together on the PCB. Additionally, the  
layout should ensure that the current path is symmetrical for both sides of the device. If the path is not  
symmetrical, there will be some imbalance in current spreading across the power FET. This can impact accuracy  
of the current sense measurement.  
12.2 Layout Example  
GND  
SNS  
DIA_EN  
SEL2  
SEL1  
NC  
To µC  
LATCH  
EN  
To µC  
VBB  
ST  
NC  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
12-1. PWP Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
 
 
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 Related Documentation  
For related documentation see the following:  
TI's "How To Drive Inductive, Capacitive, and Lighting Loads with Smart High Side Switch  
Short Circuit Reliability Test for Smart Power Switches  
TI's Smart Power Switch Seat Heater Reference Design  
Reverse Battery Protection for High Side Switches  
13.2 Trademarks  
所有商标均为其各自所有者的财产。  
13.3 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.4 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS27SA08-Q1  
 
 
 
 
 
TPS27SA08-Q1  
ZHCSMM0 DECEMBER 2020  
www.ti.com.cn  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS27SA08-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS27SA08CQPWPRQ1  
PREVIEW  
HTSSOP  
PWP  
16  
3000  
RoHS-Exempt  
& Green  
NIPDAU  
Level-3-260C-168HRS  
-40 to 125  
27A08QC  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS2811

DUAL HIGH-SPEED MOSFET DRIVERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2811-Q1

DUAL HIGH-SPEED MOSFET DRIVER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2811D

DUAL HIGH-SPEED MOSFET DRIVERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2811DG4

DUAL HIGH-SPEED MOSFET DRIBERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2811DR

DUAL HIGH-SPEED MOSFET DRIBERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2811DRG4

DUAL HIGH-SPEED MOSFET DRIBERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2811P

DUAL HIGH-SPEED MOSFET DRIVERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2811PE4

DUAL HIGH-SPEED MOSFET DRIBERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2811PW

DUAL HIGH-SPEED MOSFET DRIVERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2811PWG4

DUAL HIGH-SPEED MOSFET DRIBERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2811PWLE

DUAL HIGH-SPEED MOSFET DRIBERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS2811PWR

DUAL HIGH-SPEED MOSFET DRIBERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI