TPS2814DR [TI]

DUAL HIGH-SPEED MOSFET DRIBERS; 双高速MOSFET DRIBERS
TPS2814DR
型号: TPS2814DR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DUAL HIGH-SPEED MOSFET DRIBERS
双高速MOSFET DRIBERS

驱动器 MOSFET驱动器 驱动程序和接口 接口集成电路 光电二极管 输入元件
文件: 总38页 (文件大小:1475K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢄ ꢅꢅ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢉ  
ꢊꢋꢌ ꢍ ꢎꢏ ꢐꢎ ꢑꢂꢁꢒ ꢒꢊ ꢓ ꢔꢂ ꢕꢒ ꢀ ꢊ ꢖꢏ ꢗ ꢒꢖ ꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
TPS2811, TPS2812, TPS2813 . . . D, P, AND PW  
D
D
Industry-Standard Driver Replacement  
25-ns Max Rise/Fall Times and 40-ns Max  
PACKAGES  
(TOP VIEW)  
Propagation Delay − 1-nF Load, V  
= 14 V  
CC  
REG_IN  
1IN  
REG_OUT  
1OUT  
1
2
3
4
8
7
6
5
D
D
D
2-A Peak Output Current, V  
= 14 V  
CC  
5-µA Supply Current — Input High or Low  
GND  
2IN  
V
CC  
4-V to 14-V Supply-Voltage Range; Internal  
Regulator Extends Range to 40 V (TPS2811,  
TPS2812, TPS2813)  
2OUT  
TPS2814 . . . D, P, AND PW PACKAGES  
D
−40°C to 125°C Ambient-Temperature  
Operating Range  
(TOP VIEW)  
1IN1  
1IN2  
2IN1  
2IN2  
GND  
1
2
3
4
8
7
6
5
description  
1OUT  
V
CC  
The TPS28xx series of dual high-speed MOSFET  
drivers are capable of delivering peak currents of 2 A  
into highly capacitive loads. This performance is  
achieved with a design that inherently minimizes  
shoot-through current and consumes an order of  
magnitude less supply current than competitive  
products.  
2OUT  
TPS2815 . . . D, P, AND PW PACKAGES  
(TOP VIEW)  
1IN1  
1IN2  
2IN1  
2IN2  
GND  
1
2
3
4
8
7
6
5
1OUT  
The TPS2811, TPS2812, and TPS2813 drivers include  
a regulator to allow operation with supply inputs  
between 14 V and 40 V. The regulator output can power  
other circuitry, provided power dissipation does  
V
CC  
2OUT  
not exceed package limitations. When the regulator is not required, REG_IN and REG_OUT can be left disconnected  
or both can be connected to V or GND.  
CC  
The TPS2814 and the TPS2815 have 2-input gates that give the user greater flexibility in controlling the MOSFET.  
The TPS2814 has AND input gates with one inverting input. The TPS2815 has dual-input NAND gates.  
TPS281x series drivers, available in 8-pin PDIP, SOIC, and TSSOP packages operate over a ambient temperature  
range of −40°C to 125°C.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
INTERNAL  
REGULATOR  
SMALL  
OUTLINE  
(D)  
PLASTIC  
DIP  
T
A
LOGIC FUNCTION  
TSSOP (PW)  
(P)  
Dual inverting drivers  
Dual noninverting drivers  
One inverting and one noninverting driver  
TPS2811D TPS2811P TPS2811PW  
TPS2812D TPS2812P TPS2812PW  
TPS2813D TPS2813P TPS2813PW  
Yes  
No  
40°C  
to  
125°C  
TPS2814D TPS2814P TPS2814PW  
Dual 2-input AND drivers, one inverting input on each driver  
Dual 2-input NAND drivers  
TPS2815D TPS2815P TPS2815PW  
The D package is available taped and reeled. Add R suffix to device type (e.g., TPS2811DR). The PW package is only available left-end  
taped and reeled and is indicated by the R suffix on the device type (e.g., TPS2811PWR).  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢥ  
Copyright 2002, Texas Instruments Incorporated  
ꢡ ꢥ ꢢ ꢡꢚ ꢛꢯ ꢝꢜ ꢠ ꢨꢨ ꢦꢠ ꢞ ꢠ ꢟ ꢥ ꢡ ꢥ ꢞ ꢢ ꢪ  
1
www.ti.com  
ꢊ ꢋꢌꢍ ꢎ ꢏ ꢐꢎꢑꢂ ꢁꢒꢒ ꢊ ꢓꢔ ꢂꢕ ꢒ ꢀ ꢊꢖ ꢏ ꢗꢒ ꢖꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
regulator diagram (TPS2811, TPS2812,  
functional block diagram  
TPS2813 only)  
REG_IN  
TPS2811  
1
2
8
6
Regulator  
REG_OUT  
REG_IN  
1IN  
V
CC  
7
5
1OUT  
2OUT  
4
3
2IN  
GND  
7.5 Ω  
REG_OUT  
TPS2812  
Regulator  
1
2
8
6
REG_OUT  
REG_IN  
1IN  
V
CC  
7
5
1OUT  
2OUT  
4
3
2IN  
GND  
input stage diagram  
V
CC  
TPS2813  
Regulator  
1
2
8
6
REG_OUT  
REG_IN  
1IN  
V
CC  
7
5
1OUT  
2OUT  
4
3
2IN  
To Drive  
Stage  
IN  
GND  
TPS2814  
6
7
V
CC  
1
2
1IN1  
1IN2  
1OUT  
2OUT  
3
4
2IN1  
2IN2  
5
output stage diagram  
V
CC  
8
GND  
Predrive  
TPS2815  
6
7
V
CC  
1
2
1IN1  
1IN2  
1OUT  
2OUT  
3
4
8
OUT  
2IN1  
2IN2  
GND  
5
2
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅꢅ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢉ  
ꢊꢋꢌ ꢍ ꢎꢏ ꢐꢎ ꢑꢂꢁꢒ ꢒꢊ ꢓ ꢔꢂ ꢕꢒ ꢀ ꢊ ꢖꢏ ꢗ ꢒꢖ ꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
TPS28xxY chip information  
This chip, when properly assembled, displays characteristics similar to those of the TPS28xx. Thermal compression  
or ultrasonic bonding may be used on the doped aluminum bonding pads. The chip may be mounted with conductive  
epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
(8)  
(8)  
(7)  
REG_OUT  
1OUT  
(1)  
(2)  
(4)  
REG_IN  
1IN  
TPS2811Y  
TPS2812Y  
TPS2813Y  
(6)  
(5)  
(1)  
V
CC  
2IN  
2OUT  
(3)  
(7)  
GND  
(1)  
(2)  
(2)  
(7)  
(6)  
1IN1  
1IN2  
1OUT  
V
CC  
TPS2814Y  
(3)  
(4)  
2IN1  
2IN2  
(5)  
2OUT  
(8)  
57  
(6)  
GND  
(1)  
(2)  
(7)  
(6)  
1IN1  
1IN2  
1OUT  
(3)  
TPS2815Y  
V
CC  
(3)  
(4)  
2IN1  
2IN2  
(5)  
2OUT  
(5)  
(8)  
GND  
(4)  
CHIP THICKNESS: 15 MILS TYPICAL  
BONDING PADS: 4 × 4 MILS MINIMUM  
47  
T max OPERATING TEMPERATURE = 150°C  
J
TOLERANCES ARE 10%.  
ALL DIMENSIONS ARE IN MILS.  
3
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢃ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢈ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ  
ꢊ ꢋꢌꢍ ꢎ ꢏ ꢐꢎꢑꢂ ꢁꢒꢒ ꢊ ꢓꢔ ꢂꢕ ꢒ ꢀ ꢊꢖ ꢏ ꢗꢒ ꢖꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
Terminal Functions  
TPS2811, TPS2812, TPS2813  
TERMINAL NUMBERS  
TPS2812  
Dual Noninverting  
Drivers  
TERMINAL  
NAME  
TPS2811  
Dual Inverting  
Drivers  
TPS2813  
Complimentary  
Drivers  
DESCRIPTION  
REG_IN  
1
1
1
Regulator input  
Input 1  
1IN  
2
2
2
GND  
2IN  
3
3
3
Ground  
4
5 = 2IN  
6
4
5 = 2IN  
6
4
5 = 2IN  
6
Input 2  
2OUT  
Output 2  
V
CC  
Supply voltage  
Output 1  
1OUT  
7 = 1IN  
8
7 = 1IN  
8
7 = 1IN  
8
REG_OUT  
Regulator output  
TPS2814, TPS2815  
TERMINAL NUMBERS  
TERMINAL  
NAME  
TPS2814  
Dual AND Drivers with Single  
Inverting Input  
DESCRIPTION  
TPS2815  
Dual NAND Drivers  
1IN1  
1IN2  
1IN2  
2IN1  
2IN2  
2IN2  
1
1
Noninverting input 1 of driver 1  
Inverting input 2 of driver 1  
Noninverting input 2 of driver 1  
Noninverting input 1 of driver 2  
Inverting input 2 of driver 2  
Noninverting input 2 of driver 2  
Output 2  
2
-
-
2
3
3
4
-
-
4
2OUT  
5 = 2IN1 2IN2  
5 = 2IN1 2IN2  
V
CC  
6
6
Supply voltage  
1OUT  
GND  
7 = 1IN1 1IN2  
7 = 1IN1 1IN2  
Output 1  
8
8
Ground  
DISSIPATION RATING TABLE  
DERATING FACTOR  
T
25°C  
T
A
= 70°C  
T = 85°C  
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
P
D
1090 mW  
8.74 mW/°C  
5.84 mW/°C  
4.17 mW/°C  
697 mW  
467 mW  
332 mW  
566 mW  
380 mW  
270 mW  
730 mW  
PW  
520 mW  
4
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅꢅ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢉ  
ꢊꢋꢌ ꢍ ꢎꢏ ꢐꢎ ꢑꢂꢁꢒ ꢒꢊ ꢓ ꢔꢂ ꢕꢒ ꢀ ꢊ ꢖꢏ ꢗ ꢒꢖ ꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 15 V  
CC  
Regulator input voltage range, REG_IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
−0.3 V to 42 V  
CC  
Input voltage range, 1IN, 2IN, 1IN1, 1IN2, 1IN2, 2IN1, 2IN2, 2IN2 . . . . . . . . . . . . . . . . . −0.3 V to V  
Output voltage range, 1OUT, 2OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 < V < V  
+0.5 V  
+0.5 V  
CC  
CC  
Continuous regulator output current, REG_OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 mA  
Continuous output current, 1OUT, 2OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating ambient temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltages are with respect to device GND pin.  
recommended operating conditions  
MIN  
8
MAX  
40  
UNIT  
V
Regulator input voltage range  
Supply voltage, V  
CC  
4
14  
V
Input voltage, 1IN1, 1IN2, 1IN2, 2IN1, 2IN2, 2IN2, 1IN, 2IN  
Continuous regulator output current, REG_OUT  
Ambient temperature operating range  
−0.3  
0
V
V
CC  
20  
mA  
°C  
40  
125  
TPS28xx electrical characteristics over recommended operating ambient temperature range,  
= 10 V, REG_IN open for TPS2811/12/13, C = 1 nF (unless otherwise noted)  
V
CC  
L
inputs  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
4
UNIT  
V
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 5 V  
3.3  
5.8  
8.3  
1.6  
4.2  
6.2  
1.6  
0.2  
5
= 10 V  
= 14 V  
= 5 V  
9
V
Positive-going input threshold voltage  
Negative-going input threshold voltage  
13  
V
1
1
1
V
= 10 V  
= 14 V  
= 5 V  
V
V
Input hysteresis  
Input current  
V
Inputs = 0 V or V  
CC  
−1  
1
µA  
pF  
Input capacitance  
10  
Typicals are for T = 25°C unless otherwise noted.  
A
outputs  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
I
I
I
I
= −1 mA  
= −100 mA  
= 1 mA  
9.75  
8
9.9  
9.1  
0.18  
1
O
O
O
O
High-level output voltage  
Low-level output voltage  
V
0.25  
2
V
A
= 100 mA  
Peak output current  
V
= 10 V  
2
CC  
Typicals are for T = 25°C unless otherwise noted.  
A
5
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢃ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢈ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ  
ꢊ ꢋꢌꢍ ꢎ ꢏ ꢐꢎꢑꢂ ꢁꢒꢒ ꢊ ꢓꢔ ꢂꢕ ꢒ ꢀ ꢊꢖ ꢏ ꢗꢒ ꢖꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
regulator (TPS2811/2812/2813 only)  
PARAMETER  
TEST CONDITIONS  
14 REG_IN 40 V, 0 I 20 mA  
MIN TYP  
MAX  
UNIT  
V
Output voltage  
10  
9
11.5  
9.6  
13  
O
Output voltage in dropout  
I
O
= 10 mA,  
REG_IN = 10 V  
V
Typicals are for T = 25°C unless otherwise noted.  
A
supply current  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
5
UNIT  
µA  
Supply current into V  
CC  
Inputs high or low  
REG_IN = 20 V,  
0.2  
40  
Supply current into REG_IN  
REG_OUT open  
100  
µA  
Typicals are for T = 25°C unless otherwise noted.  
A
TPS28xxY electrical characteristics at T = 25°C, V  
= 10 V, REG_IN open for TPS2811/12/13,  
CC  
A
C = 1 nF (unless otherwise noted)  
L
inputs  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
3.3  
5.8  
8.2  
1.6  
3.3  
4.2  
1.2  
0.2  
5
MAX  
UNIT  
V
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 5 V  
= 10 V  
= 14 V  
= 5 V  
V
Positive-going input threshold voltage  
Negative-going input threshold voltage  
V
V
= 10 V  
= 14 V  
= 5 V  
V
V
Input hysteresis  
Input current  
V
Inputs = 0 V or V  
CC  
µA  
pF  
Input capacitance  
outputs  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
9.9  
9.1  
0.18  
1
MAX  
UNIT  
I
O
I
O
I
O
I
O
= −1 mA  
= −100 mA  
= 1 mA  
High-level output voltage  
V
Low-level output voltage  
Peak output current  
V
A
= 100 mA  
V
CC  
= 10.5 V  
2
regulator (TPS2811, 2812, 2813)  
PARAMETER  
TEST CONDITIONS  
14 REG_IN 40 V, 0 I 20 mA  
MIN  
MIN  
TYP  
11.5  
9.6  
MAX  
MAX  
UNIT  
V
Output voltage  
O
Output voltage in dropout  
I
O
= 10 mA,  
REG_IN = 10 V  
V
power supply current  
PARAMETER  
TEST CONDITIONS  
TYP  
0.2  
40  
UNIT  
µA  
Supply current into V  
CC  
Inputs high or low  
REG_IN = 20 V,  
Supply current into REG_IN  
REG_OUT open  
µA  
6
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅꢅ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢉ  
ꢊꢋꢌ ꢍ ꢎꢏ ꢐꢎ ꢑꢂꢁꢒ ꢒꢊ ꢓ ꢔꢂ ꢕꢒ ꢀ ꢊ ꢖꢏ ꢗ ꢒꢖ ꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
switching characteristics for all devices over recommended operating ambient temperature range,  
REG_IN open for TPS2811/12/13, C = 1 nF (unless otherwise specified)  
L
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
14  
15  
20  
15  
15  
18  
25  
25  
34  
24  
26  
36  
MAX  
25  
30  
35  
25  
30  
35  
40  
45  
50  
40  
45  
50  
UNIT  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 14 V  
= 10 V  
= 5 V  
t
t
t
t
Rise time  
Fall time  
ns  
r
= 14 V  
= 10 V  
= 5 V  
ns  
ns  
ns  
f
= 14 V  
= 10 V  
= 5 V  
Prop delay time high-to-low-level output  
Prop delay time low-to-high-level output  
PHL  
PLH  
= 14 V  
= 10 V  
= 5 V  
PARAMETER MEASUREMENT INFORMATION  
TPS2811  
V
CC  
+
1
8
Regulator  
0.1 µF  
4.7 µF  
2
3
7
6
5
Input  
Output  
50 Ω  
1 nF  
4
NOTE A: Input rise and fall times should be 10 ns for accurate measurement of ac parameters.  
Figure 1. Test Circuit For Measurement of Switching Characteristics  
7
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢃ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢈ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ  
ꢊ ꢋꢌꢍ ꢎ ꢏ ꢐꢎꢑꢂ ꢁꢒꢒ ꢊ ꢓꢔ ꢂꢕ ꢒ ꢀ ꢊꢖ ꢏ ꢗꢒ ꢖꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
PARAMETER MEASUREMENT INFORMATION  
TPS2811  
1
8
Regulator  
2
3
7
6
5
0−10 V dc  
xOUT  
Current  
Loop  
V
CC  
10 V  
+
0.1 µF  
4.7 µF  
4
Figure 2. Shoot-through Current Test Setup  
50%  
50%  
1IN  
0 V  
0 V  
t
f
t
r
90%  
90%  
10%  
50%  
50%  
1OUT  
10%  
t
t
PHL  
PLH  
Figure 3. Typical Timing Diagram (TPS2811)  
TYPICAL CHARACTERISTICS  
Tables of Characteristics Graphs and Application Information  
typical characteristics  
PARAMETER  
vs PARAMETER 2  
Supply voltage  
FIGURE  
PAGE  
10  
10  
10  
11  
Rise time  
4
5
Fall time  
Supply voltage  
Propagation delay time  
Supply voltage  
6, 7  
8
Supply voltage  
Supply current  
Load capacitance  
Ambient temperature  
Supply voltage  
9
11  
10  
11  
11  
Input threshold voltage  
Regulator output voltage  
Regulator quiescent current  
Peak source current  
11  
Regulator input voltage  
Regulator input voltage  
Supply voltage  
12, 13  
14  
15  
16  
17  
18  
12  
12  
12  
13  
13  
13  
Peak sink current  
Supply voltage  
Input voltage, high-to-low  
Input voltage, low-to-high  
Shoot-through current  
8
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅꢅ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢉ  
ꢊꢋꢌ ꢍ ꢎꢏ ꢐꢎ ꢑꢂꢁꢒ ꢒꢊ ꢓ ꢔꢂ ꢕꢒ ꢀ ꢊ ꢖꢏ ꢗ ꢒꢖ ꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
Tables of Characteristics Graphs and Application Information (Continued)  
general applications  
PARAMETER  
vs PARAMETER 2  
FIGURE  
19, 20  
PAGE  
15  
Switching test circuits and application information  
Low-to-high  
High-to-low  
21, 23, 25  
22, 24, 26  
16, 17  
16, 17  
Voltage of 1OUT vs 2OUT  
Time  
circuit for measuring paralleled switching characteristics  
PARAMETER  
vs PARAMETER 2  
FIGURE  
27  
PAGE  
17  
Switching test circuits and application information  
Low-to-high  
High-to-low  
28, 30  
29, 31  
18  
Input voltage vs output voltage  
Time  
18  
Hex-1 to Hex-4 application information  
PARAMETER  
vs PARAMETER 2  
FIGURE  
32  
PAGE  
19  
20  
20  
21  
22  
23  
20  
21  
21  
22  
23  
20  
21  
22  
22  
23  
Driving test circuit and application information  
Hex-1 size  
33  
Hex-2 size  
36  
Hex-3 size  
39  
Drain-source voltage vs drain current  
Time  
Time  
Time  
Hex-4 size  
41  
Hex-4 size parallel drive  
Hex-1 size  
45  
34  
Hex-2 size  
37  
Hex-3 size  
40  
Drain-source voltage vs gate-source voltage at turn-on  
Drain-source voltage vs gate-source voltage at turn-off  
Hex-4 size  
43  
Hex-4 size parallel drive  
Hex-1 size  
46  
35  
Hex-2 size  
38  
Hex-3 size  
42  
Hex-4 size  
44  
Hex-4 size parallel drive  
47  
synchronous buck regulator application  
PARAMETER  
vs PARAMETER 2  
FIGURE  
PAGE  
24  
3.3-V 3-A Synchronous-Rectified Buck Regulator Circuit  
Q1 drain voltage vs gate voltage at turn-on  
Q1 drain voltage vs gate voltage at turn-off  
Q1 drain voltage vs Q2 gate-source voltage  
48  
49  
50  
26  
26  
51, 52, 53  
54  
26, 27  
27  
Time  
3 A  
5 A  
Output ripple voltage vs inductor current  
55  
27  
9
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢃ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢈ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ  
ꢊ ꢋꢌꢍ ꢎ ꢏ ꢐꢎꢑꢂ ꢁꢒꢒ ꢊ ꢓꢔ ꢂꢕ ꢒ ꢀ ꢊꢖ ꢏ ꢗꢒ ꢖꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
RISE TIME  
vs  
FALL TIME  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
22  
22  
C
= 1 nF  
C
= 1 nF  
L
L
20  
18  
16  
14  
20  
18  
16  
14  
T
= 125°C  
= 75°C  
= 25°C  
A
T
= 125°C  
A
T
A
T
A
= 75°C  
= 25°C  
T
A
T
A
T
A
= 50°C  
T = 50°C  
A
T
A
= −25°C  
T
A
= −25°C  
12  
10  
12  
10  
5
6
7
8
9
10  
11  
12  
13 14  
5
6
7
8
9
10  
11  
12  
13 14  
V
CC  
− Supply Voltage − V  
V
CC  
− Supply Voltage − V  
Figure 4  
Figure 5  
PROPAGATION DELAY TIME,  
HIGH-TO-LOW-LEVEL OUTPUT  
vs  
PROPAGATION DELAY TIME,  
LOW-TO-HIGH-LEVEL OUTPUT  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
45  
45  
40  
35  
C
= 1 nF  
C
= 1 nF  
L
L
40  
35  
30  
25  
T
A
= 25°C  
T
A
= 75°C  
30  
25  
T
A
= 125°C  
T =125°C  
A
T
A
= 25°C  
T
A
= 75°C  
T
= −25°C  
A
20  
15  
20  
15  
T
= 50°C  
A
T
A
= 50°C  
T
= −25°C  
A
5
6
7
8
9
10 11  
12 13 14  
5
6
7
8
9
10  
11  
12  
13 14  
V
CC  
− Supply Voltage − V  
V
CC  
− Supply Voltage − V  
Figure 6  
Figure 7  
10  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅꢅ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢉ  
ꢊꢋꢌ ꢍ ꢎꢏ ꢐꢎ ꢑꢂꢁꢒ ꢒꢊ ꢓ ꢔꢂ ꢕꢒ ꢀ ꢊ ꢖꢏ ꢗ ꢒꢖ ꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
SUPPLY CURRENT  
vs  
vs  
SUPPLY VOLTAGE  
LOAD CAPACITANCE  
16  
14  
12  
10  
8
2.5  
2
V
= 10 V  
CC  
f = 100 kHz  
= 25°C  
Duty Cycle = 50%  
= 1 nF  
C
L
T
A
1 MHz  
1.5  
1
0.5  
0
6
500 kHz  
100 kHz  
4
75 kHz  
40 kHz  
10  
2
0
0
0.5  
1
1.5  
2
4
6
8
12  
14  
C
− Load Capacitance − nF  
L
V
CC  
− Supply Voltage − V  
Figure 8  
Figure 9  
INPUT THRESHOLD VOLTAGE  
SUPPLY CURRENT  
vs  
vs  
SUPPLY VOLTAGE  
AMBIENT TEMPERATURE  
1.2  
1.19  
1.18  
9
C
V
= 1 nF  
T
A
= 25°C  
L
= 10 V  
8
7
6
5
4
3
2
CC  
Duty Cycle = 50%  
f = 100 kHz  
+ Threshold  
1.17  
1.16  
1.15  
1.14  
− Threshold  
1.13  
1.12  
1.11  
1.1  
1
0
−50 −25  
0
25  
50  
75  
100  
125  
4
6
8
10  
12  
14  
V
CC  
− Supply Voltage − V  
T
A
− Temperature − °C  
Figure 10  
Figure 11  
11  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢃ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢈ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ  
ꢊ ꢋꢌꢍ ꢎ ꢏ ꢐꢎꢑꢂ ꢁꢒꢒ ꢊ ꢓꢔ ꢂꢕ ꢒ ꢀ ꢊꢖ ꢏ ꢗꢒ ꢖꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
REGULATOR OUTPUT VOLTAGE  
REGULATOR OUTPUT VOLTAGE  
vs  
vs  
REGULATOR INPUT VOLTAGE  
REGULATOR INPUT VOLTAGE  
14  
13  
12  
13  
12  
11  
10  
9
R
= 10 kΩ  
R
= 10 kΩ  
L
T
= 55°C  
L
A
T
A
= 25°C  
T
A
= 55°C  
T
A
= 125°C  
11  
10  
9
T
= 125°C  
A
T
A
= 25°C  
8
7
6
8
7
6
5
4
5
4
4
8
12  
16 20  
24  
28 32  
36 40  
4
6
8
10  
12  
14  
Regulator Input Voltage − V  
Regulator Input Voltage − V  
Figure 12  
Figure 13  
REGULATOR QUIESCENT CURRENT  
vs  
PEAK SOURCE CURRENT  
vs  
REGULATOR INPUT VOLTAGE  
SUPPLY VOLTAGE  
50  
45  
2.5  
2
R
= 0.5 Ω  
L
T
= 55°C  
A
f = 100 kHz  
Duty Cycle = 5%  
T
A
40  
35  
30  
25  
20  
15  
10  
= 25°C  
T
= 25°C  
A
1.5  
1
T
A
= 125°C  
.5  
0
R
= 10 kΩ  
L
5
0
4
8
12 16  
20  
24  
28  
32  
36  
40  
4
6
8
10  
12  
14  
V
CC  
− Supply Voltage − V  
Regulator Input Voltage − V  
Figure 14  
Figure 15  
12  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅꢅ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢉ  
ꢊꢋꢌ ꢍ ꢎꢏ ꢐꢎ ꢑꢂꢁꢒ ꢒꢊ ꢓ ꢔꢂ ꢕꢒ ꢀ ꢊ ꢖꢏ ꢗ ꢒꢖ ꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
PEAK SINK CURRENT  
vs  
SUPPLY VOLTAGE  
2.5  
2
R
= 0.5 Ω  
L
f = 100 kHz  
Duty Cycle = 5%  
T
A
= 25°C  
1.5  
1
.5  
0
4
6
8
10  
12  
14  
V
CC  
− Supply Voltage − V  
Figure 16  
SHOOT-THROUGH CURRENT  
vs  
SHOOT-THROUGH CURRENT  
vs  
INPUT VOLTAGE, LOW-TO-HIGH  
INPUT VOLTAGE, HIGH-TO-LOW  
6
5
4
3
6
5
V
C
T
= 10 V  
= 0  
= 25°C  
V
C
T
= 10 V  
= 0  
= 25°C  
CC  
L
A
CC  
L
A
4
3
2
2
1
0
1
0
10  
8
6
4
2
0
0
2
4
6
8
10  
V − Input Voltage, High-to-Low − V  
I
V − Input Voltage, Low-to-High − V  
I
Figure 17  
Figure 18  
13  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢃ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢈ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ  
ꢊ ꢋꢌꢍ ꢎ ꢏ ꢐꢎꢑꢂ ꢁꢒꢒ ꢊ ꢓꢔ ꢂꢕ ꢒ ꢀ ꢊꢖ ꢏ ꢗꢒ ꢖꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
The TPS2811, TPS2812 and TPS2813 circuits each contain one regulator and two MOSFET drivers. The regulator  
can be used to limit V  
to between 10 V and 13 V for a range of input voltages from 14 V to 40 V, while providing  
CC  
up to 20 mA of dc drive. The TPS2814 and TPS2815 both contain two drivers, each of which has two inputs. The  
TPS2811 has inverting drivers, the TPS2812 has noninverting drivers, and the TPS2813 has one inverting and one  
noninverting driver. The TPS2814 is a dual 2-input AND driver with one inverting input on each driver, and the  
TPS2815 is a dual 2-input NAND driver. These MOSFET drivers are capable of supplying up to 2.1 A or sinking up  
to 1.9 A (see Figures 15 and 16) of instantaneous current to n-channel or p-channel MOSFETs. The TPS2811 family  
of MOSFET drivers have very fast switching times combined with very short propagation delays. These features  
enhance the operation of today’s high-frequency circuits.  
The CMOS input circuit has a positive threshold of approximately 2/3 of V , with a negative threshold of 1/3 of V  
CC  
and a very high input impedance in the range of 10 . Noise immunity is also very high because of the Schmidt trigger  
switching. In addition, the design is such that the normal shoot-through current in CMOS (when the input is biased  
,
CC  
9
halfway between V  
and ground) is limited to less than 6 mA. The limited shoot-through is evident in the graphs in  
CC  
Figures 17 and 18. The input stage shown in the functional block diagram better illustrates the way the front end works.  
The circuitry of the device is such that regardless of the rise and/or fall time of the input signal, the output signal will  
always have a fast transition speed; this basically isolates the waveforms at the input from the output. Therefore, the  
specified switching times are not affected by the slopes of the input waveforms.  
The basic driver portion of the circuits operate over a supply voltage range of 4 V to 14 V with a maximum bias current  
of 5 µA. Each driver consists of a CMOS input and a buffered output with a 2-A instantaneous drive capability. They  
have propagation delays of less than 30 ns and rise and fall times of less than 20 ns each. Placing a 0.1-µF ceramic  
capacitor between V  
switching and high current surges of the driver when it is driving a MOSFET.  
and ground is recommended; this will supply the instantaneous current needed by the fast  
CC  
The output circuit is also shown in the functional block diagram. This driver uses a unique combination of a bipolar  
transistor in parallel with a MOSFET for the ability to swing from V to ground while providing 2 A of instantaneous  
CC  
driver current. This unique parallel combination of bipolar and MOSFET output transistors provides the drive required  
at V  
and ground to guarantee turn-off of even low-threshold MOSFETs. Typical bipolar-only output devices don’t  
CC  
easily approach V  
or ground.  
CC  
The regulator, included in the TPS2811, TPS2812 and TPS2813, has an input voltage range of 14 V to 40 V. It  
produces an output voltage of 10 V to 13 V and is capable of supplying from 0 to 20 mA of output current. In grounded  
source applications, this extends the overall circuit operation to 40 V by clamping the driver supply voltage (V ) to  
CC  
a safe level for both the driver and the MOSFET gate. The bias current for full operation is a maximum of 150 µA.  
A 0.1-µF capacitor connected between the regulator output and ground is required to ensure stability. For transient  
response, an additional 4.7-µF electrolytic capacitor on the output and a 0.1-µF ceramic capacitor on the input will  
optimize the performance of this circuit. When the regulator is not in use, it can be left open at both the input and the  
output, or the input can be shorted to the output and tied to either the V  
or the ground pin of the chip.  
CC  
14  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅꢅ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢉ  
ꢊꢋꢌ ꢍ ꢎꢏ ꢐꢎ ꢑꢂꢁꢒ ꢒꢊ ꢓ ꢔꢂ ꢕꢒ ꢀ ꢊ ꢖꢏ ꢗ ꢒꢖ ꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
matching and paralleling connections  
Figures 21 and 22 show the delays for the rise and fall time of each channel. As can be seen on a 5-ns scale, there  
is very little difference between the two channels at no load. Figures 23 and 24 show the difference between the two  
channels for a 1-nF load on each output. There is a slight delay on the rising edge, but little or no delay on the falling  
edge. As an example of extreme overload, Figures 25 and 26 show the difference between the two channels, or two  
drivers in the package, each driving a 10-nF load. As would be expected, the rise and fall times are significantly slowed  
down. Figures 28 and 29 show the effect of paralleling the two channels and driving a 1-nF load. A noticeable  
improvement is evident in the rise and fall times of the output waveforms. Finally, Figures 30 and 31 show the two  
drivers being paralleled to drive the 10-nF load and as could be expected the waveforms are improved. In summary,  
the paralleling of the two drivers in a package enhances the capability of the drivers to handle a larger load. Because  
of manufacturing tolerances, it is not recommended to parallel drivers that are not in the same package.  
V
CC  
TPS2811  
+
0.1 µF  
4.7 µF  
8
1
Regulator  
2
3
7
6
Output  
50 Ω  
1 nF  
4
5
Figure 19. Test Circuit for Measuring Switching Characteristics  
V
CC  
TPS2811  
+
0.1 µF  
4.7 µF  
8
1
Regulator  
2
3
7
6
Output 1  
50 Ω  
C
L(1)  
4
5
Output 2  
C
L(2)  
NOTE A: Input rise and fall times should be 10 ns for accurate measurement of ac parameters.  
Figure 20. Test Circuit for Measuring Switching Characteristics with the Inputs Connected in Parallel  
15  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢃ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢈ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ  
ꢊ ꢋꢌꢍ ꢎ ꢏ ꢐꢎꢑꢂ ꢁꢒꢒ ꢊ ꢓꢔ ꢂꢕ ꢒ ꢀ ꢊꢖ ꢏ ꢗꢒ ꢖꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
T
= 25°C  
A
I
L
V = 14 V  
C
Paralleled Input  
V
O
at 1OUT (5 V/div, 5 ns/div)  
= 0  
V
O
at 2OUT (5 V/div, 5 ns/div)  
V
at 1OUT (5 V/div, 5 ns/div)  
at 2OUT (5 V/div, 5 ns/div)  
O
V
O
T
= 25°C  
A
I
L
V = 14 V  
C
Paralleled Inputs  
= 0  
t − Time  
t − Time  
Figure 21. Voltage of 1OUT vs Voltage at  
2OUT, Low-to-High Output Delay  
Figure 22. Voltage at 1OUT vs Voltage  
at 2OUT, High-to-Low Output Delay  
T
= 25°C  
A
I
L
V
O
at 1OUT (5 V/div, 10 ns/div)  
V = 14 V  
C
Paralleled Input  
= 1 nF on Each Output  
V
at 2OUT  
O
(5 V/div, 10 ns/div)  
V
at 1OUT  
O
(5 V/div, 10 ns/div)  
V
O
at 2OUT (5 V/div, 10 ns/div)  
T
= 25°C  
A
I
L
V = 14 V  
C
Paralleled Input  
= 1 nF Each Output  
t − Time  
t − Time  
Figure 23. Voltage at 1OUT vs Voltage at  
2OUT, Low-to-High Output Delay  
Figure 24. Voltage at 1OUT vs Voltage at  
2OUT, High-to-Low Output Delay  
16  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅꢅ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢉ  
ꢊꢋꢌ ꢍ ꢎꢏ ꢐꢎ ꢑꢂꢁꢒ ꢒꢊ ꢓ ꢔꢂ ꢕꢒ ꢀ ꢊ ꢖꢏ ꢗ ꢒꢖ ꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
V
at 1OUT  
O
(5 V/div, 20 ns/div)  
V
at 2OUT  
O
(5 V/div, 20 ns/div)  
V
O
at (5 V/div, 20 ns/div)  
V
O
at 2OUT (5 V/div, 20 ns/div)  
T
V
C
= 25°C  
A
T = 25°C  
A
= 14 V  
CC  
V
= 14 V  
CC  
L
= 10 nF on Each Output  
L
C
= 10 nF on Each Output  
Paralleled Input  
Paralleled Input  
t − Time  
t − Time  
Figure 25. Voltage at 1OUT vs Voltage at  
2OUT, Low-to-High Output Delay  
Figure 26. Voltage at 1OUT vs Voltage at  
2OUT, High-to-Low Output Delay  
V
CC  
TPS2811  
Regulator  
+
0.1 µF  
4.7 µF  
8
1
2
3
7
6
Output  
50 Ω  
C
L
4
5
NOTE A: Input rise and fall times should be 10 ns for accurate measurement of ac parameters.  
Figure 27. Test Circuit for Measuring Paralleled Switching Characteristics  
17  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢃ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢈ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ  
ꢊ ꢋꢌꢍ ꢎ ꢏ ꢐꢎꢑꢂ ꢁꢒꢒ ꢊ ꢓꢔ ꢂꢕ ꢒ ꢀ ꢊꢖ ꢏ ꢗꢒ ꢖꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
T
V
C
= 25°C  
= 14 V  
CC  
= 1 nF  
A
V (5 V/div, 20 ns/div)  
I
L
V (5 V/div, 20 ns/div)  
I
Paralleled Input  
and Output  
T
V
C
= 25°C  
= 14 V  
CC  
= 1 nF  
A
L
Paralleled Input  
and Output  
V
O
(5 V/div, 20 ns/div)  
V
O
(5 V/div, 20 ns/div)  
t − Time  
t − Time  
Figure 28. Input Voltage vs Output Voltage,  
Low-to-High Propagation Delay of Paralleled  
Drivers  
Figure 29. Input Voltage vs Output Voltage,  
High-to-Low Propagation Delay of Paralleled  
Drivers  
T
V
C
= 25°C  
A
= 14 V  
CC  
= 10 nF  
L
V (5 V/div, 20 ns/div)  
I
Paralleled Input  
and Output  
V (5 V/div, 20 ns/div)  
I
T
V
C
= 25°C  
A
= 14 V  
CC  
V
O
(5 V/div, 20 ns/div)  
= 10 nF  
L
Paralleled Input  
and Output  
V
O
(5 V/div, 20 ns/div)  
t − Time  
t − Time  
Figure 31. Input Voltage vs Output Voltage,  
High-to-Low Propagation Delay of Paralleled  
Drivers  
Figure 30. Input Voltage vs Output Voltage,  
Low-to-High Propagation Delay of Paralleled  
Drivers  
18  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅꢅ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢉ  
ꢊꢋꢌ ꢍ ꢎꢏ ꢐꢎ ꢑꢂꢁꢒ ꢒꢊ ꢓ ꢔꢂ ꢕꢒ ꢀ ꢊ ꢖꢏ ꢗ ꢒꢖ ꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
Figures 33 through 47 illustrate the performance of the TPS2811 driving MOSFETs with clamped inductive loads,  
similar to what is encountered in discontinuous-mode flyback converters. The MOSFETs that were tested range in  
size from Hex-1 to Hex-4, although the TPS28xx family is only recommended for Hex-3 or below.  
The test circuit is shown in Figure 32. The layout rules observed in building the test circuit also apply to real  
applications. Decoupling capacitor C1 is a 0.1-µF ceramic device, connected between V and GND of the TPS2811,  
CC  
with short lead lengths. The connection between the driver output and the MOSFET gate, and between GND and  
the MOSFET source, are as short as possible to minimize inductance. Ideally, GND of the driver is connected directly  
to the MOSFET source. The tests were conducted with the pulse generator frequency set very low to eliminate the  
need for heat sinking, and the duty cycle was set to turn off the MOSFET when the drain current reached 50% of its  
rated value. The input voltage was adjusted to clamp the drain voltage at 80% of its rating.  
As shown, the driver is capable of driving each of the Hex-1 through Hex-3 MOSFETs to switch in 20 ns or less. Even  
the Hex-4 is turned on in less than 20 ns. Figures 45, 46 and 47 show that paralleling the two drivers in a package  
enhances the gate waveforms and improves the switching speed of the MOSFET. Generally, one driver is capable  
of driving up to a Hex-4 size. The TPS2811 family is even capable of driving large MOSFETs that have a low gate  
charge.  
V
I
CR1  
L1  
Current  
Loop  
8
1
Regulator  
+
V
V
DS  
Q1  
DS  
2
3
7
6
V
GS  
R1  
50 Ω  
4
5
V
CC  
+
C2  
4.7 µF  
C1  
0.1 µF  
Figure 32. TPS2811 Driving Hex-1 through Hex-4 Devices  
19  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢃ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢈ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ  
ꢊ ꢋꢌꢍ ꢎ ꢏ ꢐꢎꢑꢂ ꢁꢒꢒ ꢊ ꢓꢔ ꢂꢕ ꢒ ꢀ ꢊꢖ ꢏ ꢗꢒ ꢖꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
T
V
= 25°C  
T
V
= 25°C  
A
A
V
DS  
(20 V/div, 0.5 µs/div)  
= 14 V  
= 14 V  
CC  
CC  
V = 48 V  
V = 48 V  
I
I
V
DS  
(20 V/div, 50 ns/div)  
V
GS  
(5 V/div, 50 ns/div)  
I
D
(0.5 A/div, 0.5 µs/div)  
t − Time  
t − Time  
Figure 33. Drain-Source Voltage vs Drain  
Current, TPS2811 Driving an IRFD014  
(Hex-1 Size)  
Figure 34. Drain-Source Voltage vs  
Gate-Source Voltage, at Turn-on,  
TPS2811 Driving an IRFD014 (Hex-1 Size)  
T
= 25°C  
= 14 V  
A
V
CC  
V = 48 V  
V
DS  
(20 V/div, 50 ns/div)  
I
V
DS  
(50 V/div, 0.2 µs/div)  
T
= 25°C  
= 14 V  
A
V
CC  
V = 80 V  
I
V
GS  
(5 V/div, 50 ns/div)  
V
GS  
(0.5 A/div, 0.2 µs/div)  
t − Time  
t − Time  
Figure 35. Drain-Source Voltage vs  
Gate-Source Voltage, at Turn-off,  
TPS2811 Driving an IRFD014 (Hex-1 Size)  
Figure 36. Drain-Source Voltage vs Drain  
Current, TPS2811 Driving an IRFD120  
(Hex-2 Size)  
20  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅꢅ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢉ  
ꢊꢋꢌ ꢍ ꢎꢏ ꢐꢎ ꢑꢂꢁꢒ ꢒꢊ ꢓ ꢔꢂ ꢕꢒ ꢀ ꢊ ꢖꢏ ꢗ ꢒꢖ ꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
T
V
= 25°C  
T
V
= 25°C  
A
A
= 14 V  
V
DS  
(50 V/div, 50 ns/div)  
= 14 V  
CC  
CC  
V = 80 V  
V = 80 V  
I
I
V
(50 V/div, 50 ns/div)  
(5 V/div, 50 ns/div)  
DS  
V
GS  
V
GS  
(5 V/div, 50 ns/div)  
t − Time  
t − Time  
Figure 37. Drain-Source Voltage vs  
Gate-Source Voltage,  
Figure 38. Drain-Source Voltage vs  
Gate-Source Voltage,  
at Turn-on, TPS2811 Driving an IRFD120  
(Hex-2 Size)  
at Turn-off, TPS2811 Driving an IRFD120  
(Hex-2 Size)  
T
V
= 25°C  
A
= 14 V  
CC  
V = 80 V  
I
V
DS  
(50 V/div, 50 ns/div)  
V
DS  
(50 V/div, 2 µs/div)  
T
= 25°C  
= 14 V  
A
V
CC  
V = 80 V  
V
GS  
(5 A/div, 50 ns/div)  
I
I
D
(5 A/div, 2 µs/div)  
t − Time  
t − Time  
Figure 40. Drain-Source Voltage vs  
Gate-Source Voltage, at Turn-on, TPS2811  
Driving an IRF530 (Hex-3 Size)  
Figure 39. Drain-Source Voltage vs Drain  
Current, TPS2811 Driving an IRF530  
(Hex-3 Size)  
21  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢃ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢈ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ  
ꢊ ꢋꢌꢍ ꢎ ꢏ ꢐꢎꢑꢂ ꢁꢒꢒ ꢊ ꢓꢔ ꢂꢕ ꢒ ꢀ ꢊꢖ ꢏ ꢗꢒ ꢖꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
V
DS  
(50 V/div, 0.2 µs/div)  
V
DS  
(50 V/div, 50 ns/div)  
T
= 25°C  
= 14 V  
A
V
CC  
V = 350 V  
I
T
V
= 25°C  
A
= 14 V  
CC  
V = 80 V  
I
I
(2 A/div,  
D
0.2 µs/div)  
V
GS  
(5 V/div, 50 ns/div)  
t − Time  
t − Time  
Figure 41. Drain-Source Voltage vs Drain  
Current,  
Figure 42. Drain-Source Voltage vs  
Gate-Source Voltage,  
One Driver, TPS2811 Driving an IRF840  
(Hex-4 Size)  
at Turn-off, TPS2811 Driving an IRF530  
(Hex-3 Size)  
V
DS  
(50 V/div, 50 ns/div)  
V
DS  
(50 V/div, 50 ns/div)  
V
GS  
(5 V/div, 50 ns/div)  
V
GS  
(5 V/div, 50 ns/div)  
T
= 25°C  
= 14 V  
A
T
= 25°C  
= 14 V  
A
V
CC  
V = 350 V  
V
CC  
V = 350 V  
I
I
t − Time  
t − Time  
Figure 43. Drain-Source Voltage vs  
Gate-Source Voltage, at Turn-on,  
One Driver, TPS2811 Driving an IRF840  
(Hex-4 Size)  
Figure 44. Drain-Source Voltage vs Gate-Source  
Voltage, at Turn-off, One Driver,  
TPS2811 Driving an IRF840  
(Hex-4 Size)  
22  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅꢅ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢉ  
ꢊꢋꢌ ꢍ ꢎꢏ ꢐꢎ ꢑꢂꢁꢒ ꢒꢊ ꢓ ꢔꢂ ꢕꢒ ꢀ ꢊ ꢖꢏ ꢗ ꢒꢖ ꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
V
DS  
(50 V/div, 0.2 µs/div)  
V
(50 V/div,  
50 ns/div)  
DS  
T
= 25°C  
= 14 V  
A
V
CC  
V = 350 V  
I
V
(5 V/div,  
50 ns/div)  
I
(2 A/div,  
GS  
D
0.2 µs/div)  
T
= 25°C  
= 14 V  
A
V
CC  
V = 350 V  
I
t − Time  
t − Time  
Figure 46. Drain-Source Voltage vs Gate-Source  
Voltage, at Turn-on, Parallel Drivers,  
Figure 45. Drain-Source Voltage vs Drain  
Current, Parallel Drivers,  
TPS2811 Driving an IRF840 (Hex-4 Size)  
TPS2811 Driving an IRF840 (Hex-4 Size)  
V
DS  
(50 V/div, 50 ns/div)  
V
GS  
(5 V/div, 50 ns/div)  
T
= 25°C  
= 14 V  
A
V
CC  
V = 350 V  
I
t − Time  
Figure 47. Drain-Source Voltage vs Gate-Source Voltage, at Turn-off,  
Parallel Drivers, TPS2811 Driving an IRF840 (Hex-4 Size)  
23  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢃ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢈ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ  
ꢊ ꢋꢌꢍ ꢎ ꢏ ꢐꢎꢑꢂ ꢁꢒꢒ ꢊ ꢓꢔ ꢂꢕ ꢒ ꢀ ꢊꢖ ꢏ ꢗꢒ ꢖꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
synchronous buck regulator  
Figure 48 is the schematic for a 100-kHz synchronous-rectified buck converter implemented with a TL5001  
pulse-width-modulation (PWM) controller and a TPS2812 driver. The bill of materials is provided in Table 1. The  
converter operates over an input range from 5.5 V to 12 V and has a 3.3-V output capable of supplying 3 A  
continuously and 5 A during load surges. The converter achieves an efficiency of 90.6% at 3 A and 87.6% at 5 A.  
Figures 49 and 50 show the power switch switching performance. The output ripple voltage waveforms are  
documented in Figures 54 and 55.  
The TPS2812 drives both the power switch, Q2, and the synchronous rectifier, Q1. Large shoot-through currents,  
caused by power switch and synchronous rectifier remaining on simultaneously during the transitions, are prevented  
by small delays built into the drive signals, using CR2, CR3, R11, R12, and the input capacitance of the TPS2812.  
These delays allow the power switch to turn off before the synchronous rectifier turns on and vice versa. Figure 51  
shows the delay between the drain of Q2 and the gate of Q1; expanded views are provided in Figures 52 and 53.  
Q1  
IRF7406  
L1  
27 µF  
3
1
J1  
J2  
+
+
+
+
C100  
100 µF  
16 V  
C12  
C7  
C13  
C5  
100 µF  
16 V  
V
V
1
3.3 V  
3.3 V  
GND  
GND  
1
I
C11  
0.47 µF  
R5  
100 µF  
16 V  
100 µF  
16 V  
10 µF  
10 V  
10 kΩ  
2
3
4
2
3
4
I
2
CR1  
1
GND  
30BQ015  
GND  
R7  
2
3.3 Ω  
1
8
REG_IN  
REG_OUT  
1 OUT  
2
3
4
7
6
5
1 IN  
U2  
3
Q2  
R4  
R3  
C6  
TPS2812D  
GND  
V
CC  
IRF7201  
2.32 kΩ  
180 Ω  
1000 pF  
2 IN  
2 OUT  
1%  
R13  
10 kΩ  
C4  
R2  
C3  
C14  
0.1 µF  
0.022 µF  
1.6 kΩ  
0.0022  
R6  
15 Ω  
µF  
C2  
0.033 µF  
1
2
3
4
R10  
1 kΩ  
CR2  
CR3  
OUT  
V
COMP  
FB  
CC  
BAS16ZX  
R1  
U1  
C15  
1 µF  
1.00 kΩ  
1%  
TL5001CD  
R11  
GND  
RT  
DTC  
6
SCP  
30 kΩ  
8
7
5
BAS16ZX  
+
R9  
R8  
C1  
1 µF  
90.9 kΩ  
121 kΩ  
1%  
1%  
R12  
C9  
10 kΩ  
0.22 µF  
Figure 48. 3.3-V 3-A Synchronous-Rectified Buck Regulator Circuit  
NOTE: If the parasitics of the external circuit cause the voltage to violate the Absolute Maximum  
Rating for the Output pins, Schottky diodes should be added from ground to output and from output  
to Vcc.  
24  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅꢅ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢉ  
ꢊꢋꢌ ꢍ ꢎꢏ ꢐꢎ ꢑꢂꢁꢒ ꢒꢊ ꢓ ꢔꢂ ꢕꢒ ꢀ ꢊ ꢖꢏ ꢗ ꢒꢖ ꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
Table 1. Bill of Materials,  
3.3-V, 3-A Synchronous-Rectified Buck Converter  
REFERENCE  
DESCRIPTION  
TL5001CD, PWM  
VENDOR  
U1  
Texas Instruments,  
Texas Instruments,  
International Rectifier,  
Zetex,  
972-644-5580  
972-644-5580  
310-322-3331  
516-543-7100  
U2  
TPS2812D, N.I. MOSFET Driver  
3 A, 15 V, Schottky, 30BQ015  
Signal Diode, BAS16ZX  
1 µF, 16 V, Tantalum  
0.033 µF, 50 V  
CR1  
CR2,CR3  
C1  
C2  
C3  
0.0022 µF, 50 V  
C4  
0.022 µF, 50 V  
C5,C7,C10,C12  
100 µF, 16 V, Tantalum, TPSE107M016R0100 AVX,  
800-448-9411  
708-803-6100  
C6  
C9  
1000 pF, 50 V  
0.22 µF, 50 V  
C11  
C13  
C14  
C15  
J1,J2  
L1  
0.47 µF, 50 V, Z5U  
10 µF, 10 V, Ceramic, CC1210CY5V106Z  
TDK,  
0.1 µF, 50 V  
1.0 µF, 50 V  
4-Pin Header  
27 µH, 3 A/5 A, SML5040  
IRF7406, P-FET  
IRF7201, N-FET  
1.00 k, 1%  
1.6 kΩ  
Nova Magnetics, Inc.,  
International Rectifier,  
International Rectifier,  
972-272-8287  
310-322-3331  
310-322-3331  
Q1  
Q2  
R1  
R2  
R3  
180 Ω  
R4  
2.32 k, 1 %  
10 kΩ  
R5,R12,R13  
R6  
15 Ω  
R7  
3.3 Ω  
R8  
121 k, 1%  
90.9 k, 1%  
1 kΩ  
R9  
R10  
R11  
30 kΩ  
NOTES: 2. Unless otherwise specified, capacitors are X7R ceramics.  
3. Unless otherwise specified, resistors are 5%, 1/10 W.  
25  
www.ti.com  
ꢀ ꢁ ꢂ ꢃ ꢄꢅꢅ ꢆ ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢃ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢇ ꢆ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢈ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢉ  
ꢊ ꢋꢌꢍ ꢎ ꢏ ꢐꢎꢑꢂ ꢁꢒꢒ ꢊ ꢓꢔ ꢂꢕ ꢒ ꢀ ꢊꢖ ꢏ ꢗꢒ ꢖꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
V
D
(5 V/div, 20 ns/div)  
V
V
(2 V/div, 20 ns/div)  
(5 V/div, 20 ns/div)  
G
D
V
G
(2 V/div, 20 ns/div)  
T
= 25°C  
A
I
O
T
= 25°C  
A
I
O
V = 12 V  
V
V = 12 V  
V
= 3.3 V at 5A  
= 3.3 V at 5A  
t − Time  
t − Time  
Figure 49. Q1 Drain Voltage vs Gate Voltage,  
at Switch Turn-on  
Figure 50. Q1 Drain Voltage vs Gate Voltage,  
at Switch Turn-off  
T
= 25°C  
A
I
O
V = 12 V  
V
V
D
(5 V/div, 0.5 µs/div)  
= 3.3 V at 5A  
T
= 25°C  
A
I
O
V = 12 V  
V
= 3.3 V at 5A  
V
D
(5 V/div, 20 ns/div)  
V
GS  
(2 V/div, 0.5 µs/div)  
V
GS  
(2 V/div, 20 ns/div)  
t − Time  
t − Time  
Figure 52. Q1 Drain Voltage vs Q2  
Gate-Source Voltage  
Figure 51. Q1 Drain Voltage vs Q2  
Gate-Source Voltage  
26  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅꢅ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢃ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢇ ꢆ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢈ ꢆ ꢀꢁ ꢂ ꢃꢄ ꢅꢉ  
ꢊꢋꢌ ꢍ ꢎꢏ ꢐꢎ ꢑꢂꢁꢒ ꢒꢊ ꢓ ꢔꢂ ꢕꢒ ꢀ ꢊ ꢖꢏ ꢗ ꢒꢖ ꢂ  
SLVS132F − NOVEMBER 1995 − REVISED OCTOBER 2004  
APPLICATION INFORMATION  
T
= 25°C  
V
D
(5 V/div, 20 ns/div)  
A
I
O
V = 12 V  
V
= 3.3 V at 5A  
V
GS  
(2 V/div, 20 ns/div)  
t − Time  
Figure 53. Q1 Drain Voltage vs Q2 Gate-Source Voltage  
T
= 25°C  
A
I
O
Inductor Current (2 A/div, 2 µs/div)  
V = 12 V  
V
= 3.3 V at 3A  
Inductor Current (1 A/div, 2 µs/div)  
T
= 25°C  
A
I
O
V = 12 V  
V
= 3.3 V at 5 A  
1
2
1
2
Output Ripple Voltage (20 mV/div, 2 µs/div)  
Output Ripple Voltage (20 mV/div, 2 µs/div)  
t − Time  
t − Time  
Figure 54. Output Ripple Voltage vs  
Inductor Current, at 3 A  
Figure 55. Output Ripple Voltage vs  
Inductor Current, at 5 A  
27  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
TPS2811D  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SOIC  
SOIC  
D
8
8
8
8
8
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
2811  
TPS2811DG4  
TPS2811DR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
75  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
2811  
SOIC  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
2811  
TPS2811DRG4  
TPS2811P  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
2811  
PDIP  
P
Pb-Free  
(RoHS)  
TPS2811P  
TPS2811P  
PS2811  
PS2811  
TPS2811PE4  
TPS2811PW  
TPS2811PWG4  
PDIP  
P
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
TSSOP  
TSSOP  
PW  
PW  
150  
150  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
TPS2811PWLE  
TPS2811PWR  
OBSOLETE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
8
8
TBD  
Call TI  
Call TI  
2000  
2000  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
PS2811  
PS2811  
2812  
TPS2811PWRG4  
TPS2812D  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
OBSOLETE  
TSSOP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PW  
D
8
8
8
8
8
8
8
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Call TI  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
N / A for Pkg Type  
Call TI  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
TPS2812DG4  
TPS2812DR  
D
75  
Green (RoHS  
& no Sb/Br)  
2812  
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
2812  
TPS2812DRG4  
TPS2812P  
D
Green (RoHS  
& no Sb/Br)  
2812  
P
Pb-Free  
(RoHS)  
TPS2812P  
TPS2812P  
TPS2812PE4  
TPS2812PWLE  
PDIP  
P
50  
Pb-Free  
(RoHS)  
TSSOP  
PW  
TBD  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
TPS2812PWR  
TPS2812PWRG4  
TPS2813D  
ACTIVE  
TSSOP  
TSSOP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PW  
8
8
8
8
8
8
8
8
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
PS2812  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PW  
D
2000  
75  
Green (RoHS  
& no Sb/Br)  
PS2812  
2813  
Green (RoHS  
& no Sb/Br)  
TPS2813DG4  
TPS2813DR  
D
75  
Green (RoHS  
& no Sb/Br)  
2813  
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
2813  
TPS2813DRG4  
TPS2813P  
D
Green (RoHS  
& no Sb/Br)  
2813  
P
Pb-Free  
(RoHS)  
TPS2813P  
TPS2813P  
TPS2813PE4  
PDIP  
P
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
TPS2813PWLE  
TPS2813PWR  
OBSOLETE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
8
8
TBD  
Call TI  
Call TI  
2000  
2000  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
PS2813  
PS2813  
2814  
TPS2813PWRG4  
TPS2814D  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PW  
D
8
8
8
8
8
8
8
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
Green (RoHS  
& no Sb/Br)  
TPS2814DG4  
TPS2814DR  
TPS2814DRG4  
TPS2814P  
D
75  
Green (RoHS  
& no Sb/Br)  
2814  
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
2814  
D
Green (RoHS  
& no Sb/Br)  
2814  
P
Pb-Free  
(RoHS)  
TPS2814P  
TPS2814P  
PS2814  
TPS2814PE4  
TPS2814PW  
PDIP  
P
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
TSSOP  
PW  
150  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
TPS2814PWG4  
ACTIVE  
TSSOP  
PW  
8
150  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
PS2814  
TPS2814PWLE  
TPS2814PWR  
OBSOLETE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
8
8
TBD  
Call TI  
Call TI  
2000  
2000  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
PS2814  
PS2814  
2815  
TPS2814PWRG4  
TPS2815D  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
PW  
D
8
8
8
8
8
8
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
Green (RoHS  
& no Sb/Br)  
TPS2815DG4  
TPS2815DR  
TPS2815DRG4  
TPS2815P  
D
75  
Green (RoHS  
& no Sb/Br)  
2815  
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
2815  
D
Green (RoHS  
& no Sb/Br)  
2815  
P
Pb-Free  
(RoHS)  
TPS2815P  
TPS2815P  
TPS2815PE4  
P
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
TPS2815PWLE  
TPS2815PWR  
OBSOLETE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
8
8
TBD  
Call TI  
Call TI  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
PS2815  
PS2815  
TPS2815PWRG4  
ACTIVE  
TSSOP  
PW  
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS2811 :  
Automotive: TPS2811-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Jun-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS2811DR  
TPS2811DR  
TPS2811PWR  
TPS2812DR  
TPS2812DR  
TPS2812PWR  
TPS2813DR  
TPS2813DR  
TPS2813PWR  
TPS2814DR  
TPS2814DR  
TPS2814PWR  
TPS2815DR  
TPS2815PWR  
SOIC  
SOIC  
D
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
2500  
2500  
2000  
2500  
2500  
2000  
2500  
2500  
2000  
2500  
2500  
2000  
2500  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
6.4  
6.4  
7.0  
6.4  
6.4  
7.0  
6.4  
6.4  
7.0  
6.4  
6.4  
7.0  
6.4  
7.0  
5.2  
5.2  
3.6  
5.2  
5.2  
3.6  
5.2  
5.2  
3.6  
5.2  
5.2  
3.6  
5.2  
3.6  
2.1  
2.1  
1.6  
2.1  
2.1  
1.6  
2.1  
2.1  
1.6  
2.1  
2.1  
1.6  
2.1  
1.6  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
TSSOP  
SOIC  
PW  
D
SOIC  
D
TSSOP  
SOIC  
PW  
D
SOIC  
D
TSSOP  
SOIC  
PW  
D
SOIC  
D
TSSOP  
SOIC  
PW  
D
TSSOP  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Jun-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS2811DR  
TPS2811DR  
TPS2811PWR  
TPS2812DR  
TPS2812DR  
TPS2812PWR  
TPS2813DR  
TPS2813DR  
TPS2813PWR  
TPS2814DR  
TPS2814DR  
TPS2814PWR  
TPS2815DR  
TPS2815PWR  
SOIC  
SOIC  
D
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
2500  
2500  
2000  
2500  
2500  
2000  
2500  
2500  
2000  
2500  
2500  
2000  
2500  
2000  
340.5  
367.0  
367.0  
340.5  
367.0  
367.0  
367.0  
340.5  
367.0  
340.5  
367.0  
367.0  
340.5  
367.0  
338.1  
367.0  
367.0  
338.1  
367.0  
367.0  
367.0  
338.1  
367.0  
338.1  
367.0  
367.0  
338.1  
367.0  
20.6  
35.0  
35.0  
20.6  
35.0  
35.0  
35.0  
20.6  
35.0  
20.6  
35.0  
35.0  
20.6  
35.0  
TSSOP  
SOIC  
PW  
D
SOIC  
D
TSSOP  
SOIC  
PW  
D
SOIC  
D
TSSOP  
SOIC  
PW  
D
SOIC  
D
TSSOP  
SOIC  
PW  
D
TSSOP  
PW  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TPS2814DRG4

DUAL HIGH-SPEED MOSFET DRIBERS
TI

TPS2814P

DUAL HIGH-SPEED MOSFET DRIVERS
TI

TPS2814PE4

DUAL HIGH-SPEED MOSFET DRIBERS
TI

TPS2814PW

DUAL HIGH-SPEED MOSFET DRIVERS
TI

TPS2814PWG4

DUAL HIGH-SPEED MOSFET DRIBERS
TI

TPS2814PWLE

DUAL HIGH-SPEED MOSFET DRIBERS
TI

TPS2814PWR

DUAL HIGH-SPEED MOSFET DRIBERS
TI

TPS2814PWRG4

DUAL HIGH-SPEED MOSFET DRIBERS
TI

TPS2814Y

2A 2 CHANNEL, NAND GATE BASED MOSFET DRIVER, UUC8, DIE-8
TI

TPS2815

DUAL HIGH-SPEED MOSFET DRIVERS
TI

TPS2815D

DUAL HIGH-SPEED MOSFET DRIVERS
TI

TPS2815DG4

DUAL HIGH-SPEED MOSFET DRIBERS
TI