TPS2H160AQPWPRQ1 [TI]

具有可调节电流限制的 40V、160mΩ、2 通道汽车类智能高侧开关 | PWP | 16 | -40 to 125;
TPS2H160AQPWPRQ1
型号: TPS2H160AQPWPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节电流限制的 40V、160mΩ、2 通道汽车类智能高侧开关 | PWP | 16 | -40 to 125

开关 驱动 光电二极管 接口集成电路 驱动器
文件: 总41页 (文件大小:2086K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS2H160-Q1  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
TPS2H160-Q1 40V160mΩ 双通道智能高侧开关  
1 特性  
诊断:  
过流和接地短路检测  
1
符合汽车类应用 要求  
具有符合 AEC-Q100 标准的下列特性:  
负载开路和电池短路检测  
用于实现快速中断的全局故障  
器件温度等级 1–40°C 125°C 的环境工作  
温度范围  
16 引脚耐热增强型 PWP 封装  
器件 HBM ESD 分类等级 H2  
器件 CDM ESD 分类等级 C4B  
2 应用  
双通道 LED 驱动器,灯泡驱动器  
提供功能安全  
提供文档以帮助创建功能安全系统设计  
具有丰富诊断功能的双通道 160mΩ 智能高侧开关  
适用于子模块的双通道高侧开关  
双通道高侧继电器,螺线管驱动器  
版本 A:开漏状态输出  
3 说明  
版本 B:电流感应模拟输出  
TPS2H160-Q1 系列是一款集成 160mΩ N 沟道金属氧  
化物半导体 (NMOS) 功率场效应晶体管 (FET) 的双通  
道智能高侧开关,配备全方位保护功能。  
宽工作电压范围:3.4V 40V  
超低待机电流:< 500nA  
高精度电流感测:  
该器件具有丰富的诊断功能和高精度电流感测 功能 ,  
可对负载进行智能控制。  
> 25mA 负载下为 ±17%  
可使用外部电阻调节电流限值,> 500mA 的负载条  
件下为 ±15%  
该器件可从外部调节电流限值以限制浪涌或过载电流,  
从而提升整个系统的可靠性。  
保护:  
通过(内部或外部)电流限制实现接地短路保护  
具有锁闭选项的热关断以及热调节  
感性负载负电压钳位,已优化转换率  
失地保护和失电保护  
器件信息(1)  
器件型号  
封装  
通道  
TPS2H160-Q1 版本A  
TPS2H160-Q1 版本B  
HTSSOP (16)  
2
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
T48 路多路复用 LC6948  
3.4-V to 40-V  
Supply Voltage  
驱动具有可调节电流限制的电容性负载  
VS  
IN1, 2  
LED Strings,  
Small Power Bulbs  
DIAG_EN  
THER  
OUT1  
Solenoids, Valves, Relays  
FAULT  
Sub-Modules:  
Cameras, Sensors, Displays  
SEL ST1  
CS ST2  
CL  
Overcurrent is clamped  
at the set value of 1 A.  
OUT2  
General Resistive, Capacitive,  
Inductive Loads  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSD74  
 
 
 
 
 
 
 
 
TPS2H160-Q1  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 13  
8.4 Device Functional Modes........................................ 24  
Application and Implementation ........................ 26  
9.1 Application Information............................................ 26  
9.2 Typical Application ................................................. 26  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information ................................................. 5  
7.5 Electrical Characteristics........................................... 5  
7.6 Switching Characteristics.......................................... 7  
7.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 13  
9
10 Power Supply Recommendations ..................... 29  
11 Layout................................................................... 30  
11.1 Layout Guidelines ................................................. 30  
11.2 Layout Examples................................................... 30  
12 器件和文档支持 ..................................................... 32  
12.1 接收文档更新通知 ................................................. 32  
12.2 社区资源................................................................ 32  
12.3 ....................................................................... 32  
12.4 静电放电警告......................................................... 32  
12.5 Glossary................................................................ 32  
13 机械、封装和可订购信息....................................... 32  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (February 2018) to Revision D  
Page  
特性 部分添加了提供功能安全的链接.................................................................................................................................. 1  
Changes from Revision B (August 2016) to Revision C  
Page  
Added footnote 2 to the Electrical Characteristics table......................................................................................................... 7  
Added reverse current protection information to the Reverse-Current Protection section .................................................. 23  
Changes from Revision A (June 2016) to Revision B  
Page  
更改了 ESD HBM 分类等.................................................................................................................................................... 1  
在第一页上添加重要图形 ........................................................................................................................................................ 1  
Changed ESD Ratings table .................................................................................................................................................. 5  
Changed Figure 7 .................................................................................................................................................................. 9  
Changes from Original (December 2015) to Revision A  
Page  
将数据表从产品预览更改为生产数据” ................................................................................................................................. 1  
2
Copyright © 2015–2019, Texas Instruments Incorporated  
 
TPS2H160-Q1  
www.ti.com.cn  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
5 Device Comparison Table  
PART NUMBER  
FAULT REPORTING MODE  
Open-drain digital output  
TPS2H160-Q1 Version A  
TPS2H160-Q1 Version B  
Current-sense analog output  
6 Pin Configuration and Functions  
PWP PowerPAD™ Package  
16-Pin HTSSOP With Exposed Thermal Pad  
TPS2H160-Q1 Version A Top View  
IN1  
IN2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
OUT1  
OUT1  
VS  
DIAG_EN  
NC  
VS  
Thermal  
Pad  
ST1  
OUT2  
OUT2  
NC  
ST2  
CL  
GND  
THER  
Not to scale  
NC – No internal connection  
PWP PowerPAD Package  
16-Pin HTSSOP With Exposed Thermal Pad  
TPS2H160-Q1 Version B Top View  
IN1  
IN2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
OUT1  
OUT1  
VS  
DIAG_EN  
FAULT  
SEL  
VS  
Thermal  
Pad  
OUT2  
OUT2  
NC  
CS  
CL  
GND  
THER  
Not to scale  
NC – No internal connection  
Copyright © 2015–2019, Texas Instruments Incorporated  
3
TPS2H160-Q1  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
VERSION A VERSION B  
Adjustable current limit. Connect to device GND if external current limit is not  
used.  
CL  
7
7
O
CS  
3
6
3
O
I
Current-sense output  
DIAG_EN  
Enable-disable pin for diagnostics; internal pulldown  
Global fault report with open-drain structure, ORed logic for dual-channel fault  
conditions  
FAULT  
4
O
GND  
IN1  
8
8
I
Ground pin  
1
2
1
2
Input control for channel 1 activation; internal pulldown  
Input control for channel 2 activation; internal pulldown  
No internal connection  
IN2  
I
NC  
4, 10  
5
10  
O
O
I
ST1  
ST2  
SEL  
THER  
OUT1  
OUT2  
VS  
Open-drain diagnostic status output for channel 1  
Open-drain diagnostic status output for channel 2  
CS channel-selection bit; internal pulldown  
Thermal shutdown behavior control, latch off or auto-retry; internal pulldown  
Output of the channel 1 high side-switch, connected to the load  
Output of the channel 2 high side-switch, connected to the load  
Power supply  
6
5
9
9
I
15, 16  
11, 12  
13, 14  
15, 16  
11, 12  
13, 14  
O
O
I
Thermal  
pad  
Connect to device GND or leave floating  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)  
(1)(2)  
MIN  
MAX  
UNIT  
V
Supply voltage  
t < 400 ms  
48  
Reverse polarity voltage(3)  
–36  
–100  
–0.3  
–10  
–0.3  
–30  
–2.7  
V
Current on GND pin  
t < 2 minutes  
250  
7
mA  
V
Voltage on INx, DIAG_EN, SEL, and THER pins  
Current on INx, DIAG_EN, SEL, and THER pins  
Voltage on STx or FAULT pins  
Current on STx or FAULT pins  
Voltage on CS pin  
7
mA  
V
10  
7
mA  
V
Current on CS pin  
30  
7
mA  
V
Voltage on CL pin  
–0.3  
Current on CL pin  
6
mA  
mJ  
°C  
°C  
Inductive load switch-off energy dissipation, single pulse, single channel(4)  
Operating junction temperature  
Storage temperature, Tstg  
40  
150  
150  
–40  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the ground plane.  
(3) Reverse polarity condition: t < 60 s, reverse current < IR(2), VINx = 0 V, all channels reverse, GND pin 1-kΩ resistor in parallel with diode.  
(4) Test condition: VVS = 13.5 V, L = 8 mH, R = 0 , TJ = 150°C. FR4 2s2p board, 2 × 70-μm Cu, 2 x 35-µm Cu. 600 mm2 thermal pad  
copper area.  
4
Copyright © 2015–2019, Texas Instruments Incorporated  
 
TPS2H160-Q1  
www.ti.com.cn  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
7.2 ESD Ratings  
VALUE  
±4000  
±750  
UNIT  
Human-body model (HBM), per AEC  
Q100-002(1)  
All pins  
All pins  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC  
Q100-011  
Corner pins (1, 8, 9, and  
16)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
MAX  
40  
UNIT  
V
VVS  
Supply operating voltage  
4
0
Voltage on INx, DIAG EN, SEL, and THER pins  
Voltage on STx and FAULT pins  
Nominal dc load current  
5
V
0
5
V
0
2.5  
125  
A
TA  
Operating ambient temperature  
–40  
°C  
7.4 Thermal Information  
TPS2H160-Q1  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
16 PINS  
40.4  
26.5  
21.1  
0.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
20.9  
1.6  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
5 V < VVS < 40 V; 40°C < TJ < 150°C, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPERATING VOLTAGE  
VVS(nom)  
VVS(uvr)  
VVS(uvf)  
V(uv,hys)  
Nominal operating voltage  
Undervoltage turnon  
4
3.5  
3
40  
4
V
V
V
V
VVS rises up  
3.7  
3.2  
0.5  
Undervoltage shutdown  
VVS falls down  
3.4  
Undervoltage shutdown, hysteresis  
Copyright © 2015–2019, Texas Instruments Incorporated  
5
 
TPS2H160-Q1  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
5 V < VVS < 40 V; 40°C < TJ < 150°C, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPERATING CURRENT  
VVS = 13.5 V, VINx = 5 V, VDIAG_EN = 0 V, IOUTx = 0.5 A,  
current limit = 2 A, all channels on  
I(op)  
Nominal operating current(1)  
Standby current  
7
mA  
VVS = 13.5 V, VINx = VDIAG_EN = VCS = VCL = VOUTx  
THER = 0 V,  
=
0.5  
TJ = 25°C  
I(off)  
µA  
VVS = 13.5 V, VINx = VDIAG_EN = VCS = VCL = VOUTx  
THER = 0 V,  
=
5
6
TJ = 125°C  
Standby current with diagnostic  
enabled  
VVS = 13.5 V, VINx = 0 V, VDIAG_EN = 5 V, VVS – VOUTx  
V(ol,off), not in open-load mode  
>
I(off,diag)  
mA  
IN from high to low, if deglitch time > t(off,deg), the device  
enters into standby mode.  
t(off,diag)  
Ilkg(out)  
Standby mode deglitch time(1)  
10  
12.5  
155  
15  
ms  
µA  
Output leakage current in off-state  
VVS = 13.5 V, VINx = VDIAG_EN = VOUTx = 0  
0.5  
POWER STAGE  
rDS(on)  
On-state resistance(1)  
ICL(int)  
V
VS 3.5 V, TJ = 25°C  
VS 3.5 V, TJ = 150°C  
mΩ  
V
280  
15  
Internal current limit  
Internal current limit value, CL pin connected to GND  
Internal current limit value under thermal shutdown  
9
A
A
6.8  
Current limit during thermal  
shutdown(1)  
ICL(TSD)  
External current limit value under thermal shutdown. The  
percentage of the external current limit setting value  
60%  
VDS(clamp)  
Drain-to-source internal clamp voltage  
45  
65  
V
V
OUTPUT DIODE CHARACTERISTICS  
VF  
Drainsource diode voltage  
IN = 0, IOUTx = 0.15 A.  
0.3  
0.7  
2.5  
0.9  
t < 60 s, VINx = 0 V, TJ = 25°C, single channel reversed,  
short-to-battery condition  
Continuous reverse current from  
source to drain(1)  
IR(1), IR(2)  
A
t < 60 s, VINx = 0 V, GND pin 1-kΩ resistor in parallel with  
diode. TJ = 25°C. Reverse-polarity condition, all channels  
reversed  
2
LOGIC INPUT (INx, DIAG_EN, SEL, THER)  
VIH  
VIL  
Logic high-level voltage  
Logic low-level voltage  
2
V
V
0.8  
230  
350  
INx, SEL, THER, VINx = VSEL = VTHER = 5 V  
DIAG_EN. VVS = VDIAG_EN = 5 V  
100  
150  
175  
275  
R(logic,pd)  
Logic-pin pulldown resistor  
kΩ  
DIAGNOSTICS  
Output leakage current under GND  
Ilkg(GND_loss)  
100  
2.6  
µA  
V
loss condition  
IN = 0 V, when VVS – VOUTx < V(ol,off), duration longer than  
t(ol,off), then open load is detected, off state  
V(ol,off)  
Open-load detection threshold  
1.6  
400  
–75  
Open-load detection threshold deglitch IN = 0 V, when VVS – VOUTx < V(ol,off) , duration longer than  
time (see Figure 3)  
td(ol,off)  
600  
800  
µs  
µA  
t(ol,off), then open load is detected, off state  
VINx = 0 V, VDIAG_EN = 5 V, VVS = VOUTx = 13.5 V, TJ  
125°C, open load  
=
I(ol,off)  
Off-state output sink current  
VOL(STx)  
Status low-output voltage  
Fault low-output voltage  
ISTx = 2 mA, version A only  
IFAULT = 2 mA, version B only  
0.2  
0.2  
V
V
VOL(FAULT)  
Deglitch time when current limit  
occurs(1)  
Thermal shutdown threshold(1)  
VINx = VDIAG_EN = 5 V, the deglitch time from current limit  
toggling to FAULT, STx, CS report.  
tCL(deg)  
T(SD)  
T(SD,rst)  
T(SW)  
80  
180  
µs  
°C  
°C  
°C  
°C  
160  
175  
155  
60  
Thermal shutdown status reset  
threshold(1)  
Thermal swing shutdown threshold(1)  
Hysteresis for resetting the thermal  
shutdown or thermal swing(1)  
T(hys)  
10  
(1) Value specified by design, not subject to production test  
6
Copyright © 2015–2019, Texas Instruments Incorporated  
TPS2H160-Q1  
www.ti.com.cn  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
Electrical Characteristics (continued)  
5 V < VVS < 40 V; 40°C < TJ < 150°C, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT SENSE (Version B) AND CURRENT LIMIT  
K(CS)  
K(CL)  
Current-sense ratio  
290  
2500  
0.8  
Current-limit ratio  
Current limit internal threshold(1)  
VCL(th)  
V
VVS = 13.5 V, IOUTx 5 mA  
VVS = 13.5 V, IOUTx 25 mA  
VVS = 13.5 V, IOUTx 50 mA  
VVS = 13.5 V, IOUTx 100 mA  
VVS = 13.5 V, IOUTx 0.5 A  
VVS = 13.5 V, I(limit) 0.25 A  
VVS = 13.5 V, 0.5 A I(limit) 7 A  
–85%  
–17%  
–8%  
–4%  
–3%  
–20%  
–15%  
0
85%  
17%  
8%  
dK(CS)  
K(CS)  
/
Current-sense accuracy, (ICS × K(CS)  
IOUTx) /IOUTx × 100  
4%  
3%  
External current limit accuracy(2)  
,
20%  
15%  
4
dK(CL) / K(CL)  
(IOUTx – ICL × K(CL)) × 100 / (ICL × K(CL)  
)
VVS 6.5 V  
VCS(lin)  
Current-sense voltage linear range(1)  
V
A
VVS  
5 V VVS < 6.5 V  
0
2.5  
2.5  
2.5  
6.5  
V
VS 6.5 V, VCS(lin) 4 V  
5 V VVS < 6.5 V, VCS(lin) VVS – 2.5 V  
VS 7 V, fault mode  
0
0
IOUTx(lin)  
Output-current linear range(1)  
V
4.5  
V
V
VCS(H)  
Current sense pin output voltage(1)  
Current-sense pin output current  
Min(VVS – 2,  
4.5)  
5 V VVS < 7 V, fault mode  
VCS = 4.5 V, VVS = 13.5 V  
VDIAG_EN = 0 V, TJ =125ºC  
6.5  
ICS(H)  
15  
mA  
µA  
Current-sense leakage current in  
disabled mode  
Ilkg(CS)  
0.5  
(2) External current limit accuracy is only applicable to overload conditions greater than 1.5 × the current limit setting  
7.6 Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Delay time, VOUTx 10% after VINx(See  
Figure 1.)  
VVS = 13.5 V, VDIAG_EN = 5 V, IOUTx = 0.5 A, IN rising  
edge to 10% of VOUTx  
td(on)  
20  
50  
90  
µs  
Delay time, VOUTx 90% after VINx(See  
Figure 1.)  
VVS = 13.5 V, VDIAG_EN = 5 V, IOUTx = 0.5 A, IN falling  
edge to 90% of VOUTx  
td(off)  
20  
0.1  
0.1  
50  
0.3  
90  
0.55  
0.55  
µs  
VVS = 13.5 V, VDIAG_EN = 5 V, IOUTx = 0.5 A, VOUTx from  
10% to 90%  
dV/dt(on)  
dV/dt(off)  
Turnon slew rate  
Turnoff slew rate  
V/µs  
V/µs  
VVS = 13.5 V, VDIAG_EN = 5 V, IOUTx = 0.5 A, VOUTx from  
90% to 10%  
0.35  
VVS = 13.5 V, IL = 0.5A. td, rise is the IN rising edge to  
VOUTx = 90%.  
td(match)  
td(rise) – td(fall) (See Figure 1.)  
–50  
50  
µs  
td(fall) is the IN falling edge to VOUTx = 10%.  
CURRENT-SENSE CHARACTERISTICS (See Figure 2.)  
VVS = 13.5 V, VINx = 5 V, IOUTx = 0.5 A. current limit = 2 A.  
tCS(off1)  
tCS(on1)  
tCS(off2)  
tCS(on2)  
tSEL  
CS settling time from DIAG_EN disabled(1)  
CS settling time from DIAG_EN enabled(1)  
CS settling time from IN falling edge  
CS settling time from IN rising edge  
20  
20  
µs  
µs  
µs  
µs  
µs  
DIAG_EN falling edge to 10% of VCS  
.
VVS = 13.5 V, VINx = 5 V, IOUTx = 0.5 A. current limit is 2  
A. DIAG_EN rising edge to 90% of VCS  
.
VVS = 13.5 V, VDIAG_EN = 5 V, IOUTx = 0.5 A. current limit =  
2 A. IN falling edge to 10% of VCS  
20  
50  
100  
150  
50  
VVS = 13.5 V, VDIAG_EN = 5 V, IOUTx = 0.5 A. current limit =  
2 A. IN rising edge to 90% of VCS  
Multi-sense transition delay from channel to VDIAG_EN = 5 V, current sense output delay when multi-  
channel sense pin SEL transitions from channel to channel  
(1) Value specified by design, not subject to production test  
Copyright © 2015–2019, Texas Instruments Incorporated  
7
TPS2H160-Q1  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
VINx  
90%  
90%  
dV/dt(off)  
10%  
dV/dt(on)  
td(rise)  
VOUTx  
10%  
td(on)  
td(off)  
td(fall)  
Figure 1. Output Delay Characteristics  
VINx  
IOUTx  
VDIAG_EN  
VCS  
tCS(on2)  
tCS(off1)  
tCS(on1)  
tCS(off2)  
Figure 2. CS Delay Characteristics  
Open Load  
VINx  
VCS(H)  
VCS  
td(ol,off)  
VSTx,VFAULT  
td(ol,off)  
Figure 3. Open-Load Blanking-Time Characteristics  
SEL  
tSEL  
VCS(CH2)  
VCS(CH1)  
VCS  
Figure 4. Multi-Sense Transition Delay  
8
Copyright © 2015–2019, Texas Instruments Incorporated  
TPS2H160-Q1  
www.ti.com.cn  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
7.7 Typical Characteristics  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
IN1 High  
IN1 Low  
IN2 High  
IN2 Low  
VVS Rising  
VVS Falling  
-45 -30 -15  
0
15 30 45 60 75 90 105 120 135  
Ambient Temperature (èC)  
-45 -30 -15  
0
15 30 45 60 75 90 105 120  
Ambient Temperature (èC)  
D001  
D002  
Figure 5. UVLO Voltage Threshold  
Figure 6. INx Voltage Threshold  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
DIAG_EN High  
DIAG_EN Low  
SEL High  
SEL Low  
-40  
-20  
0
20  
40  
60  
Ambient Temperature (ºC)  
80  
100  
120  
-45 -30 -15  
0
15 30 45 60 75 90 105 120  
Ambient Temperature (èC)  
D003  
D004  
A
Figure 7. DIAG_EN Voltage Threshold  
Figure 8. SEL Voltage Threshold  
59  
58  
57  
56  
55  
54  
53  
52  
0.9  
0.85  
0.8  
Ch 1  
Ch 2  
OUT1  
OUT2  
0.75  
0.7  
0.65  
0.6  
0.55  
0.5  
-45 -30 -15  
0
15 30 45 60 75 90 105 120  
Ambient Temperature (èC)  
-45 -30 -15  
0
15 30 45 60 75 90 105 120  
Ambient Temperature (èC)  
D005  
D001  
Figure 9. Body-Diode Forward Voltage  
Figure 10. Drain-to-Source Clamp Voltage  
Copyright © 2015–2019, Texas Instruments Incorporated  
9
TPS2H160-Q1  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
0.25  
3.5 V  
5 V  
0.25  
0.2  
0.15  
0.1  
0.05  
0
3.5 V  
5 V  
13.5 V  
40 V  
13.5 V  
40 V  
0.2  
0.15  
0.1  
0.05  
0
-45 -30 -15  
0
15 30 45 60 75 90 105 120  
Ambient Temperature (èC)  
-45 -30 -15  
0
15 30 45 60 75 90 105 120  
Ambient Temperature (èC)  
D007  
D008  
Figure 11. Channel-1 FET On-Resistance  
Figure 12. Channel-2 FET On-Resistance  
18  
16  
14  
12  
10  
8
2
1.5  
1
Ch 1  
Ch 2  
Ch 1  
Ch 2  
0.5  
0
6
4
-0.5  
2
0
-1  
-45 -30 -15  
0
15 30 45 60 75 90 105 120  
Ambient Temperature (èC)  
-45 -30 -15  
0
15 30 45 60 75 90 105 120  
Ambient Temperature (èC)  
D009  
D010  
Figure 13. Current-Sense Ratio at 5 mA  
Figure 14. Current-Sense Ratio at 25 mA  
2
1
0.8  
0.6  
0.4  
0.2  
0
Ch 1  
Ch 2  
Ch 1  
Ch 2  
1.5  
1
0.5  
0
-0.2  
-0.4  
-0.6  
-0.8  
-0.5  
-1  
-45 -30 -15  
0
15 30 45 60 75 90 105 120  
Ambient Temperature (èC)  
-45 -30 -15  
0
15 30 45 60 75 90 105 120  
Ambient Temperature (èC)  
D011  
D012  
Figure 15. Current-Sense Ratio at 50 mA  
Figure 16. Current-Sense Ratio at 100 mA  
10  
Copyright © 2015–2019, Texas Instruments Incorporated  
TPS2H160-Q1  
www.ti.com.cn  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
Typical Characteristics (continued)  
6
4
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
Ch 1  
Ch 2  
Ch 1  
Ch 2  
2
0
-2  
-4  
-6  
-8  
-10  
-45 -30 -15  
0
15 30 45 60 75 90 105 120  
Ambient Temperature (èC)  
-45 -30 -15  
0
15 30 45 60 75 90 105 120  
Ambient Temperature (èC)  
D013  
D014  
Figure 17. Current-Sense Ratio at 500 mA  
Figure 18. Current-Limit Ratio at 0.25 A  
5
4
4
3
Ch 1  
Ch 2  
Ch 1  
Ch 2  
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-45 -30 -15  
0
15 30 45 60 75 90 105 120  
Ambient Temperature (èC)  
-45 -30 -15  
0
15 30 45 60 75 90 105 120  
Ambient Temperature (èC)  
D015  
D016  
Figure 19. Current-Limit Ratio at 0.5 A  
Figure 20. Current-Limit Ratio at 1 A  
3
2.5  
2
Ch 1  
Ch 2  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-3.5  
-4  
-45 -30 -15  
0
15 30 45 60 75 90 105 120  
Ambient Temperature (èC)  
D017  
Figure 21. Current-Limit Ratio at 2 A  
Copyright © 2015–2019, Texas Instruments Incorporated  
11  
TPS2H160-Q1  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS2H160-Q1 device is a smart high-side switch, with internal charge pump and dual-channel integrated  
NMOS power FETs. Full diagnostics and high-accuracy current-sense features enable intelligent control of the  
load. The adjustable current-limit function greatly improves the reliability of whole system. The device has two  
versions with different diagnostic reporting, the open-drain digital output (version A) and the current-sense analog  
output (version B).  
For version A, the device implements the digital fault report with an open-drain structure. When a fault occurs,  
the device pulls STx down to GND. A 3.3- or 5-V external pullup is required to match the microcontroller supply  
level. The digital status of each channel can report individually, or globally by connecting the STx pins together.  
For version B, high-accuracy current sense makes the diagnostics more accurate without further calibration. One  
integrated current mirror can source 1 / K(CS) of the load current. The mirrored current flows into the CS-pin  
resistor to become a voltage signal. K(CS) is a constant value across temperature and supply voltage. A wide  
linear region from 0 V to 4 V allows a better real-time load-current monitoring. The CS pin can also report a fault  
with pullup voltage of VCS(H)  
.
The external high-accuracy current limit allows setting the current-limit value by applications. When overcurrent  
occurs, the device improves system reliability by clamping the inrush current effectively. The device can also  
save system cost by reducing the size of PCB traces and connectors, and the capacity of the preceding power  
stage. Besides, the device also implements an internal current limit with a fixed value.  
For inductive loads (relays, solenoids, valves), the device implements an active clamp between drain and source  
to protect itself. During the inductive switching-off cycle, both the energy of the power supply and the load are  
dissipated on the high-side switch. The device also optimizes the switching-off slew rate when the clamp is  
active, which helps the system design by keeping the effects of transient power and EMI to a minimum.  
The TPS2H160-Q1 device is a smart high-side switch for a wide variety of resistive, inductive, and capacitive  
loads, including low-wattage bulbs, LEDs, relays, solenoids, heaters, and sub-modules.  
12  
Copyright © 2015–2019, Texas Instruments Incorporated  
TPS2H160-Q1  
www.ti.com.cn  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
8.2 Functional Block Diagram  
VS  
Internal LDO  
Internal Reference  
Auxiliary Charge Pump  
Output  
Clamp  
Temperature Sensor  
Gate Driver  
and  
Charge Pump  
2
INx  
OUT1  
OUT2  
Oscillator  
Protection  
and  
Diagnostics  
THER  
CS  
Current-Sense  
Mux  
Current  
Sense  
SEL  
CL  
ESD  
Protection  
Current Limit  
Current Limit  
Reference  
FAULT  
DIAG_EN  
GND  
STx  
Diagnosis  
Temperature  
Sensor  
2
OTP  
8.3 Feature Description  
8.3.1 Pin Current and Voltage Conventions  
For reference purposes throughout the data sheet, current directions on their respective pins are as shown by  
the arrows in Figure 22. All voltages are measured relative to the ground plane.  
Copyright © 2015–2019, Texas Instruments Incorporated  
13  
TPS2H160-Q1  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
Feature Description (continued)  
IINx  
IVS  
IOUTx  
ISEL  
VINx  
VVS  
INx  
VS  
OUTx  
SEL  
ISTx  
VSTx, VFAULT  
IFAULT  
STx,  
FAULT  
IDIAG_EN  
VDIAG_EN  
DIAG_EN  
CL  
VOUTx  
ICL  
VCL  
ICS  
VCS  
CS  
ITHER  
VTHER  
VSEL  
THER  
GND  
IGND  
VGND  
Ground Plane  
Figure 22. Voltage and Current Conventions  
8.3.2 Accurate Current Sense  
High-accuracy current sense is implemented in the version-B device. It allows a better real-time monitoring effect  
and more-accurate diagnostics without further calibration.  
One integrated current mirror can source 1 / K(CS) of the load current, and the mirrored current flows into the  
external current sense resistor to become a voltage signal. The current mirror is shared by the four channels.  
K(CS) is the ratio of the output current and the sense current. It is a constant value across the temperature and  
supply voltage. Each device is calibrated accurately during production, so post-calibration is not required. See  
Figure 23 for more details.  
VBAT  
VS  
IOUT / K(CS)  
IOUT  
OUTx  
VCS(H)  
FAULT  
2´  
CS  
R(CS)  
Figure 23. Current-Sense Block Diagram  
14  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
TPS2H160-Q1  
www.ti.com.cn  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
Feature Description (continued)  
When a fault occurs, the CS pin also works as a fault report with a pullup voltage, VCS(H). See Figure 24 for more  
details.  
VCS  
VCS(H)  
VCS(lin)  
Fault Report  
Current Monitor  
IOUTx  
Normal Operating  
On-State: Current Limit, Thermal Fault  
Off-State: Open Load or Short to Battery  
or Reverse Polarity  
Figure 24. Current-Sense Output-Voltage Curve  
Use Equation 1 to calculate R(CS)  
.
V
CS ´ K(CS)  
VCS  
ICS  
R(CS)  
=
=
IOUTx  
(1)  
Take the following points into consideration when calculating R(CS)  
.
Ensure VCS is within the current-sense linear region (VCS, IOUTx(lin)) across the full range of the load current.  
Check R(CS) with Equation 2.  
VCS(lin)  
VCS  
ICS  
R(CS)  
=
£
ICS  
(2)  
(3)  
In fault mode, ensure ICS is within the source capacity of the CS pin (ICS(H)). Check R(CS) with Equation 3.  
VCS(H,min)  
VCS  
ICS  
R(CS)  
=
³
ICS(H,min)  
8.3.3 Adjustable Current Limit  
A high-accuracy current limit allows high reliability of the design. It protects the load and the power supply from  
overstressing during short-circuit-to-GND or power-up conditions. The current limit can also save system cost by  
reducing the size of PCB traces and connectors, and the capacity of the preceding power stage.  
When a current-limit threshold is hit, a closed loop activates immediately. The output current is clamped at the  
set value, and a fault is reported out. The device heats up due to the high power dissipation on the power FET. If  
thermal shutdown occurs, the current limit is set to ICL(TSD) to reduce the power dissipation on the power FET.  
See Figure 25 for more details.  
The device has two current-limit thresholds.  
Internal current limit – The internal current limit is fixed at ICL(int). Tie the CL pin directly to the device GND for  
large-transient-current applications.  
External adjustable current limit – An external resistor is used to set the current-limit threashold. Use the  
Equation 4 to calculate the R(CL). VCL(th) is the internal band-gap voltage. K(CL) is the ratio of the output current  
and the current-limit set value. It is constant across the temperature and supply voltage. The external  
adjustable current limit allows the flexibility to set the current limit value by applications.  
Copyright © 2015–2019, Texas Instruments Incorporated  
15  
 
 
 
 
TPS2H160-Q1  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
Feature Description (continued)  
VCL(th)  
IOUT  
ICL  
=
=
R(CL)  
K(CL)  
V
CL(th) ´ K(CL)  
R(CL)  
=
IOUT  
(4)  
VBAT  
VS  
IOUT / K(CL)  
Internal Current Limit  
+
+
+
IOUT  
VCL(th)  
2´  
OUT  
External Current Limit  
+
VCL(th)  
CL  
Figure 25. Current-Limit Block Diargam  
Note that if using a GND network which causes a level shift between the device GND and board GND, the CL  
pin must be connected with device GND.  
For better protection from a hard short-to-GND condition (when the INx pins are enabled, a short to GND occurs  
suddenly), the device implements a fast-trip protection to turn off the related channel before the current-limit  
closed loop is set up. The fast-trip response time is less than 1 μs, typically. With this fast response, the device  
can achieve better inrush current-suppression performance.  
8.3.4 Inductive-Load Switching-Off Clamp  
When switching an inductive load off, the inductive reactance tends to pull the output voltage negative. Excessive  
negative voltage could cause the power FET to break down. To protect the power FET, an internal clamp  
between drain and source is implemented, namely VDS(clamp)  
VDS(clamp) = VVS - VOUT  
.
(5)  
During the period of demagnetization (tdecay), the power FET is turned on for inductance-energy dissipation. The  
total energy is dissipated in the high-side switch. Total energy includes the energy of the power supply (E(VS)  
)
and the energy of the load (E(load)). If resistance is in series with inductance, some of the load energy is  
dissipated on the resistance.  
16  
Copyright © 2015–2019, Texas Instruments Incorporated  
TPS2H160-Q1  
www.ti.com.cn  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
Feature Description (continued)  
E
(HSS) = E(VS) + E(load) = E(VS) + E(L) - E(R)  
(6)  
When an inductive load switches off, E(HSS) causes high thermal stressing on the device.. The upper limit of the  
power dissipation depends on the device intrinsic capacity, ambient temperature, and board dissipation condition.  
VBAT  
VDS(clamp)  
IN  
L
œ
OUT  
R
GND  
+
Figure 26. Drain-to-Source Clamping Structure  
IN  
VVS  
VOUT  
VDS(clamp)  
E(HSS)  
IOUT  
t(decay)  
Figure 27. Inductive Load Switching-Off Diagram  
From the perspective of the high-side switch, E(HSS) equals the integration value during the demagnetization  
period.  
t(decay)  
E(HSS)  
=
VDS(clamp) ´IOUT (t)dt  
ò
0
æ
ö
÷
÷
ø
R´IOUT(max) + VOUT  
L
t(decay)  
=
´lnç  
ç
è
R
VOUT  
é
ù
ú
æ
ö
÷
÷
ø
R´IOUT(max) + VOUT  
VVS + VOUT  
ê
E(HSS) = L ´  
´ R´IOUT(max) - VOUT lnç  
R2  
ç
VOUT  
ê
ú
è
ë
û
(7)  
17  
Copyright © 2015–2019, Texas Instruments Incorporated  
TPS2H160-Q1  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
Feature Description (continued)  
When R approximately equals 0, E(HSD) can be given simply as:  
VVS + VOUT  
1
2
E(HSS)  
=
´L ´IO2 UT(max  
)
VOUT  
(8)  
Figure 28 is a waveform of the device driving an inductive load, and Figure 29 is waveform with an expanded  
time scale. Channel 1 is the IN signal, channel 2 is the supply voltage VVS, channel 3 is the output voltage VOUT  
channel 4 is the output current IOUT, and channel M is the measured power dissipation E(HSS)  
,
.
On the waveform, the duration of VOUT from VVS to (VVS – VDS(clamp)) is around 120 µs. The device also optimizes  
the switching-off slew rate when the clamp is active. This optimization can help the system design by keeping the  
effects of transient power and EMI to a minimum. As shown in Figure 28 and Figure 29, the controlled slew rate  
is around 0.5 V/µs.  
Figure 28. Inductive Load Switching-Off Waveform  
Figure 29. Inductive Load Switching-Off Expanded  
Waveform  
Note that for PWM-controlled inductive loads, it is recommended to add the external freewheeling circuitry shown  
in Figure 30 to protect the device from repetitive power stressing. TVS is used to achieve the fast decay. See  
Figure 30 for more details.  
VS  
Output  
Clamp  
OUTx  
GND  
D
L
TVS  
Figure 30. Protection With External Circuitry  
18  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
 
TPS2H160-Q1  
www.ti.com.cn  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
Feature Description (continued)  
8.3.5 Fault Detection and Reporting  
8.3.5.1 Diagnostic Enable Function  
The DIAG_EN pin enables or disables the diagnostic functions. If multiple devices are used, but the ADC  
resource is limited in the microcontroller, the MCU can use GPIOs to set DIAG_EN high to enable the  
diagnostics of one device while disabling the diagnostics of the other devices by setting DIAG_EN low. In  
addition, the device can keep the power consumption to a minimum by setting DIAG_EN and INx low.  
8.3.5.2 Multiplexing of Current Sense  
For version B, SEL is used to multiplex the shared current-sense function between the two channels. See  
Table 1 for more details.  
Table 1. Diagnosis Configuration Table  
CS ACTIVATED  
DIAG_EN  
INx  
SEL  
CS, FAULT, STx  
PROTECTIONS AND DIAGNOSTICS  
CHANNEL  
H
L
Diagnostics disabled, full protection  
Diagnostics disabled, no protection  
L
High impedance  
0
1
Channel 1  
Channel 2  
H
See Table 2  
See Table 2  
8.3.5.3 Fault Table  
Table 2 applies when the DIAG_EN pin is enabled.  
Table 2. Fault Table  
STx  
CS  
FAULT  
CONDITIONS  
Normal  
INx  
L
OUTx THER CRITERION  
FAULT RECOVERY  
(VER. A) (VER. B) (VER. B)  
L
H
0
H
In linear  
region  
H
H
H
H
Current limit  
triggered  
Overlaod, short to ground  
H
L
L
L
L
VCS(H)  
VCS(H)  
L
L
Auto  
Auto  
Open load(1), short to battery,  
reverse polarity  
VVS – VOUTx  
V(ol,off)  
<
H
Output auto-retry. Fault  
recovers when TJ < T(SD,rst) or  
when INx toggles.  
L
Thermal shutdown  
Thermal swing  
H
H
TSD triggered  
TSW triggered  
L
L
VCS(H)  
L
L
Output latch off. Fault recovers  
when INx toggles.  
H
VCS(H)  
Auto  
(1) An external pullup is required for open-load detection.  
8.3.5.4 STx and FAULT Reporting  
For version A, two individual STx pins report the fault conditions, each pin for its respective channel. When a  
fault condition occurs, it pulls STx down to GND. A 3.3- or 5-V external pullup is required to match the supply  
level of the microcontroller. The digital status of each channel can be reported individually, or globally by  
connecting all the STx pins together.  
For version B, a global FAULT pin is used to monitor the global fault condition among all the channels. When a  
fault condition occurs on any channel, the FAULT pin is pulled down to GND. A 3.3-V or 5-V external pullup is  
required to match the supply level of the microcontroller.  
After the FAULT report, the microcontroller can check and identify the channel in fault status by multiplexed  
current sensing. The CS pin also works as a fault report with an internal pullup voltage, VCS(H)  
.
Copyright © 2015–2019, Texas Instruments Incorporated  
19  
 
 
TPS2H160-Q1  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
8.3.6 Full Diagnostics  
8.3.6.1 Short-to-GND and Overload Detection  
When a channel is on, a short to GND or overload condition causes overcurrent. If the overcurrent triggers either  
the internal or external current-limit threshold, the fault condition is reported out. The microcontroller can handle  
the overcurrent by turning off the switch. The device heats up if no actions are taken. If a thermal shutdown  
occurs, the current limit is ICL(TSD) to keep the power stressing on the power FET to a minimum. The device  
automatically recovers when the fault condition is removed.  
8.3.6.2 Open-Load Detection  
8.3.6.2.1 Channel On  
When a channel on, benefiting from the high-accuracy current sense in a small current range, if an open-load  
event occurs, it can be detected as an ultralow VCS and handled by the microcontroller. Note that the detection is  
not reported on the STx or FAULT pins. The microcontroller must set the SEL pin to detect the channel-on open-  
load fault proactively.  
8.3.6.2.2 Channel Off  
When a channel is off, if a load is connected, the output is pulled down to GND. But if an open load occurs, the  
output voltage is close to the supply voltage (VVS – VOUTx < V(ol,off)), and the fault is reported out.  
There is always a leakage current I(ol,off) present on the output due to internal logic control path or external  
humidity, corrosion, and so forth. Thus, TI recommends an external pullup resistor to offset the leakage current  
when an open load is detected. The recommended pullup resistance is 20 kΩ.  
VBAT  
Open-Load Detection in Off State  
V(ol,off)  
R(PU)  
VDS  
Load  
Figure 31. Open-Load Detection in Off-State  
8.3.6.3 Short-to-Battery Detection  
Short-to-battery has the same detection mechanism and behavior as open-load detection, in both the on-state  
and off-state. See Table 2 for more details.  
In the on-state, reverse current flows through the FET instead of the body diode, leading to less power  
dissipation. Thus, the worst case occurs in the off-state.  
If VOUTx – VVS < V(F) (body diode forward voltage), no reverse current occurs.  
If VOUTx – VVS > V(F), reverse current occurs. The current must be limited to less than IR(1). Setting an INx pin  
high can minimize the power stress on its channel. Also, for external reverse protection, see Reverse-Current  
Protection for more details.  
20  
Copyright © 2015–2019, Texas Instruments Incorporated  
TPS2H160-Q1  
www.ti.com.cn  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
8.3.6.4 Reverse Polarity Detection  
Reverse polarity detection has the same detection mechanism and behavior as open-load detection both in the  
on-state and off-state. See Table 2 for more details.  
In the on-state, the reverse current flows through the FET instead of the body diode, leading to less power  
dissipation. Thus, the worst case occurs in the off-state. The reverse current must be limited to less than IR(2)  
.
Set the related INx pin high to keep the power dissipation to a minimum. For external reverse-blocking circuitry,  
see Reverse-Current Protection for more details.  
8.3.6.5 Thermal Fault Detection  
To protect the device in severe power stressing cases, the device implements two types of thermal fault  
detection, absolute temperature protection (thermal shutdown) and dynamic temperature protection (thermal  
swing). Respective temperature sensors are integrated close to each power FET, so the thermal fault is reported  
by each channel. This arrangement can help the device keep the cross-channel effect to a minimum when some  
channels are in a thermal fault condition.  
8.3.6.5.1 Thermal Shutdown  
Thermal shutdown is active when the absolute temperature TJ > T(SD). When thefrmal shutdown occurs, the  
respective output turns off. The THER pin is used to configure the behavior after the thermal shutdown occurs.  
When the THER pin is low, thermal shutdown operates in the auto-retry mode. The output automatically  
recovers when TJ < T(SD) – T(hys), but the current is limited to ICL(TSD) to avoid repetitive thermal shutdown. The  
thermal shutdown fault signal is cleared when TJ < T(SD,rst) or after toggling the related INx pin.  
When the THER pin is high, thermal shutdown operates in the latch mode. The output latches off when  
thermal shutdown occurs. When the THER pin goes from high to low, thermal shutdown changes to auto-retry  
mode. The thermal shutdown fault signal is cleared after toggling the related INx pin.  
Thermal swing activates when the power FET temperature is increasing sharply, that is, when ΔT = T(FET)  
T(Logic) > T(sw), then the output turns off. The output automatically recovers and the fault signal clears when ΔT =  
T(FET) – T(Logic) < T(sw) – T(hys). Thermal swing function improves the device reliability when subjected to repetitive  
fast thermal variation. As shown in Figure 32, multiple thermal swings are triggered before thermal shutdown  
occurs.  
Copyright © 2015–2019, Texas Instruments Incorporated  
21  
TPS2H160-Q1  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
Thermal Behavior After Short to GND  
VTHER  
VINx  
T(SD)  
T(SD,rst)  
T(hys)  
TJ  
T(hys)  
T(SW)  
ICL  
IOUTx  
ICL(TSD)  
VCS(H)  
VCS  
VFAULT  
or VST  
Figure 32. Thermal Behavior Diagram  
8.3.7 Full Protections  
8.3.7.1 UVLO Protection  
The device monitors the supply voltage VVS, to prevent unpredicted behaviors when VVS is too low. When VVS  
falls down to VVS(uvf), the device shuts down. When VVS rises up to VVS(uvr), the device turns on.  
8.3.7.2 Loss-of-GND Protection  
When loss of GND occurs, output is shut down regardless of whether the INx pin is high or low. The device can  
protect against two ground-loss conditions, loss of device GND and loss of module GND.  
8.3.7.3 Protection for Loss of Power Supply  
When loss of supply occurs, the output is shut down regardless of whether the INx pin is high or low. For a  
resistive or a capacitive load, loss of supply has no risk. But for a charged inductive load, the current is driven  
from all the I/O pins to maintain the inductance current. To protect the system in this condition, TI recommends  
the external free-wheeling diode as shown in Figure 33.  
22  
Copyright © 2015–2019, Texas Instruments Incorporated  
TPS2H160-Q1  
www.ti.com.cn  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
VBAT  
VS  
OUT  
I/Os  
MCU  
High-Side Switch  
L
Figure 33. Protection for Loss of Power Supply  
8.3.7.4 Reverse-Current Protection  
Reverse current occurs in two conditions: short to battery and reverse polarity.  
When a short to the battery occurs, there is only reverse current through the body diode. IR(1) specifies the  
limit of the reverse current.  
In a reverse-polarity condition, there are reverse currents through the body diode and the device GND pin.  
IR(2) specifies the limit of the reverse current. The GND pin maximum current is specified in the Absolute  
Maximum Ratings.  
To protect the device, TI recommends two types of external circuitry.  
Adding a blocking diode. Both the IC and load are protected when in reverse polarity.  
VBAT  
VS  
´
OUT  
Load  
Copyright © 2016, Texas Instruments Incorporated  
Figure 34. Reverse-Current External Protection, Method 1  
Adding a GND network. The reverse current through the device GND is blocked. The reverse current through  
the FET is limited by the load itself. TI recommends a resistor in parallel with the diode as a GND network.  
The recommended selection are 1-kΩ resistor in parallel with an >100-mA diode. If multiple high-side  
switches are used, the resistor and diode can be shared among devices. The reverse current protection diode  
in the GND network forward voltage should be less than 0.6 V in any circumstances. In addition a minimum  
resistance of 4.7 K is recommended on the I/O pins.  
Copyright © 2015–2019, Texas Instruments Incorporated  
23  
TPS2H160-Q1  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
VBAT  
VS  
OUT  
Load  
Figure 35. Reverse-Current External Protection, Method 2  
8.3.7.5 MCU I/O Protection  
In some severe conditions, such as the ISO7637-2 test or the loss of battery with inductive loads, a negative  
pulse occurs on the GND pin This pulse can cause damage on the connected microcontroller. TI recommends  
serial resistors to protect the microcontroller, for example, 4.7-kΩ when using a 3.3-V microcontroller and 10-kΩ  
for a 5-V microcontroller.  
VBAT  
I/Os  
VS  
OUT  
MCU  
High-Side Switch  
Load  
Figure 36. MCU I/O External Protection  
8.4 Device Functional Modes  
8.4.1 Working Modes  
The device has three working modes, the normal mode, the standby mode, and the standby mode with  
diagnostics.  
Note that IN must be low for t > t(off,deg) to enter the standby mode, where t(off,deg) is the standby mode deglitch  
time used to avoid false triggering. Figure 37 shows a working-mode diagram.  
24  
Copyright © 2015–2019, Texas Instruments Incorporated  
TPS2H160-Q1  
www.ti.com.cn  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
Device Functional Modes (continued)  
Standby Mode  
(INx Low, DIAG Low)  
DIAG_EN Low  
AND  
INx High to Low  
for  
t > t(off,deg)  
DIAG_EN Low to High  
DIAG_EN High to Low  
INx Low to High  
Standby Mode  
With Diagnostics  
(INx Low, DIAG High)  
INx low to high  
Normal Mode  
(INx High)  
DIAG_EN High  
AND  
INx High to Low  
for  
t > t(off,deg)  
Figure 37. Working Modes  
Copyright © 2015–2019, Texas Instruments Incorporated  
25  
TPS2H160-Q1  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS2H160-Q1 device is capable of driving a wide variety of resistive, inductive, and capacitive loads,  
including the low-wattage bulbs, LEDs, relays, solenoids, heaters, and sub-modules. Full diagnostics and high-  
accuracy current-sense features enable intelligent control of the load. An external adjustable current limit  
improves the reliability of the whole system by clamping the inrush or overload current.  
9.2 Typical Application  
The following figure shows an example of the external circuitry connections based on the version-B device.  
VBAT  
VS  
R(ser)  
IN1, 2  
LED Strings,  
Small Power Bulbs  
R(ser)  
R(ser)  
DIAG_EN  
SEL  
Solenoids, Valves, Relays  
OUT1  
OUT2  
MCU  
5 V  
Power Module:  
Cameras, Sensors, Displays  
R(pu)  
R(ser)  
FAULT  
CS  
General Resistive,Capacitive,  
InductiveLoads  
R(CS)  
CL  
GND  
THER  
R(CL)  
Figure 38. Typical Application Diagram  
9.2.1 Design Requirements  
VVS range from 9 V to 16 V  
Load range is from 0.1 A to 1 A for each channel  
Current sense for fault monitoring  
Expected current-limit value of 2.5 A  
Automatic recovery mode when thermal shutdown occurs  
Full diagnostics with 5-V MCU  
Reverse-voltage protection with a blocking diode in the power-supply line  
26  
Copyright © 2015–2019, Texas Instruments Incorporated  
TPS2H160-Q1  
www.ti.com.cn  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
Typical Application (continued)  
9.2.2 Detailed Design Procedure  
To keep the 1-A nominal current in the 0 to 4-V current-sense range, calculate the R(CS) resistor using  
Equation 9. To achieve better current-sense accuracy, a 1% tolerance or better resistor is preferred.  
V
CS´ K(CS)  
VCS  
ICS  
4´ 290  
R(CS)  
=
=
=
= 1160 W  
IOUT  
1
(9)  
To set the adjustable current limit value at 2.5-A, calculate R(CL) using Equation 10.  
V
CL(th) ´ K(CL)  
0.8´ 2500  
R(CL)  
=
=
= 800 W  
IOUT  
2.5  
(10)  
TI recommends R(ser) = 10 kΩ for 5-V MCU, and R(pu) = 10 kΩ as the pullup resistor.  
9.2.3 Application Curves  
Figure 39 shows a test example of soft-start when driving a big capacitive load. Figure 40 shows an expanded  
waveform of the output current.  
VVS = 12 V  
INx = ↑  
Current limit = 1 A  
CH1 = INx  
VS = 12 V  
INx = ↑  
Current limit = 1 A  
CH1 = INx  
Load current = 0.4  
A
CL = 2.3 mF  
Load current = 0.4  
A
CL = 2.3 mF  
CH2 = FAULT  
CH3 = output  
voltage  
CH4 = output  
current  
CH2 = FAULT  
CH3 = output  
voltage  
CH4 = output  
current  
Figure 40. Driving a Capacitive Load, Expanded Waveform  
Figure 39. Driving a Capacitive Load  
Copyright © 2015–2019, Texas Instruments Incorporated  
27  
 
 
 
TPS2H160-Q1  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Application (continued)  
Figure 41 shows a test example of PWM-mode driving. Figure 42 shows the expanded waveform of the rising  
edge. Figure 43 shows the expanded waveform of the falling edge.  
VVS = 13.5 V INx = 200-Hz PWM  
at 50% duty cycle  
CH1 = INx signal  
VVS = 13.5 V INx = 200-Hz PWM  
at 50% duty cycle  
CH1 = INx signal  
CH2 = CS voltage  
CH3 = output  
voltage  
CH4 = output  
current  
CH2 = CS voltage  
CH3 = output  
voltage  
CH4 = output  
current  
Figure 41. PWM Signal Driving  
Figure 42. Expanded Waveform of Rising Edge  
VVS = 13.5 V  
INx = 200-Hz PWM at 50% duty cycle  
CH3 = output voltage  
CH1 = INx signal  
CH4 = output current  
CH2 = CS voltage  
Figure 43. Expanded Waveform of Falling Edge  
28  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
 
TPS2H160-Q1  
www.ti.com.cn  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
10 Power Supply Recommendations  
The device is qualified for both automotive and industrial applications. The normal power supply connection is a  
12-V automotive system or 24-V industrial system. Detailed supply voltage should be within the range specified  
in the Recommended Operating Conditions.  
Copyright © 2015–2019, Texas Instruments Incorporated  
29  
TPS2H160-Q1  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
To prevent thermal shutdown, TJ must be less than 150°C. The HTSSOP package has good thermal impedance.  
However, the PCB layout is very important. Good PCB design can optimize heat transfer, which is absolutely  
essential for the long-term reliability of the device.  
Maximize the copper coverage on the PCB to increase the thermal conductivity of the board. The major heat  
flow path from the package to the ambient is through the copper on the PCB. Maximum copper is extremely  
important when there are not any heat sinks attached to the PCB on the other side of the package.  
Add as many thermal vias as possible directly under the package ground pad to optimize the thermal  
conductivity of the board.  
All thermal vias should either be plated shut or plugged and capped on both sides of the board to prevent  
solder voids. To ensure reliability and performance, the solder coverage should be at least 85%.  
11.2 Layout Examples  
11.2.1 Without a GND Network  
Without a GND network, tie the thermal pad directly to the board GND copper for better thermal performance.  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
OUT1  
OUT1  
VS  
Thermal  
Pad  
(GND)  
VS  
GND  
Figure 44. Layout Example Without a GND Network  
30  
Copyright © 2015–2019, Texas Instruments Incorporated  
TPS2H160-Q1  
www.ti.com.cn  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
Layout Examples (continued)  
11.2.2 With a GND Network  
With a GND network, tie the thermal pad as one trace to the board GND copper.  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
OUT1  
OUT1  
VS  
Thermal  
Pad  
(GND)  
VS  
OUT2  
OUT2  
GND  
Network  
GND  
Figure 45. Layout Example With a GND Network  
版权 © 2015–2019, Texas Instruments Incorporated  
31  
TPS2H160-Q1  
ZHCSF71D DECEMBER 2015REVISED DECEMBER 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.3 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
32  
版权 © 2015–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS2H160AQPWPRQ1  
TPS2H160BQPWPRQ1  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
PWP  
PWP  
16  
16  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
2H160AQ  
2H160BQ  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jan-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS2H160AQPWPRQ1 HTSSOP PWP  
TPS2H160BQPWPRQ1 HTSSOP PWP  
16  
16  
2000  
2000  
330.0  
330.0  
12.4  
12.4  
6.9  
6.9  
5.6  
5.6  
1.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jan-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS2H160AQPWPRQ1  
TPS2H160BQPWPRQ1  
HTSSOP  
HTSSOP  
PWP  
PWP  
16  
16  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.6  
6.2  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
4X 0.166 MAX  
NOTE 5  
2X 1.34 MAX  
NOTE 5  
THERMAL  
PAD  
0.25  
GAGE PLANE  
3.3  
2.7  
17  
1.2 MAX  
0.15  
0.05  
0 - 8  
0.75  
0.50  
DETAIL A  
TYPICAL  
(1)  
3.3  
2.7  
4214868/A 02/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(3.3)  
16X (1.5)  
SYMM  
SEE DETAILS  
1
16  
16X (0.45)  
(1.1)  
TYP  
17  
SYMM  
(3.3)  
(5)  
NOTE 9  
14X (0.65)  
8
9
(
0.2) TYP  
VIA  
(1.1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-16  
4214868/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.3)  
BASED ON  
0.125 THICK  
STENCIL  
16X (1.5)  
(R0.05) TYP  
1
16  
16X (0.45)  
(3.3)  
17  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
14X (0.65)  
9
8
SYMM  
(5.8)  
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.69 X 3.69  
3.3 X 3.3 (SHOWN)  
3.01 X 3.01  
0.125  
0.15  
0.175  
2.79 X 2.79  
4214868/A 02/2017  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS2H160BQPWPRQ1

具有可调节电流限制的 40V、160mΩ、2 通道汽车类智能高侧开关 | PWP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TPS2HB16-Q1

具有可调节电流限制的 40V、16mΩ、2 通道汽车类智能高侧开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TPS2HB16AQPWPRQ1

具有可调节电流限制的 40V、16mΩ、2 通道汽车类智能高侧开关 | PWP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TPS2HB16BQPWPRQ1

具有可调节电流限制的 40V、16mΩ、2 通道汽车类智能高侧开关 | PWP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TPS2HB16FQPWPRQ1

具有可调节电流限制的 40V、16mΩ、2 通道汽车类智能高侧开关 | PWP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TPS2HB35-Q1

具有可调节电流限制的 40V、35mΩ、2 通道汽车类智能高侧开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TPS2HB35AQPWPRQ1

具有可调节电流限制的 40V、35mΩ、2 通道汽车类智能高侧开关 | PWP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TPS2HB35BQPWPRQ1

具有可调节电流限制的 40V、35mΩ、2 通道汽车类智能高侧开关 | PWP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TPS2HB35CQPWPRQ1

具有可调节电流限制的 40V、35mΩ、2 通道汽车类智能高侧开关 | PWP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI

TPS2HB50-Q1

具有可调节电流限制的 40V、50mΩ、2 通道汽车类智能高侧开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TI