TPS3431-Q1 [TI]

具有使能功能的汽车类标准可编程看门狗计时器;
TPS3431-Q1
型号: TPS3431-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的汽车类标准可编程看门狗计时器

文件: 总32页 (文件大小:2138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
具有使能功能TPS3431-Q1 汽车标准可编程监视器计时器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
TPS3431-Q1 是一款具有使能功能的标准汽车类可编  
程看门狗计时器适用于汽车应用。看门狗超时可在  
40°C +125°C 温度范围内实现 15% 的高计时精  
25°C 下实现 2.5% 的典型计时精度并且可通  
过外部电容器或工厂编程的默认延迟设置进行编程。在  
开发过程中可以通过 Enable 引脚或 SET 逻辑引脚  
将看门狗禁用从而避免出现不必要的看门狗超时。  
– 器件温度等140°C +125°C 的工作环  
境温度范围  
提供功能安全  
可帮助进行功能安全系统设计的文档  
• 出厂编程的精密看门狗计时器:  
– 可25°C 条件下实±2.5%典型值的看门  
狗超(WDT) 精度  
• 看门狗禁用功能  
TPS3431-Q1 采用小3.00mm ×  
3.00mm 8 引脚 VSON 封装。TPS3431-Q1 具有可湿  
性侧面可轻松进行光学检查。  
• 用户可编程看门狗超时  
• 输入电压范围VDD = 1.8V 6.5V  
• 低静态电流IDD = 10µA典型值)  
• 低电平有效的开漏输出  
• 使能输(EN) 和使能输(ENOUT)  
• 采用小3mm × 3mm 8 VSON 封装  
• 工作结温范围:  
器件信息  
(1)  
封装尺寸标称值)  
器件型号  
TPS3431-Q1  
VSON (8)  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
40°C +125°C  
2 应用  
汽车中心信息显示屏  
汽车显示模块  
数字驾驶舱处理单元  
配电盒  
座椅舒适模块  
汽车外部放大器  
摩托车仪表组  
车身控制模块  
3.3 V  
10  
7.5  
5
VDD  
TPS3431  
Microcontroller  
2.5  
0
ENOUT*2  
WDO  
NMI (enable output)  
NMI (watchdog fault)  
GPIO  
VDD  
SET1  
-2.5  
-5  
EN*1  
WDI  
CWD  
-7.5  
-10  
NC  
GND  
GND  
-50  
-25  
0
25  
50  
75  
100  
125  
Copyright © 2018, Texas Instruments Incorporated  
Temperature (èC)  
TPS3  
A. 也可以EN 保持浮动并将其从内部上拉VDD  
B. 也可以ENOUT 保持浮动或将其连接WDO  
标准看门狗计时器电路  
标准化看门狗超(tWD) 精度SET1 = 1CWD =  
NC)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSB67  
 
 
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
Table of Contents  
8 Application and Implementation..................................13  
8.1 Application Information............................................. 13  
8.2 Typical Application.................................................... 15  
8.3 Programmable Application........................................17  
9 Power Supply Recommendations................................20  
10 Layout...........................................................................21  
10.1 Layout Guidelines................................................... 21  
10.2 Layout Example...................................................... 21  
11 Device and Documentation Support..........................22  
11.1 Device Support........................................................22  
11.2 Documentation Support.......................................... 22  
11.3 接收文档更新通知................................................... 22  
11.4 支持资源..................................................................22  
11.5 Trademarks............................................................. 22  
11.6 Electrostatic Discharge Caution..............................22  
11.7 术语表..................................................................... 22  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Timing Requirements..................................................6  
6.7 Timing Diagrams ........................................................7  
6.8 Typical Characteristics................................................8  
7 Detailed Description........................................................9  
7.1 Overview.....................................................................9  
7.2 Functional Block Diagram...........................................9  
7.3 Feature Description.....................................................9  
7.4 Device Functional Modes..........................................11  
Information.................................................................... 22  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (July 2018) to Revision A (June 2021)  
Page  
• 删除了“可在工作温度范围内实±15% 的看门狗超时和看门狗复位延迟精度”..............................................1  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 添加了“提供功能安全”要点.............................................................................................................................1  
• 使用网络链接更新了“应用”部分......................................................................................................................1  
• 删除了“–40°C +125°C 温度范围内实15% 的计时精度................................................................... 1  
• 添加了“TPS3431-Q1 具有可湿性侧面可轻松进行光学检查”。...................................................................1  
Updated ESD Ratings.........................................................................................................................................4  
Updated ICWD min and max spec........................................................................................................................5  
Updated VCWD min and max spec...................................................................................................................... 5  
Added a footnote to for tINIT ............................................................................................................................... 6  
Updated tWDU min and max boundry values from 0.85 and 1.15 to 0.905 and 1.095 respectively...................13  
Updated tWDU min and max values for all capacitors........................................................................................13  
Updated the equations 3 and 4 with tWD min and max boundry values from 0.85 and 1.15 to 0.905 and 1.095  
respectively.......................................................................................................................................................17  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS3431-Q1  
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
*2  
ENOUT  
VDD  
CWD  
EN *1  
GND  
WDO  
WDI  
SET1  
A. EN can also be left floating and is internally pulled-up to VDD  
B. ENOUT can also be left floating or tied to WDO  
5-1. DRB Package: TPS3431  
3-mm × 3-mm VSON-8  
Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VDD  
NO.  
1
I
Supply voltage pin. For noisy systems, connecting a 0.1-μF bypass capacitor is recommended.  
Programmable watchdog timeout input. The watchdog timeout is set by connecting a capacitor between this pin and  
ground. Connecting via a 10-kΩresistor to VDD or leaving unconnected further enables the selection of the preset  
watchdog timeouts; see the CWD Functionality section.  
CWD  
EN  
2
3
I
I
TheTPS3431-Q1 determines the watchdog timeout using 方程1  
Enable input pin. This pin is internally pulled up to VDD and must be logic high or left floating. When EN goes logic  
low, ENOUT goes logic low and WDI is ignored and WDO remains logic high. When EN goes logic high, ENOUT goes  
high (asserts) after the watchdog reset delay time (tRST). This pin can also be driven with an external push-button,  
transistor, or microcontroller.  
GND  
4
5
Ground pin  
Logic input. Grounding the SET1 pin disables the watchdog timer. SET1 and CWD select the watchdog timeouts; see  
the SET1 section.  
SET1  
I
Watchdog input. A falling edge must occur at WDI before the timeout (tWD) expires.  
When the watchdog is not in use, the SET1 pin can be used to disable the watchdog. WDI is ignored when WDO is  
low (asserted) and when the watchdog is disabled. If the watchdog is disabled, WDI cannot be left unconnected and  
must be driven to either VDD or GND.  
WDI  
6
7
8
I
Watchdog open-drain active-low output. Connect WDO with a 1-kΩto 100-kΩresistor to the correct pull-up voltage  
rail (VPU). WDO goes low (asserts) when a watchdog timeout occurs. When a watchdog timeout occurs, WDO goes  
low (asserts) for the watchdog reset delay time (tRST). When EN goes low, WDO is in a high-impedance state and will  
be pulled to logic high.  
WDO  
ENOUT  
O
Enable open-drain active-high output. Connect ENOUT with a 1-kΩto 100-kΩresistor to the correct pull-up voltage  
rail (VPU). When EN goes logic high, ENOUT goes high impedance and pulls logic high (asserts) due to the external  
pull-up resistor after the watchdog reset delay time (tRST). When EN is forced logic low, ENOUT goes low after 200 ns  
and remains logic low as long as EN is logic low.  
O
Thermal pad  
Connect the thermal pad to a large-area ground plane. The thermal pad is internally connected to GND.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS3431-Q1  
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Supply voltage range  
Output voltage range  
VDD  
7
0.3  
0.3  
0.3  
0.3  
ENOUT, WDO  
SET1, WDI, EN  
CWD  
7
7
V
Voltage ranges  
V
VDD + 0.3(3)  
±20  
Output pin current  
ENOUT, WDO  
mA  
mA  
Input current (all pins)  
±20  
Continuous total power dissipation  
See 6.4  
40  
See 6.4  
150  
(2)  
Operating junction, TJ  
(2)  
Temperature  
Operating free-air temperature, TA  
Storage, Tstg  
150  
°C  
40  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) TJ = TA as a result of the low dissipated power in this device.  
(3) The absolute maximum rating is VDD + 0.3 V or 7.0 V, whichever is smaller.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
V(ESD)  
V(ESD)  
Electrostatic discharge  
Electrostatic discharge  
±4000  
V
Charged-device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C4B  
±1000  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
0
NOM  
MAX  
6.5  
UNIT  
V
VDD  
VSET1  
CCWD  
CWD  
RPU  
Supply pin voltage  
SET1 pin voltage  
6.5  
V
Watchdog timing capacitor  
Pullup resistor to VDD  
Pullup resistor, ENOUT and WDO  
EN pin current  
0.1(1)  
1000(1)  
nF  
9
10  
10  
11  
kΩ  
kΩ  
mA  
mA  
°C  
1
100  
10  
IEN  
IWDO  
TJ  
Watchdog output current  
Junction Temperature  
10  
125  
40  
(1) Using a CCWD capacitor of 0.1 nF or 1000 nF gives a tWDU(typ) of 62.74 ms or 77.45 seconds, respectively.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS3431-Q1  
 
 
 
 
 
 
 
 
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
6.4 Thermal Information  
TPS3431-Q1  
THERMAL METRIC(1)  
DRB (VSON)  
8 PINS  
47.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
51.5  
22.2  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.3  
ψJT  
22.3  
ψJB  
RθJC(bot)  
4.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
at 1.8 V VDD 6.5 V over the operating temperature range of 40°C TJ +125°C (unless otherwise noted); the  
open-drain pullup resistors are 10 kΩ; typical values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GENERAL CHARACTERISTICS  
(2) (3)  
VDD  
IDD  
Supply voltage  
1.8  
6.5  
19  
V
µA  
V
Supply current  
10  
(1)  
VPOR  
Power-on reset voltage  
VOL(MAX) = 0.25 V  
0.8  
WINDOW WATCHDOG FUNCTION  
IEN  
EN pin internal pullup current  
VEN = 0V  
500  
347  
620  
375  
700  
403  
1.224  
0.4  
nA  
nA  
V
ICWD  
VCWD  
VOL  
CWD pin charge current  
CWD = 0.5 V  
CWD pin threshold voltage  
1.196  
1.21  
ENOUT, WDO output low  
VDD = 5 V, ISINK = 3 mA  
V
ID  
ENOUT, WDO output leakage current  
Low-level input voltage (EN, SET1)  
High-level input voltage (EN, SET1)  
Low-level input voltage (WDI)  
High-level input voltage (WDI)  
VDD = 1.8 V, VWDO = 6.5 V  
1
µA  
V
VIL  
0.25  
VIH  
0.8  
V
VIL(WDI)  
VIH(WDI)  
0.3 × VDD  
V
0.8 × VDD  
V
(1) When VDD falls below VPOR, WDI and ENOUT is undefined.  
(2) When VDD falls below VDDMIN, WDI is ignored and ENOUT is driven low  
(3) During power-on, VDD must be a minimum 1.8 V for at least 300 µs before WDI is active and ENOUT is high impedance.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS3431-Q1  
 
 
 
 
 
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
6.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
GENERAL  
tINIT  
CWD pin evaluation period (1)  
EN, SET1 pin setup time  
Startup delay(2)  
381  
1
µs  
µs  
µs  
300  
DELAY FUNCTION  
tEN_ENOUT EN to ENOUT delay  
tRST Watchdog reset delay  
WINDOW WATCHDOG FUNCTION  
200  
200  
ns  
170  
230  
ms  
CWD = NC, SET1 = 1  
1360  
170  
1600  
200  
1840  
230  
ms  
ms  
CWD = 10 kΩto VDD, SET1 = 1  
CWD = NC, SET1 = 0  
tWD  
Watchdog timeout  
Watchdog disabled  
Watchdog disabled  
CWD = 10 kΩto VDD, SET1 = 0  
tWD-setup  
Setup time required for device to respond to changes on WDI after being enabled  
Minimum WDI pulse duration  
150  
50  
µs  
ns  
ns  
tWD-del  
WDI to WDO delay  
50  
(1) Refer to 8.1.1.2.  
(2) During power-on, VDD must be a minimum 1.8 V for at least 300 µs before WDI is active and ENOUT is high impedance.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS3431-Q1  
 
 
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
6.7 Timing Diagrams  
VDD (min)  
tRST  
VDD  
WDI  
VPOR  
(1)  
t = tWD  
t < tWD  
X
WDO  
tRST  
6-1. Timing Diagram  
A. See 6-2 for WDI timing requirements.  
Correct  
Operation  
WDI  
WDO  
Late Fault  
WDI  
WDO  
Valid  
Region  
Timing  
tWD(MIN)  
tWD(TYP)  
tWD(MAX)  
= Tolerance Window  
6-2. Watchdog Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS3431-Q1  
 
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
6.8 Typical Characteristics  
all typical characteristics curves are taken at 25°C with 1.8 V VDD 6.5 V (unless other wise noted)  
16  
12  
8
0.7  
0.6  
0.5  
0.4  
0.3  
-40èC  
0èC  
25èC  
105èC  
125èC  
4
VIL  
VIH  
0
0
-50  
-25  
25 50  
Temperature (°C)  
75  
100  
125  
0
1
2
3
4
5
6
7
VDD (V)  
VDD = 1.8 V  
6-3. Supply Current vs VDD  
6-4. EN Threshold vs Temperature  
380  
376  
372  
368  
364  
10  
7.5  
5
2.5  
0
-2.5  
-5  
-7.5  
-10  
1.6 V  
6.5 V  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
TPS3  
6-5. CWD Charging Current vs Temperature  
6-6. Normalized Watchdog Timeout (tWD  
)
Accuracy (SET1 = 1, CWD = NC)  
10  
7.5  
5
2.5  
0
-2.5  
-5  
-7.5  
-10  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
TPS3  
6-7. Normalized Watchdog Timeout (tWD) Accuracy (SET1 = 1, CWD = 10kΩ)  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS3431-Q1  
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS3431-Q1 is a standard programmable watchdog timer with enable/disable feature. This device includes  
a precision watchdog timer that achieves 15% timing accuracy over the specified temperature range of 40°C  
to +125°C.  
7.2 Functional Block Diagram  
ENOUT  
VDD  
Precision  
Clock  
WDO  
VDD  
State  
Machine  
Cap  
Control  
CWD  
VDD  
EN  
WDI SET1  
GND  
7.3 Feature Description  
7.3.1 Enable Input (EN) and Enable Output (ENOUT)  
The Enable (EN) input allows a processor or other logic circuits to initiate a single cycle watchdog reset by  
momentarily bringing Enable low, or a permanent disable by keeping Enable low. After EN goes to a logic high  
and VDD is above VDD (min), ENOUT and WDO go logic high after the watchdog reset delay time (tRST). If EN is  
not controlled externally, then EN can either be connected to VDD or left floating because the EN pin is internally  
pulled up to VDD. When EN is forced logic low, ENOUT goes low after a propagation delay of 200 ns and WDO  
goes high impedance and pulls to logic high due to the external pull-up resistor. Because WDO and ENOUT are  
both open-drain outputs, these outputs can be tied together to create an OR logic function so that if either output  
pulls down to logic low, the other will also pull down logic low.  
7.3.2 Watchdog Mode  
This section provides information for the watchdog mode of operation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS3431-Q1  
 
 
 
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
7.3.2.1 CWD  
The CWD pin provides the user the functionality of both high-precision, factory-programmed watchdog timing  
options and user-programmable watchdog timing. The TPS3431-Q1 features three options for setting the  
watchdog timer: connecting a capacitor to the CWD pin, connecting a pull-up resistor to VDD, and leaving the  
CWD pin unconnected. The configuration of the CWD pin is evaluated by the device every time VDD rises above  
VDD (min). The pin evaluation is controlled by an internal state machine that determines which option is connected  
to the CWD pin. The sequence of events typically takes 381 μs (tINIT) to determine if the CWD pin is left  
unconnected, pulled-up through a resistor, or connected to a capacitor. If the CWD pin is being pulled up to  
VDD, a 10-kΩresistor is required.  
7.3.2.2 Watchdog Input WDI  
WDI is the watchdog timer input that controls the WDO output. The WDI input is triggered by the falling edge of  
the input signal. To ensure proper functionality of the watchdog timer, always issue the WDI pulse before  
tWD(min). If the pulse is issued in this region, then WDO remains unasserted. Otherwise, the device asserts WDO,  
putting the WDO pin into a low-impedance state therefore WDO will be logic low.  
The watchdog input (WDI) is a digital pin. To ensure there is no increase in IDD, drive the WDI pin to either VDD  
or GND at all times. Putting the pin to an intermediate voltage can cause an increase in supply current (IDD  
)
because of the architecture of the digital logic gates. When EN is logic low, the watchdog is disabled and all  
signals input to WDI are ignored. When EN is logic high, the device resumes normal operation and no longer  
ignores the signal on WDI. If the watchdog is disabled, drive the WDI pin to either VDD or GND. 7-1 shows  
the valid region for a WDI pulse to be issued to prevent WDO from being triggered and pulled low.  
Correct  
Operation  
WDI  
WDO  
Late Fault  
WDI  
WDO  
Valid  
Region  
Timing  
tWD(MIN)  
tWD(TYP)  
tWD(MAX)  
= Tolerance Window  
7-1. Watchdog Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS3431-Q1  
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
7.3.2.3 Watchdog Output WDO  
The TPS3431-Q1 features an active-low open-drain watchdog output that asserts when a pulse on WDI fails to  
arrive within the watchdog timeout. When EN is logic high, the WDO signal maintains normal operation. When  
the EN pin is logic low, the WDO pin goes to a high-impedance state and pulls logic high due to the external pull-  
up resistor. Because WDO and ENOUT are both open-drain outputs, these outputs can be tied together to  
create an OR logic function so that if either output pulls down to logic low, the other will also pull down logic low.  
7.3.2.4 SET1  
The SET1 pin can enable and disable the watchdog timer and should be used when disabling the watchdog  
timer for longer than one watchdog reset cycle. If SET1 is set to GND, the watchdog timer is disabled and WDI is  
ignored. If the watchdog timer is disabled, drive the WDI pin to either GND or VDD to ensure that there is no  
increase in IDD. When SET1 is logic high, the watchdog operates normally. The SET1 pin can be changed  
dynamically; however, if the watchdog is going from disabled to enabled there is a 150 µs setup time where the  
watchdog does not respond to changes on WDI, as shown in 7-2. Note: disabling using SET1 pin causes a  
delay defined by the fixed 150-us setup time when enabling again.  
VDD  
EN  
tRST  
ENOUT  
SET1  
150 µs  
Watchdog  
Disabled  
Enabled  
Enabled  
Enabled/Disabled  
when ENOUT or SET1 is logic low  
7-2. Enabling and Disabling the Watchdog  
7.4 Device Functional Modes  
7-1 summarizes the functional modes of the TPS3431-Q1.  
7-1. Device Functional Modes  
VDD  
EN  
---  
ENOUT  
---  
WDI  
---  
WDO  
---  
VDD < VPOR  
---  
Low  
Ignored  
High  
V
POR VDD < VDD(min)  
tPULSE < tWD(min)  
(1)  
VDD > VDD (min)  
High  
High  
High  
(2)  
tPULSE > tWD(min)  
(1)  
VDD > VDD (min)  
High  
Low  
High  
Low  
Low  
(2)  
(1)  
VDD > VDD (min)  
Ignored  
High  
(1) VDD must be above VDD (min)for longer than 300 µs.  
(2) Where tpulse is the time between the falling edges on WDI.  
7.4.1 VDD is Below VPOR ( VDD < VPOR  
)
When VDD is less than VPOR, WDO is undefined and can be either high or low. The state of WDO largely  
depends on the load that the WDO pin is experiencing.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS3431-Q1  
 
 
 
 
 
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
7.4.2 Above Power-On-Reset, But Less Than VDD(min) (VPOR VDD < VDD(min)  
)
When the voltage on VDD is less than VDD(min), and greater than or equal to VPOR, the WDO signal is asserted  
(logic low). When EN is logic low, the watchdog output WDO is in a high-impedance state and logic low  
regardless of the WDI signal that is input to the device.  
7.4.3 Normal Operation (VDD VDD(min)  
)
When VDD is greater than or equal to VDD(min) and EN is logic high, the WDO signal is determined by WDI. When  
WDI is within the watchdog timeout, the internal MOSFET turns off and WDO is pulled high through external pull-  
up resistor. When WDI is not within the watchdog timeout, the internal MOSFET turns on and WDO is pulled to  
logic low. When EN is logic low, ENOUT goes to logic low and WDO goes to a high-impedance state and pulls to  
logic high due to the external pull-up resistor.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS3431-Q1  
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
8 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The following sections describe in detail proper device implementation, depending on the final application  
requirements.  
8.1.1 CWD Functionality  
The TPS3431-Q1 features three options for setting the watchdog timeout: connecting a capacitor to the CWD  
pin, connecting a pull-up resistor to VDD, and leaving the CWD pin unconnected. 8-1 shows a schematic  
drawing of all three options. If this pin is connected to VDD through a 10-kpullup resistor or left unconnected  
(high impedance), then the factory-programmed watchdog timeouts are enabled; see the 8.1.1.1 section.  
Otherwise, the watchdog timeout can be adjusted by placing a capacitor from the CWD pin to ground.  
VDD  
VDD  
VDD  
TPS3431  
TPS3431  
TPS3431  
VDD  
VDD  
VDD  
375 nA  
375 nA  
375 nA  
CWD  
CCWD  
CWD  
CWD  
Cap  
Control  
Cap  
Control  
Cap  
Control  
User Programmable  
Capacitor to GND  
CWD  
Unconnected  
10 kΩ Resistor  
to VDD  
8-1. CWD Charging Circuit  
8.1.1.1 Factory-Programmed Timing Options  
If using the factory-programmed timing options (listed in 8-1), the CWD pin must either be unconnected or  
pulled up to VDD through a 10-kΩ pull-up resistor. Using these options enables high-precision, 15% accurate  
watchdog timing.  
8-1. Factory Programmed Watchdog Timing  
INPUT  
STANDARD WATCHDOG TIMEOUT WDT (tWD)  
UNIT  
CWD  
NC  
SET1  
MIN  
TYP  
Watchdog disabled  
1600  
Watchdog disabled  
200  
MAX  
0
1
0
1
NC  
1360  
1840  
ms  
ms  
10 kΩto VDD  
10 kΩto VDD  
170  
230  
8.1.1.2 CWD Adjustable Capacitor Watchdog Timeout  
Adjustable capacitor timing is achievable by connecting a capacitor to the CWD pin. If a capacitor is connected  
to CWD, then a 375-nA, constant-current source charges CCWD until VCWD = 1.21 V. 8-2 shows how to  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS3431-Q1  
 
 
 
 
 
 
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
calculate tWD using 方程式 1 and the SET1 pin. The TPS3431-Q1 determines the watchdog timeout with the  
formulas given in 方程1, where CCWD is in nanofarads and tWD is in milliseconds.  
tWD(ms) = 77.4 x CCWD(nF) + 55 (ms)  
(1)  
The TPS3431-Q1 is designed and tested using CCWD capacitors between 100 pF and 1 µF. Note that 方程1 is  
for ideal capacitors and capacitor tolerances vary the actual device timing. For the most accurate timing, use  
ceramic capacitors with COG dielectric material. If a CCWD capacitor is used, 方程式 1 can be used to set tWD for  
the watchdog timeout. 8-3 shows the minimum and maximum calculated tWD values using an ideal capacitor.  
8-2. Programmable CWD Timing  
(1)  
INPUT  
WATCHDOG TIMEOUT WDT (tWD  
)
UNIT  
CWD  
CCWD  
CCWD  
SET1  
MIN TYP  
MAX  
0
1
Watchdog disabled  
WD 方程1  
ms  
tWD × 0.905  
tWD × 1.095  
t
(1) Calculated from 方程1 using an ideal capacitor.  
8-3. tWD Values for Common Ideal Capacitor Values  
WATCHDOG TIMEOUT WDT (tWD  
)
CCWD  
UNIT  
MIN(1)  
TYP  
62.74  
132.4  
829  
MAX(1)  
68.7  
100 pF  
1 nF  
56.77  
119.82  
750  
ms  
ms  
ms  
ms  
ms  
144.98  
908  
10 nF  
100 nF  
1 μF  
7054  
7795  
77455  
8536  
70096  
84814  
(1) The minimum and maximum values are calculated using an ideal capacitor.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS3431-Q1  
 
 
 
 
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
8.2 Typical Application  
3.3 V  
VDD  
TPS3431  
ENOUT*2  
Microcontroller  
VDD  
NMI (enable output)  
NMI (watchdog fault)  
GPIO  
SET1  
WDO  
EN*1  
WDI  
CWD  
NC  
GND  
GND  
Copyright © 2018, Texas Instruments Incorporated  
A. EN can also be left floating and is internally pulled-up to VDD  
B. ENOUT can also be left floating or tied to WDO  
8-2. Monitoring a Microcontroller with Standard Watchdog Timer  
8.2.1 Design 1 Requirements  
PARAMETER  
Output logic voltage  
DESIGN REQUIREMENT  
3.3V Open-Drain  
DESIGN RESULT  
3.3V Open-Drain  
tWD(min) = 1360 ms, tWD(TYP) = 1600 ms, tWD(max)  
1840 ms  
=
Watchdog Timeout  
Leave CWD disconnected: 1.6 seconds (typical)  
35 µA  
Maximum device current  
consumption  
33 µA when WDO is asserted  
8.2.2 Detailed Design 1 Procedure  
8.2.2.1 Calculating WDO Pullup Resistor Design 1  
The TPS3431-Q1 uses an open-drain configuration for the WDO circuit, as shown in 8-3. When the internal  
MOSFET is off, the external pull-up resistor pulls the drain of the transistor to VDD and when the MOSFET is  
turned on, the MOSFET attempts to pull the drain to ground, thus creating an effective resistor divider. The  
resistors in this divider must be chosen to ensure that VOL is below the maximum value.  
To choose the proper pull-up resistor, there are three key specifications to keep in mind: the pull-up voltage  
(VPU), the recommended maximum WDO pin current (IWDO), and VOL  
.
The maximum VOL is 0.4 V, meaning that the effective resistor divider created must be able to bring the voltage  
on the reset pin below 0.4 V with IWDO kept below 10 mA. For this example, with a VPU of 3.3 V, a resistor must  
be chosen to keep IWDO below 35 μA because this value is the maximum consumption current allowed. To  
ensure this specification is met, a pull-up resistor value of 100 kΩ was selected, which sinks a maximum of 33  
μA when WDO is asserted.  
VDD  
WDO  
WATCHDOG  
CONTROL  
8-3. WDO Open-Drain Configuration  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS3431-Q1  
 
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
8.2.2.2 Setting the Watchdog Design 1  
As illustrated in 8-1 there are three options for setting the watchdog timer. The design specifications in this  
application allow for a factory-programmed timing option by leaving CWD floating. To ensure proper functionality,  
a falling edge must be issued before tWD(min) with is set for 1.36 seconds when CWD is not connected. 8-8  
illustrates that a WDI signal with a period of 1 second keeps WDO from asserting.  
8-4 shows WDO asserting when the WDI signal has a period longer than tWD(max) which is 1.84 seconds when  
CWD is not connected. 8-5 shows a watchdog fault caused by missing WDI pulse followed by correct timing  
WDI pulses to deactivate WDO.  
8.2.3 Application Curves Design 1  
Unless otherwise stated, application curves were taken at TA = 25°C.  
VDD  
VDD  
Ignore all pulses that occur before tRST  
First falling edge must occur before WDU  
No pulse on WDI before WDU(max) so WDO asserts  
Second falling edge occurs after WDU(max) triggering a watchdog reset  
Falling edge on WDI occurs within WDU  
WDI  
WDI  
WDO remains unasserted while  
WDI is within watchdog window  
WDO  
WDO  
WDO resets for tRST  
8-5. WDO Fault Caused by missing WDI Pulses  
8-4. WDO Fault Caused by WDI Pulse Arriving  
Too Late (After tWD(max)  
Followed by Correct Timing WDI Pulses  
)
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS3431-Q1  
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
8.3 Programmable Application  
1.8 V  
VCORE  
Microcontroller  
TPS3431  
ENOUT  
TPS3890  
NMI (enable output)  
VDD  
VDD  
SENSE  
RESET  
GND  
NMI (watchdog fault)  
GPIO (WDI)  
EN  
WDO  
WDI  
MR  
CT  
SET1  
CWD  
GPIO (SET1)  
GND  
4.7 µF  
GND  
2.7 nF  
Copyright © 2018, Texas Instruments Incorporated  
8-6. Monitoring the Supply Voltage and Watchdog Supervision of a Microcontroller  
8.3.1 Design 2 Requirements  
PARAMETER  
DESIGN REQUIREMENT  
DESIGN RESULT  
5.02 seconds (typ)  
Watchdog disable for initialization Watchdog must remain disabled for 5 seconds until  
period  
logic enables the watchdog timer  
Microcontroller controls SET1 on TPS3431 via a  
GPIO  
The Microcontroller can disable TPS3431 via SET1  
and thus disable the watchdog for any reason.  
Programmable disable feature  
Output logic voltage  
1.8-V Open-Drain  
1.8V Open-Drain  
Monitored rail (TPS3890)  
1.8 V with a 5% threshold and 1% accuracy  
Worst-case VITN = 1.714 V 4.7%  
tWD(min) = 213 ms, tWD(TYP) = 264 ms, tWD(max)  
319 ms  
=
Watchdog timeout (TPS3431)  
265 ms typical  
50 µA  
Maximum device current  
consumption  
37 µA when WDO is asserted  
8.3.2 Detailed Design 2 Procedure  
8.3.2.1 Calculating WDO Pullup Resistor Design 2  
The TPS3431-Q1 uses an open-drain configuration for the WDO circuit. When the internal MOSFET is off, the  
external pull-up resistor pulls the drain of the transistor to VDD and when the MOSFET is turned on, the  
MOSFET attempts to pull the drain to ground, thus creating an effective resistor divider. The resistors in this  
divider must be chosen to ensure that VOL is below the maximum value. To choose the proper pull-up resistor,  
there are three key specifications to keep in mind: the pull-up voltage (VPU), the recommended maximum WDO  
pin current (IWDO), and VOL. The maximum VOL is 0.4 V, meaning that the effective resistor divider created must  
be able to bring the voltage on the reset pin below 0.4 V with IWDO kept below 10 mA. For this example, with a  
VPU of 1.8 V, a resistor must be chosen to keep IWDO below 50 μA because this value is the maximum  
consumption current allowed. To ensure this specification is met, a pull-up resistor value of 100 kΩ was  
selected, which sinks a maximum of 18 μA when WDO is asserted.  
8.3.2.2 Setting the Watchdog Design 2  
As illustrated in 8-1 there are three options for setting the watchdog timer. The design specifications in this  
application require the programmable timing option (external capacitor connected to CWD). When a capacitor is  
connected to the CWD pin, the watchdog timer is governed by 方程1. This equation estimation is only valid for  
ideal capacitors and any temperature or voltage derating must be accounted for separately.  
CCWD (nF) = (tWD(ms) 55) / 77.4 = (265 55) / 77.4 = 2.71 nF  
(2)  
The nearest standard capacitor value is 2.7 nF. Selecting 2.7 nF for the CCWD capacitor gives the following  
minimum and maximum timing parameters:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS3431-Q1  
 
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
tWD(MIN) = 0.905 x tWD(TYP) = 0.905 x (77.4 x 2.7 + 55) = 238.902 ms  
tWD(MAX) = 1.095 x tWD(TYP) = 1.095x (77.4 x 2.7 + 55) = 289.058 ms  
(3)  
(4)  
Capacitor tolerance also influences tWD(MIN) and tWD(MAX). Select a ceramic COG dielectric capacitor for high  
accuracy. For 2.7 nF, COG capacitors are readily available with 5% tolerances. This selection results in a 5%  
decrease in tWD(MIN) and a 5% increase in tWD(MAX), giving 213.16 ms and 318.75 ms, respectively. To ensure  
proper functionality, a falling edge must be issued before tWD(min). 8-8 illustrates that a WDI signal with a  
period of 260 ms keeps WDO from asserting.  
8.3.2.3 Watchdog Disabled During Initialization Period Design 2  
The watchdog is often needed to be disabled during startup to allow for an initialization period. When the  
initialization period is over, the watchdog timer is turned back on to allow the microcontroller to be monitored by  
the TPS3431-Q1. To achieve this setup, EN on TPS3431 is controlled by TPS3890 supervisor. In this  
application, the TPS3890 was chosen to monitor VDD as well, which means that the RESET on the TPS3890  
stays low until VDD rises above VITN. When VDD comes up, the delay time can be adjusted through the CT  
capacitor on the TPS3890. With this approach, the RESET delay can be adjusted from a minimum of 25 μs to a  
maximum of 30 seconds. For this design, a typical delay of 5 seconds is needed before the watchdog timer is  
enabled. The CT capacitor calculation (see the TPS3890 data sheet) yields an ideal capacitance of 4.67 μF,  
giving a closest standard ceramic capacitor value of 4.7 μF. When connecting a 4.7 μF capacitor from CT to  
GND, the typical delay time is 5 seconds. 8-7 shows that when the watchdog is disabled, the WDO output  
remains high. However when SET1 goes high and there is no WDI signal, WDO begins to assert. See the  
TPS3890 datasheet for detailed information on the TPS3890. The ENOUT pin on the TPS3431 reflects the  
status of the EN pin and can be connected to the microcontroller for monitoring or can be left floating if not being  
used. When the TPS3431 is disabled, ENOUT is logic low and WDO is logic high so the user can also tie  
ENOUT to WDO to force WDO to logic low when TPS3431 is disabled.  
8.3.2.4 Programmable Disable Feature Design 2  
The watchdog is often needed to be disabled during operation to prevent false watchdog faults. When the  
watchdog is disabled, all pulses or lack of pulses on WDI are ignored and WDO is high impedance as shown in  
8-9. When the watchdog is re-enabled, the watchdog timer is turned back on after a watchdog start-up delay  
of 150 µs to allow the microcontroller to be monitored by the TPS3431-Q1. To achieve this setup, SET1 on  
TPS3431 is controlled by a GPIO on the microcontroller and must be logic high to enable to watchdog. To  
disable the watchdog, the microcontroller sets the GPIO connected to SET1 to logic low. To re-enable the  
watchdog, the microcontroller sets the GPIO connected to SET1 back to logic high. This configuration is useful  
when another device or signal is already using the EN pin on TPS3431, and a programmable disable feature  
with minimal delay upon enable is still required. When the watchdog is disabled using SET1 instead of EN,  
ENOUT remains unaffected which is useful when needing to disable the watchdog but not causing another  
device connected to ENOUT to be disabled.  
8.3.3 Application Curves Design 2  
Unless otherwise stated, application curves were taken at TA = 25°C.  
VDD  
2 V/div  
VDD  
2 V/div  
6 seconds  
SET1  
265 ms  
2 V/div  
WDI  
2 V/div  
WDO  
2 V/div  
WDO  
2 V/div  
1 s/div  
8-7. Startup Without a WDI Signal  
8-8. Typical WDI Signal  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS3431-Q1  
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
VDD  
When watchdog is disabled, WDI is ignored  
WDI  
WDO is high-impedance and remains logic high due to pull-up resistor  
WDO  
8-9. Watchdog Disabled With Missing WDI Pulse  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS3431-Q1  
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
This device is designed to operate from an input supply with a voltage range between 1.8 V and 6.5 V. An input  
supply capacitor is not required for this device; however, if the input supply is noisy, then good analog practice is  
to place a 0.1-µF capacitor between the VDD pin and the GND pin.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS3431-Q1  
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Make sure that the connection to the VDD pin is low impedance. Good analog design practice is to place a  
0.1-µF ceramic capacitor as near as possible to the VDD pin.  
If a CCWD capacitor or pull-up resistor is used, place these components as close as possible to the CWD pin.  
If the CWD pin is left unconnected, make sure to minimize the amount of parasitic capacitance on the pin.  
Place the pull-up resistor on WDO as close to the pin as possible.  
10.2 Layout Example  
CVDD  
Vin  
RPU2  
1
2
3
4
8
7
6
5
Vin  
CCWD  
VDD  
CWD  
EN *1  
GND  
ENOUT *2  
WDO  
WDI  
SET1  
GND Plane  
Denotes a via  
A. EN can also be left floating and is internally pulled-up to VDD  
B. ENOUT can also be left floating or tied to WDO  
10-1. TPS3431-Q1 Recommended Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS3431-Q1  
 
 
 
TPS3431-Q1  
ZHCSIJ8A JULY 2018 REVISED OCTOBER 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
TPS3890 Low Quiescent Current, 1% Accurate Supervisor with Programmable Delay (SLVSD65)  
TPS3431EVM-780 Evaluation Module (SBVU033)  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS3431-Q1  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS3431SQDRBRQ1  
ACTIVE  
SON  
DRB  
8
3000 RoHS & Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
-40 to 125  
431DF  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS3431-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
Catalog : TPS3431  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE OUTLINE  
DRB0008F  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.05)  
S
C
A
 L
 E
3
0
.
A
SECTION A-A  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
1.6 0.05  
(0.2) TYP  
4
5
A
A
2X  
1.95  
2.4 0.05  
8
1
6X 0.65  
0.35  
0.25  
8X  
PIN 1 ID  
0.5  
0.3  
0.1  
C A B  
C
8X  
(OPTIONAL)  
0.05  
4222121/C 10/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRB0008F  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.6)  
SYMM  
8X (0.6)  
1
8
8X (0.3)  
(2.4)  
(0.95)  
6X (0.65)  
4
5
(R0.05) TYP  
(0.55)  
(2.8)  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222121/C 10/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRB0008F  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
METAL  
TYP  
8X (0.6)  
8X (0.3)  
1
8
(0.635)  
SYMM  
(1.07)  
6X (0.65)  
5
4
(R0.05) TYP  
(1.47)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
82% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4222121/C 10/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DRB0008K  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
3.1  
2.9  
PIN 1 INDEX AREA  
0.07 MIN  
(0.13)  
S
C
A
 L
 E
3
0
.
A
SECTION A-A  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
A
A
1.6 0.05  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
(0.19) TYP  
4
1
5
2X  
1.95  
9
SYMM  
2.4 0.05  
8
6X 0.65  
0.35  
8X  
SYMM  
PIN 1 ID  
(45 X 0.3)  
0.25  
0.5  
0.3  
0.1  
C A B  
8X  
0.05  
C
4227074/D 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRB0008K  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(2.8)  
(1.6)  
8X (0.6)  
1
8
8X (0.3)  
(2.4)  
SYMM  
9
(0.95)  
6X (0.65)  
5
4
(R0.05) TYP  
(
0.2) VIA  
(0.55)  
SYMM  
TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4227074/D 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRB0008K  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(2.8)  
2X (1.5)  
8X (0.6)  
8
1
2X  
(1.06)  
8X (0.3)  
9
SYMM  
(0.63)  
6X (0.65)  
5
4
(R0.05) TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4227074/D 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS3431SDRBR

具有使能功能的标准可编程看门狗计时器 | DRB | 8 | -40 to 125
TI

TPS3431SQDRBRQ1

具有使能功能的汽车类标准可编程看门狗计时器 | DRB | 8 | -40 to 125
TI

TPS3435

纳安级静态电流精密看门狗计时器
TI

TPS3435-Q1

汽车类纳安级静态电流精密看门狗计时器
TI

TPS3435CAKAGDDFR

纳安级静态电流精密看门狗计时器 | DDF | 8 | -40 to 125
TI

TPS3436-Q1

汽车类、纳安级静态电流、精密窗口看门狗计时器
TI

TPS35-Q1

具有超时看门狗的汽车类纳安级静态电流精密监控器
TI

TPS350

SWITCHING MODE 350W U CHANNEL POWER SUPPLIES
TOTAL-POWER

TPS350-10

SWITCHING MODE 350W U CHANNEL POWER SUPPLIES
TOTAL-POWER

TPS350-11

SWITCHING MODE 350W U CHANNEL POWER SUPPLIES
TOTAL-POWER

TPS350-12

SWITCHING MODE 350W U CHANNEL POWER SUPPLIES
TOTAL-POWER

TPS350-13

SWITCHING MODE 350W U CHANNEL POWER SUPPLIES
TOTAL-POWER