TPS3703A7110DSERQ1 [TI]

Overvoltage and Undervoltage Reset IC With Time Delay and Manual Reset;
TPS3703A7110DSERQ1
型号: TPS3703A7110DSERQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Overvoltage and Undervoltage Reset IC With Time Delay and Manual Reset

文件: 总37页 (文件大小:2830K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
TPS3703-Q1  
Overvoltage and Undervoltage Reset IC With Time Delay and Manual Reset  
1 Features  
3 Description  
AEC-Q100 qualified for automotive applications:  
Temperature grade 1: –40°C to +125°C, TA  
– Device HBM ESD classification level 2  
– Device CDM ESD classification level C7B  
Functional Safety-Capable  
Documentation available to aid functional safety  
system design  
Input voltage range: 1.7 V to 5.5 V  
Undervoltage lockout (UVLO): 1.7 V  
Low quiescent current: 7 µA (Max)  
High threshold accuracy:  
The TPS3703-Q1 device is an integrated overvoltage  
(OV) and undervoltage (UV) monitor or reset IC in  
industry’s smallest 6-pin DSE package. This highly  
accurate voltage supervisor is ideal for systems  
that operate on low-voltage supply rails and have  
narrow margin supply tolerances. Low threshold  
hysteresis prevent false reset signals when the  
monitored voltage supply is in its normal range of  
operation. Internal glitch immunity and noise filters  
further eliminate false resets resulting from erroneous  
signals.  
The TPS3703-Q1 does not require any external  
resistors for setting overvoltage and undervoltage  
reset thresholds, which further optimizes overall  
accuracy, cost, solution size, and improves reliability  
for safety systems. The Capacitor Time (CT) pin is  
used to select between the two available reset time  
delays designed into each device and also to adjust  
the reset time delay by connecting a capacitor. A  
separate SENSE input pin and VDD pin allow for the  
redundancy sought by high-reliability systems.  
– ± 0.25% (typical)  
– ± 0.7% (–40°C to +125°C)  
Fixed window threshold levels  
– 50-mV steps from 500 mV to 1.3 V  
– 1.5 V, 1.8 V, 2.5 V, 2.8 V, 2.9 V 3.3 V, 5 V  
– Available in UV threshold only  
– Window tolerance available from ±3% to ±7%  
User adjustable voltage threshold levels  
Internal glitch immunity and hysteresis  
Fixed time delay options: 50 µs, 1 ms, 5 ms, 10  
ms, 20 ms, 100 ms, 200 ms  
Programmable time delay option with a single  
external capacitor  
Open-drain active low UV and OV monitor  
RESET voltage latching output mode  
This device has a low typical quiescent current  
specification of 4.5 µA (typical). The TPS3703-Q1 is  
suitable for automotive applications and is qualified for  
AEC-Q100 Grade 1.  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
TPS3703-Q1  
WSON (6)  
1.50 mm × 1.50 mm  
2 Applications  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Advanced driver assistance system (ADAS)  
ADAS domain controller  
Automotive infotainment and cluster  
Digital cockpit  
35  
30  
25  
20  
15  
10  
5
HEV/EV  
OV Threshold  
Monitor Voltage  
VCORE  
UV Threshold  
TPS3703Q1  
1
SENSE  
6
5
MR  
Processor  
RESET  
Up to  
5.5V  
VDD  
CT  
GND  
2
3
10k  
RESET  
4
0
-0.4  
-0.3  
-0.2  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
Optional  
VIT+(OV) Accuracy (%)  
D004  
Integrated Overvoltage and Undervoltage  
Detection  
Typical Overvoltage Accuracy Distribution  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison.........................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................6  
7.6 Timing Requirements..................................................7  
7.7 Timing Diagrams.........................................................8  
7.8 Typical Characteristics..............................................10  
8 Detailed Description......................................................14  
8.1 Overview...................................................................14  
8.2 Functional Block Diagram.........................................14  
8.3 Feature Description...................................................14  
8.4 Device Functional Modes..........................................16  
9 Application and Implementation..................................17  
9.1 Application Information............................................. 17  
9.2 Typical Applications.................................................. 22  
10 Power Supply Recommendations..............................26  
10.1 Power Supply Guidelines........................................26  
11 Layout...........................................................................26  
11.1 Layout Guidelines................................................... 26  
11.2 Layout Example...................................................... 26  
12 Device and Documentation Support..........................27  
12.1 Device Support....................................................... 27  
12.2 Documentation Support.......................................... 29  
12.3 Receiving Notification of Documentation Updates..29  
12.4 Support Resources................................................. 29  
12.6 Electrostatic Discharge Caution..............................29  
12.7 Glossary..................................................................29  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 29  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (February 2020) to Revision D (March 2021)  
Page  
Updated the numbering format for tables, figures, and cross-references throughout the document .................1  
Included Functional Safety bullets .....................................................................................................................1  
Replaced Device Comparison Table with device nomenclature legend............................................................. 3  
Changes from Revision B (September 2019) to Revision C (February 2020)  
Page  
Changed reset time delay nomenclature (tD): J to M by A to H..........................................................................7  
Changes from Revision A (May 2019) to Revision B (September 2019)  
Page  
Deleted OV only throughout document. .............................................................................................................1  
Changed from threshold tolerance to window tolerance throughout document. ................................................1  
Added new voltage variants for window and UV only.........................................................................................3  
Added pinout description for package................................................................................................................ 4  
Changed functional block diagram for clarity between variants. ......................................................................14  
Added UV only normal operation condition. .................................................................................................... 16  
Changed equation to correctly reflect resistor divider. .....................................................................................20  
Changed to R1 from RSENSE ............................................................................................................................ 20  
Changes from Revision * (November 2018) to Revision A (May 2019)  
Page  
Changed from Advance Information to Production Data release ...................................................................... 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS3703-Q1  
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
5 Device Comparison  
Figure 5-1 shows the device nomenclature of the TPS3703-Q1. For all possible voltages, window tolerance, time  
delays, and UV threshold options, see Table 12-1. Contact TI sales representatives or on TI's E2E forum for  
details and availability of other options; minimum order quantities apply.  
TPS 3703 X X XXX XXX RQ1  
Time Delay Op on  
Tolerance Op on  
3: UV/OV = 3%  
4: UV/OV = 4%  
5: UV/OV = 5%  
6: UV/OV = 6%  
7: UV/OV = 7%  
Nominal Threshold Op on  
Package  
DSE: WSON (6-pin)  
A: CT (open) 10 ms, CT (VDD) = 200 ms  
B: CT (open) 1 ms, CT (VDD) = 20 ms  
C: CT (open) 5 ms, CT (VDD) = 100 ms  
D: CT (open) 50 µs, CT (VDD) = 50 µs  
050: 0.50V  
...  
500: 5.00V  
Figure 5-1. Device Nomenclature Legend  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS3703-Q1  
 
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
6 Pin Configuration and Functions  
SENSE  
MR  
VDD  
CT  
GND  
RESET  
Figure 6-1. DSE Package, 6-Pin WSON, Top View  
Table 6-1. Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
Input for the monitored supply voltage rail. When the SENSE voltage goes above the overvoltage  
threshold or below the undervoltage threshold, the RESET pin is driven low. Connect to VDD pin if  
monitoring VDD supply voltage.  
1
SENSE  
VDD  
CT  
I
I
I
Supply voltage input pin. Good analog design practice is to place a 0.1-μF ceramic capacitor close to  
this pin.  
2
3
Capacitor time delay pin. The CT pin offers two fixed time delays by connecting CT pin to VDD or  
leaving it floating. Delay time can be programmed by connecting an external capacitor reference to  
ground.  
Active-low, open-drain output. This pin goes low when the SENSE voltage rises above the internally  
overvoltage threshold (VIT+) or below the undervoltage threshold (VIT–). See the timing diagram in  
Figure 8-2 for more details. Connect this pin to a pull-up resistor terminated to the desired pull-up  
voltage.  
4
RESET  
O
5
6
GND  
MR  
I
Ground  
Manual reset (MR), pull this pin to a logic low (VMR_L) to assert a reset signal . After the MR pin is  
deasserted the output goes high after the reset delay time(tD) expires. MR can be left floating when not  
in use.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS3703-Q1  
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX UNIT  
VDD  
6
6
VRESET  
Voltage  
VCT  
6
6
V
VSENSE  
VMR  
6
Current  
IRESET  
±40  
mA  
°C  
Continuous total power dissipation  
Operating junction temperature, TJ  
Operating free-air temperature, TA  
Storage temperature, Tstg  
See the Thermal Information  
–40  
–40  
–65  
150  
150  
150  
Temperature (2)  
(1) Stresses beyond values listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) As a result of the low dissipated power in this device, it is assumed that TJ = TA.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
All pins  
V
Charged-device model (CDM), per AEC  
Q100-011  
Corner pins  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification  
7.3 Recommended Operating Conditions  
MIN  
1.7  
0
NOM  
MAX  
5.5  
UNIT  
V
VDD  
Supply pin voltage  
VSENSE  
VCT  
VRESET  
VMR  
IRESET  
TJ  
Input pin voltage  
5.5  
V
CT pin voltage(1) (3)  
VDD  
5.5  
V
Output pin voltage  
0
0
V
MR pin voltage(2)  
5.5  
V
Output pin current  
0.3  
–40  
10  
mA  
Junction temperature (free-air temperature)  
125  
(1) CT pin connected to VDD pin requires a pullup resistor; 10 kΩ is recommended.  
(2) If the logic signal driving MR is less than VDD, then additional current flows into VDD and out of MR.  
(3) The maximum rating is VDD or 5.5 V, whichever is smaller.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS3703-Q1  
 
 
 
 
 
 
 
 
 
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
7.4 Thermal Information  
TPS3703-Q1  
DSE (WSON)  
PINS  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
184.2  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
30.6  
86.4  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
13.4  
ΨJB  
86.1  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
At 1.7 V ≤ VDD ≤ 5.5 V, CT = MR = Open, RESET Voltage (VRESET) = 10 kΩ to VDD, RESET load = 10 pF, and over the  
operating free-air temperature range of – 40°C to 125°C, unless otherwise noted. Typical values are at TJ = 25°C, typical  
conditions at VDD = 3.3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
5.5  
1.7  
1
UNIT  
VDD  
Supply voltage  
1.7  
V
UVLO  
VPOR  
VIT+(OV)  
VIT-(UV)  
VHYS  
Under voltage lockout(3)  
Power on reset voltage(2)  
Positive- going threshold accuracy  
Negative-going threshold accuracy  
Hysteresis voltage(1)  
VDD falling below 1.7 V  
1.2  
V
VOL(max) = 0.25 V, IOUT = 15 µA  
V
–0.7  
–0.7  
0.3  
±0.25  
±0.25  
0.55  
4.5  
0.7  
0.7  
0.8  
7
%
%
%
IDD  
Supply current  
VDD ≤ 5.5 V  
µA  
µA  
mV  
mV  
mV  
nA  
V
ISENSE  
Input current, SENSE pin  
VSENSE = 5 V  
1
1.5  
250  
250  
250  
300  
0.3  
VDD = 1.7 V, IOUT = 0.4 mA  
VDD = 2 V, IOUT = 3 mA  
VDD = 5 V, IOUT = 5 mA  
VDD = VRESET = 5.5 V  
VOL  
Low level output voltage  
ILKG  
Open drain output leakage current  
MR logic low input  
VMR_L  
VMR_H  
VCT_H  
RMR  
MR logic high input  
1.4  
1.4  
V
High level CT pin voltage  
V
Manual reset Internal pullup resistance  
CT pin charge current  
100  
375  
KΩ  
nA  
V
ICT  
337  
413  
VCT  
CT pin comparator threshold voltage(4)  
1.133  
1.15  
1.167  
(1) Hysteresis is with respect of the tripoint (VIT-(UV), VIT+(OV)).  
(2) VPOR is the minimum VDD voltage level for a controlled output state.  
(3) RESET pin is driven low when VDD falls below UVLO.  
(4) VCT voltage refers to the comparator threshold voltage that measures the voltage level of the external capacitor at CT pin.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS3703-Q1  
 
 
 
 
 
 
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
7.6 Timing Requirements  
At 1.7 V ≤ VDD ≤ 5.5 V, CT = MR = Open, RESET Voltage (VRESET) = 10 kΩ to VDD, RESET load = 10 pF, and over the  
operating free-air temperature range of – 40°C to 125°C, unless otherwise noted. Typical values are at TJ = 25°C, typical  
conditions at VDD = 3.3 V.  
MIN  
NOM  
MAX UNIT  
Reset time delay, TPS3703A, TPS3703E  
Reset time delay, TPS3703A, TPS3703E  
Reset time delay, TPS3703B, TPS3703F  
Reset time delay, TPS3703B, TPS3703F  
Reset time delay, TPS3703C, TPS3703G  
Reset time delay, TPS3703C, TPS3703G  
CT = Open  
7
10  
13  
CT = 10 kΩ to VDD  
CT = Open  
140  
0.7  
14  
200  
1
260  
1.3  
ms  
26  
CT = 10 kΩ to VDD  
CT = Open  
20  
tD  
3.5  
70  
5
6.5  
CT = 10 kΩ to VDD  
100  
130  
CT = 10 kΩ to VDD  
CT = Open  
Reset time delay, TPS3703D, TPS3703H  
50  
µs  
tPD  
Propagation detect delay(1) (2)  
15  
2.2  
0.2  
300  
3.5  
3.5  
30  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
ms  
tR  
Output rise time(1) (3)  
tF  
Output fall time(1) (3)  
tSD  
Startup delay(4)  
tGI (VIT-)  
tGI (VIT+)  
tGI ( MR)  
tPD ( MR)  
tMR_W  
tD ( MR)  
Glitch Immunity undervoltage VIT-(UV), 5% Overdrive(1)  
Glitch Immunity overvoltage VIT+(OV), 5% Overdrive(1)  
Glitch Immunity MR pin  
25  
Propagation delay from MR low to assert RESET  
MR pin pulse width duration to assert RESET  
MR reset time delay  
500  
tD  
1
(1) 5% Overdrive from threshold. Overdrive % = [VSENSE - VIT] / VIT; Where VIT stands for VIT-(UV) or VIT+(OV)  
(2) tPD measured from threhold trip point (VIT-(UV) or VIT+(OV)) to RESET VOL voltage  
(3) Output transitions from VOL to 90% for rise times and 90% to VOL for fall times.  
(4) During the power-on sequence, VDD must be at or above VDD (MIN) for at least tSD + tD before the output is in the correct state.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS3703-Q1  
 
 
 
 
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
7.7 Timing Diagrams  
Overdrive[2.5%] above VIT+(OV)  
[0.7%]  
Accuracy across (-40ºC to 125ºC)  
Accuracy at 25ºC  
[ 0.4% = 0.7%-0.3%) ]  
[ 0.15% = 0.7%-0.55%) ]  
[0.25%]  
0.5%  
VIT+(OV)  
[ -0.1% = 0.7%-0.8%) ]  
[-0.25%]  
[-0.7%]  
[-0.3%]  
VIT+(OV) - VHYS  
[-0.55%]  
Hys band for VIT+(OV)  
[-0.8%]  
[ -1.0% = -0.7%-0.3%) ]  
[ -1.25% = -0.7%-0.55%) ]  
[ -1.5% = -0.7%-0.8%) ]  
0.5%  
Nominal monitored voltage  
All percentages are calculated with respect to typical VIT  
[ 1.5% = 0.7%+0.8%) ]  
[ 1.25% = 0.7%+0.55%) ]  
0.5%  
[ 1.0% = 0.7%+0.3%) ]  
[0.8%]  
[0.55%]  
[0.3%]  
[0.7%]  
VIT-(UV) + VHYS  
Hys band for VIT-(UV)  
Accuracy across (-40ºC to 125ºC)  
Accuracy at 25ºC  
[0.25%]  
[ 0.1% = -0.7%+0.8%) ]  
VIT-(UV)  
[ -0.15% = -0.7%+0.55%) ]  
[ -0.4% = -0.7%+0.3% ]  
[-0.25%]  
0.5%  
[-0.7%]  
Overdrive [2.5%] below VIT-(UV)  
Figure 7-1. Voltage Threshold and Hysteresis Accuracy  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS3703-Q1  
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
VDD(MIN)  
UVLO  
VDD  
VPOR  
VIT+(OV)  
Hysteresis  
Hysteresis  
VIT+(OV) - VHYS  
SENSE  
VIT  
VIT-(UV) + VHYS  
VIT-(UV)  
RESET  
tD  
tD  
tPD  
tPD  
tD  
tSD  
A. VDD = 2 V, RPU = 10 kΩ to VDD  
.
B. Variant D (time delay bypass) has a ~40 µs pulse at RESET pin during power up window, this is present only when the power cycle off time is longer than 10 seconds, this behavior will not  
occur if the SENSE pin is within window of operation during VDD power up.  
Figure 7-2. SENSE Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS3703-Q1  
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
7.8 Typical Characteristics  
at TJ = 25°C, VDD = 3.3 V, and RPU = 10 kΩ (unless otherwise noted)  
0.2  
0.2  
0.15  
0.1  
0.8 V  
1.2 V  
1.8 V  
3.3 V  
5.0 V  
0.8 V  
1.2 V  
1.8 V  
3.3 V  
5.0 V  
0.15  
0.1  
0.05  
0
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.05  
-0.1  
-0.15  
-0.2  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D001  
D002  
Tested across multiple voltage options  
Tested across multiple voltage options  
Figure 7-3. Undervoltage Accuracy vs Temperature  
Figure 7-4. Overvoltage Accuracy vs Temperature  
35  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
-0.4  
0
-0.4  
-0.3  
-0.2  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
-0.3  
-0.2  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
VIT-(UV) Accuracy (%)  
VIT+(OV) Accuracy (%)  
D003  
D004  
Sample Size of 100 TPS3703A7125 units  
Sample Size of 100 TPS3703A7125 units  
Figure 7-5. Undervoltage Accuracy Distribution  
Figure 7-6. Overvoltage Accuracy Distribution  
0.6  
0.6  
0.8 V  
1.2 V  
1.8 V  
3.3 V  
5.0 V  
0.8 V  
1.2 V  
1.8 V  
3.3 V  
5.0 V  
0.58  
0.56  
0.54  
0.52  
0.5  
0.58  
0.56  
0.54  
0.52  
0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D005  
D006  
Tested across multiple voltage options  
Tested across multiple voltage options  
Figure 7-7. Undervoltage Hysteresis Voltage Accuracy vs  
Temperature  
Figure 7-8. Overvoltage Hysteresis Voltage Accuracy vs  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS3703-Q1  
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
7.8 Typical Characteristics (continued)  
at TJ = 25°C, VDD = 3.3 V, and RPU = 10 kΩ (unless otherwise noted)  
7
6
5
4
3
2
6
5
4
VDD = 1.7 V  
VDD = 3.3 V  
VDD = 5.5 V  
VDD = 1.7 V  
VDD = 3.3 V  
VDD = 5.5 V  
3
2
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D007  
D008  
Output ( RESET Pin) = High  
Figure 7-9. Supply Current vs Temperature  
Output ( RESET Pin) = Low  
Figure 7-10. Supply Current vs Temperature  
16  
15  
14  
13  
12  
11  
10  
9
16  
15  
14  
13  
12  
11  
10  
9
-40èC  
-40èC  
25èC  
25èC  
125èC  
125èC  
0
5
10 15 20 25 30 35 40 45 50 55  
Overdrive (%)  
0
5
10 15 20 25 30 35 40 45 50 55  
Overdrive (%)  
D009  
D010  
VDD = 1.7 V  
VDD = 1.7 V  
Figure 7-11. SENSE Glitch Immunity (VIT-) vs Overdrive  
Figure 7-12. SENSE Glitch Immunity (VIT+) vs Overdrive  
9
9
-40èC  
25èC  
125èC  
-40èC  
25èC  
125èC  
8
8
7
6
5
4
3
7
6
5
4
3
0
5
10 15 20 25 30 35 40 45 50 55  
Overdrive (%)  
0
5
10 15 20 25 30 35 40 45 50 55  
Overdrive (%)  
D011  
D012  
VDD = 5.5 V  
VDD = 5.5 V  
Figure 7-13. SENSE Glitch Immunity (VIT-) vs Overdrive  
Figure 7-14. SENSE Glitch Immunity (VIT+) vs Overdrive  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS3703-Q1  
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
7.8 Typical Characteristics (continued)  
at TJ = 25°C, VDD = 3.3 V, and RPU = 10 kΩ (unless otherwise noted)  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
0.25  
0.2  
0.15  
0.1  
-40èC  
-40èC  
25èC  
125èC  
0.05  
25èC  
125èC  
0
0
1
2
3
4
5
0
1
2
3
4
5
IRESET (mA)  
IRESET (mA)  
D013  
D014  
VDD = 1.7 V  
VDD = 5.5 V  
Figure 7-15. Low-Level Output Voltage vs RESET current  
Figure 7-16. Low-Level Output Voltage vs RESET current  
0.6  
1.16  
VMR_H  
VMR_L  
VMR_H  
VMR_L  
1.14  
1.12  
1.1  
0.5  
0.4  
0.3  
1.08  
1.06  
1.04  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D016  
D015  
VDD = 5.5 V  
Figure 7-18. SET Threshold vs Temperature  
VDD = 1.7 V  
Figure 7-17. SET Threshold vs Temperature  
390  
500  
100  
385  
380  
375  
370  
365  
10  
1
-40èC  
25èC  
1.7 V  
5.5 V  
125èC  
0.1  
-50  
-25  
0
25  
50  
75  
100  
125  
0.1  
1
10  
CT (nF)  
100  
1000  
Temperature (èC)  
D017  
D018  
Figure 7-19. CT Current vs CT value  
Figure 7-20. RESET Timeout vs CT Capacitor  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS3703-Q1  
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
7.8 Typical Characteristics (continued)  
at TJ = 25°C, VDD = 3.3 V, and RPU = 10 kΩ (unless otherwise noted)  
5
12  
10  
8
1
6
4
-40èC  
25èC  
125èC  
VDD = 1.7 V  
VDD = 3.3 V  
VDD = 5.5 V  
2
0.1  
0
0.1  
1
CT (nF)  
10  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
D019  
D020  
Figure 7-21. Timeout vs CT Capacitor (0.1 to 10 nF)  
Figure 7-22. Detect Propagation Delay vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS3703-Q1  
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The TPS3703-Q1 family of devices combines two voltage comparators and a precision voltage reference for  
overvoltage and undervoltage detection. The TPS3703-Q1 features a highly accurate window threshold voltages  
(±0.7% over temperature) and a variety voltage threshold variants.  
The TPS3703-Q1 includes the resistors used to set the overvoltage and undervoltage thresholds internal to the  
device. These internal resistors allow for lower component counts and greatly simplifies the design because no  
additional margins are needed to account for the accuracy of external resistors.  
TPS3703-Q1 version A, B and C has three time delay settings, two fixed by connecting CT pin to VDD through  
a resistor and leaving CT floating and a programmable time delay setting that only requires a single capacitor  
connected from CT pin to ground.  
Manual Reset ( MR) allows for sequencing or hard reset by driving the MR pin below VMR_L  
.
The TPS3703-Q1 is designed to assert active low output signals when the monitored voltage is outside the safe  
window. The relationship between the monitored voltage and the states of the outputs is shown in Table 8-1.  
8.2 Functional Block Diagram  
*For all possible voltages, window tolerance, time delays, and UV threshold options, see Table 12-1.  
8.3 Feature Description  
8.3.1 VDD  
The TPS3703-Q1 is designed to operate from an input voltage supply range between 1.7 V to 5.5 V. An input  
supply capacitor is not required for this device; however, if the input supply is noisy good analog practice is to  
place a 1-µF capacitor between the VDD pin and the GND pin.  
VDD needs to be at or above VDD(MIN) for at least the start-up delay (tSD+ tD) for the device to be fully functional.  
8.3.2 SENSE  
The TPS3703-Q1 combines two comparators with a precision reference voltage and a trimmed resistor divider.  
This configuration optimizes device accuracy because all resistor tolerances are accounted for in the accuracy  
and performance specifications. Both comparators also include built-in hysteresis that provides noise immunity  
and ensures stable operation.  
Although not required in most cases, for noisy applications good analog design practice is to place a 1-nF to  
10-nF bypass capacitor at the SENSE input in order to reduce sensitivity to transient voltages on the monitored  
signal.  
When monitoring VDD supply voltage, the SENSE pin can be connected directly to VDD. The output ( RESET) is  
high impedance when voltage at the SENSE pin is between upper and lower boundary of threshold.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS3703-Q1  
 
 
 
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
8.3.3 RESET  
In a typical TPS3703-Q1 application, the RESET output is connected to a reset or enable input of a processor  
[such as a digital signal processor (DSP), application-specific integrated circuit (ASIC), or other processor type]  
or the enable input of a voltage regulator [such as a DC-DC converter or low-dropout regulator (LDO)].  
The TPS3703-Q1 has an open drain active low output that requires a pull-up resistor to hold these lines high  
to the required voltage logic. Connect the pull-up resistor to the proper voltage rail to enable the output to be  
connected to other devices at the correct interface voltage levels. To ensure proper voltage levels, give some  
consideration when choosing the pull-up resistor values. The pull-up resistor value is determined by VOL, output  
capacitive loading, and output leakage current. These values are specified in Section 7. The open drain output  
can be connected as a wired-OR logic with other open drain signals such as another TPS3703-Q1 RESET pin.  
Table 8-1 describes the scenarios when the output ( RESET) is either asserted low or high impedance.  
VIT+(OV)  
OV Limit  
VIT+(OV) - VHYS  
VSENSE  
VIT-(UV) + VHYS  
UV Limit  
VIT-(UV)  
RESET  
tD  
tPD  
tD  
tPD  
Figure 8-1. RESET output  
8.3.4 Capacitor Time (CT)  
The CT pin provides the user the functionality of both high-precision, factory-programmed, reset delay timing  
options and user-programmable, reset delay timing. The CT pin can be pulled up to VDD through a resistor, have  
an external capacitor to ground, or can be left unconnected. The configuration of the CT pin is re-evaluated by  
the device every time the voltage on the SENSE line enters the valid window (VIT-(UV) < VSENSE < VIT+(OV)). The  
pin evaluation is controlled by an internal state machine that determines which option is connected to the CT pin.  
The sequence of events takes 450 μs to determine if the CT pin is left unconnected, pulled up through a resistor,  
or connected to a capacitor. If the CT pin is being pulled up to VDD, then a pull-up resistor is required, 10 kΩ is  
recommended.  
8.3.5 Manual Reset ( MR)  
The manual reset ( MR) input allows a processor or other logic circuits to initiate a reset. A logic low on MR  
causes RESET to assert. After MR returns to a logic high and the SENSE pin voltage is within a valid window  
((VIT-(UV) < VSENSE < VIT+(OV)) , RESET is deasserted after the reset delay time (tD). If MR is not controlled  
externally, then MR can either be connected to VDD or left floating because the MR pin is internally pulled up to  
VDD. Figure Figure 8-2 shows the relation between MR and RESET.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS3703-Q1  
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
VIT+(OV)  
Hysteresis  
VIT+(OV) - VHYS  
SENSE  
VIT-(UV) + VHYS  
VIT-(UV)  
Hysteresis  
Pulse < VMR_L  
Pulse < tGI (MR)  
MR  
VMR_H  
VMR_L  
tMR_W  
RESET  
tD(MR)  
tPD (MR)  
A. RESET pulls up to VDD with 10 kΩ.  
B. To initiate and continue time reset counter both conditions must be met MR pin above VMR_H or floating and VSENSE between VIT-(UV)  
VHYS and VIT+(OV) - VHYS  
+
C. MR is ignored during output RESET low event  
Figure 8-2. Manual Reset Timing Diagram  
8.4 Device Functional Modes  
Table 8-1. Functional Mode Truth Table  
OUTPUT ( RESET  
PIN)  
DESCRIPTION  
CONDITION  
VIT–(UV) < SENSE < VIT+(OV)  
SENSE > VIT-(UV)  
MR PIN  
VDD PIN  
VDD > VDD(MIN)  
Normal Operation  
Open or above VMR_H  
Open or above VMR_H  
High  
High  
Normal Operation  
(UV Only)  
VDD > VDD(MIN)  
VDD > VDD(MIN)  
VDD > VDD(MIN)  
Over Voltage  
detection  
SENSE > VIT+(OV)  
SENSE < VIT-(UV)  
Open or above VMR_H  
Open or above VMR_H  
Low  
Low  
Under Voltage  
detection  
Manual reset  
VIT–(UV) < SENSE < VIT+(OV)  
VIT–(UV) < SENSE < VIT+(OV)  
Below VMR_L  
VDD > VDD(MIN)  
Low  
Low  
UVLO engaged  
Open or above VMR_H  
VPOR < VDD < UVLO  
8.4.1 Normal Operation (VDD > VDD(MIN)  
)
When the voltage on VDD is greater than VDD(MIN) for approximately (tSD+ tD), the RESET output state will  
correspond to the SENSE pin voltage with respect to the threshold limits, when SENSE voltage is outside of  
threshold limits the RESET voltage will be low (VOL).  
8.4.2 Undervoltage Lockout (VPOR < VDD < UVLO)  
When the voltage on VDD is less than the device UVLO voltage but greater than the power-on reset voltage  
(VPOR), the RESET pin will be held low , regardless of the voltage on SENSE pin.  
8.4.3 Power-On Reset (VDD < VPOR  
)
When the voltage on VDD is lower than the required voltage (VPOR) to internally pull the asserted output to GND,  
RESET signal is undefined and is not to be relied upon for proper device function.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS3703-Q1  
 
 
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Voltage Threshold Accuracy  
Voltage monitoring requirements vary depending on the voltage supply tolerance of the device being powered.  
Due to the high precision of the TPS3703-Q1 (±0.7% Max), the device allows for a wider supply voltage margins  
and threshold headroom for tight tolerance applications.  
For example, take a DC/DC regulator providing power to a core voltage rail of an MCU. The MCU has a  
tolerance of ±5% of the nominal output voltage of the DC/DC. The user sets an ideal voltage threshold of ±4%  
which allows for ±1% of threshold accuracy. Since the TPS3703-Q1 threshold accuracy is higher than ±1%, the  
user has more supply voltage margin which can allow for a relaxed power supply design. This gives flexibility  
to the DC/DC to use a smaller output capacitor or inductor because of a larger voltage window for voltage  
ripple and transients. There is also headroom between the minimum system voltage and voltage tolerance of the  
MCU to ensure that the voltage supply will never be in the region of potential failure of malfunction without the  
TPS3703-Q1 asserting a reset signal.  
Figure 9-1 illustrates the supply undervoltage margin and accuracy of the TPS3703-Q1 for the example  
explained above. Using a low accuracy supervisor will eat into the available budget for the power supply ripple  
and transient response. This gives less flexibility to the user and a more stringent DC/DC converter design.  
DC/DC nominal output  
0%  
Supply  
Regulator output voltage accuracy  
Voltage  
Margin  
Margin for ripple and transients  
Voltage  
Threshold  
Accuracy  
0.7% Allowed threshold tolerance  
+
4%  
5%  
- 0.7% Minimum system voltage  
Potential Failure or Malfunction  
Figure 9-1. TPS3703-Q1 Voltage Threshold Accuracy  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS3703-Q1  
 
 
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
9.1.2 CT Reset Time Delay  
The TPS3703-Q1 features three options for setting the reset delay (tD): connecting a capacitor to the CT pin,  
connecting a pull-up resistor to VDD, and leaving the CT pin unconnected. Figure 9-2 shows a schematic  
drawing of all three options. To determine which option is connected to the CT pin, an internal state machine  
controls the internal pulldown device and measures the pin voltage. This sequence of events takes 450 μs  
to determine which timing option is used. Every time the voltage on the SENSE line enters the valid window  
(VIT-(UV) + VHYS < VSENSE < VIT+(OV) -VHYS, the state machine determines the CT option.  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
CT  
ICT  
ICT  
ICT  
CT  
CT  
Cap  
Control  
Cap  
Control  
Cap  
Control  
User Programmable  
Capacitor to GND  
CT Unconnected  
10 kΩ Resistor to VDD  
Figure 9-2. CT Charging Circuit  
9.1.2.1 Factory-Programmed Reset Delay Timing  
To use the factory-programmed timing options, the CT pin must either be left unconnected or pulled up to VDD  
through a 10 kΩ pull-up resistor. Using these options enables a high-precision reset delay timing, as shown in  
Table 9-1.  
Table 9-1. Reset Delay Time for Factory-Programmed Reset Delay Timing  
RESET DELAY TIME (tD)  
VARIANT  
VALUE  
CT = Capacitor to GND  
Programmable tD  
Programmable tD  
Programmable tD  
N/A  
CT = Floating  
CT = 10 kΩ to VDD  
TPS3703A  
TPS3703B  
TPS3703C  
TPS3703D  
10  
1
200  
20  
ms  
ms  
ms  
µs  
5
100  
50  
50  
9.1.2.2 Programmable Reset Delay-Timing  
The TPS3703 reset time delay is based on internal current source (ICT) to charge external capacitor (CCT) and  
read capacitor voltage with internal comparator. The minium value capacitor is 250 pF. There is no limitation on  
maximum capacitor the only constrain is imposed by the initial voltage of the capacitor, if CT cap is zero or near  
to zero then ideally there is no other constraint on the max capacitor. The typical ideal capacitor value needed for  
a given delay time can be calculated using Equation 1, where CCT is in nanofarads (nF) and tD is in ms:  
tD = 3.066 × CCT + 0.5 ms  
(1)  
To calculate the minimum and maximum-reset delay time use Equation 2 and Equation 3, respectively.  
tD(min) = 2.7427 × CCT + 0.3 ms  
tD(max) = 3.4636 × CCT + 0.7 ms  
(2)  
(3)  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS3703-Q1  
 
 
 
 
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
The slope of the equation is determined by the time the CT charging current (ICT) takes to charge the  
external capacitor up to the CT comparator threshold voltage (VCT). When RESET is asserted, the capacitor  
is discharged through the internal CT pulldown resistor. When the RESET conditions are cleared, the internal  
precision current source is enabled and begins to charge the external capacitor; when VCT = 1.15 V, RESET  
is unasserted. Note that in order to minimize the difference between the calculated RESET delay time and the  
actual RESET delay time, use a use a high-quality ceramic dielectric COG, X5R, or X7R capacitor and minimize  
parasitic board capacitance around this pin. Table 9-2 lists the reset delay time ideal capacitor values for CCT  
.
Table 9-2. Reset Delay Time for Ideal Capacitor Values  
CCT  
250 pF  
1 nF  
RESET DELAY TIME (tD), TYPICAL  
1.27 ms  
3.57 ms  
3.26 nF  
32.6 nF  
65.2 nF  
1uF  
10.5 ms  
100.45 ms  
200.40 ms  
3066.50 ms  
9.1.3 RESET Latch Mode  
The TPS3703-Q1 features a voltage latch mode on the RESET pin when connecting the CT pin to common  
ground . A pull-down resistor is recommended to limit current consumption of the system. In latch mode, if the  
RESET pin is low or triggers low, the pin will stay low regardless if VSENSE is within the acceptable voltage  
boundaries (VIT–(UV) < VSENSE < VIT+(OV)). To unlatch the device provide a voltage to the CT pin that is greater  
than the CT pin comparator threshold voltage, VCT. The RESET pin will trigger high instantaneously without any  
reset delay. A voltage greater than 1.2 V to recommended to ensure a proper unlatch. Use a series resistance  
to limit current when an unlatch voltage is applied. For more information, Section 9.2.2 gives an example of a  
typical latch application.  
VDD  
VDD  
ICT  
10 k  
CT  
V > VCT  
Voltage at CT  
to Unlatch  
Cap  
Control  
10 kResistor to  
GND to Latch  
Figure 9-3. RESET Latch Circuit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS3703-Q1  
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
9.1.4 Adjustable Voltage Thresholds  
The TPS3703-Q1 0.7% maximum accuracy allows for adjustable voltage thresholds using external resistors  
without adding major inaccuracies to the device. In case that the desired monitored voltage is not available,  
external resistor dividers can be used to set the desired voltage thresholds. Figure 9-4 illustrates an example of  
how to adjust the voltage threshold with external resistor dividers. The resistors can be calculated depending on  
the desired voltage threshold and device part number. TI recommends using the 0.8V voltage threshold device  
such as the TPS3703B3080 because of the bypass mode of internal resistor ladder.  
For example, consider a 2.0 V rail being monitored (VMON) using the TPS3703B3080 variant. Using Equation  
4, R1 = 15 kΩ given that R2 = 10 kΩ, VMON = 2 V , and VSENSE = 0.8 V. This device is typically meant to  
monitor a 0.8 V rail with ±3% voltage thresholds. This means that the device undervoltage threshold (VIT-(UV)  
)
and overvoltage threshold (VIT-(OV)) is 0.776 V and 0.824 V respectively. Using Equation 4 , VMON = 1.94 V  
when VSENSE = VIT-(UV). This can be denoted as VMON-, the monitored undervoltage threshold where the device  
will assert a reset signal. Using Equation 4 again, the monitored overvoltage threshold (VMON+) = 2.06 V when  
VSENSE = VIT+(OV). If a wider tolerance or UV only threshold is desired, use a device variant shown on Table 7 to  
determine what device part number matches your application.  
VSENSE = VMON × (R2 ÷ (R1 + R2))  
(4)  
There are inaccuracies that must be taken into consideration while adjusting voltage thresholds. Aside from the  
tolerance of the resistor divider, there is an internal resistance of the SENSE pin that may affect the accuracy  
of the resistor divider. Although expected to be very high impedance, users are recommended to calculate the  
values for design specifications. The internal sense resistance (RSENSE) can be calculated by the sense voltage  
(VSENSE) divided by the sense current (ISENSE) as shown in Equation 6. VSENSE can be calculated using Equation  
4 depending on the resistor divider and monitored voltage. ISENSE can be calculated using Equation 5.  
ISENSE = (VMON – VSENSE) ÷ R1 – (VSENSE ÷ R2)  
(5)  
(6)  
RSENSE = VSENSE ÷ ISENSE  
VMON  
VDD  
R1  
10 lQ  
TPS3703-Q1  
SENSE RESET  
Vsense  
VDD  
VDD  
CT  
MR  
R2  
GND  
Figure 9-4. Adjustable Voltage Threshold with External Resistor Dividers  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS3703-Q1  
 
 
 
 
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
9.1.5 Immunity to SENSE Pin Voltage Transients  
The TPS3703-Q1 is immune to short voltage transient spikes on the input pins. Sensitivity to transients depends  
on both transient duration and overdrive (amplitude) of the transient.  
Overdrive is defined by how much the VSENSE exceeds the specified threshold, and is important to know  
because the smaller the overdrive, the slower the response of the outputs ( RESET). Threshold overdrive is  
calculated as a percent of the threshold in question, as shown in Equation 7:  
Overdrive % = | (VSENSE - (VIT-(UV) or VIT+(OV))) / VIT (Nominal) × 100% |  
(7)  
where:  
VSENSE is the voltage at the SENSE pin  
VIT (Nominal) is the nominal threshold voltage  
VIT-(UV) and VIT+(OV) represent the actual undervoltage or overvoltage tripping voltage  
9.1.5.1 Hysteresis  
Overvoltage and undervoltage comparators include built-in hysteresis that provides noise immunity and ensures  
stable operation. For example if the voltage on the SENSE pin falls below VIT-(UV) or above VIT+(OV), then RESET  
is asserted (driven low), then when the voltage on the SENSE pin is between the positive and negative threshold  
voltages, RESET deasserts after the user-defined RESET delay time. Figure Figure 9-5 shows the relation  
between VIT-(UV),VIT+(OV) and hysteresis voltage (VHYS).  
VRESET  
Window  
(VIT)  
VOL  
VSENSE  
VIT-(UV)  
VIT-(UV) + VHYS  
VIT+(OV) - VHYS  
VIT+(OV)  
Figure 9-5. SENSE Pin Hysteresis  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS3703-Q1  
 
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
9.2 Typical Applications  
9.2.1 Design 1: Multi-Rail Window Monitoring for Microcontroller Power Rails  
A typical application for the TPS3703-Q1 is shown in Figure 9-6. The TPS3703-Q1 is used to monitor two PMIC  
voltage rails that powers the core and I/O voltage of the microcontroller that requires accurate reset delay and  
voltage supervision. Reference design TIDA-050008 is an ADAS power reference that focuses on improved  
voltage supervision. It utilizes the TPS3703-Q1 to monitor the core voltage rail of a MCU similar to the circuit  
below.  
VDD  
VOUT  
VOUT  
VCORE  
VI/O  
VIN  
VDD  
10 lQ  
PMIC  
Microcontroller  
RESET  
TPS3703-Q1  
TPS3703-Q1  
SENSE  
RESET  
MR  
SENSE  
RESET  
MR  
VDD  
VDD  
VDD  
CT  
VDD  
CT  
GND  
GND  
10 lQ  
Figure 9-6. Two TPS3703-Q1 Monitoring Two Microcontroller Power Rails  
9.2.1.1 Design Requirements  
Table 9-3. Design Parameters  
PARAMETER  
DESIGN REQUIREMENT  
DESIGN RESULT  
3.3-VI/O nominal, with alerts if outside of ±8% of 3.3  
V (including device accuracy), 200 ms reset delay  
Worst case VIT+(OV) = 3.554 V (7.7%),  
Worst case VIT–(UV) = 3.046 V (-7.7%)  
Monitored rails  
1.2-VCORE nominal, with alerts if outside of ±5%  
of 1.2 V (including device accuracy), 10 ms reset  
delay  
Worst case VIT+(OV) = 1.256 V (4.7%),  
Worst case VIT–(UV) = 1.144 V (-4.7%)  
Output logic voltage  
5-V CMOS  
50 µA  
5-V CMOS  
Maximum system supervision  
current consumption  
14 µA (7 µA Max each)  
9.2.1.2 Detailed Design Procedure  
Determine which version of the TPS3703-Q1 best suits the monitored rail (VMON) and window tolerances found  
on Table 7. The TPS3703-Q1 allows overvoltage and undervoltage monitoring for precise voltage supervision of  
common rails between 0.5 V and 5.0 V. This application calls for very tight monitoring of the rail with only ±5%  
of variation allowed on the 1.2V core rail. To ensure this requirement is met, the TPS3703-Q1 was chosen for  
its ±4% thresholds. The 3.3V I/O is more flexible and can operate up to 8% variance. Since the TPS3703-Q1  
comes in various tolerance options, the ±7% thresholds can be chosen for this voltage rail. To calculate the  
worst-case for VIT+(OV) and VIT-(UV), the accuracy must also be taken into account. The worst-case for VIT+(OV)  
and VIT-(UV) can be calculated shown in Equation 8 and Equation 9 respectively:  
VIT+(OV-Worst Case) = VMON × (%Threshold + 0.7%) = 1.2 × (+4.7%) = 1.256 V  
VIT-(UV-Worst Case) = VMON × (%Threshold - 0.7%) = 1.2 × (-4.7%) = 1.144V  
(8)  
(9)  
When the outputs switch to a high impedance state, the rise time of the RESET pin depends on the pull-up  
resistance and the capacitance on that node. Choose pull-up resistors that satisfy both the downstream timing  
requirements and the sink current required to have a VOL low enough for the application; 10 kΩ to 1 MΩ resistors  
are a good choice for low-capacitive loads.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS3703-Q1  
 
 
 
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
9.2.1.3 Application Curves  
VSENSE Start up from 0 V to 1.2 V, VDD = 3.3 V, CT = OPEN  
VRESET = VDD = 3.3 V, TPS3703A4120  
VDD Start up from 0 V to 3.3 V, VSENSE = 1.2 V, CT = OPEN  
VRESET = VDD = 3.3 V, TPS3703A4120  
Figure 9-7. TPS3703-Q1 SENSE Start Up Function  
Figure 9-8. TPS3703-Q1 VDD Start Up Function  
VSENSE ramp from 0 V to 1.4 V, VDD = 3.3 V, CT = OPEN  
VRESET = VDD = 3.3 V, TPS3703A4120  
VDD ramp from 0 V to 3.3 V, VSENSE = 1.2 V, CT = OPEN  
VRESET = VDD = 3.3 V,TPS3703A4120  
Figure 9-9. TPS3703-Q1 Overvoltage and  
Undervoltage Function  
Figure 9-10. TPS3703-Q1 VDD Ramp Up Function  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS3703-Q1  
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
9.2.2 Design 2: RESET Latch Mode  
Another typical application for the TPS3703-Q1 is shown in Figure 9-6. The TPS3703-Q1 is used in a RESET  
latch output mode. In latch mode, once RESET driven logic low, it will stay low regardless of the sense voltage. If  
the RESET pin is low on start up, it will also stay low regardless of sense voltage.  
VCORE  
VCORE  
VDD  
Microcontroller  
10 lQ  
TPS3703-Q1  
VGPIO  
SENSE  
VDD  
CT  
RESET  
MR  
VDD  
Microcontroller  
10 lQ  
VGPIO  
GND  
10 lQ  
Figure 9-11. Window Voltage Monitoring with RESET Latch  
9.2.2.1 Design Requirements  
Table 9-4. Design Parameters  
PARAMETER  
Monitored Rail  
DESIGN REQUIREMENT  
DESIGN RESULT  
1.2-VCORE nominal, with alerts if outside of ±5%  
of 1.2 V (including device accuracy), Latch when  
RESET is low, until voltage is applied on CT pin.  
Worst case VIT+(OV) = 1.256 V (4.7%),  
Worst case VIT–(UV) = 1.144 V (-4.7%)  
Output logic voltage  
5-V CMOS  
15 µA  
5-V CMOS  
Maximum device current  
consumption  
4.5 µA (Typ), 7 µA (Max)  
9.2.2.2 Detailed Design Procedure  
The RESET pin can be latched when the CT pin is connected to a common ground with a pull-down resistor.  
A 10 kΩ resistors is recommended to limit current consumption. To unlatch the device provide a voltage to the  
CT pin that is greater than the CT pin comparator threshold voltage, VCT. A voltage greater than 1.15 V to  
recommended to ensure a proper unlatch. Use a series resistance to limit current when an unlatch voltage is  
applied. To go back into latch operation, disconnect the voltage on the CT pin. The RESET pin will trigger high  
instanously without any reset delay.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS3703-Q1  
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
9.2.2.3 Application Curves  
VSENSE ramp from 0 V to 1.4V, VDD = 3.3 V, VCT = 0 V VRESET  
= VDD = 3.3 V, TPS3703A4120  
VCT biased at least to 1.15 V , VSENSE = 1.2 V VRESET = VDD  
= 3.3 V, TPS3703A4120  
Figure 9-12. TPS3703-Q1 SENSE Ramp Latch  
Function  
Figure 9-13. TPS3703-Q1 CT Bias Unlatch Function  
VSense ramp from 0 V to 1.4 V , VDD = 3.3 V, VRESET  
=
VDD ramp up from 0 V to 3.3 V , VSENSE = 1.2 V, CT = 0 V  
VRESET = VDD = 3.3 V, TPS3703A4120  
VDD CT is pulled down after RESET is low, RESET becomes  
latched TPS3703A4120  
Figure 9-15. TPS3703-Q1 VDD Ramp Latch  
Function  
Figure 9-14. TPS3703-Q1 Overvoltage and  
Undervoltage Latch Function  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS3703-Q1  
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
10 Power Supply Recommendations  
10.1 Power Supply Guidelines  
This device is designed to operate from an input supply with a voltage range between 1.7 V to 5.5 V. It has a 6-V  
absolute maximum rating on the VDD pin. It is good analog practice to place a 0.1-µF to 1-µF capacitor between  
the VDD pin and the GND pin depending on the input voltage supply noise. If the voltage supply providing power  
to VDD is susceptible to any large voltage transient that exceed maximum specifications, additional precautions  
must be taken. See SNVA849 for more information.  
11 Layout  
11.1 Layout Guidelines  
Place the external components as close to the device as possible. This configuration prevents parasitic errors  
from occurring.  
Avoid using long traces for the VDD supply node. The VDD capacitor, along with parasitic inductance from  
the supply to the capacitor, can form an LC circuit and create ringing with peak voltages above the maximum  
VDD voltage.  
Avoid using long traces of voltage to the sense pin. Long traces increase parasitic inductance and cause  
inaccurate monitoring and diagnostics.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when absolutely necessary.  
11.2 Layout Example  
Pull-Up Voltage  
V_Sense  
VDD  
MR  
GND  
Sense  
VDD  
CT  
10 kΩ  
RESET  
1 F  
GND  
Figure 11-1. Recommended Layout  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS3703-Q1  
 
 
 
 
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Device Nomenclature  
Table 12-1 shows how to decode the function of the device based on its part number.  
Table 12-1. Device Naming Convention  
DESCRIPTION  
NOMENCLATURE  
VALUE  
TPS3703  
TPS3703  
CT pin open = 10 ms, CT pin tied to VDD = 200 ms  
CT programable with external capacitor  
A
B
C
D
E
F
CT pin open = 1 ms, CT pin tied to VDD = 20 ms  
CT programable with external capacitor  
Window  
(OV & UV)  
CT pin open = 5 ms, CT pin tied to VDD = 100 ms  
CT programable with external capacitor  
CT pin open = 50 µs, CT pin tied to VDD = 50 µs  
CT not programable  
Time delay options: Every  
part has two fixed time delay  
and adjustable delay option via  
external capacitor Part number  
CT pin open = 10 ms, CT pin tied to VDD = 200 ms  
CT programable with external capacitor  
CT pin open = 1 ms, CT pin tied to VDD = 20 ms  
CT programable with external capacitor  
UV only  
CT pin open = 5 ms, CT pin tied to VDD = 100 ms  
CT programable with external capacitor  
G
H
CT pin open = 50 µs, CT pin tied to VDD = 50 µs  
CT not programable  
3
4
5
6
7
Window threshold from nominal value = OV : 3%; UV: –3%  
Window threshold from nominal value = OV : 4%; UV: –4%  
Window threshold from nominal value = OV : 5%; UV: –5%  
Window threshold from nominal value = OV : 6%; UV: –6%  
Window threshold from nominal value = OV : 7%; UV: –7%  
Tolerance options: Trigger or threshold  
voltage as a percentage of the monitored  
threshold voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS3703-Q1  
 
 
 
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
Table 12-1. Device Naming Convention  
(continued)  
DESCRIPTION  
NOMENCLATURE  
VALUE  
Nominal monitor threshold voltage option  
050  
055  
060  
065  
070  
075  
080  
085  
090  
095  
100  
105  
110  
115  
120  
125  
130  
150  
180  
250  
280  
290  
330  
500  
DSE  
R
0.50 V  
0.55 V  
0.60 V  
0.65 V  
0.70 V  
0.75 V  
0.80 V  
0.85 V  
0.90 V  
0.95 V  
1.00 V  
1.05 V  
1.10 V  
1.15 V  
1.20 V  
1.25 V  
1.30 V  
1.50 V  
1.80 V  
2.50 V  
2.80 V  
2.90 V  
3.30 V  
5.00 V  
Package  
WSON - 6 pin (1.5 mm × 1.5 mm)  
Large reel  
Reel  
Automotive version  
Q1  
Q100 AEC  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS3703-Q1  
TPS3703-Q1  
SBVS344D – NOVEMBER 2018 – REVISED MARCH 2021  
www.ti.com  
12.2 Documentation Support  
12.2.1 Evaluation Module  
An evaluation module (EVM) is available to assist in the initial circuit performance evaluation using the  
TPS3703-Q1. The TPS3703-Q1 evaluation module (and related user guide) can be requested at the Texas  
Instruments website through the product folders or purchased directly from the TI eStore .  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS3703-Q1  
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-May-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS3703A4085DSERQ1  
TPS3703A4120DSERQ1  
TPS3703A4180DSERQ1  
TPS3703A4280DSERQ1  
TPS3703A4330DSERQ1  
TPS3703A5090DSERQ1  
TPS3703A5180DSERQ1  
TPS3703A5290DSERQ1  
TPS3703A7080DSERQ1  
TPS3703A7100DSERQ1  
TPS3703A7110DSERQ1  
TPS3703A7120DSERQ1  
TPS3703A7125DSERQ1  
TPS3703A7180DSERQ1  
TPS3703A7250DSERQ1  
TPS3703A7280DSERQ1  
TPS3703A7330DSERQ1  
TPS3703B3080DSERQ1  
TPS3703B4250DSERQ1  
TPS3703B5180DSERQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
L8  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
AB  
AD  
H8  
AE  
GW  
GZ  
GT  
LD  
LA  
GX  
H1  
AC  
H2  
L9  
H3  
GV  
BA  
H6  
GU  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-May-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS3703C7500DSERQ1  
TPS3703E4080DSERQ1  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSE  
DSE  
6
6
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
CF  
H7  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS3703-Q1 :  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-May-2021  
Catalog : TPS3703  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-May-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS3703A4085DSERQ1 WSON  
TPS3703A4120DSERQ1 WSON  
TPS3703A4180DSERQ1 WSON  
TPS3703A4280DSERQ1 WSON  
TPS3703A4330DSERQ1 WSON  
TPS3703A5090DSERQ1 WSON  
TPS3703A5180DSERQ1 WSON  
TPS3703A5290DSERQ1 WSON  
TPS3703A7080DSERQ1 WSON  
TPS3703A7100DSERQ1 WSON  
TPS3703A7110DSERQ1 WSON  
TPS3703A7120DSERQ1 WSON  
TPS3703A7125DSERQ1 WSON  
TPS3703A7180DSERQ1 WSON  
TPS3703A7250DSERQ1 WSON  
TPS3703A7280DSERQ1 WSON  
TPS3703A7330DSERQ1 WSON  
TPS3703B3080DSERQ1 WSON  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-May-2021  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS3703B4250DSERQ1 WSON  
TPS3703B5180DSERQ1 WSON  
TPS3703C7500DSERQ1 WSON  
TPS3703E4080DSERQ1 WSON  
DSE  
DSE  
DSE  
DSE  
6
6
6
6
3000  
3000  
3000  
3000  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
0.95  
0.95  
0.95  
0.95  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS3703A4085DSERQ1  
TPS3703A4120DSERQ1  
TPS3703A4180DSERQ1  
TPS3703A4280DSERQ1  
TPS3703A4330DSERQ1  
TPS3703A5090DSERQ1  
TPS3703A5180DSERQ1  
TPS3703A5290DSERQ1  
TPS3703A7080DSERQ1  
TPS3703A7100DSERQ1  
TPS3703A7110DSERQ1  
TPS3703A7120DSERQ1  
TPS3703A7125DSERQ1  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-May-2021  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS3703A7180DSERQ1  
TPS3703A7250DSERQ1  
TPS3703A7280DSERQ1  
TPS3703A7330DSERQ1  
TPS3703B3080DSERQ1  
TPS3703B4250DSERQ1  
TPS3703B5180DSERQ1  
TPS3703C7500DSERQ1  
TPS3703E4080DSERQ1  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
6
6
6
6
6
6
6
6
6
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
Pack Materials-Page 3  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TPS3703A7120DSERQ1

Overvoltage and Undervoltage Reset IC With Time Delay and Manual Reset

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3703A7125DSERQ1

Overvoltage and Undervoltage Reset IC With Time Delay and Manual Reset

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3703A7180DSERQ1

Overvoltage and Undervoltage Reset IC With Time Delay and Manual Reset

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3703A7250DSERQ1

Overvoltage and Undervoltage Reset IC With Time Delay and Manual Reset

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3703A7280DSERQ1

Overvoltage and Undervoltage Reset IC With Time Delay and Manual Reset

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3703A7330DSER

TPS3703 High Accuracy Overvoltage and Undervoltage Reset IC With Time Delay and Manual Reset

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3703A7330DSERQ1

Overvoltage and Undervoltage Reset IC With Time Delay and Manual Reset

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3703B3080DSERQ1

Overvoltage and Undervoltage Reset IC With Time Delay and Manual Reset

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3703B4250DSERQ1

Overvoltage and Undervoltage Reset IC With Time Delay and Manual Reset

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3703B5180DSERQ1

Overvoltage and Undervoltage Reset IC With Time Delay and Manual Reset

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3703B6050DSER

TPS3703 High Accuracy Overvoltage and Undervoltage Reset IC With Time Delay and Manual Reset

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3703C7115DSERQ1

具有复位延时时间的汽车高精度窗口监控器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI