TPS3779-Q1 [TI]

汽车类、推挽式、双通道、低功耗、高精度电压检测器;
TPS3779-Q1
型号: TPS3779-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类、推挽式、双通道、低功耗、高精度电压检测器

文件: 总25页 (文件大小:1385K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS3779-Q1, TPS3780-Q1  
ZHCSF51A JUNE 2016REVISED SEPTEMBER 2016  
TPS37xx-Q1  
双通道、低功耗、高精度电压检测器  
1 特性  
3 说明  
1
适用于汽车电子 应用  
具有符合 AEC-Q100 的下列结果:  
TPS3779-Q1 TPS3780-Q1 属于高精度双通道电压  
检测器系列,同时拥有低功耗和小解决方案尺寸两大优  
势。SENSE1 SENSE2 输入包括滞后特性,可抑制  
短小毛刺脉冲,从而确保输出操作稳定而无错误触发。  
该器件提供了两种不同的出厂设置滞后选项:5% 或  
10%。  
器件温度 1 级:-40°C 125°C 的环境运行温  
度范围  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 H2  
器件组件充电模式 (CDM) ESD 分类等级 C4B  
TPS3779-Q1 TPS3780-Q1 配有可调节的 SENSEx  
输入。这些输入可通过外部电阻分压器进行配置。当  
SENSE1 SENSE2 输入上的电压低于下降阈值  
时,OUT1 OUT2 被分别驱动为低电平。当  
SENSE1 SENSE2 上升到高于上升阈值时,OUT1  
OUT2 分别变为高电平。  
采用小型封装的双通道检测器  
高精度阈值和滞后:1.0%  
低静态电流:2µA(典型值)  
可调节检测电压:最低至 1.2V  
5% 10% 滞后选项  
温度范围:-40°C +125°C  
该器件的超低静态电流为 2µA(典型值),并且提供  
了一套精确且节省空间的电压检测解决方案,非常适合  
低功耗系统监视和便携式 输出电压电平信号。  
推挽 (TPS3779-Q1) 和开漏 (TPS3780-Q1) 输出选  
采用 SOT-23 封装  
TPS3779-Q1 TPS3780-Q1 的工作电压范围为 1.5V  
5.5V,工作温度范围为 –40°C +125°C。  
2 应用  
数字信号处理器 (DSP)、微控制器和微处理器  
器件信息(1)  
高级驾驶员辅助系统 (ADAS)  
信息娱乐和仪表板  
器件型号  
封装  
SOT-23 (6)  
封装尺寸(标称值)  
TPS37xx-Q1  
2.90mm x 1.60mm  
电源排序 应用  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
感测阈值 (VIT+) 偏差与温度间的关系  
典型电路原理图  
VDD = 1.5 V to 5.5 V  
0.4  
0.1 F  
Sense 1 VDD = 1.5 V  
0.32  
0.24  
0.16  
0.08  
0
Sense 1 VDD = 5.5 V  
Sense 2 VDD = 1.5 V  
Sense 2 VDD = 5.5 V  
TPS3780 Only  
VMON1  
VPULLUP  
VDD  
R1  
RPU1  
To a reset or enable  
input of the system.  
VMON2  
SENSE1  
OUT1  
OUT2  
R3  
R2  
TPS37xx-Q1  
RPU1  
To a reset or enable  
input of the system.  
SENSE2  
GND  
-0.08  
-0.16  
-0.24  
-0.32  
-0.4  
R4  
Copyright © 2016, Texas Instruments Incorporated  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBVS273  
 
 
 
TPS3779-Q1, TPS3780-Q1  
ZHCSF51A JUNE 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
9.1 Application Information............................................ 12  
9.2 Typical Applications ................................................ 13  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 6  
7.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
8.1 Overview ................................................................. 10  
8.2 Functional Block Diagrams ..................................... 10  
8.3 Feature Description................................................. 11  
9
10 Power-Supply Recommendations ..................... 15  
11 Layout................................................................... 15  
11.1 Layout Guidelines ................................................. 15  
11.2 Layout Example .................................................... 15  
12 器件和文档支持 ..................................................... 16  
12.1 器件支持................................................................ 16  
12.2 文档支持................................................................ 16  
12.3 接收文档更新通知 ................................................. 16  
12.4 相关链接................................................................ 16  
12.5 社区资源................................................................ 17  
12.6 ....................................................................... 17  
12.7 静电放电警告......................................................... 17  
12.8 Glossary................................................................ 17  
13 机械、封装和可订购信息....................................... 17  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (June 2016) to Revision A  
Page  
Added TPS3780A-Q1 row to Device Comparison Table ...................................................................................................... 3  
Added TPS37xxA-Q1 row to VIT– parameter in Electrical Characteristics table..................................................................... 5  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPS3779-Q1, TPS3780-Q1  
www.ti.com.cn  
ZHCSF51A JUNE 2016REVISED SEPTEMBER 2016  
5 Device Comparison Table  
PRODUCT  
HYSTERESIS (%)  
OUTPUT  
Push-pull  
TPS3779B-Q1  
TPS3779C-Q1  
TPS3780A-Q1  
TPS3780B-Q1  
TPS3780C-Q1  
5
10  
0.5  
5
Push-pull  
Open-drain  
Open-drain  
Open-drain  
10  
6 Pin Configuration and Functions  
DBV Package  
6-Pin SOT-23  
Top View  
VDD  
OUT1  
OUT2  
1
2
3
6
5
4
SENSE1  
GND  
SENSE2  
Not to scale  
Pin Functions  
NAME  
GND  
NO.  
I/O  
DESCRIPTION  
5
Ground  
OUT1 is the output for SENSE1. OUT1 is asserted (driven low) when the voltage at SENSE1 falls below VIT–  
OUT1 is deasserted (goes high) after SENSE1 rises higher than VIT+  
.
.
OUT1  
OUT2  
2
3
O
O
OUT1 is a push-pull output for the TPS3779-Q1 and an open-drain output for the TPS3780-Q1.  
The open-drain device (TPS3780-Q1) can be pulled up to 5.5 V independent of VDD; a pullup resistor is  
required for this device.  
OUT2 is the output for SENSE2. OUT2 is asserted (driven low) when the voltage at SENSE2 falls below VIT–  
.
OUT2 is deasserted (goes high) after SENSE2 rises higher than VIT+  
.
OUT2 is a push-pull output for the TPS3779-Q1 and an open-drain output for the TPS3780-Q1.  
The open-drain device (TPS3780-Q1) can be pulled up to 5.5 V independent of VDD; a pullup resistor is  
required for this device.  
This pin is connected to the voltage to be monitored with the use of an external resistor divider.  
When the voltage at this pin drops below the threshold voltage (VIT–), OUT1 is asserted.  
SENSE1  
SENSE2  
VDD  
6
4
1
I
I
I
This pin is connected to the voltage to be monitored with the use of an external resistor divider.  
When the voltage at this pin drops below the threshold voltage (VIT–), OUT2 is asserted.  
Supply voltage input. Connect a 1.5-V to 5.5-V supply to VDD in order to power the device. Good analog  
design practice is to place a 0.1-µF ceramic capacitor close to this pin (required for VDD < 1.5 V).  
Copyright © 2016, Texas Instruments Incorporated  
3
TPS3779-Q1, TPS3780-Q1  
ZHCSF51A JUNE 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
VDD  
7
OUT1, OUT2 (TPS3779-Q1 only)  
VDD + 0.3  
Voltage  
V
OUT1, OUT2 (TPS3780-Q1 only)  
7
SENSE1, SENSE2  
7
Current  
OUT1, OUT2  
±20  
125  
150  
mA  
°C  
(2)  
Operating junction, TJ  
Storage, Tstg  
–40  
–65  
Temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) For low-power devices, the junction temperature rise above the ambient temperature is negligible; therefore, the junction temperature is  
considered equal to the ambient temperature (TJ = TA).  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
1.5  
0
NOM  
MAX  
5.5  
UNIT  
Power-supply voltage  
Sense voltage  
V
V
SENSE1, SENSE2  
OUT1, OUT2  
5.5  
Output voltage (TPS3779-Q1 only)  
Output voltage (TPS3780-Q1 only)  
Pullup resistor (TPS3780-Q1 only)  
Current  
0
VDD + 0.3  
5.5  
V
OUT1, OUT2  
0
V
RPU  
1.5  
–5  
10,000  
5
k  
mA  
µF  
°C  
OUT1, OUT2  
CIN  
TJ  
Input capacitor  
0.1  
25  
Junction temperature  
–40  
125  
7.4 Thermal Information  
TPS3779-Q1, TPS3780-Q1  
THERMAL METRIC(1)  
DBV (SOT-23)  
6 PINS  
193.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
134.5  
39.0  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
30.4  
ψJB  
38.5  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016, Texas Instruments Incorporated  
TPS3779-Q1, TPS3780-Q1  
www.ti.com.cn  
ZHCSF51A JUNE 2016REVISED SEPTEMBER 2016  
7.5 Electrical Characteristics  
all specifications are over the operating temperature range of –40°C < TJ < +125°C and 1.5 V VDD 5.5 V (unless  
otherwise noted); typical values are at TJ = 25°C and VDD = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
5.5  
UNIT  
V
VDD  
Input supply range  
1.5  
V(POR)  
Power-on-reset voltage(1)  
VOL (max) = 0.2 V, IOL = 15 µA  
VDD = 3.3 V, no load  
0.8  
V
2.09  
2.29  
5.80  
6.50  
IDD  
Supply current (into VDD pin)  
µA  
V
VDD = 5.5 V, no load  
1.194  
Positive-going input threshold  
voltage  
VIT+  
V(SENSEx) rising  
–1%  
1%  
TPS37xxA-Q1  
(0.5% hysteresis)  
1.188  
1.134  
1.074  
TPS37xxB-Q1  
V(SENSEx) falling  
V
Negative-going input threshold  
voltage  
(5% hysteresis)  
VIT–  
TPS37xxC-Q1  
(10% hysteresis)  
V(SENSEx) falling  
–1%  
–15  
1%  
15  
I(SENSEx) Input current  
V(SENSEx) = 0 V or VDD  
nA  
V
VDD 1.5 V, ISINK = 0.4 mA  
VDD 2.7 V, ISINK = 2 mA  
VDD 4.5 V, ISINK = 3.2 mA  
VDD 1.5 V, ISOURCE = 0.4 mA  
VDD 2.7 V, ISOURCE = 1 mA  
VDD 4.5 V, ISOURCE = 2.5 mA  
0.25  
0.25  
0.30  
VOL  
Low-level output voltage  
0.8 VDD  
0.8 VDD  
0.8 VDD  
High-level output voltage  
(TPS3779-Q1 only)  
VOH  
V
Open-drain output leakage  
current (TPS3780-Q1 only)  
Ilkg(OD)  
High impedance, V(SENSEx) = V(OUTx) = 5.5 V  
–250  
250  
nA  
(1) Outputs are undetermined below V(POR)  
.
Copyright © 2016, Texas Instruments Incorporated  
5
 
TPS3779-Q1, TPS3780-Q1  
ZHCSF51A JUNE 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
7.6 Timing Requirements  
typical values are at TJ = 25°C and VDD = 3.3 V; SENSEx transitions between 0 V and 1.3 V  
MIN  
NOM  
5.5  
MAX  
UNIT  
µs  
tPD(r)  
tPD(f)  
tSD  
SENSEx (rising) to OUTx propagation delay  
SENSEx (falling) to OUTx propagation delay  
Startup delay(1)  
10  
µs  
570  
µs  
(1) During power-on or when a VDD transient is below VDD(min), the outputs reflect the input conditions 570 µs after VDD transitions  
through VDD(min).  
VDD(min)  
VDD  
V(POR)  
VIT+  
SENSEx  
VHYS  
VITœ  
Undefined  
570 µs  
Undefined  
570 µs  
OUTx  
tSD  
tPD(r)  
tPD(f)  
1. Timing Diagram  
6
版权 © 2016, Texas Instruments Incorporated  
 
TPS3779-Q1, TPS3780-Q1  
www.ti.com.cn  
ZHCSF51A JUNE 2016REVISED SEPTEMBER 2016  
7.7 Typical Characteristics  
at TJ = 25°C with a 0.1-µF capacitor close to VDD (unless otherwise noted)  
0.4  
0.32  
0.24  
0.16  
0.08  
0
5
4.5  
4
Sense 1 VDD = 1.5 V  
Sense 1 VDD = 5.5 V  
Sense 2 VDD = 1.5 V  
Sense 2 VDD = 5.5 V  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 105°C  
TJ = 125°C  
3.5  
3
2.5  
2
-0.08  
-0.16  
-0.24  
-0.32  
-0.4  
1.5  
1
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Supply Voltage (V)  
Temperature (èC)  
SENSE1 = SENSE2 = 1.5 V  
2. Supply Current vs Supply Voltage  
3. Sense Threshold (VIT+) Deviation vs Temperature  
0.4  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
Sense 1 VDD = 1.5 V  
Sense 1 VDD = 5.5 V  
Sense 2 VDD = 1.5 V  
Sense 2 VDD = 5.5 V  
0.32  
0.24  
0.16  
0.08  
0
-0.08  
-0.16  
-0.24  
-0.32  
-0.4  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
VIT+ Accuracy (%)  
VDD = 5.5 V  
4. Sense Threshold (VIT–) Deviation vs Temperature  
5. Sense Threshold (VIT+  
)
1.3  
1.2  
1.1  
1
5500  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 105°C  
TJ = 125°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
0
1
2
3
4
5
Output Sink Current (mA)  
VIT- Accuracy (%)  
VDD = 5.5 V  
7. Output Voltage Low vs Output Current  
6. Sense Threshold (VIT–  
)
(VDD = 1.5 V)  
版权 © 2016, Texas Instruments Incorporated  
7
TPS3779-Q1, TPS3780-Q1  
ZHCSF51A JUNE 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = 25°C with a 0.1-µF capacitor close to VDD (unless otherwise noted)  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 105°C  
TJ = 125°C  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 105°C  
TJ = 125°C  
0
1
2
3
4
5
0
1
2
3
4
5
Output Sink Current (mA)  
Output Sink Current (mA)  
8. Output Voltage Low vs Output Current  
9. Output Voltage Low vs Output Current  
(VDD = 3.3 V)  
(VDD = 5.5 V)  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
3.75  
3.5  
3.25  
3
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 105°C  
TJ = 125°C  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 105°C  
TJ = 125°C  
2.75  
2.5  
2.25  
2
0.9  
0.8  
0.7  
1.75  
1.5  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Output Source Current (mA)  
Output Source Current (mA)  
10. Output Voltage High vs Output Current  
11. Output Voltage High vs Output Current  
(VDD = 1.5 V)  
(VDD = 3.3 V)  
5.75  
6.1  
5.9  
5.7  
5.5  
5.3  
5.1  
4.9  
4.7  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 105°C  
TJ = 125°C  
5.5  
5.25  
5
4.75  
4.5  
Sense 1 VDD = 1.5 V  
Sense 1 VDD = 5.5 V  
Sense 2 VDD = 1.5 V  
Sense 2 VDD = 5.5 V  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Output Source Current (mA)  
Temperature (èC)  
SENSE1 = SENSE2 = 0 V to 1.3 V  
12. Output Voltage High vs Output Current  
13. Propagation Delay from  
(VDD = 5.5 V)  
SENSEx High to Output High  
8
版权 © 2016, Texas Instruments Incorporated  
TPS3779-Q1, TPS3780-Q1  
www.ti.com.cn  
ZHCSF51A JUNE 2016REVISED SEPTEMBER 2016  
Typical Characteristics (接下页)  
at TJ = 25°C with a 0.1-µF capacitor close to VDD (unless otherwise noted)  
14  
12  
10  
8
1150  
1050  
950  
850  
750  
650  
550  
450  
350  
250  
VDD = 1.5 V  
VDD = 5.5 V  
6
Sense 1 VDD = 1.5 V  
Sense 1 VDD = 5.5 V  
Sense 2 VDD = 1.5 V  
Sense 2 VDD = 5.5 V  
4
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Temperature (èC)  
SENSE1 = SENSE2 = 1.3 V to 0 V  
14. Propagation Delay from  
15. Startup Delay  
SENSEx Low to Output Low  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
TJ = -40°C  
TJ = 0°C  
TJ = +25°C  
TJ = +85°C  
TJ = +105°C  
TJ = +125°C  
TJ = -40°C  
TJ = 0°C  
TJ = +25°C  
TJ = +85°C  
TJ = +105°C  
TJ = +125°C  
0
0
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
Overdrive (%)  
Overdrive (%)  
High-to-low transition occurs above the curve  
High-to-low transition occurs above the curve  
16. Minimum Transient Duration vs Overdrive  
17. Minimum Transient Duration vs Overdrive  
(VDD = 1.5 V)  
(VDD = 5.5 V)  
35  
35  
TJ = -40°C  
TJ = 0°C  
TJ = +25°C  
TJ = +85°C  
TJ = +105°C  
TJ = +125°C  
TJ = -40°C  
TJ = 0°C  
TJ = +25°C  
TJ = +85°C  
TJ = +105°C  
TJ = +125°C  
32.5  
30  
32.5  
30  
27.5  
25  
27.5  
25  
22.5  
20  
22.5  
20  
17.5  
15  
17.5  
15  
12.5  
10  
12.5  
10  
7.5  
5
7.5  
5
2.5  
0
2.5  
0
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
Overdrive (%)  
Overdrive (%)  
Low-to-high transition occurs above the curve  
Low-to-high transition occurs above the curve  
18. Minimum Transient Duration vs Overdrive  
19. Minimum Transient Duration vs Overdrive  
(VDD = 1.5 V)  
(VDD = 5.5 V)  
版权 © 2016, Texas Instruments Incorporated  
9
 
TPS3779-Q1, TPS3780-Q1  
ZHCSF51A JUNE 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS3779-Q1 and TPS3780-Q1 are small, low quiescent current (IDD), dual-channel voltage detectors. These  
devices have high-accuracy rising and falling input thresholds, and assert the output as shown in 1. The  
output (OUTx pin) goes low when the SENSEx pin is less than VIT– and goes high when the pin is greater than  
VIT+. The TPS3779-Q1 and TPS3780-Q1 offer two hysteresis options (5% and 10%) for use in a wide variety of  
applications. These devices have two independent voltage-detection channels that can be used in systems  
where multiple voltage rails are required to be monitored, or where one channel can be used as an early warning  
signal and the other channel can be used as the system reset signal.  
1. TPS3779-Q1, TPS3780-Q1 Truth Table  
CONDITIONS  
SENSE1 < VIT–  
SENSE2 < VIT–  
SENSE1 > VIT+  
SENSE2 > VIT+  
OUTPUT  
OUT1 = low  
OUT2 = low  
OUT1 = high  
OUT2 = high  
8.2 Functional Block Diagrams  
VDD  
VDD  
SENSE1  
SENSE1  
OUT1  
OUT1  
SENSE2  
SENSE2  
OUT2  
OUT2  
VIT+  
VIT+  
TPS3779-Q1  
TPS3780-Q1  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
20. TPS3779-Q1 Block Diagram  
21. TPS3780-Q1 Block Diagram  
10  
版权 © 2016, Texas Instruments Incorporated  
 
TPS3779-Q1, TPS3780-Q1  
www.ti.com.cn  
ZHCSF51A JUNE 2016REVISED SEPTEMBER 2016  
8.3 Feature Description  
8.3.1 Inputs (SENSE1, SENSE2)  
The TPS3779-Q1 and TPS3780-Q1 each have two comparators for voltage detection. Each comparator has one  
external input; the other input is connected to the internal reference. The comparator rising threshold is designed  
and trimmed to be equal to VIT+, and the falling threshold is trimmed to be equal to VIT–. The built-in falling  
hysteresis options make the devices immune to supply rail noise and ensure stable operation.  
The comparator inputs can swing from ground to 5.5 V, regardless of the device supply voltage used. Although  
not required in most cases, for extremely noisy applications, good analog design practice is to place a 1-nF to  
10-nF bypass capacitor at the comparator input in order to reduce sensitivity to transients and layout parasitic.  
For each SENSEx input, the corresponding output (OUTx) is driven to logic low when the input voltage drops  
below VIT–. When the voltage exceeds VIT+, the output (OUTx) is driven high; see 1.  
8.3.2 Outputs (OUT1, OUT2)  
In a typical device application, the outputs are connected to a reset or enable input of another device, such as a  
digital signal processor (DSP), central processing unit (CPU), field-programmable gate array (FPGA), or  
application-specific integrated circuit (ASIC); or the outputs are connected to the enable input of a voltage  
regulator, such as a dc-dc or low-dropout (LDO) regulator.  
The TPS3779-Q1 provides two push-pull outputs. The logic high level of the outputs is determined by the VDD  
pin voltage. Pullup resistors are not required with this configuration, thus saving board space. However, all  
interface logic levels must be examined. All OUTx connections must be compatible with the VDD pin logic level.  
The TPS3780-Q1 provides two open-drain outputs (OUT1 and OUT2); pullup resistors must be used to hold  
these lines high when the output goes to a high-impedance condition (not asserted). By connecting pullup  
resistors to the proper voltage rails, the outputs can be connected to other devices at correct interface voltage  
levels. The outputs can be pulled up to 5.5 V, independent of the device supply voltage. To ensure proper  
voltage levels, make sure to choose the correct pullup resistor values. The pullup resistor value is determined by  
VOL, the sink current capability, and the output leakage current (Ilkg(OD)). These values are specified in the  
Electrical Characteristics table. By using wired-AND logic, OUT1 and OUT2 can be combined into one logic  
signal. The Inputs (SENSE1, SENSE2) section describes how the outputs are asserted or deasserted. See 1  
for a description of the relationship between threshold voltages and the respective output.  
8.4 Device Functional Modes  
8.4.1 Normal Operation (VDD VDD(min))  
When the voltage on VDD is greater than VDD(min) for tSD, the output signals react to the present state of the  
corresponding SENSEx pins.  
8.4.2 Power-On-Reset (VDD < V(POR)  
)
When the voltage on VDD is lower than the required voltage to internally pull the logic low output to GND  
(V(POR)), both outputs are undefined and are not to be relied upon for proper system function.  
版权 © 2016, Texas Instruments Incorporated  
11  
 
TPS3779-Q1, TPS3780-Q1  
ZHCSF51A JUNE 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS3779-Q1 and TPS3780-Q1 are used as precision, dual-voltage detectors. The monitored voltage, VDD  
voltage, and output pullup voltage (TPS3780-Q1 only) can be independent voltages or connected in any  
configuration.  
9.1.1 Threshold Overdrive  
Threshold overdrive is how much VSENSE1 or VSENSE2 exceeds the specified threshold, and is important to know  
because a smaller overdrive results in a slower OUTx response. Threshold overdrive is calculated as a percent  
of the threshold in question, as shown in 公式 1:  
Overdrive = | (VSENSE1,2 / VIT – 1) × 100% |  
where  
VIT is either VIT– or VIT+, depending on whether calculating the overdrive for the negative-going threshold or the  
positive-going threshold, respectively  
VSENSE1,2 is the voltage at the SENSE1 or SENSE2 input  
(1)  
16 illustrates the minimum detectable pulse on the SENSEx inputs versus overdrive, and is used to visualize  
the relationship that overdrive has on tPD(f) for negative-going events.  
9.1.2 Sense Resistor Divider  
The resistor divider values and target threshold voltage can be calculated by using 公式 2 and 公式 3 to  
determine VMON(UV) and VMON(PG), respectively.  
R1  
R2  
VMON(UV) = 1 +  
× V  
IT-  
÷
«
(2)  
(3)  
R1  
R2  
VMON(PG) = 1 +  
× V  
IT+  
÷
«
where  
R1 and R2 are the resistor values for the resistor divider on the SENSEx pins  
VMON(UV) is the target voltage at which an undervoltage condition is detected  
VMON(PG) is the target voltage at which the output goes high when VMONx rises  
Choose RTOTAL (equal to R1 + R2) so that the current through the divider is approximately 100 times higher than  
the input current at the SENSEx pins. The resistors can have high values to minimize current consumption as a  
result of low input bias current without adding significant error to the resistive divider. For details on sizing input  
resistors, see the Optimizing Resistor Dividers at a Comparator Input application report (SLVA450), available for  
download from www.ti.com.  
12  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
TPS3779-Q1, TPS3780-Q1  
www.ti.com.cn  
ZHCSF51A JUNE 2016REVISED SEPTEMBER 2016  
9.2 Typical Applications  
9.2.1 Monitoring Two Separate Rails  
VDD = 5 V  
0.1 F  
VMON1  
VPULLUP  
VDD  
SENSE1  
R1  
R2  
RPU1  
To a reset or enable  
input of the system.  
VMON2  
R3  
OUT1  
TPS3780C-Q1  
RPU1  
To a reset or enable  
input of the system.  
SENSE2  
GND  
OUT2  
R4  
Copyright © 2016, Texas Instruments Incorporated  
22. Monitoring Two Separate Rails Schematic  
9.2.1.1 Design Requirements  
2. Design Parameters  
PARAMETER  
VDD  
DESIGN REQUIREMENT  
DESIGN RESULT  
5 V  
5 V  
Hysteresis  
10%  
10%  
3.3 V nominal, VMON(PG) = 2.9 V,  
VMON(UV) = 2.6 V  
Monitored voltage 1  
VMON(PG) = 2.908 V, VMON(UV) = 2.618 V  
3 V nominal, VMON(PG) = 2.6 V,  
VMON(UV) = 2.4 V  
Monitored voltage 2  
Output logic voltage  
VMON(PG) = 2.606 V, VMON(UV) = 2.371 V  
3.3-V CMOS  
3.3-V CMOS  
9.2.1.2 Detailed Design Procedure  
1. Select the TPS3780C-Q1. The C version is selected to satisfy the hysteresis requirement. The TPS3780-Q1  
is selected for the output logic requirement. An open-drain output allows for the output to be pulled up to a  
voltage other than VDD.  
2. The resistor divider values are calculated by using 公式 2 and 公式 3. For SENSE1, R1 = 1.13 MΩ and R2 =  
787 kΩ. For SENSE2, R3 (R1) = 681 kΩ and R4 (R2) = 576 kΩ.  
9.2.1.3 Application Curve  
VMON1 (500 mV/div)  
VMON2(500 mV/div)  
OUT1 (1 V/div)  
OUT2 (1 V/div)  
Time(5 ms/div)  
23. Monitoring Two Separate Rails Curve  
版权 © 2016, Texas Instruments Incorporated  
13  
TPS3779-Q1, TPS3780-Q1  
ZHCSF51A JUNE 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
9.2.2 Early Warning Detection  
VMON  
0.1 F  
VDD  
SENSE1  
R1  
R2  
R3  
To a reset or enable  
input of the system.  
OUT1  
TPS3779C-Q1  
To a reset or enable  
input of the system.  
SENSE2  
GND  
OUT2  
Copyright © 2016, Texas Instruments Incorporated  
24. Early Warning Detection Schematic  
9.2.2.1 Design Requirements  
3. Design Parameters  
PARAMETER  
VDD  
DESIGN REQUIREMENT  
DESIGN RESULT  
VMON  
10%  
VMON  
10%  
Hysteresis  
Monitored voltage 1  
Monitored voltage 2  
VMON(PG) = 3.3 V, VMON(UV) = 3 V  
VMON(PG) = 3.9 V, VMON(UV) = 3.5 V  
VMON(PG) = 3.330 V, VMON(UV) = 2.997 V  
VMON(PG) = 3.921 V, VMON(UV) = 3.529 V  
9.2.2.2 Detailed Design Procedure  
1. Select the TPS3779C-Q1. The C version is selected to satisfy the hysteresis requirement. The TPS3779-Q1  
is selected to save on component count and board space.  
2. Use 公式 4 to calculate the total resistance for the resistor divider. Determine the minimum total resistance of  
the resistor network necessary to achieve the current consumption specification. For this example, the  
current flow through the resistor network is chosen to be 1.41 µA. Use the key transition point for VMON2. For  
this example, the low-to-high transition, VMON(PG), is considered more important.  
VMON(PG_ 2)  
3.9 V  
RTOTAL  
=
=
= 2.78 MW  
I
1.41 A  
where  
VMON(PG_2) is the target voltage at which OUT2 goes high when VMON rises  
I is the current flowing through the resistor network  
(4)  
3. After RTOTAL is determined, R3 can be calculated using 公式 5. Select the nearest 1% resistor value for R3.  
In this case, 845 kΩ is the closest value.  
V
1.194 V  
IT+  
R3 =  
=
= 846 kW  
I
1.41 A  
(5)  
4. Use 公式 6 to calculate R2. Select the nearest 1% resistor value for R2. In this case, 150 kΩ is the closest  
value. Use the key transition point for VMON1. For this example, the high-to-low transition, VMON(UV), is  
considered more important.  
RTOTAL  
2.78 MW  
R2 =  
ñ V - R3 =  
ñ 1.074 V - 845 kW = 149 kW  
IT-  
VMON(UV_1)  
3 V  
where  
VMON(UV_1) is the target voltage at which OUT1 goes low when VMON falls  
(6)  
14  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
TPS3779-Q1, TPS3780-Q1  
www.ti.com.cn  
ZHCSF51A JUNE 2016REVISED SEPTEMBER 2016  
5. Use 公式 7 to calculate R1. Select the nearest 1% resistor value for R1. In this case, 1.78 MΩ is a 1%  
resistor.  
R1 = RTOTAL - R2 - R3 = 2.78 MW -150 kW - 845 kW = 1.78 MW  
(7)  
9.2.2.3 Application Curve  
VDD = VMON (1 V/div)  
OUT1 (1 V/div)  
OUT2 (1 V/div)  
Time(5 ms/div)  
25. Early Warning Detection Curve  
10 Power-Supply Recommendations  
The TPS3779-Q1 and TPS3780-Q1 are designed to operate from an input voltage supply range between 1.5 V  
and 5.5 V. An input supply capacitor is not required for this device; however, good analog practice is to place a  
0.1-µF or greater capacitor between the VDD pin and the GND pin. This device has a 7-V absolute maximum  
rating on the VDD pin. If the voltage supply providing power to VDD is susceptible to any large voltage transient  
that can exceed 7 V, additional precautions must be taken.  
For applications where SENSEx is greater than 0 V before VDD, and is subject to a startup slew rate of less than  
200 mV per 1 ms, the output can be driven to logic high in error. To correct the output, cycle the SENSEx lines  
below VIT– or sequence SENSEx after VDD.  
11 Layout  
11.1 Layout Guidelines  
Place the VDD decoupling capacitor close to the device.  
Avoid using long traces for the VDD supply node. The VDD capacitor, along with parasitic inductance from the  
supply to the capacitor, can form an LC tank circuit that creates ringing with peak voltages above the maximum  
VDD voltage.  
11.2 Layout Example  
CIN  
VDD  
VMON1  
R1  
VPU  
1
2
3
6
5
R5  
R2  
OUT1  
OUT2  
VPU  
R4  
4
R6  
R3  
VMON2  
26. Example SOT-23 Layout  
版权 © 2016, Texas Instruments Incorporated  
15  
 
TPS3779-Q1, TPS3780-Q1  
ZHCSF51A JUNE 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
12.1.1.1 评估模块  
评估模块 (EVM) 可与 TPS3779-Q1 TPS3780-Q1 配套使用,帮助评估初始电路性能。TPS3780EVM-154 评估  
模块详细介绍了 TPS3780EVM-154 的设计套件和评估模块。  
EVM 可通过德州仪器 (TI) 网站上的 TPS3779-Q1 TPS3780-Q1 产品文件夹获取,也可直接从 TI 网上商店购  
买。  
12.1.1.2 Spice 模型  
分析模拟电路和系统的性能时,使用 SPICE 模型对电路性能进行计算机仿真非常有用。您可以从相应器件产品文  
件夹中的仿真模型下获取 TPS3779-Q1 TPS3780-Q1 SPICE 模型。  
12.1.2 器件命名规则  
TPS3779xQyyyzQ1 TPS3780xQyyyzQ1 是这些器件的通用命名约定。TPS3779-Q1 TPS3780-Q1 代表此类  
器件所属系列;x 用于表示滞后版本,yyy 预留给封装标识符,z 为封装数量。  
示例:TPS3780CDBVRQ1  
系列:TPS3780-Q1(开漏)  
滞后:10%  
DBV 封装:6 引脚小外形尺寸晶体管 (SOT)-23  
封装数量:R 表示 3000 片  
12.2 文档支持  
12.2.1 相关文档ꢀ  
相关文档如下:  
TPS3780EVM-154 评估模块》(文献编号:SLVU796)  
应用报告《优化比较器输入端的电阻分压器》(文献编号:SLVA450)  
12.3 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.4 相关链接  
下面的表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购  
买链接。  
4. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TPS3779-Q1  
TPS3780-Q1  
16  
版权 © 2016, Texas Instruments Incorporated  
TPS3779-Q1, TPS3780-Q1  
www.ti.com.cn  
ZHCSF51A JUNE 2016REVISED SEPTEMBER 2016  
12.5 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.6 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS3779BQDBVRQ1  
TPS3779CQDBVRQ1  
TPS3780AQDBVRQ1  
TPS3780BQDBVRQ1  
TPS3780CQDBVRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
6
6
6
6
6
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
12OE  
12PE  
12FE  
12GE  
12HE  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS3779BQDBVRQ1  
TPS3779CQDBVRQ1  
TPS3780AQDBVRQ1  
TPS3780BQDBVRQ1  
TPS3780CQDBVRQ1  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
6
6
6
6
6
3000  
3000  
3000  
3000  
3000  
178.0  
178.0  
178.0  
178.0  
178.0  
9.0  
9.0  
9.0  
9.0  
9.0  
3.23  
3.23  
3.23  
3.23  
3.23  
3.17  
3.17  
3.17  
3.17  
3.17  
1.37  
1.37  
1.37  
1.37  
1.37  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS3779BQDBVRQ1  
TPS3779CQDBVRQ1  
TPS3780AQDBVRQ1  
TPS3780BQDBVRQ1  
TPS3780CQDBVRQ1  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
6
6
6
6
6
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
18.0  
18.0  
18.0  
18.0  
18.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS3779ADBVR

Push-pull, low-power, dual-voltage detector in a small &#181;SON package 6-SOT-23 -40 to 125
TI

TPS3779ADBVT

采用小型 µSON 封装的推挽式、低功耗双路电压检测器 | DBV | 6 | -40 to 125
TI

TPS3779ADRYR

Low-Power, Dual-Voltage Detector in Small SON Package
TI

TPS3779ADRYT

Low-Power, Dual-Voltage Detector in Small SON Package
TI

TPS3779BDBVR

采用小型 µSON 封装的推挽式、低功耗双路电压检测器 | DBV | 6 | -40 to 125
TI

TPS3779BDBVT

采用小型 µSON 封装的推挽式、低功耗双路电压检测器 | DBV | 6 | -40 to 125
TI

TPS3779BDRYR

Low-Power, Dual-Voltage Detector in Small SON Package
TI

TPS3779BDRYT

Low-Power, Dual-Voltage Detector in Small SON Package
TI

TPS3779BQDBVRQ1

汽车类、推挽式、双通道、低功耗、高精度电压检测器 | DBV | 6 | -40 to 125
TI

TPS3779CDBVR

采用小型 µSON 封装的推挽式、低功耗双路电压检测器 | DBV | 6 | -40 to 125
TI

TPS3779CDBVT

采用小型 µSON 封装的推挽式、低功耗双路电压检测器 | DBV | 6 | -40 to 125
TI

TPS3779CDRYR

Low-Power, Dual-Voltage Detector in Small SON Package
TI