TPS3808E-Q1 [TI]

汽车类 600nA 超低静态电流可编程延迟监控电路;
TPS3808E-Q1
型号: TPS3808E-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 600nA 超低静态电流可编程延迟监控电路

监控
文件: 总21页 (文件大小:1218K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS3808E-Q1  
ZHCSPW0 APRIL 2023  
TPS3808E-Q1 汽车级低静态电流、可编程延迟监控电路  
1 特性  
3 说明  
• 上电复位发生器具有可调节延迟时间1.25ms 至  
10s  
• 极低静态电流0.6μA典型值)  
• 高阈值精度1%典型值)  
• 提供适用于标准电压轨0.9V 5V 固定阈值电压  
且可调节电压低0.405 V  
TPS3808E-Q1 系列微处理器监控电路可以监视 0.4V  
5V 的系统电压SENSE 电压降至低于预设阈值  
时或手动复位 (MR) 引脚降为逻辑低电平时发出开漏  
RESET 信号。在 SENSE 电压和手动复位 (MR) 返回  
至相应阈值以上之后RESET 输出会在用户可调节延  
迟时间内保持低电平。  
• 手动复(MR) 输入  
• 漏极开路复位输出  
• 温度范围40°C 125°C  
• 小SOT-23-6  
TPS3808E-Q1 器件采用精密基准可实现 0.5% 的阈  
值精度。通过断开 CT 引脚可将复位延迟时间设置为  
20ms通过使用电阻将 CT 引脚连接至 VDD可将复  
位延迟时间设置300ms或通过CT 引脚连接到外  
部电容器用户可1.25ms 10s 之间调整复位延迟  
时间。TPS3808E 器件具有超低的典型静态电流为  
0.6μA因此非常适合电池供电应用。TPS3808E-Q1  
采用 SOT-23-6 封装额定工作温度范围为 –40°C 至  
125°C (TJ)。  
2 应用  
ADAS 域控制器  
汽车网关  
汽车音响主机  
数字驾驶舱处理单元  
远程信息处理控制单元  
驾驶员监控  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPS3808E  
SOT-23 (6)  
2.90mm x 1.60mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
1.2 V  
3.3 V  
VCORE  
SENSE  
SENSE  
VDD  
VIO  
VDD  
MCU  
TPS3808EG33-Q1  
MR  
CT  
TPS3808EG12-Q1  
RESET  
RESET  
GPIO  
CT  
GND  
GND  
GND  
GND  
典型应用电路  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBVS430  
 
 
 
TPS3808E-Q1  
ZHCSPW0 APRIL 2023  
www.ti.com.cn  
Table of Contents  
9.4 Device Functional Modes..........................................12  
10 Application and Implementation................................13  
10.1 Application Information........................................... 13  
10.2 Typical Application.................................................. 13  
11 Power Supply Recommendations..............................14  
12 Layout...........................................................................14  
12.1 Layout Guidelines................................................... 14  
12.2 Layout Example...................................................... 14  
13 Device and Documentation Support..........................16  
13.1 Device Support....................................................... 16  
13.2 Documentation Support.......................................... 16  
13.3 支持资源..................................................................16  
13.4 Trademarks.............................................................16  
13.5 静电放电警告.......................................................... 16  
13.6 术语表..................................................................... 16  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Voltage Thresholds.............................................3  
6 Pin Configuration and Functions...................................4  
7 Specification.................................................................... 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings .............................................................. 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................6  
7.6 Timing Requirements..................................................7  
8 Typical Characteristics................................................... 8  
9 Detailed Description........................................................9  
9.1 Overview.....................................................................9  
9.2 Functional Block Diagram...........................................9  
9.3 Feature Description.....................................................9  
Information.................................................................... 16  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
April 2023  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS430  
2
Submit Document Feedback  
 
TPS3808E-Q1  
ZHCSPW0 APRIL 2023  
www.ti.com.cn  
5 Device Voltage Thresholds  
The following table shows the nominal rail to be monitored and the corresponding threshold voltage of the  
device.  
PART NUMBER  
TPS3808EG01  
TPS3808EG09  
TPS3808EG12  
TPS3808EG125  
TPS3808EG15  
TPS3808EG18  
TPS3808EG19  
TPS3808EG25  
TPS3808EG30  
TPS3808EG33  
TPS3808EG50  
NOMINAL SUPPLY VOLTAGE  
THRESHOLD VOLTAGE (VIT)  
Adjustable  
0.9 V  
1.2 V  
1.25 V  
1.5 V  
1.8 V  
1.9 V  
2.5 V  
3 V  
0.405 V  
0.84 V  
1.12 V  
1.16 V  
1.40 V  
1.67 V  
1.77 V  
2.33 V  
2.79 V  
3.07 V  
4.65 V  
3.3 V  
5 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
English Data Sheet: SBVS430  
 
TPS3808E-Q1  
ZHCSPW0 APRIL 2023  
www.ti.com.cn  
6 Pin Configuration and Functions  
VDD  
1
2
3
6
5
4
RESET  
GND  
MR  
SENSE  
CT  
6-1. DBV Package  
6-Pin SOT-23  
Top View  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
SOT-23  
Reset period programming pin. Connecting this pin to VDD through a 40-kto 200-kresistor or  
leaving it open results in fixed delay times. Connecting this pin to a ground referenced capacitor ≥  
130 pF gives a user-programmable delay time.  
CT  
4
I
GND  
MR  
2
3
Ground  
Driving the manual reset pin ( MR) low asserts RESET. MR is internally tied to VDD by a 90-kΩ  
pull-up resistor.  
I
RESET is an open-drain output that is driven to a low-impedance state when RESET is asserted  
(either the SENSE input is lower than the threshold voltage (VIT) or the MR pin is set to a logic  
low). RESET remains low (asserted) for the reset period after both SENSE is above VIT and MR is  
set to a logic high. A pull-up resistor from 10 kto 1 Mshould be used on this pin, and allows the  
RESET  
1
O
reset pin to attain voltages higher than VDD  
.
This pin is connected to the voltage to be monitored. If the voltage at this terminal drops below the  
threshold voltage VIT, then RESET is asserted.  
SENSE  
VDD  
5
6
I
I
Supply voltage. For good analog design, place a 0.1-μF ceramic capacitor close to this pin.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS430  
4
Submit Document Feedback  
 
TPS3808E-Q1  
ZHCSPW0 APRIL 2023  
www.ti.com.cn  
7 Specification  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX UNIT  
Voltage  
Current  
VDD, VCT, VRESET, VMR, VSENSE  
IRESET  
6.5  
±40  
150  
150  
150  
V
mA  
°C  
°C  
°C  
0.3  
Operating junction temperature, TJ  
Operating free-air temperature, TA  
Storage temperature, Tstg  
-40  
-40  
-65  
Temperature (2)  
(1) Stresses beyond values listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) As a result of the low dissipated power in this device, it is assumed that TJ = TA.  
7.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
±2000  
V
±1000  
V(ESD) Electrostatic discharge  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
MIN  
1.7  
0
NOM  
MAX  
6
UNIT  
V
VDD  
Supply pin voltage  
VSENSE  
VCT  
Input pin voltage  
6
V
CT pin voltage ((1))  
VDD  
6
V
VMR  
MR pin Voltage (2)  
0
0
V
VRESET  
IRESET  
TJ  
Output pin voltage  
6
V
Output pin current  
0
10  
125  
mA  
Junction temperature (free-air temperature)  
-40  
(1) CT pin connected to VDD pin requires a pullup resistor; 40 kis recommended.  
(2) If the logic signal driving MR is less than VDD, then additional current flows into VDD and out of MR.  
7.4 Thermal Information  
TPS3808-Q1  
DBV (SOT23-6)  
THERMAL METRIC(1)  
UNIT  
6 PINS  
180.9  
117.8  
27.8  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
18.9  
27.3  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
English Data Sheet: SBVS430  
 
 
 
 
 
 
 
 
 
 
 
TPS3808E-Q1  
ZHCSPW0 APRIL 2023  
www.ti.com.cn  
7.5 Electrical Characteristics  
At 1.7 V VDD 6 V,CT = MR = Open, RESET Voltage (VRESET) = 100 kΩto VDD, RESET load = 50 pF, and over the  
operating free-air temperature range of 40°C to 125°C, unless otherwise noted. Typical values are at TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDD  
Supply Voltage  
1.7  
6
V
VPOR  
VIT-(UV)  
VIT-(UV)  
VHYS  
Power on reset voltage(2)  
Negative-going threshold accuracy  
Negative-going threshold accuracy  
Hysteresis Voltage(1)  
VOL(max) = 0.25 V, IOUT = 15 µA  
Fixed threshold TPS3808EG01  
1
V
-2  
±1  
±0.5  
1
2
%
-1.5  
1.5  
2.5  
2.5  
%
Fixed Vth  
%
VHYS  
Hysteresis Voltage((1))  
Adjustable Vth  
VDD = 3.3 V  
1
%
IDD  
IDD  
Supply current  
Supply current  
0.6  
0.6  
1.5  
1.5  
µA  
µA  
VDD = 6 V  
ISENSE  
ISENSE  
VOL  
Input current, SENSE pin  
Input current, SENSE pin  
Low level output voltage  
Open drain output leakage current  
MR logic low input  
VSENSE = VIT, TPS3808EG01  
VSENSE = 6 V, Fixed Versions  
1.7 V VDD < 6 V, IOUT = 1 mA  
VDD = VRESET = 6 V  
-25  
25  
1.25  
nA  
µA  
mV  
nA  
V
0.75  
400  
ILKG  
300  
VMR_L  
VMR_H  
RMR  
0.3 VDD  
MR logic high input  
0.7 VDD  
TBD  
V
Manual reset Internal pullup resistance  
90  
TBD  
KΩ  
(1) Hysteresis is with respect of the tripoint (VIT-(UV), VIT+(OV)).  
(2) VPOR is the minimum VDD voltage level for a controlled output state.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS430  
6
Submit Document Feedback  
 
 
 
TPS3808E-Q1  
ZHCSPW0 APRIL 2023  
www.ti.com.cn  
7.6 Timing Requirements  
At 1.7 V VDD 6 V, CT = MR = Open, RESET Voltage (VRESET) = 100 kΩto VDD, RESET load = 50 pF, and over the  
operating free-air temperature range of 40°C to 125°C, unless otherwise noted. Typical values are at TJ = 25°C.  
MIN  
NOM  
MAX UNIT  
tD  
Reset time delay  
CT = Open  
CT = VDD  
12  
20  
28  
420  
ms  
ms  
ms  
s
tD  
Reset time delay  
180  
0.75  
300  
1.25  
0.83  
30  
tD  
Reset time delay  
CT = 130 pF  
CT = 150 nF  
1.75  
tD  
Reset time delay  
tPD  
Propagation detect delay(1) (2)  
Startup delay(3)  
50  
µs  
µs  
µs  
ns  
ns  
tSD  
300  
5
tGI (VIT-)  
tGI (MR)  
tPD (MR)  
Glitch Immunity undervoltage VIT-(UV), 5% Overdrive(1)  
Glitch Immunity MR pin  
50  
Propagation delay from MR low to assert RESET  
500  
(1) 5% Overdrive from threshold. Overdrive % = [VSENSE - VIT] / VIT; Where VIT stands for VIT-(UV) or VIT+(OV)  
(2) tPD measured from threhold trip point (VIT-(UV) or VIT+(OV)) to RESET VOL voltage  
(3) During the power-on sequence, VDD must be at or above VDD (MIN) for at least tSD + tD before the output is in the correct state.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
English Data Sheet: SBVS430  
 
 
 
 
TPS3808E-Q1  
ZHCSPW0 APRIL 2023  
www.ti.com.cn  
8 Typical Characteristics  
At TJ = 25°C, VDD = 3.3 V, RLRESET = 100 k, and CLRESET = 50 pF, unless otherwise noted.  
100  
10  
−40°C, +25°C, +125°C  
1
0.1  
0.01  
0.001  
0.0001  
0.001  
0.01  
0.1  
1
10  
m
CT ( F)  
8-1. RESET Time-Out Period vs CT  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS430  
8
Submit Document Feedback  
 
TPS3808E-Q1  
ZHCSPW0 APRIL 2023  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS3808E-Q1 microprocessor supervisory product family is designed to assert a RESET signal when either  
the SENSE pin voltage drops below VIT or the manual reset ( MR) is driven low. The RESET output remains  
asserted for a user-adjustable time after both the manual reset ( MR) and SENSE voltages return above their  
respective thresholds.  
9.2 Functional Block Diagram  
VDD  
VDD  
RESET  
90 k  
MR  
Reset  
Logic  
Timer  
GND  
CT  
SENSE  
+
0.4 V  
VREF  
GND  
Adjustable-Voltage Version  
VDD  
VDD  
90 k  
RESET  
MR  
SENSE  
Reset  
Logic  
Timer  
R1  
R2  
CT  
+
0.4 V  
VREF  
GND  
Fixed-Voltage Version  
9.3 Feature Description  
A broad range of voltage threshold and reset delay time adjustments are available for the TPS3808E-Q1 device,  
allowing these devices to be used in a wide array of applications. Reset threshold voltages can be factory-set  
from 0.82 V to 3.3 V or from 4.4 V to 5 V, while the adjustable variant can be set to any voltage above 0.405 V  
using an external resistor divider. Two preset delay times are also user-selectable: connecting the CT pin to VDD  
results in a 300-ms reset delay, whereas leaving the CT pin open yields a 20-ms reset delay. In addition,  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
English Data Sheet: SBVS430  
 
 
 
 
TPS3808E-Q1  
ZHCSPW0 APRIL 2023  
www.ti.com.cn  
connecting a capacitor between CT and GND allows the designer to select any reset delay period from 1.25 ms  
to 10 s.  
9.3.1 SENSE Input  
The SENSE input provides a pin at which any system voltage can be monitored. If the voltage on this pin drops  
below VIT, then RESET is asserted. The comparator has a built-in hysteresis to ensure smooth RESET  
assertions and de-assertions. It is good analog design practice to put a 1-nF to 10-nF bypass capacitor on the  
SENSE input to reduce sensitivity to transients and layout parasitics.  
The TPS3808E-Q1 device is relatively immune to short negative transients on the SENSE pin. Sensitivity to  
transients is dependent on threshold overdrive.  
The adjustable variant can be used to monitor any voltage rail down to 0.405 V using the circuit shown in 9-1.  
VOUT  
VIN  
VDD  
R1  
R2  
VIT’  
V
R1  
R2  
TPS3808EG01-Q1  
SENSE  
RESET  
1 nF  
GND  
9-1. Using the TPS3808EG01-Q1 to Monitor a User-Defined Threshold Voltage  
9.3.2 Selecting the RESET Delay Time  
The TPS3808E-Q1 has three options for setting the RESET delay time as shown in 9-2. 9-2 (a) shows the  
configuration for a fixed 300-ms typical delay time by tying CT to VDD; a resistor from 40 kto 200 kmust be  
used. Supply current is not affected by the choice of resistor. 9-2 (b) shows a fixed 20-ms delay time by  
leaving the CT pin open. 9-2 (c) shows a ground referenced capacitor connected to CT for a user-defined  
program time between 1.25 ms and 10 s.  
3.3 V  
3.3 V  
3.3 V  
VDD  
VDD  
VDD  
SENSE  
SENSE  
SENSE  
50 k  
TPS3808E-Q1  
TPS3808E-Q1  
TPS3808E-Q1  
CT  
CT  
RESET  
RESET  
CT  
RESET  
CT  
GND  
GND  
GND  
CT (nF)  
175  
20 ms Delay  
Delay (s) =  
+ 0.5 x 10-3 (s)  
300 ms Delay  
(a)  
(b)  
(C)  
9-2. Configuration Used to Set the RESET Delay Time  
The capacitor CT should be 100 pF nominal value in order for the TPS3808Exxx to recognize that the  
capacitor is present. The capacitor value for a given delay time can be calculated using 方程1.  
t (s) 0.5 × 10 3 (s) × 175  
D
-
CT (nF)  
=
[
]
(1)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS430  
10  
Submit Document Feedback  
 
 
 
TPS3808E-Q1  
ZHCSPW0 APRIL 2023  
www.ti.com.cn  
The reset delay time is determined by the time it takes an on-chip precision 220-nA current source to charge the  
external capacitor to the internal threshold. When a RESET is asserted, the capacitor is discharged. When the  
RESET conditions are cleared, the internal current source is enabled and begins to charge the external  
capacitor. When the voltage on this capacitor reaches higher than the internal threshold, RESET is deasserted.  
Note that a low-leakage type capacitor such as a ceramic should be used, and that stray capacitance around  
this pin may cause errors in the reset delay time.  
9.3.3 Manual RESET ( MR) Input  
The manual reset ( MR) input allows a processor or other logic circuits to initiate a reset. A logic low (0.3 VDD) on  
MR causes RESET to assert. After MR returns to a logic high and SENSE is above its reset threshold, RESET is  
de-asserted after the user-defined reset delay expires. Note that MR is internally tied to VDD using a 90-kΩ  
resistor, so this pin can be left unconnected if MR is not used.  
See 9-3 for how MR can be used to monitor multiple system voltages. Note that if the logic signal driving MR  
does not go fully to VDD, there is some additional current draw into VDD as a result of the internal pullup resistor  
on MR. To minimize current draw, a logic-level FET can be used as illustrated in 9-4.  
1.2 V  
3.3 V  
VCORE  
SENSE  
SENSE  
VDD  
VIO  
VDD  
MCU  
TPS3808EG33-Q1  
MR  
CT  
TPS3808EG12-Q1  
RESET  
RESET  
GPIO  
CT  
GND  
GND  
GND  
GND  
9-3. Using MR to Monitor Multiple System Voltages  
VDD  
SENSE  
90 kΩ  
MR  
RESET  
TPS3808E-Q1  
9-4. Using an External MOSFET to Minimize IDD When MR Signal Does Not Go to VDD  
9.3.4 RESET Output  
RESET remains high (unasserted) as long as SENSE is above its threshold (VIT) and the manual reset ( MR) is  
logic high. If either SENSE falls below VIT or MR is driven low, RESET is asserted, driving the RESET pin to a  
low impedance.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
English Data Sheet: SBVS430  
 
 
TPS3808E-Q1  
ZHCSPW0 APRIL 2023  
www.ti.com.cn  
Once MR is again logic high and SENSE is above VIT + VHYS (the threshold hysteresis), a delay circuit is  
enabled that holds RESET low for a specified reset delay period. Once the reset delay has expired, the RESET  
pin goes to a high impedance state. The pullup resistor from the open-drain RESET to the supply line can be  
used to allow the reset signal for the microprocessor to have a voltage higher than VDD (up to 6 V). The pullup  
resistor should be no smaller than 10 kas a result of the finite impedance of the RESET line.  
9.4 Device Functional Modes  
9-1. Truth Table  
MR  
L
SENSE > VIT  
RESET  
0
1
0
1
L
L
L
H
L
H
H
9.4.1 Normal Operation (VDD > VDD(min)  
)
When VDD is greater than VDD(min), the RESET signal is determined by the voltage on the SENSE pin and the  
logic state of MR.  
MR high: When the voltage on VDD is greater than 1.7 V for a time of the selected tD, the RESET signal  
corresponds to the voltage on SENSE relative to VIT.  
MR low: in this mode, RESET is held low regardless of the value of the SENSE pin.  
9.4.2 Above Power-On Reset but Less Than VDD(min) (VPOR < VDD < VDD(min)  
)
When the voltage on VDD is less than the device VDD(min) voltage, and greater than the power-on reset voltage  
(VPOR), the RESET signal is asserted and low impedance, respectively, regardless of the voltage on the SENSE  
pin.  
9.4.3 Below Power-On Reset (VDD < VPOR  
)
When the voltage on VDD is lower than the required voltage (VPOR) needed to internally pull the asserted output  
to GND, RESET is undefined and should not be relied upon for proper device function.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS430  
12  
Submit Document Feedback  
 
TPS3808E-Q1  
ZHCSPW0 APRIL 2023  
www.ti.com.cn  
10 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
The following sections describe in detail how to properly use this device, depending on the requirements of the  
final application.  
10.2 Typical Application  
A typical application of the TPS3808E-Q1 used with a 3.3-V processor is shown in 10-1. The open-drain  
RESET output is typically connected to the RESET input of a microprocessor. A pullup resistor must be used to  
hold this line high when RESET is not asserted. The RESET output is undefined for voltage below 0.8 V, but this  
characteristic is normally not a problem because most microprocessors do not function below this voltage.  
3.3V  
VDD  
SENSE  
VDD  
VIO  
MCU  
TPS3808EG33-Q1  
MR  
CT  
RESET  
GPIO  
GND  
GND  
GND  
10-1. Typical Application of the TPS3808E-Q1 With an C2000 Processor  
10.2.1 Design Requirements  
The TPS3808E-Q1 is intended to drive the RESET input of a microprocessor. The RESET pin is pulled high with  
a 100-kresistor and the reset delay time is controlled by CT depending on the reset requirement times of the  
microprocessor. In this case, CT is left open for a typical reset delay time of 20 ms.  
10.2.2 Detailed Design Procedure  
The primary constraint for this application is the reset delay time. In this case, because CT is open, it is set to  
20 ms. A 0.1-µF decoupling capacitor is connected to the VDD pin and a 100-kresistor is used to pull up the  
RESET pin high. The MR pin can be connected to an external signal if desired.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
English Data Sheet: SBVS430  
 
 
 
 
TPS3808E-Q1  
ZHCSPW0 APRIL 2023  
www.ti.com.cn  
10.2.2.1 Immunity to SENSE Pin Voltage Transients  
The TPS3808E-Q1 is relatively immune to short negative transients on the SENSE pin. Sensitivity to transients  
depends on threshold overdrive. Threshold overdrive is defined by how much the VSENSE exceeds the specified  
threshold, and is important to know because the smaller the overdrive, the slower the RESET response.  
Threshold overdrive is calculated as a percent of the threshold in question, as shown in 方程2:  
Overdrive = | (VSENSE / VIT 1) × 100% |  
(2)  
where:  
VIT is the threshold voltage.  
11 Power Supply Recommendations  
These devices are designed to operate from an input supply with a voltage range between 1.7 V and 6. V. Use a  
low-impedance power supply to eliminate inaccuracies caused by current changes during the voltage reference  
refresh.  
12 Layout  
12.1 Layout Guidelines  
Make sure the connection to the VDD pin is low impedance. Place a 0.1-µF ceramic capacitor near the VDD pin. If  
no capacitor is connected to the CT pin, parasitic capacitance on this pin should be minimized so the RESET  
delay time is not adversely affected.  
12.2 Layout Example  
The layout example in 12-1 shows how the TPS3808E-Q1 is laid out on a printed circuit board (PCB) for a 20-  
ms delay.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS430  
14  
Submit Document Feedback  
 
 
 
 
 
TPS3808E-Q1  
ZHCSPW0 APRIL 2023  
www.ti.com.cn  
VDD  
RESET  
GND  
VDD  
SENSE  
CT  
CIN  
MR  
GND  
Vias used to connect pins for application-specific connections  
12-1. Layout Example for a 20-ms Delay  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
English Data Sheet: SBVS430  
 
TPS3808E-Q1  
ZHCSPW0 APRIL 2023  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 Development Support  
13.1.1.1 Evaluation Modules  
An evaluation module (EVM) is available to assist in the initial circuit performance evaluation using the  
TPS3808E-Q1. The TPS3808EG01DBVEVM evaluation module can be requested at the Texas Instruments  
website through the product folders or purchased directly from the TI eStore and is compatable with the  
TPS3808E-Q1. TPS3808E-Q1 sampled should be ordered and used to replace the existing TPS3808 device for  
testing.  
13.2 Documentation Support  
13.2.1 Related Documentation  
The following related documents are available for download at www.ti.com:  
Application note. Optimizing Resistor Dividers at a Comparator Input. Literature number SLVA450.  
Application note. Sensitivity Analysis for Power Supply Design. Literature number SLVA481.  
TPS3808EG01DBVEVM Evaluation Module User Guide. Literature number SBVU015.  
13.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
13.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most-  
current data available for the designated devices. This data is subject to change without notice and without  
revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS430  
16  
Submit Document Feedback  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTPS3808EG01DBVQ1  
ACTIVE  
SOT-23  
DBV  
6
3000  
TBD  
Call TI  
Call TI  
-40 to 125  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS3808G01

Low Quiescent Current, Programmable-Delay Supervisory Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3808G01-Q1

LOW-QUIESCENT-CURRENT PROGRAMMABLE-DELAY SUPERVISORY CIRCUIT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3808G01DBVR

Low Quiescent Current, Programmable-Delay Supervisory Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3808G01DBVRG4

Low Quiescent Current, Programmable-Delay Supervisory Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3808G01DBVT

Low Quiescent Current, Programmable-Delay Supervisory Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3808G01DBVTG4

Low Quiescent Current, Programmable-Delay Supervisory Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3808G01DRVR

Low Quiescent Current, Programmable-Delay Supervisory Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3808G01DRVRG4

Low Quiescent Current, Programmable-Delay Supervisory Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3808G01DRVT

Low Quiescent Current, Programmable-Delay Supervisory Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3808G01DRVTG4

Low Quiescent Current, Programmable-Delay Supervisory Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3808G01MDBVTEP

LOW QUIESCENT CURRENT, PROGRAMMABLE DELAY SUPERVISORY CIRCUIT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3808G01QDBVRQ1

LOW-QUIESCENT-CURRENT PROGRAMMABLE-DELAY SUPERVISORY CIRCUIT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI