TPS3840-Q1 [TI]

具有手动复位和可编程复位延时时间的汽车类高输入电压监控器;
TPS3840-Q1
型号: TPS3840-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有手动复位和可编程复位延时时间的汽车类高输入电压监控器

监控
文件: 总38页 (文件大小:1528K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS3840-Q1  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
具有 MR 和可编程延迟功能的 TPS3840-Q1 汽车类毫微 IQ 电压监控器  
1 特性  
2 应用  
1
符合汽车类 应用要求  
汽车音响主机和仪表组  
具有符合 AEC-Q100 标准的下列特性:  
汽车显示屏、集成驾驶舱和驾驶员监控  
远程信息处理控制单元和紧急呼叫  
器件温度等级 1–40°C +125°C 的环境工作  
温度范围  
3 说明  
器件 HBM ESD 分类等级 2  
TPS3840-Q1 系列电压监控器或复位 IC 可在高电压电  
平下工作,同时能够在整个 VDD 和温度范围内保持非  
常低的静态电流。TPS3840-Q1 可提供低功耗、高精  
度和低传播延迟(tp_HL = 30µs 典型值)的最佳组合。  
器件 CDM ESD 分类等级 C7B  
宽工作电压范围:1.5V 10V  
利用外部电阻器来扩展输入电压范围  
毫微电源电流:350nA(典型值)、700nA(最大  
值)  
VDD 上的电压降至负电压阈值 (VIT-) 以下或手动复  
位被拉至低逻辑 (VMR_L) 时,复位输出信号会置位。当  
固定阈值电压 (VIT-)  
阈值范围为 1.6V 4.9V(阶跃为 0.1V)  
高精度:1%(典型值)、1.5%(最大值)  
VDD 升至 VIT- 加迟滞 (VIT+) 以上以及手动复位 (MR) 悬  
空或高于 VMR_H、复位延时时间 (tD) 已过期时,复位信  
号会清除。可以通过在 CT 引脚和地之间连接一个电容  
器对复位延时时间进行编程。对于快速复位,可以将  
CT 引脚悬空。  
内置的迟滞 (VIT+  
)
1.6V < VIT- 3.0V = 100mV(典型值)  
3.1V VIT- < 4.9V = 200mV(典型值)  
快速启动延迟 (tSTRT)350µs(最大值)  
其他 特性:低上电复位电压 (VPOR)、针对 MR 和  
VDD 的内置毛刺抑制保护、内置迟滞、低漏极开路输  
出漏电流 (ILKG(OD))TPS3840-Q1 是一款用于汽车应  
用和 电池供电/低功耗 应用的完美电压监控 解决方  
案。  
基于电容器的可编程复位延时时间:  
tD50µs(无电容器)至 6.2s (10µF)  
低电平有效手动复位 (MR)  
三种输出拓扑:  
TPS3840DL-Q1:漏极开路,低电平有效  
(RESET)  
器件信息(1)  
TPS3840PL-Q1:推挽,低电平有效 (RESET)  
TPS3840PH-Q1:推挽,高电平有效 (RESET)  
器件型号  
封装  
封装尺寸(标称值)  
TPS3840-Q1  
SOT-23 (5) (DBV)  
2.90mm × 1.60mm  
封装:5 引脚 SOT-23 (DBV)  
(1) 有关封装详细信息,请参阅数据表末尾的机械制图附录。  
典型应用电路  
3.3V  
1.8V  
VCORE  
VI/O  
Microcontroller  
VDD  
VDD  
MR  
RESET  
TPS3840PL18  
CT GND  
RESET  
GND  
MR  
RESET  
TPS3840DL30  
CT  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVSBA1  
 
 
 
 
TPS3840-Q1  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 16  
8.4 Device Functional Modes........................................ 19  
Application and Implementation ........................ 20  
9.1 Application Information............................................ 20  
9.2 Typical Application ................................................. 20  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings ............................................................ 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements................................................ 7  
7.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
8.2 Functional Block Diagram ....................................... 16  
9
10 Power Supply Recommendations ..................... 25  
11 Layout................................................................... 25  
11.1 Layout Guidelines ................................................. 25  
11.2 Layout Example .................................................... 25  
12 器件和文档支持 ..................................................... 26  
12.1 器件命名规则......................................................... 26  
12.2 社区资源................................................................ 27  
12.3 ....................................................................... 27  
12.4 静电放电警告......................................................... 27  
12.5 Glossary................................................................ 27  
13 机械、封装和可订购信息....................................... 27  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (April 2019) to Revision A  
Page  
预告信息更改为生产数据发布”......................................................................................................................................... 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TPS3840-Q1  
www.ti.com.cn  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
5 Device Comparison Table  
Device Comparison Table shows the variants planned to release at RTM, however other voltages from 3 at  
the end of datasheet can be sample upon request, please contact TI sales representative for details.  
PART NUMBER  
TPS3840DL16DBVRQ1(1)  
TPS3840DL25DBVRQ1(1)  
TPS3840DL28DBVRQ1(1)  
TPS3840DL29DBVRQ1(1)  
TPS3840DL30DBVRQ1(1)  
TPS3840DL31DBVRQ1(1)  
TPS3840DL41DBVRQ1(1)  
TPS3840DL42DBVRQ1(1)  
TPS3840DL44DBVRQ1(1)  
TPS3840DL45DBVRQ1(1)  
TPS3840PL25DBVRQ1(2)  
TPS3840PH27DBVRQ1(3)  
TPS3840PH30DBVRQ1(3)  
OUTPUT TOPOLOGY  
Open-Drain, Active-Low  
Open-Drain, Active-Low  
Open-Drain, Active-Low  
Open-Drain, Active-Low  
Open-Drain, Active-Low  
Open-Drain, Active-Low  
Open-Drain, Active-Low  
Open-Drain, Active-Low  
Open-Drain, Active-Low  
Open-Drain, Active-Low  
Push-Pull, Active-Low  
Push-Pull, Active-High  
Push-Pull, Active-High  
THRESHOLD (Vit-) (V)  
HYSTERESIS (mV)  
1.6  
2.5  
2.8  
2.9  
3.0  
3.1  
4.1  
4.2  
4.4  
4.5  
2.5  
2.7  
3.0  
100  
100  
100  
100  
100  
200  
200  
200  
200  
200  
100  
100  
100  
(1) TPS3840DL-Q1: Open-Drain, Active-Low (RESET)  
(2) TPS3840PL-Q1: Push-Pull, Active-Low (RESET)  
(3) TPS3840PH-Q1: Push-Pull, Active-High (RESET)  
Copyright © 2019, Texas Instruments Incorporated  
3
 
TPS3840-Q1  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
DBV Package  
5-Pin  
TPS3840PL-Q1, TPS3840DL-Q1 Top View  
DBV Package  
5-Pin  
TPS3840PH-Q1 Top View  
RESET  
VDD  
1
2
3
5
CT  
RESET  
VDD  
1
2
3
5
CT  
/ NC  
GND  
4
MR  
GND  
4
MR / NC  
Not to scale  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
TPS3840PL-Q1,  
TPS3840DL-Q1  
TPS3840PH-Q1  
RESET  
N/A  
1
O
Active-High Output Reset Signal: This pin is driven high  
when either the MR pin is driven to a logic low or VDD  
voltage falls below the negative voltage threshold (VIT-).  
RESET remains high (asserted) for the delay time period (tD)  
after both MR is floating or above VMR_L and VDD voltage  
rise above VIT+.  
RESET  
1
N/A  
O
Active-Low Output Reset Signal: This pin is driven logic  
when either the MR pin is driven to a logic low or VDD  
voltage falls below the negative voltage threshold (VIT-).  
RESET remains low (asserted) for the delay time period (tD)  
after both MR is floating or above VMR_L and VDD voltage  
rise above VIT+.  
VDD  
2
3
4
2
3
4
I
_
I
Input Supply Voltage. TPS3840-Q1 monitors VDD voltage  
GND  
Ground  
MR / NC  
Manual Reset. Pull this pin to a logic low (VMR_L) to assert a  
reset signal in the output pin. After the MR pin is left floating  
or pull to VMR_H the output goes to the nominal state after the  
reset delay time(tD) expires. MR can be left floating when  
not in use. NC stands for "No Connection" or floating.  
CT  
5
5
-
Capacitor Time Delay Pin. The CT pin offers a user-  
programmable delay time. Connect an external capacitor on  
this pin to adjust time delay. When not in use leave pin  
floating for the smallest fixed time delay.  
4
Copyright © 2019, Texas Instruments Incorporated  
TPS3840-Q1  
www.ti.com.cn  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range, unless otherwise noted(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
12  
UNIT  
VDD  
RESET (TPS3840PL)  
VDD + 0.3  
VDD + 0.3  
12  
RESET (TPS3840PH)  
Voltage  
V
RESET (TPS3840DL)  
MR(2)  
12  
CT  
5.5  
Current  
RESET pin and RESET pin  
Operating junction temperature, TJ  
Storage, Tstg  
±70  
mA  
°C  
–40  
–65  
150  
Temperature(3)  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If the logic signal driving MR is less than VDD, then additional current flows into VDD and out of MR. VMR should not be higher than VDD.  
(3) As a result of the low dissipated power in this device, it is assumed that TJ = TA.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-  
001(1)  
± 2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101(2)  
± 750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.5  
0
NOM  
MAX  
10  
UNIT  
V
VDD  
Input supply voltage  
VRESET, VRESET  
IRESET, IRESET  
TJ  
RESET pin and RESET pin voltage  
RESET pin and RESET pin current  
Junction temperature (free air temperature)  
Manual reset pin voltage  
10  
V
0
±5  
mA  
°C  
V
–40  
0
125  
VDD  
(1)  
VMR  
(1) If the logic signal driving MR is less than VDD, then additional current flows into VDD and out of MR. VMR should not be higher than VDD.  
7.4 Thermal Information  
TPS3840  
THERMAL METRIC(1)  
DBV (SOT23-5)  
5 PINS  
187.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
109.2  
92.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
35.4  
ψJB  
92.5  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2019, Texas Instruments Incorporated  
5
 
TPS3840-Q1  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.5 Electrical Characteristics  
At 1.5 V VDD 10 V, CT = MR = Open, RESET pull-up resistor (Rpull-up) = 100 kΩ to VDD, output reset load (CLOAD) = 10 pF  
and over the operating free-air temperature range – 40°C to 125°C, unless otherwise noted. Typical values are at TJ = 25°C.  
PARAMETER  
COMMON PARAMETERS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VDD  
Input supply voltage  
Negative-going input threshold accuracy(1)  
1.5  
–1.5  
175  
75  
10  
1.5  
V
VIT-  
-40°C to 125°C  
1
200  
100  
%
VHYS  
VHYS  
Hysteresis on VIT- pin  
VIT- = 3.1 V to 4.9 V  
225  
125  
mV  
mV  
Hysteresis on VIT- pin  
VIT- = 1.6 V to 3.0 V  
VDD = 1.5 V < VDD < 10 V  
(2)  
IDD  
Supply current into VDD pin  
VDD > VIT+  
300  
700  
600  
nA  
TA = -40°C to 125°C  
VMR_L  
VMR_H  
RMR  
Manual reset logic low input(3)  
Manual reset logic high input(3)  
Manual reset internal pull-up resistance  
CT pin internal resistance  
mV  
V
0.7VDD  
350  
100  
500  
kΩ  
kΩ  
RCT  
650  
TPS3840PL (Push-Pull Active-Low)  
VOL(max) = 200 mV  
IOUT(Sink) = 200 nA  
VPOR  
Power on Reset Voltage(4)  
300  
200  
mV  
mV  
1.5 V < VDD < 5 V  
VDD < VIT-  
Low level output voltage  
VOL  
IOUT(Sink) = 2 mA  
1.5 V < VDD(2)< 5 V  
VDD > VIT+  
IOUT(Source) = 2 mA  
0.8VDD  
0.8VDD  
V
V
High level output voltage  
VOH  
5 V < VDD < 10 V  
(2)  
VDD > VIT+  
IOUT(Source) = 5 mA  
TPS3840PH (Push-Pull Active-High)  
VPOR  
Power on Reset Voltage(4)  
VOH, IOUT(Source) = 500 nA  
950  
200  
mV  
mV  
1.5 V < VDD(2)< 5 V  
VDD > VIT+  
IOUT(Sink) = 2 mA  
Low level output voltage  
VOL  
1.5 V < VDD(2)< 5 V  
VDD > VIT+  
200  
mV  
V
IOUT(Sink) = 5 mA  
High level output voltage  
1.5 V < VDD < 5 V, VDD < VIT-  
IOUT(Source) = 2 mA  
,
VOH  
0.8VDD  
TPS3840DL(Open-Drain)  
Power on Reset Voltage(4)  
VOL(max) = 0.2 V  
IOUT (Sink) = 5.6 uA  
VPOR  
950  
200  
mV  
mV  
1.5 V < VDD < 5 V  
VDD < VIT-  
Low level output voltage  
VOL  
IOUT(Sink) = 2 mA  
RESET pin in High Impedance,  
VDD = VRESET = 5.5 V  
VIT+ < VDD  
Ilkg(OD) Open-Drain output leakage current  
90  
nA  
(1) VIT- threshold voltage range from 1.6 V to 4.9 V in 100 mV steps, for released versions see Device Voltage Thresholds table.  
(2) VIT+ = VHYS + VIT-  
(3) If the logic signal driving MR is less than VDD, then additional current flows into VDD and out of MR  
(4) VPOR is the minimum VDD voltage level for a controlled output state. VDD slew rate 100mV/µs  
6
Copyright © 2019, Texas Instruments Incorporated  
 
TPS3840-Q1  
www.ti.com.cn  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
7.6 Timing Requirements  
At 1.5 V VDD 10 V, CT = MR = Open, RESET pull-up resistor (Rpull-up) = 100 kΩ to VDD, output reset load (CLOAD) = 10 pF  
and over the operating free-air temperature range – 40°C to 125°C, VDD slew rate < 100mV / us, unless otherwise noted.  
Typical values are at TJ = 25°C.  
PARAMETER  
Startup Delay(1)  
TEST CONDITIONS  
CT pin open  
MIN  
TYP  
MAX  
UNIT  
tSTRT  
tP_HL  
100  
220  
350  
µs  
Propagation detect delay for VDD falling  
below VIT-  
VDD = VIT+ to (VIT-) - 10%(2)  
CT pin = open  
15  
30  
50  
µs  
µs  
tD  
Reset time delay  
CT pin = 10 nF  
CT pin = 1 µF  
5% VIT- overdrive(3)  
6.2  
619  
10  
ms  
ms  
µs  
ns  
tGI_VIT-  
tMR_PW  
tMR_RES  
Glitch immunity VIT-  
MR pin pulse duration to initiate reset  
Propagation delay from MR low to reset  
300  
700  
VDD = 4.5 V, MR < VMR_L  
ns  
VDD = 4.5 V,  
MR = VMR_L to VMR_H  
tMR_tD  
Delay from release MR to deasert reset  
tD  
ms  
(1) When VDD starts from less than the specified minimum VDD and then exceeds VIT+, reset is release after the startup delay (tSTRT), a  
capacitor at CT pin will add tD delay to tSTRT time  
(2) tP_HL measured from threhold trip point (VIT-) to VOL for active low variants and VOH for active high variants.  
(3) Overdrive % = [(VDD/ VIT-) - 1] × 100%  
VIT+  
VIT-  
VDD(MIN)  
VDD  
VPOR  
tSTRT + tD  
tP_HL  
tD  
tP_HL  
tSTRT + tD  
VOH  
RESET  
VOL  
(1) tD (no cap) is included in tSTRT time delay. If tD delay is programmed by an external capacitor connected to CT pin then  
tD programmed time will be added to the startup time, VDD slew rate = 100 mV / µs.  
(2) Open-Drain timing diagram assumes pull-up resistor is connected to RESET  
3. Timing Diagram TPS3840DL-Q1 (Open-Drain Active-Low)  
版权 © 2019, Texas Instruments Incorporated  
7
TPS3840-Q1  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
VIT+  
VIT-  
VDD(MIN)  
VDD  
VPOR  
tP_HL  
tSTRT + tD  
tD  
tP_HL  
tSTRT + tD  
VOH  
RESET  
VOL  
(3) tD (no cap) is included in tSTRT time delay. If tD delay is programmed by an external capacitor connected to CT pin, then  
tD programmed time will be added to the startup time. VDD slew rate = 100 mV / µs.  
4. Timing Diagram TPS3840PL-Q1 (Push-Pull Active-Low)  
VIT+  
VIT-  
VDD(MIN)  
VDD  
VPOR  
tSTRT + tD  
tP_HL  
tD  
tP_HL  
tSTRT + tD  
VOH  
RESET  
VOL  
(4) tD (no cap) is included in tSTRT time delay. If tD delay is programmed by an external capacitor connected to CT pin, then  
tD programmed time will be added to the total startup time. VDD slew rate = 100 mV / µs.  
5. Timing Diagram TPS3840PH-Q1 (Push-Pull Active-High)  
8
版权 © 2019, Texas Instruments Incorporated  
TPS3840-Q1  
www.ti.com.cn  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
7.7 Typical Characteristics  
Typical characteristics show the typical performance of the TPS3840-Q1 device. Test conditions are TJ = 25°C, VDD = 3.3 V,  
Rpull-up = 100 k, CLoad = 50 pF, unless otherwise noted.  
0.6  
0.55  
0.5  
0.6  
0.55  
0.5  
25°C  
-40°C  
125°C  
25°C  
-40°C  
125°C  
0.45  
0.4  
0.45  
0.4  
0.35  
0.3  
0.35  
0.3  
0.25  
0.2  
0.25  
0.2  
0.15  
0.1  
0.15  
0.1  
0.05  
0.05  
1
2
3
4
5
VDD (V)  
6
7
8
9
10  
1
2
3
4
5
VDD (V)  
6
7
8
9
10  
IDDv  
IDDv  
6. Supply Current vs Supply Voltage for TPS3840DL49-Q1  
7. Supply Current vs Supply Voltage for TPS3840PL49-Q1  
0.6  
0.6  
25°C  
0.55  
DL16  
DL29  
DL49  
0.5  
-40°C  
125°C  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.45  
0.4  
0.35  
0.3  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
0.25  
0.2  
0.15  
0.1  
0.05  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
1
2
3
4
5 6  
VDD (V)  
7
8
9
10  
VIT_  
IDDv  
8. Supply Current vs Supply Voltage for TPS3840PH49-  
9. Negative-going Input Threshold Accuracy over  
Q1  
Temperature for TPS3840DL-Q1  
0.6  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
PL16  
PL28  
PL49  
PH16  
PH30  
PH49  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
VIT_  
VIT_  
10. Negative-going Input Threshold Accuracy over  
11. Negative-going Input Threshold Accuracy over  
Temperature for TPS3840PL-Q1  
Temperature for TPS3840PH-Q1  
版权 © 2019, Texas Instruments Incorporated  
9
TPS3840-Q1  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
Typical characteristics show the typical performance of the TPS3840-Q1 device. Test conditions are TJ = 25°C, VDD = 3.3 V,  
Rpull-up = 100 k, CLoad = 50 pF, unless otherwise noted.  
20  
15  
10  
5
20  
15  
10  
5
DL16  
DL29  
DL49  
PL16  
PL28  
PL49  
0
0
-5  
-5  
-10  
-15  
-20  
-10  
-15  
-20  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
Vhys  
Vhys  
12. Input Threshold VIT- Hysteresis Accuracy for  
13. Input Threshold VIT- Hysteresis Accuracy for  
TPS3840DL-Q1  
TPS3840PL-Q1  
20  
15  
10  
5
10  
9
PH16  
PH30  
PH49  
25°C  
-40°C  
125°C  
8
7
6
5
0
4
-5  
3
2
-10  
-15  
-20  
1
0
-1  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
0
1
2
3
4
5
VDD (V)  
6
7
8
9
10  
Vhys  
VRES  
14. Input Threshold VIT- Hysteresis Accuracy for  
15. Output Voltage vs Input Voltage for TPS3840DL49-Q1  
TPS3840PH-Q1  
10  
9
5.5  
25°C  
-40°C  
125°C  
25°C  
-40°C  
125°C  
5
8
4.5  
4
7
6
3.5  
3
5
4
2.5  
2
3
2
1.5  
1
1
0
0.5  
0
-1  
0
1
2
3
4
5
VDD (V)  
6
7
8
9
10  
0
1
2
3
4
5
VDD (V)  
6
7
8
9
10  
VRES  
VRES  
16. Output Voltage vs Input Voltage for TPS3840PL49-Q1  
17. Output Voltage vs Input Voltage for TPS3840PH49-Q1  
10  
版权 © 2019, Texas Instruments Incorporated  
TPS3840-Q1  
www.ti.com.cn  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
Typical Characteristics (接下页)  
Typical characteristics show the typical performance of the TPS3840-Q1 device. Test conditions are TJ = 25°C, VDD = 3.3 V,  
Rpull-up = 100 k, CLoad = 50 pF, unless otherwise noted.  
0.055  
0.05  
140  
120  
100  
80  
25°C  
-40°C  
125°C  
25°C  
-40°C  
125°C  
0.045  
0.04  
0.035  
0.03  
60  
40  
0.025  
0.02  
20  
0.015  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
IRESET (mA)  
3
3.5  
4
4.5  
5
VDD (V)  
VOLv  
VOL_  
19. Low Level Output Voltage vs VDD for TPS3840DL49-  
18. Low Level Output Voltage vs IRESET for TPS3840DL49-  
Q1  
Q1  
0.055  
140  
25°C  
-40°C  
125°C  
25°C  
-40°C  
125°C  
0.05  
0.045  
0.04  
120  
100  
80  
60  
40  
20  
0
0.035  
0.03  
0.025  
0.02  
0.015  
-20  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
IRESET (mA)  
3
3.5  
4
4.5  
5
VDD (V)  
VOLv  
VOL_  
21. Low Level Output Voltage vs VDD for TPS3840PL49-  
20. Low Level Output Voltage vs IRESET for TPS3840PL49-  
Q1  
Q1  
0.09  
0.085  
0.08  
80  
70  
60  
50  
40  
30  
20  
10  
0
25°C  
-40°C  
125°C  
0.075  
0.07  
0.065  
0.06  
0.055  
0.05  
0.045  
0.04  
0.035  
0.03  
25°C  
-40°C  
125°C  
0.025  
0.02  
0.015  
0
0.5  
1
1.5  
2
2.5  
IRESET (mA)  
3
3.5  
4
4.5  
5
5
5.5  
6
6.5  
7
7.5 8  
VDD (V)  
8.5  
9
9.5 10 10.5  
VOL_  
VOLv  
23. Low Level Output Voltage vs VDD for TPS3840PH49-  
22. Low Level Output Voltage vs IRESET for TPS3840PH49-  
Q1  
Q1  
版权 © 2019, Texas Instruments Incorporated  
11  
TPS3840-Q1  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
Typical characteristics show the typical performance of the TPS3840-Q1 device. Test conditions are TJ = 25°C, VDD = 3.3 V,  
Rpull-up = 100 k, CLoad = 50 pF, unless otherwise noted.  
5
4.5  
4
10  
9.975  
9.95  
25°C  
-40°C  
125°C  
25°C  
-40°C  
125°C  
9.925  
9.9  
3.5  
3
9.875  
9.85  
2.5  
2
9.825  
9.8  
1.5  
1
9.775  
9.75  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
IRESET (mA)  
3
3.5  
4
4.5  
5
VDD (V)  
VOHv  
VOH_  
25. High Level Output Voltage over Temperature for  
24. High Level Output Voltage vs IRESET for TPS3840PL49-  
TPS3840PL49-Q1  
Q1  
5
1.6  
25°C  
-40°C  
125°C  
25°C  
-40°C  
125°C  
4.5  
4
1.55  
1.5  
3.5  
3
1.45  
1.4  
2.5  
2
1.35  
1.3  
1.5  
1
1.25  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
IRESET (mA)  
3
3.5  
4
4.5  
5
VDD (V)  
VOHv  
VOH_  
27. High Level Output Voltage Over Temperature for  
26. High Level Output Voltage vs IRESET for  
TPS3840PH49-Q1  
TPS3840PH49-Q1  
2.75  
2.5  
2.25  
2
2.75  
DL16  
DL29  
DL49  
PL16  
PL28  
PL49  
2.5  
2.25  
2
1.75  
1.5  
1.25  
1
1.75  
1.5  
1.25  
1
0.75  
0.75  
0.5  
0.5  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
MR_L  
MR_L  
28. Manual Reset Logic Low Voltage Threshold Over  
29. Manual Reset Logic Low Voltage Threshold Over  
Temperature for TPS3840DL-Q1  
Temperature for TPS3840PL-Q1  
12  
版权 © 2019, Texas Instruments Incorporated  
TPS3840-Q1  
www.ti.com.cn  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
Typical Characteristics (接下页)  
Typical characteristics show the typical performance of the TPS3840-Q1 device. Test conditions are TJ = 25°C, VDD = 3.3 V,  
Rpull-up = 100 k, CLoad = 50 pF, unless otherwise noted.  
2.75  
2.5  
2.25  
2
2.75  
2.5  
2.25  
2
DL16  
DL29  
DL49  
PH16  
PH230  
PH49  
1.75  
1.5  
1.25  
1
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.75  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
MR_L  
MR_H  
30. Manual Reset Logic Low Voltage Threshold Over  
31. Manual Reset Logic High Voltage Threshold Over  
Temperature for TPS3840PH-Q1  
Temperature for TPS3840DL-Q1  
2.75  
2.75  
PL16  
PL28  
PL49  
PH16  
PH30  
PH49  
2.5  
2.25  
2
2.5  
2.25  
2
1.75  
1.5  
1.25  
1
1.75  
1.5  
1.25  
1
0.75  
0.75  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
MR_H  
MR_H  
32. Manual Reset Logic High Voltage Threshold Over  
33. Manual Reset Logic High Voltage Threshold Over  
Temperature for TPS3840PL-Q1  
Temperature for TPS3840PH-Q1  
22  
478  
25°C  
-40°C  
125°C  
DL49  
PL49  
PH49  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
476  
474  
472  
470  
468  
466  
464  
462  
460  
458  
5
10  
15  
20  
25 30  
Overdrive (%)  
35  
40  
45  
50  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
Glit  
RCTv  
34. Glitch Immunity on VIT- vs Overdrive (Data Taken with  
35. CT Pin Internal Resistance Over Temperature  
TPS3840PL28-Q1)  
版权 © 2019, Texas Instruments Incorporated  
13  
TPS3840-Q1  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
Typical characteristics show the typical performance of the TPS3840-Q1 device. Test conditions are TJ = 25°C, VDD = 3.3 V,  
Rpull-up = 100 k, CLoad = 50 pF, unless otherwise noted.  
15  
12  
9
215  
210  
205  
200  
195  
190  
185  
180  
175  
170  
DL49  
PL49  
PH49  
DL49  
PL49  
PH49  
6
3
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
Star  
Dela  
36. Startup Delay Over Temperature  
37. Reset Time Delay with No Capacitor Over  
Temperature  
600  
500  
400  
300  
200  
100  
0
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
25°C  
-40°C  
125°C  
25°C  
-40°C  
125°C  
0
0.01 0.02  
0.05 0.1 0.2 0.3 0.5  
Capacitor (µF)  
1
2
3 4 567 10  
0.01  
0.02 0.03 0.050.07 0.1  
0.2 0.3  
Capacitor Value (µF)  
0.5 0.7  
1
Dela  
Dela  
38. Reset Time Delay vs Capacitor Value (Data Taken  
39. Reset Time Delay vs Small Capacitor Values (Data  
with TPS3840PL16-Q1)  
Taken with TPS3840PL16-Q1)  
5
17.25  
25°C  
-40°C  
125°C  
DL49  
PL49  
PH49  
17  
16.75  
16.5  
16.25  
16  
4.5  
4
3.5  
3
2.5  
2
15.75  
15.5  
15.25  
15  
1.5  
1
0.5  
14.75  
1
2
3
4
Capacitor Value (µF)  
5
6
7
8
9 10  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
Dela  
TPHL  
40. Reset Time Delay vs Large Capacitor Values (Data  
41. Propagation Detect Time Delay for VDD Falling Below  
Taken with TPS3840PL16-Q1)  
VIT- (High-to-Low) Over Temperature  
14  
版权 © 2019, Texas Instruments Incorporated  
TPS3840-Q1  
www.ti.com.cn  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
Typical Characteristics (接下页)  
Typical characteristics show the typical performance of the TPS3840-Q1 device. Test conditions are TJ = 25°C, VDD = 3.3 V,  
Rpull-up = 100 k, CLoad = 50 pF, unless otherwise noted.  
465  
460  
455  
450  
445  
440  
435  
430  
425  
420  
415  
3.55  
3.5  
DL49  
PL49  
PH49  
DL49  
PL49  
PH49  
3.45  
3.4  
3.35  
3.3  
3.25  
3.2  
3.15  
3.1  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
MR_r  
MRde  
42. Propagation Time Delay from MR Asserted to Reset  
43. Propagation Time Delay from MR Release to  
Over Temperature  
Deasserted Reset Over Temperature  
版权 © 2019, Texas Instruments Incorporated  
15  
TPS3840-Q1  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS3840-Q1 is a family of wide VDD and nano-quiescent current voltage detectors with fixed threshold  
voltage. TPS3840-Q1 features include programable reset time delay using external capacitor, active-low manual  
reset, 1% typical monitor threshold accuracy with hysteresis and glitch immunity.  
Fixed negative threshold voltages (VIT-) can be factory set from 1.6 V to 4.9 V (see 3 for available options).  
TPS3840-Q1 is available in SOT-23 5 pin industry standard package.  
8.2 Functional Block Diagram  
VDD  
Push-Pull variants  
VDD  
RMR  
VDD  
MR / NC  
RESET  
RESET  
RCT  
Subreg  
Voltage  
Divider  
+
VDD  
œ
VREF  
GND  
GND  
CT / NC  
Copyright © 2019, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 Input Voltage (VDD)  
VDD pin is monitored by the internal comparator to indicate when VDD falls below the fixed threshold voltage.  
VDD also functions as the supply for the internal bandgap, internal regulator, state machine, buffers and other  
control logic blocks. Good design practice involve placing a 0.1 uF to 1 uF bypass capacitor at VDD input for  
noisy applications to ensure enough charge is available for the device to power up correctly.  
16  
版权 © 2019, Texas Instruments Incorporated  
TPS3840-Q1  
www.ti.com.cn  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
Feature Description (接下页)  
8.3.1.1 VDD Hysteresis  
The internal comparator has built-in hysteresis to avoid erroneous output reset release. If the voltage at the VDD  
pin falls below VIT- the output reset is asserted. When the voltage at the VDD pin goes above VIT- plus hysteresis  
(VHYS) the output reset is deasserted after tD delay.  
Hystersis Width  
Hystersis Width  
RESET  
RESET  
VIT-  
VIT-  
VIT+  
VIT+  
VDD  
VDD  
44. Hysteresis Diagram  
8.3.1.2 VDD Transient Immunity  
The TPS3840-Q1 is immune to quick voltage transients or excursion on VDD. Sensitivity to transients depends  
on both pulse duration and overdrive. Overdrive is defined by how much VDD deviates from the specified  
threshold. Threshold overdrive is calculated as a percent of the threshold in question, as shown in 公式 1.  
Overdrive = | (VDD / VIT- – 1) × 100% |  
(1)  
VDD  
VIT+  
VIT-  
Overdrive  
Pulse  
Duration  
45. Overdrive vs Pulse Duration  
8.3.2 User-Programmable Reset Time Delay  
The reset time delay can be set to a minimum value of 50 µs by leaving the CT pin floating, or a maximum value  
of approximately 6.2 seconds by connecting 10 µF delay capacitor. The reset time delay (tD) can be programmed  
by connecting a capacitor no larger than 10 µF between CT pin and GND.  
The relationship between external capacitor (CCT_EXT) in F at CT pin and the time delay (tD) in seconds is given  
by 公式 2.  
tD = -ln (0.29) x RCT x CCT_EXT + tD (no cap)  
(2)  
(3)  
(4)  
公式 2 is simplified to 公式 3 by plugging RCT and tD(no cap) given in Electrical Characteristics section:  
tD = 618937 x CCT_EXT + 50 µs  
公式 4 solves for external capacitor value (CCT_EXT) in units of F where tD is in units of seconds  
CCT_EXT = (tD- 50 µs) ÷ 618937  
The reset delay varies according to three variables: the external capacitor variance (CCT), CT pin internal  
resistance (RCT) provided in the Electrical Characteristics table, and a constant. The minimum and maximum  
variance due to the constant is shown in Equation 5 and Equation 6.  
s tD (minimum) = -ln (0.36) x RCT (min) x CCT (min) + tD (no cap, min)  
tD (maximum) = -ln (0.26) x RCT (max) x CCT (max) + tD (no cap, max)  
(5)  
(6)  
版权 © 2019, Texas Instruments Incorporated  
17  
 
 
 
 
 
 
TPS3840-Q1  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
The recommended maximum delay capacitor for the TPS3840 is limited to 10 µF as this ensures there is enough  
time for the capacitor to fully discharge when the reset condition occurs. When a voltage fault occurs, the  
previously charged up capacitor discharges, and if the monitored voltage returns from the fault condition before  
the delay capacitor discharges completely, the delay capacitor will begin charging from a voltage above zero and  
the reset delay will be shorter than expected. Larger delay capacitors can be used so long as the capacitor has  
enough time to fully discharge during the duration of the voltage fault.  
8.3.3 Manual Reset (MR) Input  
The manual reset (MR) input allows a processor GPIO or other logic circuits to initiate a reset. A logic low on MR  
with pulse duration longer than tMR_RES will causes reset output to assert. After MR returns to a logic high (VMR_H  
)
and VDD is above VIT+, reset is deasserted after the user programmed reset time delay (tD) expires.  
If MR is not controlled externally, then MR can be left disconnected. If the logic signal controlling MR is less than  
VDD, then additional current flows from VDD into MR internally. For minimum current consumption, drive MR to  
either VDD or GND. VMR must not be higher than VDD voltage.  
VDD  
VIT+  
VHYS  
VIT-  
VIT+  
VHYS  
VIT-  
RESET  
tP_HL  
tD  
tMR_tD  
tMR_RES  
MR  
VMR_H  
VMR_L  
Reset not asserted  
tMR_PW  
Pulse width less than tMR_PW  
46. Timing Diagram MR and RESET (TPS3840DL-Q1)  
8.3.4 Output Logic  
8.3.4.1 RESET Output, Active-Low  
RESET (Active-Low) applies to TPS3840DL-Q1 (Open-Drain) and TPS3840PL-Q1 (Push-Pull) hence the "L" in  
the device name. RESET remains high (deasserted) as long as VDD is above the negative threshold (VIT-) and  
the MR pin is floating or above VMR_H. If VDD falls below the negative threshold (VIT-) or if MR is driven low, then  
RESET is asserted.  
When MR is again logic high or floating and VDD rise above VIT+, the delay circuit will hold RESET low for the  
specified reset time delay (tD). When the reset time delay has elapsed, the RESET pin goes back to logic high  
voltage (VOH).  
The TPS3840DL-Q1 (Open-Drain) version, denoted with "D" in the device name, requires a pull-up resistor to  
hold RESET pin high. Connect the pull-up resistor to the desired pull-up voltage source and RESET can be  
pulled up to any voltage up to 10 V independent of the VDD voltage. To ensure proper voltage levels, give some  
consideration when choosing the pull-up resistor values. The pull-up resistor value determines the actual VOL, the  
output capacitive loading, and the output leakage current (ILKG(OD)).  
The Push-Pull variants (TPS3840PL and TPS3840PH), denoted with "P" in the device name, does not require a  
pull-up resistor.  
18  
版权 © 2019, Texas Instruments Incorporated  
TPS3840-Q1  
www.ti.com.cn  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
Feature Description (接下页)  
8.3.4.2 RESET Output, Active-High  
RESET (active-high), denoted with no bar above the pin label, applies only to TPS3840PH-Q1 push-pull active-  
high version. RESET remains low (deasserted) as long as VDD is above the threshold (VIT-) and the manual  
reset signal (MR) is logic high or floating. If VDD falls below the negative threshold (VIT-) or if MR is driven low,  
then RESET is asserted driving the RESET pin to high voltage (VOH).  
When MR is again logic high and VDD is above VIT+ the delay circuit will hold RESET high for the specified reset  
time delay (tD). When the reset time delay has elapsed, the RESET pin goes back to low voltage (VOL ).  
8.4 Device Functional Modes  
1 summarizes the various functional modes of the device. Logic high is represented by "H" and logic low is  
represented by "L".  
1. Truth Table  
VDD  
VDD < VPOR  
VPOR < VDD < VIT-  
VDD VIT-  
MR  
Ignored  
Ignored  
L
RESET  
RESET  
Undefined  
Undefined  
(1)  
H
H
L
L
L
VDD VIT-  
H
H
H
VDD VIT-  
Floating  
L
(1) When VDD falls below VDD(MIN), undervoltage-lockout (UVLO) takes effect and output reset is held asserted until VDD falls below VPOR  
.
8.4.1 Normal Operation (VDD > VDD(min)  
)
When VDD is greater than VDD(min), the reset signal is determined by the voltage on the VDD pin with respect to  
the trip point (VIT-) and the logic state of MR.  
MR high: the reset signal corresponds to VDD with respect to the threshold voltage.  
MR low: in this mode, the reset is asserted regardless of the threshold voltage.  
8.4.2 VDD Between VPOR and VDD(min)  
When the voltage on VDD is less than the VDD(min) voltage, and greater than the power-on-reset voltage (VPOR),  
the reset signal is asserted.  
8.4.3 Below Power-On-Reset (VDD < VPOR  
)
When the voltage on VDD is lower than VPOR, the device does not have enough bias voltage to internally pull the  
asserted output low or high and reset voltage level is undefined.  
版权 © 2019, Texas Instruments Incorporated  
19  
 
TPS3840-Q1  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The following sections describe in detail how to properly use this device, depending on the requirements of the  
final application.  
9.2 Typical Application  
9.2.1 Design 1: Dual Rail Monitoring with Power-Up Sequencing  
A typical application for the TPS3840-Q1 is voltage rail monitoring and power-up sequencing as shown in 47.  
The TPS3840-Q1 can be used to monitor any rail above 1.6 V. In this design application, two TPS3840-Q1  
devices monitor two separate voltage rails and sequences the rails upon power-up. The TPS3840PL30-Q1 is  
used to monitor the 3.3-V main power rail and the TPS3840DL16-Q1 is used to monitor the 1.8-V rail provided by  
the LDO for other system peripherals. The RESET output of the TPS3840PL30-Q1 is connected to the ENABLE  
input of the LDO. A reset event is initiated on either voltage supervisor when the VDD voltage is less than VIT- or  
when MR is driven low by an external source.  
LDO  
VDD  
EN  
1.8 V  
3.3V  
1 µF  
1 µF  
VI/O  
VCORE  
10kΩ  
Microcontroller  
VDD  
VDD  
RESET  
RESET  
MR  
RESET  
MR  
TPS3840PL30  
CT GND  
TPS3840DL16  
CT  
NC  
GND  
0.047µF  
47. TPS3840-Q1 Voltage Rail Monitor and Power-Up Sequencer Design Block Diagram  
9.2.1.1 Design Requirements  
This design requires voltage supervision on two separate rails: 3.3-V and 1.8-V rails. The voltage rail needs to  
sequence upon power up with the 3.3-V rail coming up first followed by the 1.8-V rail at least 25 ms after.  
PARAMETER  
DESIGN REQUIREMENT  
DESIGN RESULT  
Two TPS3840-Q1 devices provide voltage monitoring with 1%  
accuracy with device options available in 0.1 V variations  
Two Rail Voltage Supervision  
Monitor 3.3-V and 1.8-V rails  
Power up the 3.3-V rail first followed  
by 1.8-V rail 25 ms after  
The CT capacitor on TPS38240PL28 is set to 0.047 µF for a  
reset time delay of 29 ms typical  
Voltage Rail Sequencing  
Output logic voltage  
3.3-V Open-Drain  
3.3-V Open-Drain  
Maximum device current  
consumption  
1 µA  
Each TPS3840-Q1 requires 350 nA typical  
20  
版权 © 2019, Texas Instruments Incorporated  
 
TPS3840-Q1  
www.ti.com.cn  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
9.2.1.2 Detailed Design Procedure  
The primary constraint for this application is choosing the correct device to monitor the supply voltage of the  
microprocessor. The TPS3840-Q1 can monitor any voltage between 1.6 V and 10 V and is available in 0.1 V  
increments. Depending on how far away from the nominal voltage rail the user wants the voltage supervisor to  
trigger determines the correct voltage supervisor variant to choose. In this example, the first TPS3840-Q1  
triggers when the 3.3-V rail falls to 3.0 V. The second TPS3840-Q1 triggers a reset when the 1.8-V rail falls to  
1.6 V. The secondary constraint for this application is the reset time delay that must be at least 25 ms to allow  
the microprocessor, and all other devices using the 3.3-V rail, enough time to startup correctly before the 1.8-V  
rail is enabled via the LDO. Because a minimum time is required, the user must account for capacitor tolerance.  
For applications with ambient temperatures ranging from –40°C to +125°C, CCT can be calculated using RCT and  
solving for CCT in 公式 2. Solving 公式 2 for 25 ms gives a minimum capacitor value of 0.04 µF which is rounded  
up to a standard value 0.047 µF to account for capacitor tolerance.  
A 1-µF decoupling capacitor is connected to the VDD pin as a good analog design practice. The pull-up resistor  
is only required for the Open-Drain device variants and is calculated to maintain the RESET current within the ±5  
mA limit found in the Recommended Operating Conditions: RPull-up = VPull-up ÷ 5 mA. For this design, a standard  
10-kpull-up resistor is selected to minimize current draw when RESET is asserted. Keep in mind the lower the  
pull-up resistor, the higher VOL. The MR pin can be connected to an external signal if desired or left floating if not  
used due to the internal pull-up resistor to VDD.  
9.2.1.3 Application Curves  
VDD  
30ms delay from VDD (3.3V) to LDO Enable set by 0.047µF on CT of TPS3840PL30  
RESET  
(LDO Enable)  
VOUT (LDO)  
Negligible delay from LDO Enable to 1.8V VOUT  
48. Startup Sequence Highlighting the Delay Between 3.3V and 1.8V Rails  
版权 © 2019, Texas Instruments Incorporated  
21  
TPS3840-Q1  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
9.2.2 Design 2: Automotive Off-Battery Monitoring  
The initial power stage in automotive applications starts with the 12 V battery. Variation of the battery voltage is  
common between 9 V and 16 V. Furthermore, If cold-cranking and load dump conditions are considered, voltage  
transients can occur as low as 3 V and as high as 42V. In this design example, we are highlighting the ability for  
low power , direct off-battery voltage supervision. 49 illustrates an example of how the TPS3840-Q1 is  
monitoring the battery voltage while being powered by it as well. For more information, read this application  
report on how to achieve nano-amp IQ voltage supervision in automotive, wide-vin applications.  
49. Fast Start Undervoltage Supervisor with Level-Shifted Input  
22  
版权 © 2019, Texas Instruments Incorporated  
 
TPS3840-Q1  
www.ti.com.cn  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
9.2.2.1 Design Requirements  
This design requires voltage supervision on a 12-V power supply voltage rail with possibility of the 12-V rail rising  
up as high as 42 V. The undervoltage fault occurs when the power supply voltage drops below 7.7 V.  
PARAMETER  
DESIGN REQUIREMENT  
DESIGN RESULT  
TPS3840-Q1 provides voltage monitoring with 1%  
accuracy with device options available in 0.1 V  
variations. Resistor dividers are calculated based  
on device variant and desired threshold voltage.  
Monitor 12-V power supply for undervoltage  
condition, trigger a undervoltage fault at 7.7 V.  
Power Rail Voltage Supervision  
The TPS3840-Q1 limits VDD to 10 V but can  
monitor voltages higher than the maximum VDD  
voltage with the use of an external resistor divider.  
Maximum Input Power  
Output logic voltage  
Operate with power supply input up to 42 V.  
Open-Drain Output Topology  
Due to large variance in battery voltage, an open-  
drain output is recommended to provide the correct  
reset signal.  
TPS3840-Q1 requires 350 nA (typical) and the  
external resistor divider will also consume current.  
There is a tradeoff between current consumption  
and voltage monitor accuracy but generally set the  
resistor divider to consume 100 times current into  
VDD.  
Maximum system current  
consumption  
35 uA when power supply is at 12 V typical  
The TPS3840-Q1 has 1% typical voltage monitor  
accuracy. By decreasing the ratio of resistor  
values, the resistor divider will consume more  
current but the accuracy will increase. The resistor  
tolerance also needs to be accounted for.  
Voltage Monitor Accuracy  
Typical voltage monitor accuracy of 2.5%.  
Delay when returning from fault  
condition  
RESET delay of at least 200 ms when returning  
from a undervoltage fault.  
CCT = 0.33 µF sets 204 ms delay  
9.2.2.2 Detailed Design Procedure  
The primary constraint for this application is monitoring a 12-V rail while preventing the VDD pin on TPS3840-Q1  
from exceeding the recommended maximum of 10 V. This is accomplished by sizing the resistor divider so that  
when the 12-V rail drops to 7.7 V, the VDD pin for TPS3840-Q1 will be at 1.6 V which is the VIT- threshold for  
triggering a undervoltage condition for TPS3840DL16-Q1 as shown in 公式 7. Reasonably sized resistors were  
selected for the voltage divider. While selecting lower resistor values may increase current, this allows for  
additional accuracy from the resistor divider.  
Vrail_trigger = VIT- x (R2 ÷ (R1 + R2))  
(7)  
where Vrail_trigger is the trigger voltage of the rail being monitored, VIT- is the falling threshold on the VDD pin of  
TPS3840, and R1 and R2 are the top and bottom resistors of the external resistor divider. VIT- is fixed per device  
variant and is 1.6 V for TPS3840DL16-Q1. Substituting in the values from 49, the undervoltage trigger  
threshold for the rail is set to 7.7 V. Given that R1 = 100 kΩ, R2 = 26.2 kΩ.  
Because the undervoltage trigger of 10 V on the rail corresponds to 1.6 V undervoltage threshold trigger of the  
TPS3840-Q1 device, there is room for the rail to rise up while maintaining less than 10 V on the VDD pin of the  
TPS3840-Q1. 公式 8 shows the maximum rail voltage that still meets the 10 V maximum at the VDD pin for  
TPS3840-Q1.  
Vrail_max = 10 V x (26.2 kΩ ÷ (100 kΩ + 26.2 kΩ)) = 48.168 V  
(8)  
This means the monitored voltage rail can go as high as 48.168 V and not violate the recommended maximum  
for the VDD pin on TPS3840-Q1. This is useful when monitoring a voltage rail that has a wide range that may go  
much higher than the nominal rail voltage such as in this case. Notice that the resistor values chosen are less  
than 100kΩ to preserve the accuracy set by the internal resistor divider. Good design practice recommends using  
a 0.1-µF capacitor on the VDD pin and this capacitance may need to increase when using an external resistor  
divider.  
版权 © 2019, Texas Instruments Incorporated  
23  
 
 
TPS3840-Q1  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
9.2.2.3 Application Curves: TPS3840EVM  
These application curves are taken with the TPS3840EVM using the TPS3840-Q1. Please see the TPS3840EVM  
User Guide for more information. The scope of the test below was to ensure that normal operation was  
maintained under typical cold crank and load dump conditions. This was verified by observing the input changing  
to its minimum and maximum value and the output remained both defined and accurate.  
50. TPS3840-Q1 Warm-Start Test Pulse  
51. TPS3840-Q1 Cold-Start Test Pulse  
52. TPS3840-Q1 Cold Crank Test Pulse  
53. TPS3840-Q1 Load Dump Test Pulse  
24  
版权 © 2019, Texas Instruments Incorporated  
TPS3840-Q1  
www.ti.com.cn  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
10 Power Supply Recommendations  
These devices are designed to operate from an input supply with a voltage range between 1.5 V and 10 V. TI  
recommends an input supply capacitor between the VDD pin and GND pin. This device has a 12-V absolute  
maximum rating on the VDD pin. If the voltage supply providing power to VDD is susceptible to any large voltage  
transient that can exceed 12 V, additional precautions must be taken.  
11 Layout  
11.1 Layout Guidelines  
Make sure that the connection to the VDD pin is low impedance. Good analog design practice recommends  
placing a minimum 0.1-µF ceramic capacitor as near as possible to the VDD pin. If a capacitor is not connected  
to the CT pin, then minimize parasitic capacitance on this pin so the rest time delay is not adversely affected.  
Make sure that the connection to the VDD pin is low impedance. Good analog design practice is to place a  
>0.1-µF ceramic capacitor as near as possible to the VDD pin.  
If a CCT capacitor is used, place these components as close as possible to the CT pin. If the CT pin is left  
unconnected, make sure to minimize the amount of parasitic capacitance on the pin to <5 pF.  
Place the pull-up resistors on RESET pin as close to the pin as possible.  
11.2 Layout Example  
The layout example in shows how the TPS3840-Q1 is laid out on a printed circuit board (PCB) with a user-  
defined delay.  
Pull-up resistor required for Open-Drain  
(TPS3840DLXX) only  
CT  
RESET  
CCT  
Rpull-up  
VDD  
GND  
CIN  
MR  
VDD  
GND  
Vias used to connect pins for application-specific connections  
54. TPS3840-Q1 Recommended Layout  
版权 © 2019, Texas Instruments Incorporated  
25  
TPS3840-Q1  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件命名规则  
2 显示了如何根据器件型号来解译器件的功能。  
2. 器件命名约定  
说明  
命名规则  
工程原型预发布样片  
器件型号  
P
工程原型样片  
TPS3840  
TPS3840-Q1  
型号代码(输出拓扑)  
DL  
漏极开路,低电平有效  
推挽,高电平有效  
推挽,低电平有效  
示例:16 表示 1.6V 阈值  
SOT23-5  
PH  
PL  
检测电压选项  
封装  
##(两个字符)  
DBV  
R
卷带  
大卷带  
汽车后缀  
Q1  
表示器件符合 AEC-Q100 标准  
3 显示了 TPS3840-Q1 的可能型号。有关所显示的其他选项的详细信息和供货情况,请联系德州仪器 (TI);最  
低订购量适用。  
3. 器件阈值  
产品  
电压阈值 (VIT-  
典型值 (V)  
1.6  
)
迟滞 (VHYST  
典型值 (V)  
0.100  
0.100  
0.100  
0.100  
0.100  
0.100  
0.100  
0.100  
0.100  
0.100  
0.100  
0.100  
0.100  
0.100  
0.100  
0.200  
0.200  
0.200  
0.200  
0.200  
0.200  
0.200  
0.200  
0.200  
0.200  
0.200  
0.200  
)
漏极开路,低电平有效  
TPS3840DL16-Q1  
推挽,低电平有效  
推挽,高电平有效  
TPS3840PH16-Q1  
TPS3840PL16-Q1  
TPS3840DL17-Q1  
TPS3840DL18-Q1  
TPS3840DL19-Q1  
TPS3840DL20-Q1  
TPS3840DL21-Q1  
TPS3840DL22-Q1  
TPS3840DL23-Q1  
TPS3840DL24-Q1  
TPS3840DL25-Q1  
TPS3840DL26-Q1  
TPS3840DL27-Q1  
TPS3840DL28-Q1  
TPS3840DL29-Q1  
TPS3840DL30-Q1  
TPS3840DL31-Q1  
TPS3840DL32-Q1  
TPS3840DL33-Q1  
TPS3840DL34-Q1  
TPS3840DL35-Q1  
TPS3840DL36-Q1  
TPS3840DL37-Q1  
TPS3840DL38-Q1  
TPS3840DL39-Q1  
TPS3840DL40-Q1  
TPS3840DL41-Q1  
TPS3840DL42-Q1  
TPS3840PL17-Q1  
TPS3840PL18-Q1  
TPS3840PL19-Q1  
TPS3840PL20-Q1  
TPS3840PL21-Q1  
TPS3840PL22-Q1  
TPS3840PL23-Q1  
TPS3840PL24-Q1  
TPS3840PL25-Q1  
TPS3840PL26-Q1  
TPS3840PL27-Q1  
TPS3840PL28-Q1  
TPS3840PL29-Q1  
TPS3840PL30-Q1  
TPS3840PL31-Q1  
TPS3840PL32-Q1  
TPS3840PL33-Q1  
TPS3840PL34-Q1  
TPS3840PL35-Q1  
TPS3840PL36-Q1  
TPS3840PL37-Q1  
TPS3840PL38-Q1  
TPS3840PL39-Q1  
TPS3840PL40-Q1  
TPS3840PL41-Q1  
TPS3840PL42-Q1  
TPS3840PH17-Q1  
TPS3840PH18-Q1  
TPS3840PH19-Q1  
TPS3840PH20-Q1  
TPS3840PH21-Q1  
TPS3840PH22-Q1  
TPS3840PH23-Q1  
TPS3840PH24-Q1  
TPS3840PH25-Q1  
TPS3840PH26-Q1  
TPS3840PH27-Q1  
TPS3840PH28-Q1  
TPS3840PH29-Q1  
TPS3840PH30-Q1  
TPS3840PH31-Q1  
TPS3840PH32-Q1  
TPS3840PH33-Q1  
TPS3840PH34-Q1  
TPS3840PH35-Q1  
TPS3840PH36-Q1  
TPS3840PH37-Q1  
TPS3840PH38-Q1  
TPS3840PH39-Q1  
TPS3840PH40-Q1  
TPS3840PH41-Q1  
TPS3840PH42-Q1  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
26  
版权 © 2019, Texas Instruments Incorporated  
 
 
TPS3840-Q1  
www.ti.com.cn  
ZHCSJM9A APRIL 2019REVISED SEPTEMBER 2019  
3. 器件阈值 (接下页)  
产品  
推挽,低电平有效  
TPS3840PL43-Q1  
电压阈值 (VIT-  
)
迟滞 (VHYST  
典型值 (V)  
0.200  
)
漏极开路,低电平有效  
推挽,高电平有效  
TPS3840PH43-Q1  
典型值 (V)  
4.3  
TPS3840DL43-Q1  
TPS3840DL44-Q1  
TPS3840DL45-Q1  
TPS3840DL46-Q1  
TPS3840DL47-Q1  
TPS3840DL48-Q1  
TPS3840DL49-Q1  
TPS3840PL44-Q1  
TPS3840PL45-Q1  
TPS3840PL46-Q1  
TPS3840PL47-Q1  
TPS3840PL48-Q1  
TPS3840PL49-Q1  
TPS3840PH44-Q1  
TPS3840PH45-Q1  
TPS3840PH46-Q1  
TPS3840PH47-Q1  
TPS3840PH48-Q1  
TPS3840PH49-Q1  
4.4  
0.200  
4.5  
0.200  
4.6  
0.200  
4.7  
0.200  
4.8  
0.200  
4.9  
0.200  
12.2 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS3840DL16DBVRQ1  
TPS3840DL18DBVRQ1  
TPS3840DL20DBVRQ1  
TPS3840DL25DBVRQ1  
TPS3840DL28DBVRQ1  
TPS3840DL29DBVRQ1  
TPS3840DL30DBVRQ1  
TPS3840DL31DBVRQ1  
TPS3840DL32DBVRQ1  
TPS3840DL37DBVRQ1  
TPS3840DL40DBVRQ1  
TPS3840DL41DBVRQ1  
TPS3840DL42DBVRQ1  
TPS3840DL44DBVRQ1  
TPS3840DL45DBVRQ1  
TPS3840DL46DBVRQ1  
TPS3840DL47DBVRQ1  
TPS3840PH27DBVRQ1  
TPS3840PH30DBVRQ1  
TPS3840PL16DBVRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
DQ16  
DQ18  
DQ20  
DQ25  
DQ28  
DQ29  
DQ30  
DQ31  
DQ32  
DQ37  
DQ40  
DQ41  
DQ42  
DQ44  
DQ45  
DQ46  
DQ47  
QH27  
QH30  
QL16  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Dec-2022  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS3840PL25DBVRQ1  
TPS3840PL28DBVRQ1  
TPS3840PL29DBVRQ1  
TPS3840PL30DBVRQ1  
TPS3840PL31DBVRQ1  
TPS3840PL40DBVRQ1  
TPS3840PL43DBVRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
QL25  
QL28  
QL29  
QL30  
QL31  
QL40  
QL43  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Dec-2022  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS3840-Q1 :  
Catalog : TPS3840  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS3840DL16DBVRQ1 SOT-23  
TPS3840DL18DBVRQ1 SOT-23  
TPS3840DL20DBVRQ1 SOT-23  
TPS3840DL25DBVRQ1 SOT-23  
TPS3840DL28DBVRQ1 SOT-23  
TPS3840DL29DBVRQ1 SOT-23  
TPS3840DL30DBVRQ1 SOT-23  
TPS3840DL31DBVRQ1 SOT-23  
TPS3840DL32DBVRQ1 SOT-23  
TPS3840DL37DBVRQ1 SOT-23  
TPS3840DL40DBVRQ1 SOT-23  
TPS3840DL41DBVRQ1 SOT-23  
TPS3840DL42DBVRQ1 SOT-23  
TPS3840DL44DBVRQ1 SOT-23  
TPS3840DL45DBVRQ1 SOT-23  
TPS3840DL46DBVRQ1 SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS3840PH27DBVRQ1 SOT-23  
TPS3840PH30DBVRQ1 SOT-23  
TPS3840PL16DBVRQ1 SOT-23  
TPS3840PL25DBVRQ1 SOT-23  
TPS3840PL28DBVRQ1 SOT-23  
TPS3840PL29DBVRQ1 SOT-23  
TPS3840PL30DBVRQ1 SOT-23  
TPS3840PL31DBVRQ1 SOT-23  
TPS3840PL43DBVRQ1 SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS3840DL16DBVRQ1  
TPS3840DL18DBVRQ1  
TPS3840DL20DBVRQ1  
TPS3840DL25DBVRQ1  
TPS3840DL28DBVRQ1  
TPS3840DL29DBVRQ1  
TPS3840DL30DBVRQ1  
TPS3840DL31DBVRQ1  
TPS3840DL32DBVRQ1  
TPS3840DL37DBVRQ1  
TPS3840DL40DBVRQ1  
TPS3840DL41DBVRQ1  
TPS3840DL42DBVRQ1  
TPS3840DL44DBVRQ1  
TPS3840DL45DBVRQ1  
TPS3840DL46DBVRQ1  
TPS3840PH27DBVRQ1  
TPS3840PH30DBVRQ1  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS3840PL16DBVRQ1  
TPS3840PL25DBVRQ1  
TPS3840PL28DBVRQ1  
TPS3840PL29DBVRQ1  
TPS3840PL30DBVRQ1  
TPS3840PL31DBVRQ1  
TPS3840PL43DBVRQ1  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 4  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS3840DL16DBVR

具有手动复位和可编程复位时间延迟功能的毫微功耗高输入电压监控器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3840DL16DBVRQ1

具有手动复位和可编程复位延时时间的汽车类高输入电压监控器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3840DL17DBVR

具有手动复位和可编程复位时间延迟功能的毫微功耗高输入电压监控器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3840DL18DBVR

具有手动复位和可编程复位时间延迟功能的毫微功耗高输入电压监控器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3840DL18DBVRQ1

具有手动复位和可编程复位延时时间的汽车类高输入电压监控器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3840DL19DBVR

具有手动复位和可编程复位时间延迟功能的毫微功耗高输入电压监控器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3840DL20DBVR

具有手动复位和可编程复位时间延迟功能的毫微功耗高输入电压监控器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3840DL20DBVRQ1

具有手动复位和可编程复位延时时间的汽车类高输入电压监控器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3840DL22DBVR

具有手动复位和可编程复位时间延迟功能的毫微功耗高输入电压监控器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3840DL24DBVR

具有手动复位和可编程复位时间延迟功能的毫微功耗高输入电压监控器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3840DL25DBVR

具有手动复位和可编程复位时间延迟功能的毫微功耗高输入电压监控器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3840DL25DBVRQ1

具有手动复位和可编程复位延时时间的汽车类高输入电压监控器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI