TPS3850 [TI]

用于进行 OV 和 UV 监控的精密窗口监控器,具有窗口看门狗计时器和可编程延迟;
TPS3850
型号: TPS3850
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于进行 OV 和 UV 监控的精密窗口监控器,具有窗口看门狗计时器和可编程延迟

监控
文件: 总50页 (文件大小:3250K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS3850  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
TPS3850 具备可编程窗口看门狗定时器的高精度电压监控器  
1 特性  
3 说明  
• 输入电压范围VDD = 1.6V 6.5V  
0.8% 电压阈值精度  
• 低电源电流IDD = 10µA典型值)  
• 用户可编程看门狗超时  
• 用户可编程复位延迟  
• 出厂编程的精密看门狗和复位计时器  
• 开漏输出  
• 精密过压和欠压监测:  
TPS3850 将精密监控器与一个可编程窗口看门狗定时  
器相结合。TPS3850 窗口比较器在 SENSE 引脚上可  
针对过压 (VIT+(OV)) 和欠压 (VIT(UV)) 阈值实现 0.8%  
的精度40°C +125°C。此外TPS3850 针对  
两阈值施加精确迟滞使得该器件非常适用于容差要求  
严格的系统。该监控器的 RESET 延迟可通过经出厂编  
程的默认延迟设置进行设定也可以通过外部电容以编  
程方式设定。出厂编程的 RESET 延迟具备 9.5% 精  
度、高精密延迟时间。  
– 支0.9V 5.0V 常见电压轨  
– 提±4% ±7% 故障窗口  
0.5% 迟滞  
TPS3850 具备适用于多种应用的可编程窗口看门狗计  
时器。专用看门狗输出 (WDO) 有助于提高分辨率从  
而帮助确定出现故障情况的根本原因。窗口看门狗超时  
可通过经出厂编程的默认延迟设置进行设定也可以通  
过外部电容以编程方式设定。可通过逻辑引脚禁用看门  
避免在开发过程中出现意外的看门狗超时。  
• 看门狗禁用功能  
• 采用小3mm × 3mm 10 VSON 封装  
• 结工作温度范围:  
40°C +125°C  
2 应用  
TPS3850 采用小3.00mm ×  
3.00mm 10 VSON 封装。  
超声波扫描仪  
存储区域网络  
有源天线系mMIMO (AAS)  
机器人伺服驱动器  
输液泵  
器件信息  
(1)  
封装尺寸标称值)  
器件型号  
TPS3850  
VSON (10)  
3.00mm × 3.00mm  
HVAC 控制器  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
0.5  
1.8V  
1.2V  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
Average  
0.3  
0.1  
TPS3850  
VCORE  
Microcontroller  
RESET  
VI/O  
SENSE  
SET1  
VDD  
RESET  
WDO  
NMI  
SET0  
-0.1  
-0.3  
-0.5  
CRST  
CWD  
WDI  
GND  
GPIO  
GND  
Copyright © 2016, Texas Instruments Incorporated  
-50  
-25  
0
25  
50  
75  
100  
125  
全集成微控制器监控电路  
Temperature (èC)  
过压阈(VIT+(OV)) 精度与温度间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBVS301  
 
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
Table of Contents  
7.4 Device Functional Modes..........................................22  
8 Application and Implementation..................................23  
8.1 Application Information............................................. 23  
8.2 Typical Applications.................................................. 29  
9 Power Supply Recommendations................................35  
10 Layout...........................................................................36  
10.1 Layout Guidelines................................................... 36  
10.2 Layout Example...................................................... 36  
11 Device and Documentation Support..........................37  
11.1 Device Support........................................................37  
11.2 Documentation Support.......................................... 37  
11.3 接收文档更新通知................................................... 37  
11.4 支持资源..................................................................37  
11.5 Trademarks............................................................. 37  
11.6 Electrostatic Discharge Caution..............................37  
11.7 术语表..................................................................... 37  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................6  
6.6 Timing Requirements..................................................7  
6.7 Timing Diagrams.........................................................8  
6.8 Typical Characteristics.............................................. 11  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagrams....................................... 14  
7.3 Feature Description...................................................15  
Information.................................................................... 38  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (November 2016) to Revision B (September 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 删除了“±15% WDT RST 延迟”..............................................................................................................1  
• 更新了“应用”以包括网站链接......................................................................................................................... 1  
• 添加了“SENSE 引脚上”............................................................................................................................. 1  
Changed VESD values to ±4000 V and ±1000 V................................................................................................. 5  
Changed ICWD min and max spec ......................................................................................................................6  
Changed VCWD min and max spec .................................................................................................................... 6  
Added a footnote to for tINIT ............................................................................................................................... 7  
Changed minimum and maximum specifications of 2nd, 5th, 6th, and 8th rows of tWDL parameter ................. 7  
Changed minimum and maximum specifications of 2nd and last rows of tWDU parameter ............................... 7  
Added new section "Disabling the Watchdog Timer When Using the CRST Capacitor".................................. 18  
Changed 0.000381 to 0.000324 and 0.000438 in Equation 4 and Equation 5, respectively............................24  
Changed minimum and maximum specifications in 100 pF and 1 nF rows of Reset Delay Time for Common  
Ideal Capacitor Values table.............................................................................................................................24  
Changed minimum and maximum specifications for NC SETx 01 setting for both upper and lower watchdog  
boundaries, 10 kΩto VDD SETx 00 and 01 settings for lower watchdog boundary, and 10 kΩto VDD SETx  
11 setting for both upper and lower watchdog boundaries in Factory-Programmed Watchdog Timing table...25  
Changed minimum and maximum limits on tWDU and added explanation. ......................................................25  
Changed 0.000381 to 0.000324 in Equation 11............................................................................................... 30  
Changed description of factory-programmed timing options and values of tWDL(max) and tWDU(min) in Setting  
the Watchdog Window section..........................................................................................................................30  
Changed 0.85 to 0.905 in Equation 14............................................................................................................. 33  
Changed Equation 17 and Equation 18 so that ISENSE is no longer in the denominator.................................. 34  
Changes from Revision * (October 2016) to Revision A (November 2016)  
Page  
Changed units in ISENSE parameter and footnote 1 in Electrical Characteristics table ...................................... 6  
Added correct operation state to Figure 2 ......................................................................................................... 7  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS3850  
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
Changed Figure 3 so the SET pins do not bring the watchdog into the disabled state before going to the 1:2  
ratio.....................................................................................................................................................................7  
Changed Figure 11 so it no longer has VDD and VSENSE tied together ...........................................................11  
Changed Figure 26 so it no longer goes through watchdog disabled...............................................................18  
Added correct operation state to Figure 27 ..................................................................................................... 20  
Changed RESET to WDO in description of WDO assertion in WDO Functionality section .............................21  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS3850  
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
5 Pin Configuration and Functions  
VDD  
CWD  
SET0  
CRST  
GND  
1
2
3
4
5
10  
9
SENSE  
RESET  
WDO  
Thermal  
Pad  
8
7
WDI  
6
SET1  
Not to scale  
5-1. DRC Package: TPS3850  
3-mm × 3-mm VSON-10  
Top View  
5-1. Pin Functions  
PIN  
NO.  
DESCRIPTION  
NAME  
I/O  
Programmable reset timeout pin. Connect a capacitor between this pin and GND to program the reset timeout  
period. This pin can also be connected by a 10-kΩpullup resistor to VDD, or left unconnected (NC) for various  
factory programmed reset timeout options; see the 8.1.1 section.  
CRST  
4
I
When using an external capacitor, use 方程3 to determine the reset timeout.  
Programmable watchdog timeout input. Watchdog timeout is set by connecting a capacitor between this pin  
and ground. Furthermore, this pin can also be connected by a 10-kΩresistor to VDD, or leaving unconnected  
(NC) further enables the selection of the preset watchdog timeouts; see the 6.6 table.  
When using a capacitor, the TPS3850 determines the window watchdog upper boundary with 方程6. The  
lower watchdog boundary is set by the SET pins, see 8-5 and the 8.1.2 section for additional information.  
CWD  
GND  
2
5
I
Ground pin  
Reset output. Connect RESET using a 1-kΩto 100-kΩresistor to VDD. RESET goes low when the voltage at  
the SENSE pin goes below the undervoltage threshold (VIT-(UV)) or above the overvoltage threshold (VIT+(OV)).  
When the voltage level at the SENSE pin is within the normal operating range, the RESET timeout counter  
starts. At timer completion, RESET goes high. During startup, the state of RESET is undefined below the  
specified power-on reset voltage (VPOR). Above VPOR, RESET goes low and remains low until the monitored  
voltage is within the correct operating range (between VIT-(UV) and VIT(+OV)) and the RESET timeout is  
complete.  
RESET  
9
O
SENSE  
SET0  
10  
3
I
I
SENSE input to monitor voltage rail. Connect this pin to the supply rail that must be monitored.  
Logic input. SET0, SET1, and CWD select the watchdog window ratios, timeouts, and disable the watchdog;  
see the 6.6 table.  
Logic input. SET0, SET1, and CWD select the watchdog window ratios, timeouts, and disable the watchdog;  
see the 6.6 table.  
SET1  
VDD  
6
1
I
I
Supply voltage pin. For noisy systems, connecting a 0.1-µF bypass capacitor is recommended.  
Watchdog input. A falling transition (edge) must occur at this pin between the lower (tWDL(max)) and upper  
(tWDU(min)) window boundaries in order for WDO to not assert.  
WDI  
7
8
I
When the watchdog is not in use, the SET pins can be used to disable the watchdog. The input at WDI is  
ignored when RESET or WDO are low (asserted) and also when the watchdog is disabled. If the watchdog is  
disabled, then WDI cannot be left unconnected and must be driven to either VDD or GND.  
Watchdog output. Connect WDO with a 1-kΩto 100-kΩresistor to VDD. WDO goes low (asserts) when a  
watchdog timeout occurs. WDO only asserts when RESET is high. When a watchdog timeout occurs, WDO  
goes low (asserts) for the set RESET timeout delay (tRST). When RESET goes low, WDO is in a high-  
impedance state.  
WDO  
O
Thermal pad  
Connect the thermal pad to a large-area ground plane. The thermal pad is internally connected to GND.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS3850  
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Supply voltage range  
Output voltage range  
VDD  
7
0.3  
0.3  
0.3  
0.3  
RESET, WDO  
SET0, SET1, WDI, SENSE  
CWD, CRST  
7
V
7
VDD + 0.3(3)  
±20  
Voltage ranges  
V
Output pin current  
RESET, WDO  
mA  
mA  
Input current (all pins)  
±20  
Continuous total power dissipation  
See 6.4  
(2)  
Operating junction, TJ  
150  
150  
150  
40  
40  
65  
(2)  
Temperature  
Operating free-air temperature, TA  
Storage, Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) TJ = TA as a result of the low dissipated power in this device.  
(3) The absolute maximum rating is VDD + 0.3 V or 7.0 V, whichever is smaller.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
6.5  
UNIT  
V
VDD  
VSENSE  
VSET0  
VSET1  
CCRST  
CRST  
CCWD  
CWD  
RPU  
Supply pin voltage  
1.6  
Input pin voltage  
0
6.5  
V
SET0 pin voltage  
0
6.5  
V
SET1 pin voltage  
0
0.1(1)  
9
6.5  
V
RESET delay capacitor  
Pullup resistor to VDD  
Watchdog timing capacitor  
Pullup resistor to VDD  
Pullup resistor, RESET and WDO  
RESET pin current  
1000(1)  
nF  
kΩ  
nF  
kΩ  
kΩ  
mA  
mA  
°C  
10  
11  
0.1(2)  
9
1000(2)  
11  
10  
10  
1
100  
10  
IRST  
IWDO  
TJ  
Watchdog output current  
Junction Temperature  
10  
125  
40  
(1) Using a CCRST capacitor of 0.1 nF or 1000 nF gives a reset delay of 703 µs or 3.22 seconds, respectively.  
(2) Using a CCWD capacitor of 0.1 nF or 1000 nF gives a tWDU(typ) of 62.74 ms or 77.45 seconds, respectively.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS3850  
 
 
 
 
 
 
 
 
 
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
6.4 Thermal Information  
TPS3850  
DRC (VSON)  
10 PINS  
52.3  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
59.7  
26.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.7  
ψJT  
26.0  
ψJB  
RθJC(bot)  
9.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
at 1.6 V VDD 6.5 V over the operating temperature range of 40°C TJ +125°C (unless otherwise noted); the  
open-drain pullup resistors are 10 kΩfor each output; typical values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GENERAL CHARACTERISTICS  
(1) (2) (3)  
VDD  
IDD  
Supply voltage  
Supply current  
1.6  
6.5  
19  
V
10  
µA  
RESET FUNCTION  
(2)  
VPOR  
Power-on reset voltage  
IRESET = 15 µA, VOL(MAX) = 0.25 V  
0.8  
V
V
(1)  
VUVLO  
Undervoltage lockout voltage  
1.35  
Overvoltage SENSE threshold accuracy,  
entering RESET  
VIT+(OV)  
VIT-(UV)  
VIT(ADJ)  
VIT+(nom)+0.8%  
VIT-(nom)+0.8%  
0.4032  
V
IT+(nom)0.8%  
Undervoltage SENSE threshold accuracy,  
entering RESET  
V
IT-(nom)0.8%  
Falling SENSE threshold voltage,  
adjustable version only  
0.3968  
0.4  
V
VHYST  
ICRST  
Hysteresis voltage  
0.2%  
347  
0.5%  
375  
0.8%  
403  
CRST pin charge current  
CRST pin threshold voltage  
CRST = 0.5 V  
CWD = 0.5 V  
nA  
V
VCRST  
1.196  
1.21  
1.224  
WINDOW WATCHDOG FUNCTION  
ICWD  
VCWD  
VOL  
CWD pin charge current  
347  
375  
403  
1.224  
0.4  
nA  
V
CWD pin threshold voltage  
1.196  
1.21  
RESET, WDO output low  
VDD = 5 V, ISINK = 3 mA  
V
ID  
RESET, WDO output leakage current  
Low-level input voltage (SET0, SET1)  
High-level input voltage (SET0, SET1)  
Low-level input voltage (WDI)  
High-level input voltage (WDI)  
VDD = 1.6 V, VRESET, = VWDO = 6.5 V  
1
µA  
V
VIL  
0.25  
VIH  
0.8  
V
VIL(WDI)  
VIH(WDI)  
0.3 × VDD  
V
0.8 × VDD  
V
TPS3850Xyy(y), VSENSE = 5.0 V,  
VDD = 3.3 V  
2.1  
2.5  
50  
µA  
nA  
ISENSE  
SENSE pin idle current  
TPS3850H01 only, VSENSE = 5.0 V,  
VDD = 3.3 V  
50  
(1) When VDD falls below VUVLO, RESET is driven low.  
(2) When VDD falls below VPOR, RESET and WDO are undefined.  
(3) During power-on, VDD must be a minimum 1.6 V for at least 300 µs before the output corresponds to the SENSE voltage.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS3850  
 
 
 
 
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
6.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
GENERAL  
tINIT  
tSET  
CWD, CRST pin evaluation period(1)  
381  
500  
1
µs  
µs  
µs  
µs  
Time required between changing SET0 and SET1 pins  
SET0, SET1 pin setup time  
Startup delay(2)  
300  
RESET FUNCTION  
CRST = NC  
170  
8.5  
200  
10  
230  
ms  
ms  
tRST  
Reset timeout period  
11.5  
CRST = 10 kΩto VDD  
VDD = 5 V, VSENSE = VIT+(OV) + 2.5%  
VDD = 5 V, VSENSE = VIT-(UV) 2.5%  
35  
tRST-DEL  
VSENSE to RESET delay  
µs  
17  
WINDOW WATCHDOG FUNCTION  
CWD = programmable, SET0 = 0, SET1 = 0(3)  
CWD = programmable, SET0 = 1, SET1 = 1(3)  
CWD = programmable, SET0 = 0, SET1 = 1(3) (4)  
CWD = NC, SET0 = 0, SET1 = 0  
1/8  
1/2  
Window watchdog ratio of  
WD ratio lower boundary to upper  
boundary  
3/4  
19.1  
1.48  
22.5  
1.85  
25.9  
2.22  
ms  
ms  
CWD = NC, SET0 = 0, SET1 = 1  
CWD = NC, SET0 = 1, SET1 = 0  
Watchdog disabled  
CWD = NC, SET0 = 1, SET1 = 1  
680  
7.65  
7.65  
800  
9.0  
9.0  
920  
10.35  
10.35  
ms  
ms  
ms  
Window watchdog lower  
boundary  
tWDL  
CWD = 10 kΩto VDD, SET0 = 0, SET1 = 0  
CWD = 10 kΩto VDD, SET0 = 0, SET1 = 1  
CWD = 10 kΩto VDD, SET0 = 1, SET1 = 0  
CWD = 10 kΩto VDD, SET0 = 1, SET1 = 1  
CWD = NC, SET0 = 0, SET1 = 0  
Watchdog disabled  
1.48  
1.85  
55.0  
27.5  
2.22  
63.3  
ms  
ms  
ms  
46.8  
CWD = NC, SET0 = 0, SET1 = 1  
23.375  
31.625  
CWD = NC, SET0 = 1, SET1 = 0  
Watchdog disabled  
CWD = NC, SET0 = 1, SET1 = 1  
1360  
1600  
109.0  
195.0  
1840  
125.4  
224.3  
ms  
ms  
ms  
Window watchdog upper  
boundary  
tWDU  
92.7  
CWD = 10 kΩto VDD, SET0 = 0, SET1 = 0  
CWD = 10 kΩto VDD, SET0 = 0, SET1 = 1  
CWD = 10 kΩto VDD, SET0 = 1, SET1 = 0  
CWD = 10 kΩto VDD, SET0 = 1, SET1 = 1  
165.8  
Watchdog disabled  
9.35  
11.0  
150  
50  
12.65  
ms  
µs  
ns  
ns  
tWD-setup Setup time required for device to respond to changes on WDI after being enabled  
Minimum WDI pulse duration  
tWD-del  
WDI to WDO delay  
50  
(1) Please refer to 8.1.1.2  
(2) During power-on, VDD must be a minimum 1.6 V for at least 300 µs before the output corresponds to the SENSE voltage.  
(3) 0 refers to VSET VIL, 1 refers to VSET VIH.  
(4) If this watchdog ratio is used, then tWDL(max) can overlap tWDU(min)  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS3850  
 
 
 
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
6.7 Timing Diagrams  
VDD  
VPOR  
VUVLO  
VIT-(UV) + VHYST  
VIT-(UV)  
tRST-DEL  
SENSE  
tRST  
tRST  
(1)  
RESET  
WDI  
tWDL < t < tWDU  
t < tWDU  
t < tWDU  
X
X
t < tWDL  
WDO  
tRST  
6-1. Timing Diagram  
A. See 6-2 for WDI timing requirements.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS3850  
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
WDI  
Early Fault  
WDO  
Correct Operation  
WDI  
WDO  
Late Fault  
WDI  
WDO  
Valid  
Window  
Window  
Timing  
tWDL(min)  
tWDL(typ)  
tWDL(max)  
tWDU(min)  
tWDU(typ)  
tWDU(max)  
= Tolerance Window  
6-2. TPS3850 Window Watchdog Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS3850  
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
VDD/  
SENSE  
RESET  
tRST-DEL  
tRST  
SET0  
tSET  
tWD-setup  
SET1  
RATIO  
1:8  
1:2  
1:8  
Disabled  
6-3. Changing SET0 and SET1 Pins  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS3850  
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
6.8 Typical Characteristics  
all curves are taken at TA = 25°C with 1.6 V VDD 6.5 V (unless otherwise noted)  
0.5  
0.3  
0.5  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
Average  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
Average  
0.3  
0.1  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.3  
-0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
6-4. VIT+(OV) Accuracy vs Temperature  
6-5. VIT-(UV) Accuracy vs Temperature  
0.5  
0.3  
0.5  
0.3  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
Average  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
Average  
0.1  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.3  
-0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
6-6. VIT-(OV) Accuracy vs Temperature  
6-7. VIT+(UV) Accuracy vs Temperature  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
-0.5 -0.4 -0.3 -0.2 -0.1  
0
VIT+(OV) Accuracy (%)  
0.1 0.2 0.3 0.4 0.5  
-0.5 -0.4 -0.3 -0.2 -0.1  
0
VIT-(UV) Accuracy (%)  
0.1 0.2 0.3 0.4 0.5  
Includes G and H versions; with 1.2-V, 1.8-V, 3.0-V, 3.3-V, and  
5-V thresholds; total units = 41,111  
Includes G and H versions; with 1.2-V, 1.8-V, 3.0-V, 3.3-V, and  
5-V thresholds; total units = 41,111  
6-8. VIT+(OV) Accuracy Histogram  
6-9. VIT-(UV) Accuracy Histogram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS3850  
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
6.8 Typical Characteristics (continued)  
all curves are taken at TA = 25°C with 1.6 V VDD 6.5 V (unless otherwise noted)  
380  
376  
372  
368  
364  
16  
12  
8
-40èC  
0èC  
25èC  
105èC  
125èC  
4
1.6 V  
6.5 V  
0
-50  
-25  
0
25  
50  
75  
100  
125  
0
1
2
3
4
5
6
7
Temperature (èC)  
VDD (V)  
6-11. Supply Current vs Power-Supply Voltage  
1.6  
6-10. CWD Charging Current vs Temperature  
1.6  
1.4  
1.2  
1
-40èC  
0èC  
25èC  
105èC  
125èC  
-40èC  
0èC  
25èC  
105èC  
125èC  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0
1
2
3
IRESET (mA)  
4
5
6
0
1
2
3
IRESET (mA)  
4
5
6
VDD = 1.6 V  
VDD = 6.5 V  
6-12. Low-Level RESET Voltage vs RESET Current  
6-13. Low-Level RESET Voltage vs RESET Current  
90  
90  
-40èC  
0èC  
25èC  
105èC  
125èC  
-40èC  
0èC  
25èC  
105èC  
125èC  
70  
50  
30  
10  
70  
50  
30  
10  
1
2
3
4
Overdrive (%)  
5
6
7
1
2
3
4
Overdrive (%)  
5
6
7
VDD = 1.6 V, VIT+(OV) = 0.936 V  
6-14. Propagation Delay vs Overdrive  
VDD = 6.5 V, VIT+(OV) = 0.936 V  
6-15. Propagation Delay vs Overdrive  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS3850  
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
6.8 Typical Characteristics (continued)  
all curves are taken at TA = 25°C with 1.6 V VDD 6.5 V (unless otherwise noted)  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
-40èC  
0èC  
25èC  
105èC  
125èC  
-40èC  
0èC  
25èC  
105èC  
125èC  
1
2
3
4
Overdrive (%)  
5
6
7
1
2
3
4
Overdrive (%)  
5
6
7
VDD = 1.6 V, VIT-(UV) = 0.864 V  
6-16. Propagation Delay vs Overdrive  
VDD = 6.5 V, VIT-(UV) = 0.864 V  
6-17. Propagation Delay vs Overdrive  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
Overdrive = 3%  
Overdrive = 4%  
Overdrive = 5%  
Overdrive = 6%  
Overdrive = 7%  
Overdrive = 3%  
Overdrive = 4%  
Overdrive = 5%  
Overdrive = 6%  
Overdrive = 7%  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
VDD = 1.6 V, VIT+(OV) = 0.936 V  
6-18. SENSE Glitch Immunity vs Temperature  
VDD = 6.5 V, VIT+(OV) = 0.936 V  
6-19. SENSE Glitch Immunity vs Temperature  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
Overdrive = 3%  
Overdrive = 4%  
Overdrive = 5%  
Overdrive = 6%  
Overdrive = 7%  
Overdrive = 3%  
Overdrive = 4%  
Overdrive = 5%  
Overdrive = 6%  
Overdrive = 7%  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
VDD = 1.6 V, VIT-(UV) = 0.864 V  
6-20. SENSE Glitch Immunity vs Temperature  
VDD = 6.5 V, VIT-(UV) = 0.864 V  
6-21. SENSE Glitch Immunity vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS3850  
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
7 Detailed Description  
7.1 Overview  
The TPS3850 is a high-accuracy voltage supervisor with an integrated watchdog timer. This device includes a  
precision voltage supervisor with both overvoltage (VIT+(OV)) and undervoltage (VIT-(UV)) thresholds that achieve  
0.8% accuracy over the specified temperature range of 40°C to +125°C. In addition, the TPS3850 includes  
accurate hysteresis on both thresholds, making the device ideal for use with tight tolerance systems where  
voltage supervisors must ensure a RESET before the minimum and maximum supply tolerance of the  
microprocessor or system-on-a-chip (SoC) is reached.  
7.2 Functional Block Diagrams  
VDD  
VDD  
SENSE  
R1  
RESET  
R2  
Precision  
Clock  
R3  
Reference  
0.4 V  
VDD  
WDO  
State  
Machine  
Cap  
Control  
CWD  
VDD  
Cap  
Control  
CRST  
WDI SET0 SET1  
GND  
7-1. Fixed Version Block Diagram  
RTOTAL = R1 + R2 + R3 = 4.5 MΩ.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS3850  
 
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
VDD  
VDD  
SENSE  
RESET  
Reference  
Precision  
Clock  
0.4 V  
VDD  
WDO  
State  
Machine  
Cap  
Control  
CWD  
VDD  
Cap  
Control  
CRST  
WDI SET0 SET1  
GND  
7-2. Adjustable Version Block Diagram  
7.3 Feature Description  
7.3.1 CRST  
The CRST pin provides the user the functionality of both high-precision, factory-programmed, reset delay timing  
options and user-programmable, reset delay timing. The CRST pin can be pulled up to VDD through a resistor,  
have an external capacitor to ground, or can be left unconnected. The configuration of the CRST pin is re-  
evaluated by the device every time the voltage on the SENSE line enters the valid window (VIT+(UV) < VSENSE  
<
VIT-(OV)). The pin evaluation is controlled by an internal state machine that determines which option is connected  
to the CRST pin. The sequence of events takes 381 μs (tINIT) to determine if the CRST pin is left unconnected,  
pulled up through a resistor, or connected to a capacitor. If the CRST pin is being pulled up to VDD, then a 10-  
kΩpullup resistor is required.  
7.3.2 RESET  
The RESET pin features a programmable reset delay time that can be adjusted from 703 µs to 3.22 seconds  
when using adjustable capacitor timing. RESET is an open-drain output that should be pulled up through a 1-kΩ  
to 100-kΩ pullup resistor. When VDD is above VDD (min), RESET remains high (not asserted) when the SENSE  
voltage is between the positive threshold (VIT+(OV)) and the negative threshold (VIT-(UV)). If SENSE falls below  
VIT-(UV) or rises above VIT+(OV), then RESET is asserted, driving the RESET pin to a low-impedance state. When  
SENSE comes back into the valid window, a RESET delay circuit is enabled that holds RESET low for a  
specified reset delay period (tRST). This tRST period is determined by what is connected to the CRST pin; see 图  
8-1. When the reset delay has elapsed, the RESET pin goes to a high-impedance state and uses a pullup  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS3850  
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
resistor to hold RESET high. The pullup resistor must be connected to the proper voltage rail to allow other  
devices to be connected at the correct interface voltage. To ensure proper voltage levels, give some  
consideration when choosing the pullup resistor values. The pullup resistor value is determined by output logic  
low voltage (VOL), capacitive loading, and leakage current (ID); see the 8.1.1 section for more information.  
7.3.3 Over- and Undervoltage Fault Detection  
The TPS3850 features both overvoltage detection and undervoltage detection. This detection is achieved  
through the combination of two comparators with a precision voltage reference and a trimmed resistor divider  
(fixed versions only). The SENSE pin is used to monitor the critical voltage rail; this configuration optimizes  
device accuracy because all resistor tolerances are accounted for in the accuracy and performance  
specifications. Both comparators also include built-in hysteresis that provides some noise immunity and ensures  
stable operation. If the voltage on the SENSE pin drops below VIT-(UV), then RESET is asserted (driven low).  
When the voltage on the SENSE pin is between the positive and negative threshold voltages, RESET deasserts  
after the user-defined RESET delay time, as shown in 7-3.  
The SENSE input can vary from GND to 6.5 V, regardless of the device supply voltage used. Although not  
required in most cases, for noisy applications, good analog-design practice is to place a 1-nF to 10-nF bypass  
capacitor at the SENSE pin to reduce sensitivity to transient voltages on the monitored signal.  
VIT+(OV)  
Overvoltage Limit  
VIT-(OV) = VIT+(OV) - VHYST  
VSENSE  
VIT+(UV) = VIT-(UV) + VHYST  
VIT-(UV)  
Undervoltage Limit  
tRST  
tRST  
RESET  
7-3. Window Comparator Timing Diagram  
7.3.4 Adjustable Operation Using the TPS3850H01  
The adjustable version (TPS3850H01) can be used to monitor any voltage rail down to 0.4 V using the circuit  
illustrated in 7-4. When using the TPS3850H01, the device does not function as a window comparator;  
instead, the device only monitors the undervoltage threshold. To monitor a user-defined voltage, the target  
threshold voltage for the monitored supply (VMON) and the resistor divider values can be calculated by using 方  
1 and 方程2, respectively:  
÷
R1  
VMON = V  
ì 1+  
IT(ADJ)  
R2 ◊  
«
(1)  
方程式 1 can be used to calculate either the negative threshold or the positive threshold by replacing VITx with  
either VITN or VITN + VHYST, respectively.  
RTOTAL = R1 + R2  
(2)  
Large resistor values minimize current consumption; however, the input bias current of the device degrades  
accuracy if the current through the resistors is too low. Therefore, choosing an RTOTAL value so that the current  
through the resistor divider is at least 100 times larger than the maximum SENSE pin current (ISENSE) ensures a  
good degree of accuracy; see the IQ vs Accuracy Tradeoff In Designing Resistor Divider Input To A Voltage  
Supervisor (SLVA450) application report for more details on sizing input resistors.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS3850  
 
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
VMON  
VDD  
R1  
TPS3850  
SENSE  
SET1  
SET0  
CRST  
CWD  
VDD  
RESET  
WDO  
R2  
WDI  
WDI  
GND  
7-4. Adjustable Voltage Monitor  
7.3.5 Window Watchdog  
7.3.5.1 SET0 and SET1  
When changing the SET0 or SET1 pins, there are two cases to consider: enabling and disabling the watchdog,  
and changing the SET0 or SET1 pins when the watchdog is enabled. In case 1 where the watchdog is being  
enabled or disabled, the changes take effect immediately. However, in case 2, a RESET event must occur in  
order for the changes to take place.  
7.3.5.1.1 Enabling the Window Watchdog  
The TPS3850 features the ability to enable and disable the watchdog timer. This feature allows the user to start  
with the watchdog timer disabled and then enable the watchdog timer using the SET0 and SET1 pins. The ability  
to enable and disable the watchdog is useful to avoid undesired watchdog trips during initialization and  
shutdown. When the SETx pins are changed to disable the watchdog timer, changes on the pins are responded  
to immediately (as shown in 7-5). When the watchdog goes from disabled to enabled, there is a 150 μs  
(tWD-setup) transition period where the device does not respond to changes on WDI. After this 150-μs period, the  
device begins to respond to changes on WDI again.  
VDD/  
SENSE  
RESET  
SET0  
tWD-setup  
SET1  
RATIO  
1:8  
Disabled  
1:8  
7-5. Enabling the Watchdog Timer  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS3850  
 
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
7.3.5.1.2 Disabling the Watchdog Timer When Using the CRST Capacitor  
When using the TPS3850-Q1 with fixed timing options, if the watchdog is disabled and reenabled while WDO is  
asserted (logic low) the watchdog performs as described in the 7.3.5.1.1 section. However, if there is a  
capacitor on the CRST pin, and the watchdog is disabled and reenabled when WDO is asserted (logic low), then  
the watchdog behaves as shown in 7-6. When the watchdog is disabled, WDO goes high impedance (logic  
high). However, when the watchdog is enabled again, the tRST period must expire before the watchdog resumes  
normal operation.  
VDD/  
SENSE  
RESET  
tWDU  
tWDU  
WDO  
tRST  
Disabling and  
Enabling  
watchdog  
SET1  
SET0  
There is no WDI signal in this figure, WDI is always at GND.  
7-6. Enabling and Disabling the Watchdog Timer During a WDO Reset Event  
7.3.5.1.3 SET0 and SET1 During Normal Watchdog Operation  
The SET0 and SET1 pins can be used to control the window watchdog ratio of the lower boundary to the upper  
boundary. There are four possible modes for the watchdog (see 8-5): disabled, 1:8 ratio, 3:4 ratio, and 1:2  
ratio. If SET0 = 1 and SET1 = 0, then the watchdog is disabled. When the watchdog is disabled WDO does not  
assert, and the TPS3850 functions as a normal supervisor. The SET0 and SET1 pins can be changed when the  
device is operational, but cannot be changed at the same time. If these pins are changed when the device is  
operational, then there must be a 500-µs (tSET) delay between switching the two pins. If the SET0 and SET1 are  
used to change the reset timing, then a reset event must occur before the new timing condition is latched. This  
reset can be triggered by SENSE rising above VIT+(OV) or below VIT-(UV), or by bringing VDD below VUVLO. 7-7  
shows how the SET0 and SET1 pins do not change the watchdog timing option until a reset event has occurred.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS3850  
 
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
VDD/  
SENSE  
RESET  
tRST-DEL  
tRST  
SET0  
tSET  
SET1  
RATIO  
1:2  
1:8  
7-7. Changing SET0 and SET1 Pins  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS3850  
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
7.3.6 Window Watchdog Timer  
This section provides information for the window watchdog modes of operation. A window watchdog is typically  
employed in safety critical applications where a traditional watchdog timer is inadequate. In a traditional  
watchdog, there is a maximum time in which a pulse must be issued to prevent the reset from occurring.  
However, in a window watchdog the pulse must be issued between a maximum lower window time (tWDL(max)  
)
and the minimum upper window time (tWDU(min)) set by the CWD pin and the SET0 and SET1 pins. 8-5  
describes how tWDU can be used to calculate the timing of tWDL. The tWDL timing can also be changed by  
adjusting the SET0 and SET1 pins. 7-8 shows the valid region for a WDI pulse to be issued to prevent the  
WDO from being triggered and being pulled low.  
WDI  
Early Fault  
WDO  
Correct Operation  
WDI  
WDO  
Late Fault  
WDI  
WDO  
Valid  
Window  
Window  
Timing  
tWDL(min)  
tWDL(typ)  
tWDL(max)  
tWDU(min)  
tWDU(typ)  
tWDU(max)  
= Tolerance Window  
7-8. TPS3850 Window Watchdog Timing  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS3850  
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
7.3.6.1 CWD  
The CWD pin provides the user the functionality of both high-precision, factory-programmed watchdog timing  
options and user-programmable watchdog timing. The TPS3850 features three options for setting the watchdog  
window: connecting a capacitor to the CWD pin, connecting a pullup resistor to VDD, and leaving the CWD pin  
unconnected. The configuration of the CWD pin is evaluated by the device every time VSENSE enters the valid  
window (VIT+(UV) < VSENSE < VIT-(OV)). The pin evaluation is controlled by an internal state machine that  
determines which option is connected to the CWD pin. The sequence of events takes 381 μs (tINIT) to determine  
if the CWD pin is left unconnected, pulled up through a resistor, or connected to a capacitor. If the CWD pin is  
being pulled up to VDD using a pullup resistor, then a 10-kΩresistor is required.  
7.3.6.2 WDI Functionality  
WDI is the watchdog timer input that controls the WDO output. The WDI input is triggered by the falling edge of  
the input signal. For the first pulse, the watchdog acts as a traditional watchdog timer; thus, the first pulse must  
be issued before tWDU(min). After the first pulse, to ensure proper functionality of the watchdog timer, always issue  
the WDI pulse within the window of tWDL(max) and tWDU(min). If the pulse is issued in this region, then WDO  
remains unasserted. Otherwise, the device asserts WDO, putting the WDO pin into a low-impedance state.  
The watchdog input (WDI) is a digital pin. To ensure there is no increase in IDD, drive the WDI pin to either VDD  
or GND at all times. Putting the pin to an intermediate voltage can cause an increase in supply current (IDD  
)
because of the architecture of the digital logic gates. When RESET is asserted, the watchdog is disabled and all  
signals input to WDI are ignored. When RESET is no longer asserted, the device resumes normal operation and  
no longer ignores the signal on WDI. If the watchdog is disabled, drive the WDI pin to either VDD or GND.  
7.3.6.3 WDO Functionality  
The TPS3850 features a window watchdog timer with an independent watchdog output ( WDO). The  
independent watchdog output provides the flexibility to flag a fault in the watchdog timing without performing an  
entire system reset. When RESET is not asserted (high), the WDO signal maintains normal operation. When  
asserted, WDO remains down for tRST. When the RESET signal is asserted (low), the WDO pin goes to a high-  
impedance state. When RESET is unasserted, the window watchdog timer resumes normal operation and WDO  
can be used again.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS3850  
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
7.4 Device Functional Modes  
7-1 summarizes the functional modes of the TPS3850.  
7-1. Device Functional Modes  
VDD  
WDI  
WDO  
SENSE  
RESET  
Undefined  
Low  
VDD < VPOR  
High  
Ignored  
Ignored  
Ignored  
V
POR VDD < VUVLO  
(1)  
(1)  
High  
High  
High  
VSENSE < VIT+(UV)  
VSENSE > VIT-(OV)  
Low  
Low  
(2)  
(3)  
VIT-(UV) < VSENSE < VIT+(OV)  
High  
t
WDL(max) tpulse  
VDD VDD (min)  
tWDU(min)  
(3)  
(2)  
(2)  
tWDL(max) > tpulse  
Low  
Low  
VIT-(UV) < VSENSE < VIT+(OV)  
VIT-(UV) < VSENSE < VIT+(OV)  
High  
High  
(3)  
tWDU(min) < tpulse  
(1) When VSENSE has not entered the valid window.  
(2) When VSENSE is in the valid window.  
(3) Where tpulse is the time between falling edges on WDI.  
7.4.1 VDD is Below VPOR ( VDD < VPOR  
)
When VDD is less than VPOR, RESET is undefined and can be either high or low. The state of RESET largely  
depends on the load that the RESET pin is experiencing.  
7.4.2 Above Power-On-Reset But Less Than UVLO (VPOR VDD < VUVLO  
)
When VDD is less than VUVLO, and greater than or equal to VPOR, the RESET signal is asserted (logic low)  
regardless of the voltage on the SENSE pin. When RESET is asserted, the watchdog output WDO is in a high-  
impedance state regardless of the WDI signal that is input to the device.  
7.4.3 Above UVLO But Less Than VDD (min) (VUVLO VDD < VDD (min)  
)
When VDD is less than VDD (min) and greater than or equal to VUVLO, the RESET signal responds to changes on  
the SENSE pin, but the accuracy can be degraded.  
7.4.4 Normal Operation (VDD VDD (min)  
)
When VDD is greater than or equal to VDD (min), the RESET signal is determined by VSENSE. When RESET is  
asserted, WDO goes to a high-impedance state. WDO is then pulled high through the pullup resistor.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS3850  
 
 
 
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
8 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The following sections describe in detail proper device implementation, depending on the final application  
requirements.  
8.1.1 CRST Delay  
The TPS3850 features three options for setting the reset delay (tRST): connecting a capacitor to the CRST pin,  
connecting a pullup resistor to VDD, and leaving the CRST pin unconnected. 8-1 shows a schematic drawing  
of all three options. To determine which option is connected to the CRST pin, an internal state machine controls  
the internal pulldown device and measures the pin voltage. This sequence of events takes 381 μs (tINIT) to  
determine which timing option is used. Every time RESET is asserted, the state machine determines what is  
connected to the pin.  
VDD  
VDD  
VDD  
TPS3850  
TPS3850  
TPS3850  
VDD  
VDD  
VDD  
375 nA  
375 nA  
375 nA  
CRST  
CCRST  
CRST  
CRST  
Cap  
Control  
Cap  
Control  
Cap  
Control  
User Programmable  
Capacitor to GND  
CRST  
Unconnected  
10 kΩ Resistor  
to VDD  
8-1. CRST Charging Circuit  
8.1.1.1 Factory-Programmed Reset Delay Timing  
To use the factory-programmed timing options, the CRST pin must either be left unconnected or pulled up to  
VDD through a 10-kpullup resistor. Using these options enables a high-precision, 15% accurate reset delay  
timing, as shown in 8-1.  
8-1. Reset Delay Time for Factory-Programmed Reset Delay Timing  
RESET DELAY TIME (tRST  
)
CRST  
UNIT  
MIN  
TYP  
200  
10  
MAX  
230  
NC  
170  
8.5  
ms  
ms  
11.5  
10 kΩto VDD  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS3850  
 
 
 
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
8.1.1.2 Programmable Reset Delay-Timing  
The TPS3850 uses a CRST pin charging current (ICRST) of 375 nA. When using an external capacitor, the rising  
RESET delay time can be set to any value between 700 µs (CCRST = 100 pF) and 3.2 seconds (CCRST = 1 µF).  
The typical ideal capacitor value needed for a given delay time can be calculated using 方程3, where CCRST is  
in microfarads and tRST is in seconds:  
tRST = 3.22 × CCRST + 0.000381  
(3)  
To calculate the minimum and maximum-reset delay time use 方程4 and 方程5, respectively.  
tRST(min) = 2.8862 × CCRST + 0.000324  
tRST(max) = 3.64392 × CCRST + 0.000438  
(4)  
(5)  
The slope of 方程式 3 is determined by the time the CRST charging current (ICRST) takes to charge the external  
capacitor up to the CRST comparator threshold voltage (VCRST). When RESET is asserted, the capacitor is  
discharged through the internal CRST pulldown resistor. When the RESET conditions are cleared, the internal  
precision current source is enabled and begins to charge the external capacitor; when VCRST = 1.21 V, RESET is  
unasserted. Note that to minimize the difference between the calculated RESET delay time and the actual  
RESET delay time, use a use a high-quality ceramic dielectric COG, X5R, or X7R capacitor and minimize  
parasitic board capacitance around this pin. 8-2 lists the reset delay time ideal capacitor values for CCRST  
.
8-2. Reset Delay Time for Common Ideal Capacitor Values  
RESET DELAY TIME (tRST  
)
CCRST  
UNIT  
MIN(1)  
TYP  
0.70  
3.61  
32.6  
323  
MAX(1)  
0.8  
100 pF  
1 nF  
0.61  
3.21  
29.2  
289  
ms  
ms  
ms  
ms  
ms  
4.08  
36.8  
364  
10 nF  
100 nF  
1 μF  
2886  
3227  
3644  
(1) Minimum and maximum values are calculated using ideal capacitors.  
8.1.2 CWD Functionality  
The TPS3850 features three options for setting the watchdog window: connecting a capacitor to the CWD pin,  
connecting a pullup resistor to VDD, and leaving the CWD pin unconnected. 8-2 shows a schematic drawing  
of all three options. If this pin is connected to VDD through a 10-kpullup resistor or left unconnected (high  
impedance), then the factory-programmed watchdog timeouts are enabled; see the 6.6 table. Otherwise, the  
watchdog timeout can be adjusted by placing a capacitor from the CWD pin to ground.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS3850  
 
 
 
 
 
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
VDD  
VDD  
VDD  
TPS3850  
TPS3850  
TPS3850  
VDD  
VDD  
VDD  
375 nA  
375 nA  
375 nA  
CWD  
CCWD  
CWD  
CWD  
Cap  
Control  
Cap  
Control  
Cap  
Control  
User Programmable  
Capacitor to GND  
CWD  
Unconnected  
10 kΩ Resistor  
to VDD  
8-2. CWD Charging Circuit  
8.1.2.1 Factory-Programmed Timing Options  
If using the factory-programmed timing options (listed in 8-3), the CWD pin must either be unconnected or  
pulled up to VDD through a 10-kpullup resistor. Using these options enables high-precision, factory-  
programmed watchdog timing.  
8-3. Factory-Programmed Watchdog Timing  
INPUT  
WATCHDOG LOWER BOUNDARY (tWDL  
)
WATCHDOG UPPER BOUNDARY (tWDU)  
UNIT  
CWD  
SET0 SET1  
MIN  
19.1  
1.48  
TYP  
22.5  
1.85  
MAX  
25.9  
2.22  
MIN  
46.8  
TYP  
55.0  
27.5  
MAX  
63.3  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
ms  
ms  
23.375  
31.625  
NC  
Watchdog disabled  
Watchdog disabled  
680  
800  
9.0  
9.0  
920  
10.35  
10.35  
1360  
1600  
109.0  
195.0  
1840  
125.4  
224.3  
ms  
ms  
ms  
7.65  
7.65  
92.7  
165.8  
10 kΩto VDD  
Watchdog disabled  
1.48 1.85  
Watchdog disabled  
9.35 11.0  
2.22  
12.65  
ms  
8.1.2.2 Adjustable Capacitor Timing  
Adjustable capacitor timing is achievable by connecting a capacitor to the CWD pin. If a capacitor is connected  
to CWD, then a 375-nA constant-current source charges CCWD until VCWD = 1.21 V. The TPS3850 determines  
the window watchdog upper boundary with the formula given in 方程式 6, where CCWD is in microfarads and  
tWDU is in seconds.  
tWDU(typ) = 77.4 × CCWD + 0.055  
(6)  
The TPS3850 is designed and tested using CCWD capacitors between 100 pF and 1 µF. Note that 方程式 6 is for  
ideal capacitors. Capacitor tolerances cause the actual device timing to vary such that the minimum of tWDU can  
decrease and the maximum of tWDU can increase by the capacitor tolerance. To allow for a valid watchdog  
window, choose a capacitor with tolerance such that tWDU(min) and tWDL(max) do not overlap. For the most  
accurate timing, use ceramic capacitors with COG dielectric material. As shown in 8-4, when using the  
minimum capacitor of 100 pF, the watchdog upper boundary is 62.74 ms; whereas with a 1-µF capacitor, the  
watchdog upper boundary is 77.455 seconds. If a CCWD capacitor is used, 方程式 6 can be used to set tWDU the  
window watchdog upper boundary. The window watchdog lower boundary is dependent on the SET0 and SET1  
pins because these pins set the window watchdog ratio of the lower boundary to upper boundary; 8-5 shows  
how tWDU can be used to calculate tWDL based on the SET0 and SET1 pins.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS3850  
 
 
 
 
 
TPS3850  
www.ti.com.cn  
UNIT  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
8-4. tWDU Values for Common Ideal Capacitor Values  
WATCHDOG UPPER BOUNDARY (tWDU  
)
CCWD  
MIN(1)  
56.77  
119.82  
750  
TYP  
62.74  
132.4  
829  
MAX(1)  
68.7  
100 pF  
1 nF  
ms  
ms  
ms  
ms  
ms  
144.98  
908  
10 nF  
100 nF  
1 µF  
7054  
7795  
77455  
8536  
70096  
84814  
(1) Minimum and maximum values are calculated using ideal capacitors.  
8-5. Programmable CWD Timing  
INPUT  
SET0 SET1  
WATCHDOG LOWER BOUNDARY (tWDL  
)
WATCHDOG UPPER BOUNDARY (tWDU  
MIN(2) TYP(1) MAX(2)  
tWDU x 0.125 tWDU(max) x 0.125 0.905 x tWDU(typ)  
)
UNIT  
CWD  
MIN  
tWDU(min)x 0.125  
tWDU(min) x 0.75  
TYP  
MAX  
0
0
1
1
0
1
0
1
tWDU(typ) 1.095 x tWDU(typ)  
tWDU(typ) 1.095 x tWDU(typ)  
s
s
tWDU x 0.75  
Watchdog disabled  
tWDU x 0.5  
tWDU(max) x 0.75 0.905 x tWDU(typ)  
CCWD  
Watchdog disabled  
tWDU(max) x 0.5 0.905 x tWDU(typ) tWDU(typ) 1.095 x tWDU(typ)  
tWDU(min) x 0.5  
s
(1) Calculated from 方程6 using ideal capacitors.  
(2) The tWDU(min) and tWDU(max) include ICWD and VCWD minimum to maximum variation  
8.1.3 Adjustable SENSE Configuration  
The TPS3850H01 has an undervoltage supervisor that can monitor voltage rails greater than 0.4 V. 8-6  
contains 1% resistor values for creating a voltage divider to monitor common rails from 0.5 V to 12 V with a  
threshold of 4% and 10%. These resistor values can be scaled to decrease the amount of current flowing  
through the resistor divider, but increasing the resistor values also decreases the accuracy of the resistor divider.  
General practice is for the current flowing through the resistor divider to be 100 times greater than the current  
going into the SENSE pin. This practice ensures the highest possible accuracy. 方程式 7 can be used to  
calculate the resistors required in the resistor divider. 8-3 shows the block diagram for adjustable operation.  
÷
R1  
VMON = V  
ì 1+  
IT(ADJ)  
R2 ◊  
«
(7)  
8-6. SENSE Resistor Divider Values  
4% THRESHOLD  
10% THRESHOLD  
INPUT VOLTAGE (V)  
THRESHOLD  
VOLTAGE (V)  
THRESHOLD  
VOLTAGE (V)  
R1 (kΩ)  
R2 (kΩ)  
R1 (kΩ)  
R2 (kΩ)  
0.5  
16.2  
75  
80.6  
80.6  
80.6  
80.6  
80.6  
80.6  
80.6  
80.6  
80.6  
80.6  
0.48  
10  
64.9  
82.5  
137  
249  
374  
464  
523  
825  
2100  
80.6  
80.6  
80.6  
80.6  
80.6  
80.6  
80.6  
80.6  
80.6  
80.6  
0.45  
0.72  
0.81  
1.08  
1.64  
2.26  
2.70  
2.99  
4.49  
10.82  
0.8  
0.9  
1.2  
1.8  
2.5  
3
0.77  
93.1  
150  
267  
402  
499  
562  
887  
2260  
0.86  
1.14  
1.73  
2.40  
2.88  
3.3  
5
3.19  
4.80  
12  
11.62  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS3850  
 
 
 
 
 
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
VDD  
Reference  
0.4 V  
VMON  
RESET  
R1  
RESET  
TIMING  
SENSE  
R2  
8-3. Adjustable Voltage Divider  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS3850  
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
8.1.4 Overdrive on the SENSE Pin  
The propagation delay from exceeding the threshold to RESET being asserted is dependent on two conditions:  
the amplitude of the voltage on the SENSE pin relative to the threshold, (ΔV1 and ΔV2), and the length of time  
that the voltage is above or below the trip point (t1 and t2). If the voltage is just over the trip point for a long  
period of time, then RESET asserts and the output is pulled low. However, if the SENSE voltage is just over the  
trip point for a few nanoseconds, then the RESET does not assert and the output remains high. The time  
required for RESET to assert can be changed by increasing the time that the SENSE voltage goes over the trip  
point. 方程8 shows how to calculate the percentage overdrive.  
Overdrive = | ( VSENSE / VITx 1) × 100% |  
(8)  
In 方程式 8, VITx corresponds to the SENSE threshold trip point. If VSENSE exceeds the positive threshold, then  
VIT+(OV) is used. VIT-(UV) is used when VSENSE falls below the negative threshold. In 8-4, t1 and t2 correspond  
to the amount of time that the SENSE voltage is over the threshold. The response time versus overdrive for  
V
IT+(OV) and VIT-(UV) is illustrated in 6-14 and 6-17, respectively.  
The TPS3850 is relatively immune to short positive and negative transients on the SENSE pin because of the  
overdrive voltage curve; see 6-20 and 6-21.  
ûV1  
t1  
VIT+(OV)  
VSENSE  
VIT-(UV)  
ûV2  
t2  
Time  
8-4. Overdrive Voltage on the SENSE Pin  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS3850  
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
8.2 Typical Applications  
8.2.1 Design 1: Monitoring a 1.2-V Rail with Factory-Programmable Watchdog Timing  
A typical application for the TPS3850 is shown in 8-5. The TPS3850G12 is used to monitor the 1.2-V, VCORE  
rail powering the microcontroller.  
1.8V  
1.2V  
TPS3850  
VCORE  
Microcontroller  
RESET  
VI/O  
SENSE  
SET1  
SET0  
CRST  
CWD  
VDD  
RESET  
WDO  
NMI  
WDI  
GND  
GPIO  
0.1 µF  
GND  
8-5. Monitoring Supply Voltage and Watchdog Supervision of a Microcontroller  
8.2.1.1 Design Requirements  
PARAMETER  
Reset delay  
DESIGN REQUIREMENT  
Minimum reset delay of 250 ms  
DESIGN RESULT  
Minimum reset delay of 260 ms, reset delay of 322  
ms (typical)  
Leaving the CWD pin unconnected with SET0 = 0  
and SET1 = 1 produces a window with a tWDL(max)  
of 2.2 ms and a tWDU(min) of 22 ms  
Functions with a 200-Hz pulse-width modulation  
(PWM) signal with a 50% duty cycle  
Watchdog window  
Output logic voltage  
Monitored rail  
1.8-V CMOS  
1.8-V CMOS  
Worst-case VIT+(OV) 1.257 V (4.8%)  
Worst-case VIT-(UV) 1.142 V (4.7%)  
1.2 V within ±5%  
Maximum device current  
consumption  
10 µA of current consumption, typical worst-case of  
199 µA when WDO or RESET is asserted  
200 µA  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Monitoring the 1.2-V Rail  
The window comparator allows for precise voltage supervision of common rails between 0.9 V and 5.0 V. This  
application calls for very tight monitoring of the rail with only ±5% of variation allowed on the rail. To ensure this  
requirement is met, the TPS3850G12 was chosen for its ±4% thresholds. To calculate the worst-case for VIT+(OV)  
and VIT-(UV), the accuracy must also be taken into account. The worst-case for VIT+(OV) can be calculated by 方程  
9:  
VIT+(OV)(Worst-Case) = VIT+(OV)typ × 1.048 = 1.2 × 1.048 = 1.257 V  
(9)  
The worst case for VIT-(UV) can be calculated using 方程10:  
VIT(UV)(Worst-Case) = VIT(UV)typ × 0.952 = 1.2 × 0.952 = 1.142 V  
(10)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS3850  
 
 
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
8.2.1.2.2 Meeting the Minimum Reset Delay  
The TPS3850 features three options for setting the reset delay: connecting a capacitor to the CRST pin,  
connecting a pullup resistor, and leaving the CRST pin unconnected. If the CRST pin is either unconnected or  
pulled up the minimum timing requirement cannot be met, thus an external capacitor must be connected to the  
CRST pin. Because a minimum time is required, the worst-case scenario is a supervisor with a high CRST  
charging current (ICRST) and a low CRST comparator threshold (VCRST). For applications with ambient  
temperatures ranging from 40°C to +125°C, CCRST can be calculated using ICRST(MAX), VCRST(MIN), and solving  
for CCRST in 方程11:  
tRST(min) - 0.000324  
0.25 - 0.000324  
2.8862  
CRST(min)_ideal  
=
=
2.8862  
(11)  
When solving 方程式 11, the minimum capacitance required at the CRST pin is 0.086 μF. If standard capacitors  
with ±10% tolerances are used, then the minimum CRST capacitor required can be found in 方程12:  
CRST(min)_ideal  
0.086 mF  
1- 0.1  
CRST(min)  
=
=
1- Ctolerance  
(12)  
Solving 方程式 12 where Ctolerance is 0.1 or 10%, the minimum CCRST capacitor is 0.096 μF. This value is then  
rounded up to the nearest standard capacitor value, so a 0.1-μF capacitor must be used to achieve this reset  
delay timing. If voltage and temperature derating are being considered, then also include these values in  
Ctolerance  
.
8.2.1.2.3 Setting the Watchdog Window  
In this application, the window watchdog timing options are based on the PWM signal that is provided to the  
TPS3850. A window watchdog setting must be chosen such that the falling edge of the PWM signal always falls  
within the window. A nominal window must be designed with tWDL(max) less than 5 ms and tWDU(min) greater than  
5 ms. There are several options that satisfy this window option. An external capacitor can be placed on the CWD  
pin and calculated to have a sufficient window. Another option is to use one of the factory-programmed timing  
options. An additional advantage of choosing one of the factory-programmed options is the ability to reduce the  
number of components required, thus reducing overall BOM cost. Leaving the CWD pin unconnected (NC) with  
SET0 = 0 and SET1 = 1 produces a tWDL(max) of 2.22 ms and a tWDU(min) of 23.375 ms; see 8-10.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS3850  
 
 
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
8.2.1.2.4 Calculating the RESET and WDO Pullup Resistor  
The TPS3850 uses an open-drain configuration for the RESET circuit, as shown in 8-6. When the FET is off,  
the resistor pulls the drain of the transistor to VDD and when the FET is turned on, the FET attempts to pull the  
drain to ground, thus creating an effective resistor divider. The resistors in this divider must be chosen to ensure  
that VOL is below its maximum value. To choose the proper pullup resistor, there are three key specifications to  
keep in mind: the pullup voltage (VPU), the recommended maximum RESET pin current (IRST), and VOL. The  
maximum VOL is 0.4 V, meaning that the effective resistor divider created must be able to bring the voltage on  
the reset pin below 0.4 V with IRST kept below 10 mA. For this example, with a VPU of 1.8 V, a resistor must be  
chosen to keep IRST below 200 μA because this value is the maximum consumption current allowed. To ensure  
this specification is met, a pullup resistor value of 10 kΩwas selected, which sinks a maximum of 180 μA when  
RESET or WDO is asserted. As illustrated in 6-12, the RESET current is at 180 μA and the low-level output  
voltage is approximately zero.  
VDD  
RESET  
RESET  
CONTROL  
8-6. Open-Drain RESET Configuration  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS3850  
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
8.2.1.3 Application Curves  
Unless otherwise stated, application curves were taken at TA = 25°C.  
VDD  
500mV/div  
SENSE  
SENSE  
1.2578 V  
200mV/div  
1.1576 V  
WDO  
RESET  
500mV/div  
VUVLO = 1.4 V  
VDD  
RESET  
500mV/div  
500mV/div  
VPOR = .404V  
100ms/div  
50ms/div  
8-8. Window Comparator Thresholds Entering a  
Valid Window  
8-7. Startup Waveform  
VDD  
VDD  
2V/div  
2V/div  
SENSE  
2V/div  
SENSE  
2V/div  
WDO  
2V/div  
WDO  
2V/div  
WDI  
2V/div  
WDI  
2V/div  
22 ms  
2.2 ms  
5ms  
10ms/div  
5ms/div  
8-10. Window Watchdog Timing  
8-9. 200-Hz WDI Pulse  
VDD  
SENSE  
500mV/div  
200mV/div  
RESET  
500mV/div  
50ms/div  
8-11. Typical RESET Delay Timing  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS3850  
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
8.2.2 Design 2: Using TPS3850H01 to monitor a 0.7-V Rail With an Adjustable Window Watchdog Timing  
A typical application for the TPS3850H01 is shown in 8-12.  
3.3 V  
0.7 V  
TPS3850  
VCORE  
VI/O  
TPS3890  
SENSE  
VDD  
RESET  
WDO  
Microcontroller  
VDD  
SENSE  
RESET  
RESET  
NMI  
SET1  
SET0  
CRST  
CWD  
MR  
3.3 V  
WDI  
GND  
GPIO  
CT  
6.8 µF  
GND  
GND  
2.2 nF  
Copyright © 2016, Texas Instruments Incorporated  
8-12. Monitoring Supply Voltage and Watchdog Supervision of a Microcontroller  
8.2.2.1 Design Requirements  
PARAMETER  
Reset delay  
DESIGN REQUIREMENT  
DESIGN RESULT  
Minimum RESET delay of 150 ms  
Minimum RESET delay of 170 ms  
Watchdog disable for initialization Watchdog must remain disabled for 7 seconds until  
7.21 seconds (typ)  
period  
logic enables the watchdog timer  
Watchdog window  
Output logic voltage  
250 ms, maximum  
tWDL(max) = 135 ms, tWDU(min) = 181 ms  
3.3-V CMOS  
3.3-V CMOS  
VITN (max) 0.667 V (4.7%)  
VITN (typ) 0.65 V (6.6%)  
VITN (min) 0.641 V (8.5%)  
Monitored rail  
0.7 V, with 7% threshold  
50 µA  
10 µA of current consumption typical, worst-case of  
52 μA when WDO or RESET is asserted(1)  
Maximum device current  
consumption  
(1) Only includes the current consumption of the TPS3850.  
8.2.2.2 Detailed Design Procedure  
8.2.2.2.1 Meeting the Minimum Reset Delay  
The design goal for the RESET delay time can be achieved by either using an external capacitor or the CRST  
pin can be left unconnected. To minimize component count, the CRST pin is left unconnected. For CRST = NC,  
the minimum delay is 170 ms, which is greater than the minimum required RESET delay of 150 ms.  
8.2.2.2.2 Setting the Window Watchdog  
As illustrated in 8-2, there are three options for setting the window watchdog. The design specifications in this  
application require the programmable timing option (external capacitor connected to CWD). When a capacitor is  
connected to the CWD pin, the window is governed by 方程式 13. 方程式 13 is only valid for ideal capacitors,  
any temperature or voltage derating must be accounted for separately.  
tWDU - 0.055  
77.4  
0.25 - 0.055  
77.4  
CCWD mF =  
=
= 0.0025 mF  
(
)
(13)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS3850  
 
 
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
The nearest standard capacitor value to 2.5 nF is 2.2 nF. Selecting 2.2 nF for the CCWD capacitor gives the  
following minimum and maximum timing parameters:  
tWDU(MIN) = 0.905ì tWDU(TYP) = 0.905ì 77.4ì 2.2ì10-3 + 0.055 = 203.88 ms  
(
)
(14)  
(15)  
tWDL(MAX) = 0.5ì tWDU(MAX) = 0.5ì 1.05ì 77.4ì 2.2ì10-3+ 0.055 = 118 ms  
»
ÿ
(
)
Capacitor tolerance also influence tWDU(MIN) and tWDL(MAX). Select a ceramic COG dielectric capacitor for high  
accuracy. For 2.2 nF, COG capacitors are readily available with a 5% tolerance, which results in a 5% decrease  
in tWDU(MIN) and a 5% increase in tWDL(MAX), giving 181 ms and 135 ms, respectively. A falling edge must be  
issued within this window.  
8.2.2.2.3 Watchdog Disabled During the Initialization Period  
The watchdog is often needed to be disabled during startup to allow for an initialization period. When the  
initialization period is over, the watchdog timer is turned back on to allow the microcontroller to be monitored by  
the TPS3850. To achieve this setup, SET0 must start at VDD and SET1 must start at GND. In this design, SET0  
is simply tied to VDD and SET1 is controlled by a TPS3890 supervisor. In this application, the TPS3890 was  
chosen to monitor VDD as well, which means that RESET on the TPS3890 stays low until VDD rises above VITN  
.
When VDD comes up, the delay time can be adjusted through the CT capacitor on the TPS3890. With this  
approach, the RESET delay can be adjusted from a minimum of 25 µs to a maximum of 30 seconds. For this  
design, a minimum delay of 7 seconds is needed until the watchdog timer is enabled. The CT capacitor  
calculation (see the TPS3890 data sheet) yields an ideal capacitance of 6.59 µF, giving a closest standard  
ceramic capacitor value of 6.8 µF. When connecting a 6.8-µF capacitor from CT to GND, the typical delay time is  
7.21 seconds. 8-13 illustrates the typical startup waveform for this circuit when the watchdog input is off. 图  
8-13 illustrates that when the watchdog is disabled, the WDO output remains high. See the TPS3890 data sheet  
for detailed information on the TPS3890.  
8.2.2.2.4 Calculating the Sense Resistor  
There are three key specifications to keep in mind when calculating the resistor divider values (R1 and R2, see  
7-4 or 8-3): voltage threshold (VIT(ADJ)), resistor tolerance, and the SENSE pin current (ISENSE). To ensure  
that no accuracy is lost because of ISENSE, the current through the resistor divider must be 100 times greater  
than ISENSE. Starting with R2 = 80.6 kΩ provides a 5-µA resistor divider current when VSENSE = 0.4 V. To  
calculate the nominal resistor values, use 方程16:  
V
IT(ADJ)  
V
= V  
+ R1  
ITN  
IT(ADJ)  
R2  
(16)  
where  
VITN is the monitored falling threshold voltage and  
VIT(ADJ) is the threshold voltage on the SENSE pin  
Solving 方程式 16 for R1 gives the nearest 1% resistor of 51.1 kΩ. Now, plug R1 back into 方程式 16 to get the  
monitored threshold. With these resistor values, the nominal threshold is 0.65 V or 6.6%.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS3850  
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
To calculate the minimum and maximum threshold variation including the tolerances of the resistors, threshold  
voltage, and sense current, use 方程17 and 方程18.  
÷
V
IT(ADJ)min  
V
= V  
+ R1(min)  
+ISENSE(min) = 0.641V  
«
÷
ITN(min)  
IT(ADJ)min  
R2(max)  
(17)  
(18)  
÷
V
IT(ADJ)max  
V
= V  
+ R1(max)  
+ISENSE(max) = 0.667 V  
«
÷
ITN(max)  
IT(ADJ)max  
R2(min)  
where  
VITN is the falling monitored threshold voltage  
VIT(ADJ) is the sense voltage threshold and  
ISENSE is the sense pin current  
The calculated tolerance on R1 and R2 is 1%.  
8.2.2.3 Application Curves  
VDD  
VDD  
2V/div  
158 ms  
2V/div  
WDI  
RESET  
2V/div  
2V/div  
7.6 seconds  
WDO  
2V/div  
SET1  
2V/div  
RESET  
2V/div  
WDO  
50ms/div  
2V/div  
1s/div  
8-14. Typical WDI Signal  
8-13. Startup Without a WDI Signal  
9 Power Supply Recommendations  
This device is designed to operate from an input supply with a voltage range between 1.6 V and 6.5 V. An input  
supply capacitor is not required for this device; however, if the input supply is noisy, then good analog practice is  
to place a 0.1-µF capacitor between the VDD pin and the GND pin.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS3850  
 
 
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
10 Layout  
10.1 Layout Guidelines  
Make sure that the connection to the VDD pin is low impedance. Good analog design practice recommends  
placing a 0.1-µF ceramic capacitor as near as possible to the VDD pin. If a capacitor is not connected to the  
CRST pin, then minimize parasitic capacitance on this pin so the RESET delay time is not adversely affected.  
Make sure that the connection to the VDD pin is low impedance. Good analog design practice is to place a  
0.1-µF ceramic capacitor as near as possible to the VDD pin.  
If a CCRST capacitor or pullup resistor is used, place these components as close as possible to the CRST pin.  
If the CRST pin is left unconnected, make sure to minimize the amount of parasitic capacitance on the pin.  
If a CCWD capacitor or pullup resistor is used, place these components as close as possible to the CWD pin. If  
the CWD pin is left unconnected, make sure to minimize the amount of parasitic capacitance on the pin.  
Place the pullup resistors on RESET and WDO as close to the pin as possible.  
10.2 Layout Example  
CVDD  
GND Plane  
Vin  
RPU1  
1
2
3
4
5
10  
9
SENSE  
RESET  
WDO  
Vin  
CCWD  
VDD  
CWD  
SET0  
CRST  
GND  
8
RPU2  
CCRST  
7
WDI  
6
SET1  
Vin  
Denotes a via.  
10-1. Typical Layout for the TPS3850  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS3850  
 
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Device Nomenclature  
11-1. Device Nomenclature  
DESCRIPTION  
NOMENCLATURE  
VALUE  
TPS3850  
(high-accuracy supervisor with window watchdog)  
X
G
H
VIT+(OV) = 4%; VIT(UV) = 4%  
VIT+(OV) = 7%; VIT(UV) = 7%  
(nominal thresholds as a percent of the nominal  
monitored voltage)  
01  
09  
115  
12  
18  
25  
30  
33  
50  
0.4 V  
0.9 V  
1.15 V  
1.2 V  
1.8 V  
2.5 V  
3.0 V  
3.3 V  
5.0 V  
yy(y)  
(nominal monitored voltage option)  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
TPS3890 Low Quiescent Current, 1% Accurate Supervisor with Programmable Delay  
Optimizing Resistor Dividers at a Comparator Input  
TPS3850EVM-781 Evaluation Module  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS3850  
 
 
 
 
 
 
 
 
TPS3850  
www.ti.com.cn  
ZHCSFP2B OCTOBER 2016 REVISED SEPTEMBER 2021  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS3850  
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Nov-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS3850G12DRCR  
TPS3850G12DRCT  
TPS3850G18DRCR  
TPS3850G18DRCT  
TPS3850G30DRCR  
TPS3850G30DRCT  
TPS3850G33DRCR  
TPS3850G33DRCT  
TPS3850G50DRCR  
TPS3850G50DRCT  
TPS3850H01DRCR  
TPS3850H01DRCT  
TPS3850H12DRCR  
TPS3850H12DRCT  
TPS3850H18DRCR  
TPS3850H18DRCT  
TPS3850H30DRCR  
TPS3850H30DRCT  
TPS3850H33DRCR  
TPS3850H33DRCT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
850CA  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
850CA  
850DA  
850DA  
850FA  
850FA  
850GA  
850GA  
850HA  
850HA  
850AA  
850AA  
850KA  
850KA  
850LA  
850LA  
850NA  
850NA  
850PA  
850PA  
250  
RoHS & Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Nov-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS3850H50DRCR  
TPS3850H50DRCT  
ACTIVE  
ACTIVE  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
850RA  
850RA  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS3850 :  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Nov-2021  
Automotive : TPS3850-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Nov-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS3850G12DRCR  
TPS3850G12DRCT  
TPS3850G18DRCR  
TPS3850G18DRCT  
TPS3850G30DRCR  
TPS3850G30DRCT  
TPS3850G33DRCR  
TPS3850G33DRCT  
TPS3850G50DRCR  
TPS3850G50DRCT  
TPS3850H01DRCR  
TPS3850H01DRCT  
TPS3850H12DRCR  
TPS3850H12DRCT  
TPS3850H18DRCR  
TPS3850H18DRCT  
TPS3850H30DRCR  
TPS3850H30DRCT  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Nov-2021  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS3850H33DRCR  
TPS3850H33DRCT  
TPS3850H50DRCR  
TPS3850H50DRCT  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS3850G12DRCR  
TPS3850G12DRCT  
TPS3850G18DRCR  
TPS3850G18DRCT  
TPS3850G30DRCR  
TPS3850G30DRCT  
TPS3850G33DRCR  
TPS3850G33DRCT  
TPS3850G50DRCR  
TPS3850G50DRCT  
TPS3850H01DRCR  
TPS3850H01DRCT  
TPS3850H12DRCR  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
3000  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Nov-2021  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS3850H12DRCT  
TPS3850H18DRCR  
TPS3850H18DRCT  
TPS3850H30DRCR  
TPS3850H30DRCT  
TPS3850H33DRCR  
TPS3850H33DRCT  
TPS3850H50DRCR  
TPS3850H50DRCT  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
10  
10  
10  
10  
10  
250  
3000  
250  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021,德州仪器 (TI) 公司  

相关型号:

TPS3850-Q1

用于进行 OV 和 UV 监控的汽车窗口监控器,具有窗口看门狗计时器和可编程延迟

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3850G09QDRCRQ1

用于进行 OV 和 UV 监控的汽车窗口监控器,具有窗口看门狗计时器和可编程延迟 | DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3850G12DRCR

用于进行 OV 和 UV 监控的精密窗口监控器,具有窗口看门狗计时器和可编程延迟 | DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3850G12DRCT

用于进行 OV 和 UV 监控的精密窗口监控器,具有窗口看门狗计时器和可编程延迟 | DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3850G12QDRCRQ1

用于进行 OV 和 UV 监控的汽车窗口监控器,具有窗口看门狗计时器和可编程延迟 | DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3850G18DRCR

用于进行 OV 和 UV 监控的精密窗口监控器,具有窗口看门狗计时器和可编程延迟 | DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3850G18DRCT

用于进行 OV 和 UV 监控的精密窗口监控器,具有窗口看门狗计时器和可编程延迟 | DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3850G18QDRCRQ1

用于进行 OV 和 UV 监控的汽车窗口监控器,具有窗口看门狗计时器和可编程延迟 | DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3850G25QDRCRQ1

用于进行 OV 和 UV 监控的汽车窗口监控器,具有窗口看门狗计时器和可编程延迟 | DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3850G30DRCR

用于进行 OV 和 UV 监控的精密窗口监控器,具有窗口看门狗计时器和可编程延迟 | DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3850G30DRCT

用于进行 OV 和 UV 监控的精密窗口监控器,具有窗口看门狗计时器和可编程延迟 | DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3850G30QDRCRQ1

用于进行 OV 和 UV 监控的汽车窗口监控器,具有窗口看门狗计时器和可编程延迟 | DRC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI