TPS3851H30EQDRBRQ1 [TI]

具有集成看门狗计时器的汽车类高精度电压监控器 | DRB | 8 | -40 to 125;
TPS3851H30EQDRBRQ1
型号: TPS3851H30EQDRBRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成看门狗计时器的汽车类高精度电压监控器 | DRB | 8 | -40 to 125

监控
文件: 总39页 (文件大小:2131K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
TPS3851-Q1 集成看门狗定时器的高精度电压监控器  
1 特性  
3 说明  
• 具有符AEC-Q100 标准的下列特性  
TPS3851-Q1 器件结合了精密电压监控器和可编程看  
门狗计时器。TPS3851-Q1 比较器在 VDD 引脚上可针  
对欠压 (VITN) 值实现 0.8% 精度40°C 至  
+125°CTPS3851-Q1 还包含与欠压阈值相关的高  
精度迟滞因此成为小容差系统的理想之选。该监控器  
RESET 延迟具15% 精度、高精密延迟时间。  
– 器件温度等1-40°C 125°C 环境工作温度  
范围  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C4B  
提供功能安全  
可帮助进行功能安全系统设计的文档  
• 输入电压范围VDD = 1.6 V 6.5 V  
0.8% 电压阈值精度  
• 低电源电流IDD = 10µA典型值)  
• 用户可编程看门狗超时  
• 出厂编程的精密看门狗和复位计时器:  
• 手动复位输(MR)  
• 开漏输出  
TPS3851-Q1 包含可编程窗口看门狗计时器广泛适  
用于各种应用。专用看门狗输出 (WDO) 有助于提高分  
辨率从而帮助确定出现故障情况的根本原因。看门狗  
超时可通过外部电容编程也可以采用工厂编程的默认  
延迟设置。可通过逻辑引脚禁用看门狗避免在开发过  
程中出现意外的看门狗超时。  
TPS3851-Q1 采用小型  
• 高精度欠压监控:  
3.00mm × 3.00mm8 引脚 VSON 封装。TPS3851-  
Q1 具有可湿性侧面可轻松进行光学检查。  
– 支1.8 V 5.0V 常见电压轨  
– 支4% 7% 欠压阈值  
0.5% 迟滞  
器件信息  
(1)  
封装尺寸标称值)  
器件型号  
• 看门狗禁用功能  
• 采用小3mm × 3mm 8 VSON 封装  
TPS3851-Q1  
VSON (8)  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
环视系ECU  
车辆乘员检测传感器  
ADAS 域控制器  
汽车直流/直流转换器  
汽车前置摄像机  
汽车中心信息显示屏  
1.8 V  
TPS3851-Q1  
VDD  
Microcontroller  
VDD  
RESET  
WDO  
RESET  
SET1  
NMI  
MR  
WDI  
GPIO  
CWD  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
全集成微控制器监控电路  
欠压阈(VITN) 精度与温度间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBVS286  
 
 
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................14  
8 Application and Implementation..................................15  
8.1 Application Information............................................. 15  
8.2 Typical Application.................................................... 18  
9 Power Supply Recommendations................................21  
10 Layout...........................................................................22  
10.1 Layout Guidelines................................................... 22  
10.2 Layout Example...................................................... 22  
11 Device and Documentation Support..........................23  
11.1 Device Support........................................................23  
11.2 Documentation Support.......................................... 23  
11.3 接收文档更新通知................................................... 23  
11.4 支持资源..................................................................23  
11.5 Trademarks............................................................. 23  
11.6 Electrostatic Discharge Caution..............................23  
11.7 术语表..................................................................... 23  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Timing Requirements..................................................6  
6.7 Timing Diagrams.........................................................7  
6.8 Typical Characteristics................................................8  
7 Detailed Description......................................................11  
7.1 Overview................................................................... 11  
7.2 Functional Block Diagram......................................... 11  
7.3 Feature Description...................................................11  
Information.................................................................... 24  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (March 2017) to Revision A (September 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 删除了“可在工作温度范围内实±15% 的看门狗超时和看门狗复位延迟精度”..............................................1  
• 添加了“VDD 引脚上”以进行阐释................................................................................................................1  
Updated ESD Ratings.........................................................................................................................................4  
Updated ICWD min and max spec........................................................................................................................5  
Updated VCWD min and max spec...................................................................................................................... 5  
Added a footnote to for tINIT ............................................................................................................................... 6  
Updated tWDU min and max boundry values from 0.85 and 1.15 to 0.905 and 1.095 respectively...................16  
Updated tWDU min and max values for all capacitors........................................................................................16  
Updated the equations 6 and 7 to replace 0.85 and 1.15 to 0.905 and 1.095 respectively..............................19  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS3851-Q1  
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
VDD  
CWD  
MR  
1
2
3
4
8
7
6
5
RESET  
WDO  
WDI  
Thermal  
Pad  
GND  
SET1  
Not to scale  
5-1. DRB Package  
3-mm × 3-mm, 8-Pin VSON  
Top View  
5-1. Pin Functions  
NAME  
NO.  
I/O  
DESCRIPTION  
Programmable watchdog timeout input. The watchdog timeout is set by connecting a capacitor between this  
pin and ground. Connecting via a 10-kΩresistor to VDD or leaving unconnected further enables the  
selection of the preset watchdog timeouts; see the CWD Functionality section.  
The TPS3851-Q1 determines the watchdog timeout using either Equation 1 or Equation 2 with standard or  
extended timing, respectively.  
CWD  
2
I
GND  
MR  
4
3
Ground pin  
Manual reset pin. A logical low on this pin issues a RESET. This pin is internally pulled up to VDD. RESET  
remains low for a fixed reset delay (tRST) time after MR is deasserted (high).  
I
Reset output. Connect RESET using a 1-kΩto 100-kΩresistor to the correct pullup voltage rail (VPU).  
RESET goes low when VDD goes below the undervoltage threshold (VITN). When VDD is within the normal  
operating range, the RESET timeout-counter starts. At completion, RESET goes high. During startup, the  
state of RESET is undefined below the specified power-on-reset (POR) voltage (VPOR). Above POR, RESET  
RESET  
8
O
goes low and remains low until the monitored voltage is within the correct operating range (above VITN  
VHYST) and the RESET timeout is complete.  
+
Logic input. Grounding the SET1 pin disables the watchdog timer. SET1 and CWD select the watchdog  
timeouts; see the SET1 section.  
SET1  
VDD  
5
1
I
I
Supply voltage pin. For noisy systems, connecting a 0.1-μF bypass capacitor is recommended.  
Watchdog input. A falling edge must occur at WDI before the timeout (tWD) expires.  
When the watchdog is not in use, the SET1 pin can be used to disable the watchdog. WDI is ignored when  
RESET or WDO are low (asserted) and when the watchdog is disabled. If the watchdog is disabled, WDI  
cannot be left unconnected and must be driven to either VDD or GND.  
WDI  
6
7
I
Watchdog output. Connect WDO with a 1-kΩto 100-kΩresistor to the correct pullup voltage rail (VPU).  
WDO goes low (asserts) when a watchdog timeout occurs. WDO only asserts when RESET is high. When a  
watchdog timeout occurs, WDO goes low (asserts) for the set RESET timeout delay (tRST). When RESET  
goes low, WDO is in a high-impedance state.  
WDO  
O
Thermal pad  
Connect the thermal pad to a large-area ground plane. The thermal pad is internally connected to GND.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS3851-Q1  
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
MAX  
UNIT  
V
Supply voltage range  
Output voltage range  
VDD  
7
0.3  
0.3  
0.3  
0.3  
RESET, WDO  
SET1, WDI, MR  
CWD  
7
V
7
VDD + 0.3 (3)  
±20  
Voltage ranges  
V
Output pin current  
RESET, WDO  
mA  
mA  
Input current (all pins)  
±20  
Continuous total power dissipation  
See 6.4  
(2)  
(2)  
Operating junction, TJ  
Operating free-air, TA  
Storage, Tstg  
150  
150  
150  
40  
40  
65  
Temperature  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Assume that TJ = TA as a result of the low dissipated power in this device.  
(3) The absolute maximum rating is VDD + 0.3 V or 7.0 V, whichever is smaller.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002 (1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
VDD  
Supply pin voltage  
1.6  
6.5  
V
VSET1  
CCWD  
CWD  
RPU  
SET1 pin voltage  
0
6.5  
V
Watchdog timing capacitor  
Pullup resistor to VDD  
Pullup resistor, RESET and WDO  
RESET pin current  
0.1 (1) (2)  
1000 (1) (2)  
nF  
kΩ  
kΩ  
mA  
mA  
°C  
9
1
10  
10  
11  
100  
10  
IRESET  
IWDO  
TJ  
Watchdog output current  
Junction temperature  
10  
125  
40  
(1) Using standard timing with a CCWD capacitor of 0.1 nF or 1000 nF gives a tWD(typ) of 0.704 ms or 3.23 seconds, respectively.  
(2) Using extended timing with a CCWD capacitor of 0.1 nF or 1000 nF gives a tWD(typ) of 62.74 ms or 77.45 seconds, respectively.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS3851-Q1  
 
 
 
 
 
 
 
 
 
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.4 Thermal Information  
TPS3851-Q1  
THERMAL METRIC (1)  
DRB (VSON)  
8 PINS  
47.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
51.5  
22.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.3  
ψJT  
22.3  
ψJB  
RθJC(bot)  
4.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
at VITN + VHYST VDD 6.5 V over the operating temperature range of 40°C TA, T A 125°C (unless otherwise  
noted); the open-drain pullup resistors are 10 kΩfor each output; typical values are at TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GENERAL CHARACTERISTICS  
(1) (2) (3)  
VDD  
IDD  
Supply voltage  
Supply current  
1.6  
6.5  
19  
V
10  
µA  
RESET FUNCTION  
(2)  
VPOR  
Power-on reset voltage  
IRESET = 15 µA, VOL(MAX) = 0.25 V  
0.8  
V
V
(1)  
VUVLO  
Undervoltage lockout voltage  
1.35  
Undervoltage threshold accuracy, entering  
RESET  
VITN  
VDD falling  
VITN + 0.8%  
V
ITN 0.8%  
VHYST  
IMR  
Hysteresis voltage  
VDD rising  
VMR = 0 V  
0.2%  
500  
0.5%  
620  
0.8%  
700  
MR pin internal pullup current  
nA  
WATCHDOG FUNCTION  
ICWD  
VCWD  
VOL  
CWD pin charge current  
CWD = 0.5 V  
347  
375  
403  
1.224  
0.4  
nA  
V
CWD pin threshold voltage  
RESET, WDO output low  
1.196  
1.21  
VDD = 5 V, ISINK = 3 mA  
V
RESET, WDO output leakage current,  
open-drain  
VDD = VITN + VHYST  
VRESET = VWDO = 6.5 V  
,
ID  
1
µA  
VIL  
Low-level input voltage ( MR, SET1)  
High-level input voltage ( MR, SET1)  
Low-level input voltage (WDI)  
0.25  
V
V
V
V
VIH  
0.8  
VIL(WDI)  
VIH(WDI)  
0.3 × VDD  
High-level input voltage (WDI)  
0.8 × VDD  
(1) When VDD falls below VUVLO, RESET is driven low.  
(2) When VDD falls below VPOR, RESET and WDO are undefined.  
(3) During power-on, VDD must be a minimum 1.6 V for at least 300 µs before RESET correlates with VDD  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS3851-Q1  
 
 
 
 
 
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.6 Timing Requirements  
at VITN + VHYST VDD 6.5 V over the operating temperature range of 40°C TA, T A 125°C (unless otherwise  
noted); the open-drain pullup resistors are 10 kΩfor each output; typical values are at TA = 25°C  
MIN  
NOM  
MAX UNIT  
GENERAL  
tINIT  
CWD pin evaluation period (1)  
381  
1
µs  
µs  
µs  
Minimum MR, SET1 pin pulse duration  
Startup delay (3)  
300  
RESET FUNCTION  
tRST  
Reset timeout period  
170  
200  
35  
230 ms  
VDD = VITN + VHYST + 2.5%  
tRST-DEL VDD to RESET delay  
µs  
ns  
17  
VDD = VITN 2.5%  
tMR-DEL MR to RESET delay  
200  
WATCHDOG FUNCTION  
CWD = NC, SET1 = 0 (2)  
CWD = NC, SET1 = 1 (2)  
Watchdog disabled  
1360  
1600  
1840 ms  
Watchdog timeout (3)  
CWD = 10 kΩto VDD,  
tWD  
Watchdog disabled  
SET1 = 0 (2)  
CWD = 10 kΩto VDD,  
170  
200  
150  
230 ms  
µs  
SET1 = 1 (2)  
tWD-  
Setup time required for device to respond to changes on WDI after  
being enabled  
setup  
Minimum WDI pulse duration  
50  
50  
ns  
ns  
tWD-del WDI to WDO delay  
(1) Refer to 8.1.1.2  
(2) SET1 = 0 means VSET1 < VIL; SET1 = 1 means VSET1 > VIH.  
(3) The fixed watchdog timing covers both standard and extended versions.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS3851-Q1  
 
 
 
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.7 Timing Diagrams  
VITN + VHYST  
VITN  
tRST-DEL  
VDD  
VITN  
tRST  
VPOR  
tRST  
RESET  
WDI  
(1)  
t < tWD t = tWD  
t < tWD  
X
X
WDO  
tRST  
A. See 6-2 for WDI timing requirements.  
6-1. Timing Diagram  
Correct  
Operation  
WDI  
WDO  
Late Fault  
WDI  
WDO  
Valid  
Region  
Timing  
tWD(MIN)  
tWD(TYP)  
tWD(MAX)  
= Tolerance Window  
6-2. Watchdog Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS3851-Q1  
 
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.8 Typical Characteristics  
all typical characteristics curves are taken at 25°C with 1.6 V VDD 6.5 V (unless other wise noted)  
16  
12  
8
0.7  
0.6  
0.5  
0.4  
0.3  
-40èC  
0èC  
25èC  
105èC  
125èC  
4
VIL  
VIH  
0
0
-50  
-25  
25  
50  
75  
100  
125  
0
1
2
3
4
5
6
7
Temperature (èC)  
VDD (V)  
VDD = 1.6 V  
6-3. Supply Current vs VDD  
6-4. MR Threshold vs Temperature  
380  
376  
372  
368  
364  
0.5  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
Average  
0.3  
0.1  
-0.1  
-0.3  
-0.5  
1.6 V  
6.5 V  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
6-5. CWD Charging Current vs Temperature  
TPS3851G18-Q1, VITN = 1.728 V  
6-6. VITN + VHYST Accuracy vs Temperature  
0.5  
0.3  
0.5  
0.3  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
Average  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
Average  
0.1  
0.1  
-0.1  
-0.3  
-0.5  
-0.1  
-0.3  
-0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
TPS3851G18-Q1, VITN = 1.728 V  
6-7. VITN Accuracy vs Temperature  
TPS3851G50-Q1, VITN = 4.8 V  
6-8. VITN + VHYST Accuracy vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS3851-Q1  
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
all typical characteristics curves are taken at 25°C with 1.6 V VDD 6.5 V (unless other wise noted)  
0.5  
0.3  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
Average  
0.1  
-0.1  
-0.3  
-0.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-0.8 -0.6 -0.4 -0.2  
0
0.2  
0.4  
VITN + VHYST Accuracy (%)  
0.6  
0.8  
Temperature (èC)  
TPS3851G50-Q1, VITN = 4.8 V  
6-9. VITN Accuracy vs Temperature  
Includes G and H versions; 1.8-V, 2.5-V, 3.0-V, 3.3-V, and 5-V  
thresholds; total units = 36,627  
6-10. VITN + VHYST Accuracy Histogram  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
80  
60  
40  
20  
0
0
-0.8 -0.6 -0.4 -0.2  
0
VITN Accuracy (%)  
0.2  
0.4  
0.6  
0.8  
0.2  
0.35  
0.5  
Hysteresis (%)  
0.8  
Includes G and H versions; 1.8-V, 2.5-V, 3.0-V, 3.3-V, and 5-V  
thresholds; total units = 36,627  
Includes G and H versions; 1.8-V, 2.5-V, 3.0-V, 3.3-V, and 5-V  
thresholds; total units = 36,627  
6-11. VITN Accuracy Histogram  
6-12. Hysteresis Histogram  
1.6  
1.6  
-40èC  
-40èC  
0èC  
0èC  
1.4  
1.2  
1
1.4  
1.2  
1
25èC  
105èC  
125èC  
25èC  
105èC  
125èC  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0
1
2
3
IRESET (mA)  
4
5
6
0
1
2
3
IRESET (mA)  
4
5
6
VDD = 1.6 V  
VDD = 6.5 V  
6-13. Low-Level RESET Voltage vs RESET Current  
6-14. Low-Level RESET Voltage vs RESET Current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS3851-Q1  
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
all typical characteristics curves are taken at 25°C with 1.6 V VDD 6.5 V (unless other wise noted)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
-40èC  
0èC  
25èC  
105èC  
125èC  
-40èC  
0èC  
25èC  
105èC  
125èC  
0
0
2
4
6
Overdrive (%)  
8
10  
0
2
4
6
Overdrive (%)  
8
10  
TPS3851G18-Q1 entering undervoltage  
TPS3851G50-Q1 entering undervoltage  
6-15. Propagation Delay vs Overdrive  
6-16. Propagation Delay vs Overdrive  
210  
205  
200  
195  
190  
210  
205  
200  
195  
190  
-40èC  
0èC  
25èC  
105èC  
125èC  
-40èC  
0èC  
25èC  
105èC  
125èC  
0
2
4
6
8
10  
0
2
4
6
8
10  
Overdrive (%)  
TPS3851G18-Q1 exiting undervoltage  
6-17. Propagation Delay (tRST) vs Overdrive  
Overdrive (%)  
TPS3851G50-Q1 exiting undervoltage  
6-18. Propagation Delay (tRST) vs Overdrive  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
Overdrive = 3%  
Overdrive = 5%  
Overdrive = 7%  
Overdrive = 9%  
Overdrive = 10%  
Overdrive = 3%  
Overdrive = 5%  
Overdrive = 7%  
Overdrive = 9%  
Overdrive = 10%  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
VITN = 1.728 V  
VITN = 4.8 V  
6-19. High-to-Low Glitch Immunity vs Temperature  
6-20. High-to-Low Glitch Immunity vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS3851-Q1  
 
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS3851-Q1 is a high-accuracy voltage supervisor with an integrated watchdog timer. This device includes  
a precision undervoltage supervisor with a threshold that achieves 0.8% accuracy over the specified temperature  
range of 40°C to +125°C. In addition, the TPS3851-Q1 includes accurate hysteresis on the threshold, making  
the device ideal for use with tight tolerance systems where voltage supervisors must ensure a RESET before the  
minimum supply tolerance of the microprocessor or system-on-a-chip (SoC) is reached. There are two options  
for the watchdog timing standard and extended timing. To get standard timing use the TPS3851Xyy(y)S-Q1, for  
extended timing use the TPS3851Xyy(y)E-Q1.  
7.2 Functional Block Diagram  
VDD  
R1  
RESET  
R2  
Precision  
Clock  
Reference  
VDD  
WDO  
State  
Machine  
Cap  
Control  
CWD  
WDI  
MR  
SET1  
GND  
R1 + R2 = 4.5 MΩ.  
7.3 Feature Description  
7.3.1 RESET  
Connect RESET to VPU through a 1-kΩ to 100-kΩ pullup resistor. RESET remains high (deasserted) when VDD  
is greater than the negative threshold voltage (VITN). If VDD falls below the negative threshold (VITN), then  
RESET is asserted, driving the RESET pin to low impedance. When VDD rises above VITN + VHYST, a delay  
circuit is enabled that holds RESET low for a specified reset delay period (tRST). When the reset delay has  
elapsed, the RESET pin goes to a high-impedance state and uses a pullup resistor to hold RESET high. The  
pullup resistor must be connected to the proper voltage rail to allow other devices to be connected at the correct  
interface voltage. To ensure proper voltage levels, give some consideration when choosing the pullup resistor  
values. The pullup resistor value is determined by output logic low voltage (VOL), capacitive loading, leakage  
current (ID), and the current through the RESET pin IRESET  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS3851-Q1  
 
 
 
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7.3.2 Manual Reset MR  
The manual reset ( MR) input allows a processor or other logic circuits to initiate a reset. A logic low on MR  
causes RESET to assert. After MR returns to a logic high and VDD is above VITN + VHYST, RESET is deasserted  
after the reset delay time (tRST). If MR is not controlled externally, then MR can either be connected to VDD or left  
floating because the MR pin is internally pulled up.  
7.3.3 UV Fault Detection  
The TPS3851-Q1 features undervoltage detection for common rails between 1.8 V and 5 V. The voltage is  
monitored on the input rail of the device. If VDD drops below VITN, then RESET is asserted (driven low).  
7-1 shows that when VDD is above VITN + VHYST, RESET deasserts after tRST. The internal comparator has  
built-in hysteresis that provides some noise immunity and ensures stable operation. Although not required in  
most cases, for noisy applications, good analog design practice is to place a 1-nF to 100-nF bypass capacitor  
close to the VDD pin to reduce sensitivity to transient voltages on the monitored signal.  
VDD  
VITN + VHYST  
VITN  
Undervoltage Limit  
tRST  
RESET  
7-1. Undervoltage Detection  
7.3.4 Watchdog Mode  
This section provides information for the watchdog mode of operation.  
7.3.4.1 CWD  
The CWD pin provides the user the functionality of both high-precision, factory-programmed watchdog timing  
options and user-programmable watchdog timing. The TPS3851-Q1 features three options for setting the  
watchdog timer: connecting a capacitor to the CWD pin, connecting a pullup resistor to VDD, and leaving the  
CWD pin unconnected. The configuration of the CWD pin is evaluated by the device every time VDD enters the  
valid region (VITN + VHYST < VDD). The pin evaluation is controlled by an internal state machine that determines  
which option is connected to the CWD pin. The sequence of events typically takes 381 μs (tINIT) to determine if  
the CWD pin is left unconnected, pulled-up through a resistor, or connected to a capacitor. If the CWD pin is  
being pulled up to VDD, a 10-kΩresistor is required.  
7.3.4.2 Watchdog Input WDI  
WDI is the watchdog timer input that controls the WDO output. The WDI input is triggered by the falling edge of  
the input signal. To ensure proper functionality of the watchdog timer, always issue the WDI pulse before  
tWD(min). If the pulse is issued in this region, then WDO remains unasserted. Otherwise, the device asserts WDO,  
putting the WDO pin into a low-impedance state.  
The watchdog input (WDI) is a digital pin. In order to ensure there is no increase in IDD, drive the WDI pin to  
either VDD or GND at all times. Putting the pin to an intermediate voltage can cause an increase in supply  
current (IDD) because of the architecture of the digital logic gates. When RESET is asserted, the watchdog is  
disabled and all signals input to WDI are ignored. When RESET is no longer asserted, the device resumes  
normal operation and no longer ignores the signal on WDI. If the watchdog is disabled, drive the WDI pin to  
either VDD or GND. 7-2 shows the valid region for a WDI pulse to be issued to prevent WDO from being  
triggered and pulled low.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS3851-Q1  
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
Correct  
Operation  
WDI  
WDO  
Late Fault  
WDI  
WDO  
Valid  
Region  
Timing  
tWD(MIN)  
tWD(TYP)  
tWD(MAX)  
= Tolerance Window  
7-2. Watchdog Timing Diagram  
7.3.4.3 Watchdog Output WDO  
The TPS3851-Q1 features a watchdog timer with an independent watchdog output (WDO). The independent  
watchdog output provides the flexibility to flag a fault in the watchdog timing without performing an entire system  
reset. When RESET is not asserted (high), the WDO signal maintains normal operation. When asserted, WDO  
remains low for tRST. When the RESET signal is asserted (low), the WDO pin goes to a high-impedance state.  
When RESET is unasserted, the watchdog timer resumes normal operation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS3851-Q1  
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7.3.4.4 SET1  
The SET1 pin can enable and disable the watchdog timer. If SET1 is set to GND, the watchdog timer is disabled  
and WDI is ignored. If the watchdog timer is disabled, drive the WDI pin to either GND or VDD to ensure that  
there is no increase in IDD. When SET1 is logic high, the watchdog operates normally. The SET1 pin can be  
changed dynamically; however, if the watchdog is going from disabled to enabled (as shown in 7-3) there is a  
150-µs setup time where the watchdog does not respond to changes on WDI.  
VDD  
RESET  
SET1  
150 µs  
Watchdog  
Enabled/Disabled  
Enabled  
Disabled  
Enabled  
7-3. Enabling and Disabling the Watchdog  
7.4 Device Functional Modes  
7-1 summarises the functional modes of the TPS3851-Q1.  
7-1. Device Functional Modes  
VDD  
WDI  
WDO  
RESET  
Undefined  
Low  
VDD < VPOR  
Ignored  
High  
V
POR VDD < VDD(min)  
(1)  
Ignored  
High  
High  
Low  
Low  
V
DD(min) VDD VITN + VHYST  
(2)  
(3)  
(3)  
VDD > VITN  
tPULSE < tWD(min)  
tPULSE > tWD(min)  
High  
(2)  
VDD > VITN  
High  
(1) Only valid before VDD has gone above VITN + VHYST  
(2) Only valid after VDD has gone above VITN + VHYST  
(3) Where tpulse is the time between the falling edges on WDI.  
.
.
7.4.1 VDD is Below VPOR ( VDD < VPOR  
)
When VDD is less than VPOR, RESET is undefined and can be either high or low. The state of RESET largely  
depends on the load that the RESET pin is experiencing.  
7.4.2 Above Power-On-Reset, But Less Than VDD(min) (VPOR VDD < VDD(min)  
)
When the voltage on VDD is less than VDD(min), and greater than or equal to VPOR, the RESET signal is asserted  
(logic low). When RESET is asserted, the watchdog output WDO is in a high-impedance state regardless of the  
WDI signal that is input to the device.  
7.4.3 Normal Operation (VDD VDD(min)  
)
When VDD is greater than or equal to VDD(min), the RESET signal is determined by VDD. When RESET is  
asserted, WDO goes to a high-impedance state. WDO is then pulled high through the pullup resistor.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS3851-Q1  
 
 
 
 
 
 
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The following sections describe in detail proper device implementation, depending on the final application  
requirements.  
8.1.1 CWD Functionality  
The TPS3851-Q1 features three options for setting the watchdog timer: connecting a capacitor to the CWD pin,  
connecting a pullup resistor to VDD, and leaving the CWD pin unconnected. 8-1 shows a schematic drawing  
of all three options. If this pin is connected to VDD through a 10-kpullup resistor or left unconnected (high  
impedance), then the factory-programmed watchdog timeouts are enabled; see the 8.1.1.1 section.  
Otherwise, the watchdog timeout can be adjusted by placing a capacitor from the CWD pin to ground.  
VDD  
VDD  
VDD  
TPS3851-Q1  
TPS3851-Q1  
TPS3851-Q1  
VDD  
VDD  
VDD  
375 nA  
375 nA  
375 nA  
CWD  
CCWD  
CWD  
CWD  
Cap  
Control  
Cap  
Control  
Cap  
Control  
User Programmable  
Capacitor to GND  
CWD  
Unconnected  
10 kΩ Resistor  
to VDD  
Copyright © 2016, Texas Instruments Incorporated  
8-1. CWD Charging Circuit  
8.1.1.1 Factory-Programmed Timing Options  
If using the factory-programmed timing options (listed in 8-1), the CWD pin must either be unconnected or  
pulled up to VDD through a 10-kΩ pullup resistor. Using these options enables high-precision, 15% accurate  
watchdog timing.  
8-1. Factory Programmed Watchdog Timing  
INPUT  
STANDARD AND EXTENDED TIMING WDT (tWD)  
UNIT  
CWD  
NC  
SET1  
MIN  
TYP  
Watchdog disabled  
1600  
Watchdog disabled  
200  
MAX  
0
1
0
1
NC  
1360  
1840  
ms  
ms  
10 kΩto VDD  
10 kΩto VDD  
170  
230  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS3851-Q1  
 
 
 
 
 
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.1.1.2 Adjustable Capacitor Timing  
Adjustable capacitor timing is achievable by connecting a capacitor to the CWD pin. If a capacitor is connected  
to CWD, then a 375-nA, constant-current source charges CCWD until VCWD = 1.21 V. 8-2 shows how to  
calculate tWD using 方程式 1, 方程式 2, and the SET1 pin. The TPS3851-Q1 determines the watchdog timeout  
with the formulas given in 方程1 and 方程2, where CCWD is in nanofarads and tWD is in milliseconds.  
tWD(standard) (ms) = 3.23 × CCWD (nF) + 0.381 (ms)  
tWD(extended) (ms) = 77.4 × CCWD (nF) + 55 (ms)  
(1)  
(2)  
The TPS3851-Q1 is designed and tested using CCWD capacitors between 100 pF and 1 µF. 方程式 1 and 方程式  
2 are for ideal capacitors; capacitor tolerances vary the actual device timing. For the most accurate timing, use  
ceramic capacitors with COG dielectric material. If a CCWD capacitor is used, 方程式 1 can be used to set tWD for  
standard timing. Use 方程式 2 to calculate tWD for extended timing. 8-3 shows the minimum and maximum  
calculated tWD values using an ideal capacitor for both standard and extended timing.  
8-2. Programmable CWD Timing  
INPUT  
STANDARD TIMING WDT (tWD  
)
EXTENDED TIMING WDT (tWD)  
UNIT  
CWD  
SET1  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
CCWD  
CCWD  
0
1
Watchdog disabled  
Watchdog disabled  
(1)  
(2)  
tWD(std) × 0.905  
tWD(std)  
tWD(std) × 1.095  
tWD(ext) × 0.905  
tWD(ext)  
tWD(ext) × 1.095  
ms  
(1) Calculated from 方程1 using an ideal capacitor.  
(2) Calculated from 方程2 using an ideal capacitor.  
8-3. tWD Values for Common Ideal Capacitor Values  
STANDARD TIMING WDT (tWD  
)
EXTENDED TIMING WDT (tWD)  
CCWD  
UNIT  
MIN (1)  
0.637  
3.268  
29.58  
292.7  
2923  
TYP  
0.704  
3.611  
32.68  
323.4  
3230  
MAX (1)  
0.771  
3.954  
35.79  
354.1  
3537  
MIN (1)  
56.77  
119.82  
750  
TYP  
62.74  
132.4  
829  
MAX (1)  
68.7  
100 pF  
1 nF  
ms  
ms  
ms  
ms  
ms  
144.98  
908  
10 nF  
100 nF  
1 μF  
7054  
7795  
77455  
8536  
70096  
84814  
(1) The minimum and maximum values are calculated using an ideal capacitor.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS3851-Q1  
 
 
 
 
 
 
 
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.1.2 Overdrive Voltage  
Forcing a RESET is dependent on two conditions: the amplitude VDD is beyond the trip point (ΔV1 and ΔV2),  
and the length of time that the voltage is beyond the trip point (t1 and t2). If the voltage is just under the trip point  
for a long period of time, RESET asserts and the output is pulled low. However, if VDD is just under the trip point  
for a few nanoseconds, RESET does not assert and the output remains high. The length of time required for  
RESET to assert can be changed by increasing the amount VDD goes under the trip point. If VDD is under the trip  
point by 10%, the amount of time required for the comparator to respond is much faster and causes RESET to  
assert much quicker than when barely under the trip point voltage. 程式 3 shows how to calculate the  
percentage overdrive.  
Overdrive = |((VDD / VITX) 1) × 100% |  
(3)  
In 方程3, VITX corresponds to the threshold trip point. If VDD is exceeding the positive threshold,  
VITN + VHYST is used. VITN is used when VDD is falling below the negative threshold. In 8-2, t1 and t2  
correspond to the amount of time that VDD is over the threshold; the propagation delay versus overdrive for VITN  
and VITN + VHYST is illustrated in 6-16 and 6-18, respectively.  
The TPS3851-Q1 is relatively immune to short positive and negative transients on VDD because of the overdrive  
voltage curve.  
ûV1  
t1  
VITN + VHYST  
VDD  
VITN  
ûV2  
t2  
Time  
8-2. Overdrive Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS3851-Q1  
 
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.2 Typical Application  
1.8 V  
VCORE  
Microcontroller  
RESET  
TPS3851-Q1  
TPS3890-Q1  
VDD  
RESET  
WDO  
WDI  
VDD  
MR  
CT  
SENSE  
NMI  
MR  
RESET  
SET1  
GPIO  
GND  
4.7 µF  
CWD  
GND  
GND  
2.7 nF  
Copyright © 2016, Texas Instruments Incorporated  
8-3. Monitoring the Supply Voltage and Watchdog Supervision of a Microcontroller  
8.2.1 Design Requirements  
PARAMETER  
DESIGN REQUIREMENT  
DESIGN RESULT  
Watchdog disable for initialization Watchdog must remain disabled for 5 seconds  
5.02 seconds (typ)  
1.8-V CMOS  
period  
until logic enables the watchdog timer  
1.8-V CMOS  
Output logic voltage  
Monitored rail  
Watchdog timeout  
1.8 V with a 5% threshold  
10 ms, typical  
Worst-case VITN = 1.714 V 4.7%  
tWD(min) = 7.3 ms, tWD(TYP) = 9.1 ms, tWD(max) = 11 ms  
Maximum device current  
consumption  
50 µA  
37 µA when RESET or WDO is asserted (1)  
(1) Only includes the TPS3851G18S-Q1 current consumption.  
8.2.2 Detailed Design Procedure  
8.2.2.1 Monitoring the 1.8-V Rail  
The undervoltage comparator allows for precise voltage supervision of common rails between 1.8 V and 5.0 V.  
This application calls for very tight monitoring of the rail with only 5% of variation allowed on the rail. To ensure  
this requirement is met, the TPS3851G18S-Q1 was chosen for its 4% threshold. To calculate the worst-case  
for VITN, the accuracy must also be taken into account. The worst-case for VITN can be calculated by 方程4:  
VITN(Worst Case) = VITN(typ) × 0.992 = 1.8 × 0.96 × 0.992 = 1.714 V  
(4)  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS3851-Q1  
 
 
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.2.2.2 Calculating the RESET and WDO Pullup Resistor  
8-4 shows the TPS3851-Q1 using an open-drain configuration for the RESET circuit. When the FET is off, the  
resistor pulls the drain of the transistor to VDD and when the FET is turned on, the FET attempts to pull the drain  
to ground, thus creating an effective resistor divider. The resistors in this divider must be chosen to ensure that  
VOL is below the maximum value. To choose the proper pullup resistor, there are three key specifications to keep  
in mind: the pullup voltage (VPU), the recommended maximum RESET pin current (IRESET), and VOL. The  
maximum VOL is 0.4 V, meaning that the effective resistor divider created must be able to bring the voltage on  
the reset pin below 0.4 V with IRESET kept below 10 mA. For this example, with a VPU of 1.8 V, a resistor must be  
chosen to keep IRESET below 50 μA because this value is the maximum consumption current allowed. To ensure  
this specification is met, a pullup resistor value of 100 kΩwas selected, which sinks a maximum of 18 μA when  
RESET or WDO is asserted. As illustrated in 6-13, the RESET current is at 18 μA and the low-level output  
voltage is approximately zero.  
VPU  
RESET  
RESET  
CONTROL  
8-4. RESET Open-Drain Configuration  
8.2.2.3 Setting the Watchdog  
As illustrated in 8-1 there are three options for setting the watchdog timer. The design specifications in this  
application require the programmable timing option (external capacitor connected to CWD). When a capacitor is  
connected to the CWD pin, the watchdog timer is governed by 程式 1 for the standard timing version.  
However, only the standard version is capable of meeting this timing requirement. 方程式 1 is only valid for ideal  
capacitors, any temperature or voltage derating must be accounted for separately.  
CCWD (nF) = (tWD(ms) 0.0381) / 3.23 = (10 0.381) / 3.23 = 2.97 nF  
(5)  
The nearest standard capacitor value to 2.9 nF is 2.7 nF. Selecting 2.7 nF for the CCWD capacitor gives the  
following minimum timing parameters:  
tWD(MIN) = 0.905 × tWD(TYP) = 0.905 × (3.23 × 2.7 + 0.381) = 8.24 ms  
tWD(MAX) = 1.095 × tWD(TYP) = 1.095 × (3.23 × 2.7 + 0.381) = 9.97 ms  
(6)  
(7)  
Capacitor tolerance also influences tWD(MIN) and tWD(MAX). Select a ceramic COG dielectric capacitor for high  
accuracy. For 2.7 nF, COG capacitors are readily available with 5% tolerances. This selection results in a 5%  
decrease in tWD(MIN) and a 5% increase in tWD(MAX), giving 7.34 ms and 11 ms, respectively. To ensure proper  
functionality, a falling edge must be issued before tWD(min). 8-6 illustrates that a WDI signal with a period of 5  
ms keeps WDO from asserting.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS3851-Q1  
 
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8.2.2.4 Watchdog Disabled During Initialization Period  
The watchdog is often needed to be disabled during startup to allow for an initialization period. When the  
initialization period is over, the watchdog timer is turned back on to allow the microcontroller to be monitored by  
the TPS3851-Q1. To achieve this setup, SET1 must start at GND. In this design, SET1 is controlled by a  
TPS3890-Q1 supervisor. In this application, the TPS3890-Q1 was chosen to monitor VDD as well, which means  
that the RESET on the TPS3890-Q1 stays low until VDD rises above VITN. When VDD comes up, the delay time  
can be adjusted through the CT capacitor on the TPS3890-Q1. With this approach, the RESET delay can be  
adjusted from a minimum of 25 μs to a maximum of 30 seconds. For this design, a typical delay of 5 seconds is  
needed before the watchdog timer is enabled. The CT capacitor calculation (see the TPS3890-Q1 data sheet)  
yields an ideal capacitance of 4.67 μF, giving a closest standard ceramic capacitor value of 4.7 μF. When  
connecting a 4.7-μF capacitor from CT to GND, the typical delay time is 5 seconds. 8-5 shows that when the  
watchdog is disabled, the WDO output remains high. However when SET1 goes high and there is no WDI signal,  
WDO begins to assert. See the TPS3890-Q1 data sheet for detailed information on the TPS3890-Q1.  
8.2.3 Glitch Immunity  
8-8 shows the high-to-low glitch immunity for the TPS3851G18S-Q1 with a 7% overdrive with VDD starting at  
1.8 V. This curve shows that VDD can go below the threshold for at least 6 µs before RESET asserts.  
8.2.4 Application Curves  
Unless otherwise stated, application curves were taken at TA = 25°C.  
VDD  
2V/div  
VDD  
2V/div  
6 seconds  
SET1  
5ms  
2V/div  
WDI  
2V/div  
WDO  
2V/div  
WDO  
2V/div  
RESET  
2V/div  
RESET  
2V/div  
1s/div  
2ms/div  
8-5. Startup Without a WDI Signal  
8-6. Typical WDI Signal  
VDD  
VDD  
500mV/div  
500mV/div  
6µs  
WDO  
WDO  
2V/div  
2V/div  
195 ms  
RESET  
2V/div  
RESET  
2V/div  
50ms/div  
2µs/div  
8-7. Typical RESET Delay  
8-8. High-to-Low Glitch Immunity  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS3851-Q1  
 
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
This device is designed to operate from an input supply with a voltage range between 1.6 V and 6.5 V. An input  
supply capacitor is not required for this device; however, if the input supply is noisy, then good analog practice is  
to place a 0.1-µF capacitor between the VDD pin and the GND pin.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS3851-Q1  
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Make sure that the connection to the VDD pin is low impedance. Good analog design practice is to place a  
0.1-µF ceramic capacitor as near as possible to the VDD pin.  
If a CCWD capacitor or pullup resistor is used, place these components as close as possible to the CWD pin. If  
the CWD pin is left unconnected, make sure to minimize the amount of parasitic capacitance on the pin.  
Place the pullup resistors on RESET and WDO as close to the pin as possible.  
10.2 Layout Example  
Vin  
CVDD  
RPU1  
Vin  
RPU2  
1
2
3
4
8
7
6
5
Vin  
CCWD  
VDD  
CWD  
MR  
RESET  
WDO  
WDI  
GND  
SET1  
GND Plane  
Denotes a via  
10-1. TPS3851-Q1 Recommended Layout  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS3851-Q1  
 
 
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Device Nomenclature  
11-1. Device Nomenclature  
DESCRIPTION  
NOMENCLATURE  
VALUE  
TPS3851-Q1  
(high-accuracy supervisor with watchdog)  
X
G
H
VITN = 4%  
VITN = 7%  
(nominal threshold as a percent of the nominal  
monitored voltage)  
18  
25  
30  
33  
50  
S
1.8 V  
2.5 V  
yy(y)  
3.0 V  
(nominal monitored voltage option)  
3.3 V  
5.0 V  
tWD (ms) = 3.23 x CWD (nF) + 0.381 (ms)  
tWD (ms) = 77.4 x CWD (nF) + 55.2 (ms)  
z
(nominal watchdog timeout period)  
E
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
TPS3890-Q1 Low Quiescent Current, 1% Accurate Supervisor with Programmable Delay  
TPS3851EVM-780 Evaluation Module  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS3851-Q1  
 
 
 
 
 
 
 
 
TPS3851-Q1  
ZHCSO14A MARCH 2017 REVISED SEPTEMBER 2021  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS3851-Q1  
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS3851G18EQDRBRQ1  
TPS3851G18SQDRBRQ1  
TPS3851G25EQDRBRQ1  
TPS3851G25SQDRBRQ1  
TPS3851G30EQDRBRQ1  
TPS3851G30SQDRBRQ1  
TPS3851G33EQDRBRQ1  
TPS3851G33SQDRBRQ1  
TPS3851G50EQDRBRQ1  
TPS3851G50SQDRBRQ1  
TPS3851H18EQDRBRQ1  
TPS3851H18SQDRBRQ1  
TPS3851H25EQDRBRQ1  
TPS3851H25SQDRBRQ1  
TPS3851H30EQDRBRQ1  
TPS3851H30SQDRBRQ1  
TPS3851H33EQDRBRQ1  
TPS3851H33SQDRBRQ1  
TPS3851H50EQDRBRQ1  
TPS3851H50SQDRBRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
851DF  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
851DE  
851EF  
851EE  
851FF  
851FE  
851GF  
851GE  
851HF  
851HE  
851LF  
851LE  
851MF  
851ME  
851NF  
851NE  
851PF  
851PE  
851RF  
851RE  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS3851-Q1 :  
Catalog : TPS3851  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Sep-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS3851G18EQDRBRQ1 SON  
TPS3851G18SQDRBRQ1 SON  
TPS3851G25EQDRBRQ1 SON  
TPS3851G25SQDRBRQ1 SON  
TPS3851G30EQDRBRQ1 SON  
TPS3851G30SQDRBRQ1 SON  
TPS3851G33EQDRBRQ1 SON  
TPS3851G33SQDRBRQ1 SON  
TPS3851G50EQDRBRQ1 SON  
TPS3851G50SQDRBRQ1 SON  
TPS3851H18EQDRBRQ1 SON  
TPS3851H18SQDRBRQ1 SON  
TPS3851H25EQDRBRQ1 SON  
TPS3851H25SQDRBRQ1 SON  
TPS3851H30EQDRBRQ1 SON  
TPS3851H30SQDRBRQ1 SON  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Sep-2022  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS3851H33EQDRBRQ1 SON  
TPS3851H33SQDRBRQ1 SON  
TPS3851H50EQDRBRQ1 SON  
TPS3851H50SQDRBRQ1 SON  
DRB  
DRB  
DRB  
DRB  
8
8
8
8
3000  
3000  
3000  
3000  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Sep-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS3851G18EQDRBRQ1  
TPS3851G18SQDRBRQ1  
TPS3851G25EQDRBRQ1  
TPS3851G25SQDRBRQ1  
TPS3851G30EQDRBRQ1  
TPS3851G30SQDRBRQ1  
TPS3851G33EQDRBRQ1  
TPS3851G33SQDRBRQ1  
TPS3851G50EQDRBRQ1  
TPS3851G50SQDRBRQ1  
TPS3851H18EQDRBRQ1  
TPS3851H18SQDRBRQ1  
TPS3851H25EQDRBRQ1  
TPS3851H25SQDRBRQ1  
TPS3851H30EQDRBRQ1  
TPS3851H30SQDRBRQ1  
TPS3851H33EQDRBRQ1  
TPS3851H33SQDRBRQ1  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
SON  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
DRB  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Sep-2022  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS3851H50EQDRBRQ1  
TPS3851H50SQDRBRQ1  
SON  
SON  
DRB  
DRB  
8
8
3000  
3000  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
Pack Materials-Page 4  
PACKAGE OUTLINE  
DRB0008F  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.05)  
S
C
A
 L
 E
3
0
.
A
SECTION A-A  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
1.6 0.05  
(0.2) TYP  
4
5
A
A
2X  
1.95  
2.4 0.05  
8
1
6X 0.65  
0.35  
0.25  
8X  
PIN 1 ID  
0.5  
0.3  
0.1  
C A B  
C
8X  
(OPTIONAL)  
0.05  
4222121/C 10/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRB0008F  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.6)  
SYMM  
8X (0.6)  
1
8
8X (0.3)  
(2.4)  
(0.95)  
6X (0.65)  
4
5
(R0.05) TYP  
(0.55)  
(2.8)  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222121/C 10/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRB0008F  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
METAL  
TYP  
8X (0.6)  
8X (0.3)  
1
8
(0.635)  
SYMM  
(1.07)  
6X (0.65)  
5
4
(R0.05) TYP  
(1.47)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
82% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4222121/C 10/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DRB0008K  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
3.1  
2.9  
PIN 1 INDEX AREA  
0.07 MIN  
(0.13)  
S
C
A
 L
 E
3
0
.
A
SECTION A-A  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
A
A
1.6 0.05  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
(0.19) TYP  
4
1
5
2X  
1.95  
9
SYMM  
2.4 0.05  
8
6X 0.65  
0.35  
8X  
SYMM  
PIN 1 ID  
(45 X 0.3)  
0.25  
0.5  
0.3  
0.1  
C A B  
8X  
0.05  
C
4227074/D 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRB0008K  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(2.8)  
(1.6)  
8X (0.6)  
1
8
8X (0.3)  
(2.4)  
SYMM  
9
(0.95)  
6X (0.65)  
5
4
(R0.05) TYP  
(
0.2) VIA  
(0.55)  
SYMM  
TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4227074/D 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRB0008K  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(2.8)  
2X (1.5)  
8X (0.6)  
8
1
2X  
(1.06)  
8X (0.3)  
9
SYMM  
(0.63)  
6X (0.65)  
5
4
(R0.05) TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4227074/D 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS3851H30SQDRBRQ1

具有集成看门狗计时器的汽车类高精度电压监控器 | DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3851H33EDRBR

具有集成看门狗计时器的高精度电压监控器 | DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3851H33EDRBT

具有集成看门狗计时器的高精度电压监控器 | DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3851H33EQDRBRQ1

具有集成看门狗计时器的汽车类高精度电压监控器 | DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3851H33SQDRBRQ1

具有集成看门狗计时器的汽车类高精度电压监控器 | DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3851H50EDRBR

具有集成看门狗计时器的高精度电压监控器 | DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3851H50EDRBT

具有集成看门狗计时器的高精度电压监控器 | DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3851H50EQDRBRQ1

具有集成看门狗计时器的汽车类高精度电压监控器 | DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3851H50SQDRBRQ1

具有集成看门狗计时器的汽车类高精度电压监控器 | DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3852

具有可编程窗口看门狗计时器的高精度电压监控器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3852-Q1

具有集成式窗口看门狗计时器的汽车类高精度电压监控器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS3852G18QDRBRQ1

具有集成式窗口看门狗计时器的汽车类高精度电压监控器 | DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI