TPS3852G33DRBT [TI]

具有可编程窗口看门狗计时器的高精度电压监控器 | DRB | 8 | -40 to 125;
TPS3852G33DRBT
型号: TPS3852G33DRBT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可编程窗口看门狗计时器的高精度电压监控器 | DRB | 8 | -40 to 125

监控
文件: 总31页 (文件大小:1185K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS3852  
ZHCSFP5 NOVEMBER 2016  
TPS3852 具备可编程窗口看门狗定时器的高精度电压监控器  
1 特性  
3 说明  
1
VDD 输入电压范围:1.6V 6.5V  
TPS3852 是一款集成有窗口看门狗定时器的高精度电  
压监控器。TPS3852 包含一个高精度欠压监测器,其  
在额定温度范围(–40°C +125°C)内的欠压阈值  
(VITN) 精度达 0.8%。此外,TPS3852 还包含高精度迟  
滞,因此是紧容差系统的理想之选。监控器 RESET 延  
迟 具有 一个精度为 15% 的高精度延迟定时器。  
0.8% 电压阈值精度  
低电源电流:IDD = 10µA(典型值)  
用户可通过编程设定看门狗超时  
经过出厂编程的高精度看门狗和复位定时器:  
±15% 精度 WDT RST 延迟  
漏极开路输出  
TPS3852 配有一个可编程的窗口看门狗定时器,广泛  
适用于各类 应用。专用看门狗输出 (WDO) 有助于提  
高分辨率,从而帮助确定出现故障情况的根本原因。看  
门狗超时可通过外部电容编程,也可以采用工厂编程的  
默认延迟设置。在开发过程中,可以将看门狗禁用,从  
而避免出现不必要的看门狗超时。  
手动复位输入 (MR)  
高精度欠压监控  
支持 1.8V 5V 共模电压轨  
支持 4% 7% 阈值  
0.5% 迟滞  
看门狗禁用功能  
TPS3852 采用小型 3.00mm × 3.00mm8 引脚超薄  
小外形尺寸无引线 (VSON) 封装。  
采用 3mm x 3mm8 引脚超薄小外形尺寸无引线  
(VSON) 封装  
器件信息(1)  
2 应用  
器件型号  
TPS3852  
封装  
VSON (8)  
封装尺寸(标称值)  
安全关键型 应用  
3.00mm × 3.00mm  
远程信息处理控制单元  
高度可靠的工业系统  
病患监控  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
工业控制系统  
现场可编程逻辑门阵列 (FPGA) 和专用集成电路  
(ASIC)  
微控制器和数字信号处理器 (DSP)  
空白  
空白  
典型应用电路  
欠压阈值 (VITN) 精度与温度间的关系  
3.3 V  
0.5  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
Average  
Çt{3852  
VDD  
0.3  
0.1  
aicroconꢀroller  
ë55  
{9Ç1  
w9{9Ç  
í5h  
w9{9Ç  
baL  
aw  
í5L  
Db5  
DtLh  
-0.1  
-0.3  
-0.5  
/í5  
Db5  
Copyright © 2016, Texas Instruments Incorporated  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBVS302  
 
 
 
TPS3852  
ZHCSFP5 NOVEMBER 2016  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Application ................................................. 19  
Power Supply Recommendations...................... 22  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 12  
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 22  
11 器件和文档支持 ..................................................... 23  
11.1 器件支持................................................................ 23  
11.2 文档支持................................................................ 23  
11.3 接收文档更新通知 ................................................. 23  
11.4 社区资源................................................................ 23  
11.5 ....................................................................... 23  
11.6 静电放电警告......................................................... 23  
11.7 Glossary................................................................ 24  
12 机械、封装和可订购信息....................................... 24  
7
4 修订历史记录  
日期  
修订版本  
注释  
2016 11 月  
*
最初发布版本。  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPS3852  
www.ti.com.cn  
ZHCSFP5 NOVEMBER 2016  
5 Pin Configuration and Functions  
DRB Package  
VSON-8 (8-Pins)  
Top View  
VDD  
CWD  
MR  
1
8
7
6
5
RESET  
WDO  
WDI  
2
3
4
Thermal  
Pad  
GND  
SET1  
Not to scale  
Pin Functions  
NAME  
NO.  
I/O  
DESCRIPTION  
Programmable watchdog timeout input. Watchdog timeout is set by connecting a capacitor between this pin and  
ground. Furthermore, this pin can also be connected by a 10-kΩ resistor to VDD, or leaving unconnected (NC) further  
enables the selection of the preset watchdog timeouts; see the Timing Requirements table.  
When using a capacitor, the TPS3852 determines the window watchdog upper boundary with 公式 1. See 3 and  
the CWD Functionality section for additional information.  
CWD  
2
GND  
MR  
4
3
I
Ground pin  
Manual reset pin. A logical low on this pin issues a RESET. This pin is internally pulled up to VDD. RESET remains  
low for a fixed reset delay (tRST) time after MR is deasserted (high).  
Reset output. Connect RESET using a 1-kΩ to 100-kΩ resistor to the desired pullup voltage rail (VPU). RESET goes  
low when VDD goes below the undervoltage threshold (VITN). When VDD is within the normal operating range, the  
RESET timeout-counter starts. At completion, RESET goes high. During startup, the state of RESET is undefined  
below the specified power-on-reset (POR) voltage (VPOR). Above POR, RESET goes low and remains low until the  
monitored voltage is within the correct operating range (above VITN+VHYST) and the RESET timeout is complete.  
RESET  
8
O
SET1  
VDD  
5
1
I
I
Logic input. Grounding the SET1 pin disables the watchdog timer.  
Supply voltage pin. For noisy systems, connecting a 0.1-μF bypass capacitor is recommended.  
Watchdog input. A falling transition (edge) must occur at this pin between the lower (tWDL(max)) and upper (tWDU(min)  
)
window boundaries in order for WDO to not assert.  
WDI  
6
7
I
When the watchdog is not in use, the SET1 pin can be used to disable the watchdog. The input at WDI is ignored  
when RESET or WDO are low (asserted) and also when the watchdog is disabled. If the watchdog is disabled, then  
WDI cannot be left unconnected and must be driven to either VDD or GND.  
Watchdog output. Connect WDO with a 1-kΩ to 100-kΩ resistor to the desired pullup voltage rail (VPU). WDO goes  
low (asserts) when a watchdog timeout occurs. WDO only asserts when RESET is high. When a watchdog timeout  
occurs, WDO goes low (asserts) for the set RESET timeout delay (tRST). When RESET goes low, WDO is in a high-  
impedance state.  
WDO  
O
Thermal pad  
Connect the thermal pad to a large-area ground plane. The thermal pad is internally connected to GND.  
Copyright © 2016, Texas Instruments Incorporated  
3
TPS3852  
ZHCSFP5 NOVEMBER 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
Supply voltage range  
Output voltage range  
VDD  
7
RESET, WDO  
SET1, WDI, MR  
CWD, CRST  
7
V
7
VDD + 0.3(2)  
±20  
V
Voltage ranges  
V
Output pin current  
mA  
mA  
Input current (all pins)  
±20  
Continuous total power dissipation  
See Thermal Information  
(3)  
Operating junction, TJ  
–40  
–40  
–65  
150  
150  
150  
°C  
°C  
°C  
(3)  
Temperature  
Operating free-air temperature, TA  
Storage, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The absolute maximum rating is VDD + 0.3 V or 7.0 V, whichever is smaller.  
(3) Assume that TJ = TA as a result of the low dissipated power in this device.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
6.5  
UNIT  
V
VDD  
Supply pin voltage  
1.6  
VSET1  
VMR  
SET1 pin voltage  
0
6.5  
V
MR pin voltage  
0
0.1(1)  
9
6.5  
1000(1)  
V
CCWD  
CWD  
RPU  
Watchdog timing capacitor  
Pull-up resistor to VDD  
Pull-up resistor, RESET and WDO  
RESET pin current  
nF  
kΩ  
kΩ  
mA  
mA  
°C  
10  
10  
11  
1
100  
10  
IRESET  
IWDO  
TJ  
Watchdog output current  
Junction Temperature  
10  
–40  
125  
(1) Using a CCWD capacitor of 0.1 nF or 1000 nF gives a tWDU(typ) of 62.74 ms or 77.45 seconds, respectively.  
4
Copyright © 2016, Texas Instruments Incorporated  
TPS3852  
www.ti.com.cn  
ZHCSFP5 NOVEMBER 2016  
6.4 Thermal Information  
TPS3852  
THERMAL METRIC(1)  
DRB (VSON)  
8 PINS  
50.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
51.6  
25.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.3  
ψJB  
25.8  
RθJC(bot)  
7.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
At VITN + VHYST VDD 6.5 V over the operating temperature range of –40°C TA, T J 125°C, unless otherwise noted. The  
open-drain pull-up resistors are 10 kΩ for each output. Typical values are at TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
GENERAL CHARACTERISTICS  
(1)  
VDD  
IDD  
Supply voltage  
Supply Current  
1.6  
6.5  
19  
V
10  
µA  
RESET FUNCTION  
(2)  
VPOR  
Power-on reset voltage  
IRESET = 15 µA, VOL(MAX) = 0.25 V  
0.8  
V
V
(3)  
VUVLO  
Under Voltage Lock Out Voltage  
1.35  
Undervoltage threshold accuracy, entering  
RESET  
VITN  
VDD falling  
VITN – 0.8%  
VITN + 0.8%  
VHYST  
IMR  
Hysteresis voltage  
VDD rising  
VMR = 0 V  
0.2%  
500  
0.5%  
620  
0.8%  
700  
MR pin internal pull-up current  
nA  
WINDOW WATCHDOG FUNCTION  
ICWD  
CWD pin charge current  
CWD = 0.5 V  
337  
375  
413  
nA  
V
VCWD  
CWD pin threshold voltage  
1.192  
1.21  
1.228  
VDD = 5 V,  
IRESET = IWDO = 3 mA  
VOL  
ID  
RESET, WDO output low  
0.4  
V
RESET, WDO output leakage current, open-  
drain  
VDD = VITN + VHYST  
VRESET = VWDO = 6.5 V  
,
1
µA  
VIL  
Low-level input voltage (MR, SET1)  
High-level input voltage (MR, SET1)  
Low-level input voltage (WDI)  
0.25  
V
V
V
V
VIH  
0.8  
VIL(WDI)  
VIH(WDI)  
0.3 × VDD  
High-level input voltage (WDI)  
0.8 × VDD  
(1) During power on, VDD must be a minimum 1.6 V for at least 300 µs before RESET correlates with VDD  
.
(2) When VDD falls below VPOR, RESET and WDO are undefined.  
(3) When VDD falls below UVLO, RESET is driven low.  
Copyright © 2016, Texas Instruments Incorporated  
5
TPS3852  
ZHCSFP5 NOVEMBER 2016  
www.ti.com.cn  
6.6 Timing Requirements  
At VITN + VHYST VDD 6.5 V over the operating temperature range of –40°C TA, T J 125°C, unless otherwise noted. The  
open-drain pull-up resistors are 10 kΩ for each output. Typical values are at TJ = 25°C.  
MIN  
TYP  
381  
1
MAX  
UNIT  
µs  
tINIT  
CWD pin evaluation period  
Minimum MR, SET1 pin pulse duration  
Startup delay  
µs  
300  
µs  
RESET FUNCTION  
tRST  
Reset timeout period  
170  
200  
35  
230  
ms  
µs  
ns  
VDD = VITN + VHYST + 2.5%  
VDD = VITN - 2.5%  
tRST-DEL VDD to RESET delay  
17  
tMR-DEL MR to RESET delay  
200  
Watchdog Function  
CWD = NC, SET1 = 0(1)  
CWD = NC, SET1 = 1(1)  
Watchdog disabled  
800  
680  
920  
ms  
CWD = 10kΩ to VDD,  
tWDL  
Window watchdog lower boundary  
Watchdog disabled  
1.85  
SET1 = 0(1)  
CWD = 10kΩ to VDD,  
1.5  
2.2  
ms  
ms  
SET1 = 1(1)  
CWD = NC, SET1 = 0(1)  
CWD = NC, SET1 = 1(1)  
Watchdog disabled  
1600  
1360  
1840  
CWD = 10kΩ to VDD,  
tWDU  
Window watchdog upper boundary  
Watchdog disabled  
SET1 = 0(1)  
CWD = 10kΩ to VDD,  
9.3  
11.0  
150  
12.7  
ms  
µs  
SET1 = 1(1)  
tWD-  
setup  
Setup time required for part to respond to changes on WDI after  
being enabled  
Minimum WDI pulse width  
50  
50  
ns  
ns  
tWD-DEL WDI to WDO Delay  
(1) SET1 = 0 means VSET1 < VIL, SET1 = 1 means VSET1 > VIH  
VITN + VHYST  
VITN  
VDD  
VITN  
tRST  
VPOR  
tRST  
tRST-DEL  
(1)  
RESET  
tWDL < t < tWDU  
t < tWDU  
t < tWDU  
WDI  
X
X
t < tWDL  
WDO  
tRST  
(1) See 2 for WDI timing requirements.  
1. Timing Diagram  
6
版权 © 2016, Texas Instruments Incorporated  
 
TPS3852  
www.ti.com.cn  
ZHCSFP5 NOVEMBER 2016  
WDI  
Early Fault  
WDO  
Correct Operation  
WDI  
WDO  
Late Fault  
WDI  
WDO  
Valid  
Window  
Window  
Timing  
tWDL(min)  
tWDL(typ)  
tWDL(max)  
tWDU(min)  
tWDU(typ)  
tWDU(max)  
= Tolerance Window  
2. TPS3852 Window Watchdog Timing  
版权 © 2016, Texas Instruments Incorporated  
7
TPS3852  
ZHCSFP5 NOVEMBER 2016  
www.ti.com.cn  
6.7 Typical Characteristics  
All Typical Characteristics curves are taken at 25°C with, 1.6 V VDD 6.5 V unless other wise noted.  
16  
12  
8
0.7  
0.6  
0.5  
0.4  
0.3  
-40èC  
0èC  
25èC  
105èC  
125èC  
4
VIL  
VIH  
0
0
0
1
2
3
4
5
6
7
-50  
-25  
25  
50  
75  
100  
125  
VDD (V)  
Temperature (èC)  
VDD = 1.6 V  
3. Supply Current vs VDD  
4. MR Threshold vs Temperature  
380  
376  
372  
368  
364  
0.5  
0.3  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
Average  
0.1  
-0.1  
-0.3  
1.6 V  
6.5 V  
-0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
TPS3852G33  
6. VITN + VHYST Accuracy vs Temperature  
5. CWD Charging Current vs Temperature  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.5  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
Average  
0.3  
0.1  
-0.1  
-0.3  
-0.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-0.8 -0.6 -0.4 -0.2  
0
0.2  
0.4  
0.6  
0.8  
Temperature (èC)  
VITN + VHYST Accuracy (%)  
TPS3852G33  
Includes G and H versions; with 3.3-V nominal monitored voltage;  
total units = 15,536  
7. VITN Accuracy vs Temperature  
8. VITN + VHYST Accuracy Histogram  
8
版权 © 2016, Texas Instruments Incorporated  
TPS3852  
www.ti.com.cn  
ZHCSFP5 NOVEMBER 2016  
Typical Characteristics (接下页)  
All Typical Characteristics curves are taken at 25°C with, 1.6 V VDD 6.5 V unless other wise noted.  
45  
40  
35  
30  
25  
20  
15  
10  
5
70  
60  
50  
40  
30  
20  
10  
0
0
-0.8 -0.6 -0.4 -0.2  
0
0.2  
0.4  
0.6  
0.8  
0.2  
0.35  
0.5  
0.65  
0.8  
VITN Accuracy (%)  
Hysteresis (%)  
Includes G and H versions; with 3.3-V nominal monitored voltage;  
total units = 15,536  
Includes G and H versions; with 3.3-V nominal monitored voltage;  
total units = 15,536  
9. VITN Accuracy Histogram  
10. Hysteresis Histogram  
1.6  
1.6  
-40èC  
-40èC  
0èC  
0èC  
1.4  
1.2  
1
1.4  
1.2  
1
25èC  
105èC  
125èC  
25èC  
105èC  
125èC  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
IRESET (mA)  
IRESET (mA)  
VDD = 1.6 V  
VDD = 6.5 V  
11. Low-Level RESET Voltage vs RESET Current  
12. Low-Level RESET Voltage vs RESET Current  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
210  
205  
200  
195  
190  
-40èC  
0èC  
25èC  
105èC  
125èC  
-40èC  
0èC  
25èC  
105èC  
125èC  
0
0
2
4
6
8
10  
0
2
4
6
8
10  
Overdrive (%)  
Overdrive (%)  
TPS3852G33 entering undervoltage  
TPS3852G33 exiting undervoltage  
13. Propagation Delay vs Overdrive  
14. Propagation Delay (tRST) vs Overdrive  
版权 © 2016, Texas Instruments Incorporated  
9
 
 
TPS3852  
ZHCSFP5 NOVEMBER 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
All Typical Characteristics curves are taken at 25°C with, 1.6 V VDD 6.5 V unless other wise noted.  
25  
Overdrive = 3%  
Overdrive = 5%  
Overdrive = 7%  
Overdrive = 9%  
Overdrive = 10%  
20  
15  
10  
5
-50  
VITN = 3.168 V  
15. High to Low Glitch Immunity vs Temperature  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
10  
版权 © 2016, Texas Instruments Incorporated  
TPS3852  
www.ti.com.cn  
ZHCSFP5 NOVEMBER 2016  
7 Detailed Description  
7.1 Overview  
The TPS3852 is a high-accuracy voltage supervisor with an integrated window watchdog timer. This device  
includes a precision undervoltage supervisor with a threshold that achieves 0.8% accuracy over the specified  
temperature range of –40°C to +125°C. In addition, the TPS3852 includes accurate hysteresis on the threshold,  
making the device ideal for use with tight tolerance systems where voltage supervisors must ensure a RESET  
before the minimum supply tolerance of the microprocessor or system-on-a-chip (SoC) is reached.  
7.2 Functional Block Diagram  
VDD  
R1  
RESET  
R2  
Precision  
Clock  
Reference  
VDD  
WDO  
State  
Machine  
Cap  
CWD  
Control  
WDI  
MR  
SET1  
GND  
Copyright © 2016, Texas Instruments Incorporated  
(1) Note: R1 + R2 = 4.5MΩ  
版权 © 2016, Texas Instruments Incorporated  
11  
TPS3852  
ZHCSFP5 NOVEMBER 2016  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 RESET  
Connect RESET to VPU through a 1-kΩ to 100-kΩ pullup resistor. RESET remains high (deasserted) when VDD is  
greater than the negative threshold voltage (VITN). If VDD falls below the negative threshold (VITN), then RESET is  
asserted, driving the RESET pin to low impedance. When VDD rises above VITN + VHYST, a delay circuit is  
enabled that holds RESET low for a specified reset delay period (tRST). When the reset delay has elapsed, the  
RESET pin goes to a high-impedance state and uses a pullup resistor to hold RESET high. The pullup resistor  
must be connected to the desired voltage rail to allow other devices to be connected at the correct interface  
voltage. To ensure proper voltage levels, give some consideration when choosing the pullup resistor values. The  
pullup resistor value is determined by output logic low voltage (VOL), leakage current (ID), and the current through  
the RESET pin IRESET  
.
7.3.2 Manual Reset MR  
The manual reset (MR) input allows a processor or other logic circuits to initiate a reset. A logic low on MR  
causes RESET to assert. After MR returns to a logic high and VDD is above VITN + VHYST, RESET is deasserted  
after the reset delay time (tRST). If MR is not controlled externally, then MR can either be connected to VDD or left  
floating because the MR pin is internally pulled up. When MR is asserted, the watchdog is disabled and all  
signals input to WDI are ignored.  
7.3.3 UV Fault Detection  
The TPS3852 features undervoltage detection for common rails between 1.8 V and 5 V. The voltage is monitored  
on the input rail of the device. If VDD drops below VITN, then RESET is asserted (driven low). When VDD is above  
VITN + VHYST, RESET deasserts after tRST, as shown in 16. The internal comparator has built-in hysteresis that  
provides some noise immunity and ensures stable operation. Although not required in most cases, for noisy  
applications, good analog design practice is to place a 1-nF to 100-nF bypass capacitor close to the VDD pin to  
reduce sensitivity to transient voltages on the monitored signal.  
VITN + VHYST  
VDD  
VITN  
Undervoltage Limit  
tRST + tRST-DEL  
RESET  
16. Undervoltage Detection  
7.3.4 Watchdog Mode  
This section provides information for the watchdog mode of operation.  
7.3.4.1 SET1  
The SET1 pin can enable and disable the watchdog timer. If SET1 is set to GND, the watchdog timer is disabled  
and WDI is ignored. When the watchdog is disabled WDO will be in a high impedance state. If the watchdog  
timer is disabled, drive the WDI pin to either GND or VDD to ensure that there is no increase in IDD. When SET1  
is logic high, the watchdog operates normally. The SET1 pin can be changed dynamically; however, if the  
watchdog is going from disabled to enabled there is a setup time tWD-setup where the watchdog does not respond  
to changes on WDI, as shown in 17.  
12  
版权 © 2016, Texas Instruments Incorporated  
 
TPS3852  
www.ti.com.cn  
ZHCSFP5 NOVEMBER 2016  
Feature Description (接下页)  
VDD  
RESET  
SET1  
150 µs  
Watchdog  
Enabled/Disabled  
Enabled  
Disabled  
Enabled  
17. Enabling and Disabling the Watchdog  
7.3.4.2 Window Watchdog Timer  
This section provides information for the window watchdog mode of operation. A window watchdog is typically  
employed in safety critical applications where a traditional watchdog timer is inadequate. In a traditional  
watchdog there is a maximum time in which a pulse must be issued to prevent the reset from occurring. In a  
window watchdog the pulse must be issued between a maximum lower window time (tWDL(max)) and the minimum  
upper window time (tWDU(min)) set by the CWD pin.  
7.3.4.3 Watchdog Input WDI  
WDI is the watchdog timer input that controls the WDO output. The WDI input is triggered by the falling edge of  
the input signal. For the first pulse, the watchdog acts as a traditional watchdog timer; thus, the first pulse must  
be issued before tWDU(min). After the first pulse, to ensure proper functionality of the watchdog timer, always issue  
the WDI pulse within the window of tWDL(max) and tWDU(min). If the pulse is issued in this region, then WDO remains  
unasserted. Otherwise, the device asserts WDO, putting the WDO pin into a low-impedance state.  
The watchdog input (WDI) is a digital pin. In order to ensure there is no increase in IDD, drive the WDI pin to  
either VDD or GND at all times. Putting the pin to an intermediate voltage can cause an increase in supply  
current (IDD) because of the architecture of the digital logic gates. When RESET is asserted, the watchdog is  
disabled and all signals input to WDI are ignored. When RESET is no longer asserted, the device resumes  
normal operation and no longer ignores the signal on WDI. If the watchdog is disabled, drive the WDI pin to  
either VDD or GND.  
7.3.4.4 CWD  
The CWD pin provides the user the functionality of both high precision factory programmed window watchdog  
timing options and user programmable window watchdog timing. The CWD pin can be either pulled-up to VDD  
through a resistor, have an external capacitor to ground, or be left floating. Every time that the part issues a reset  
event and the supply voltage is above VITN the part will try to determine, which of these three options is  
connected to the pin. There is an internal state machine that the device goes through to determine which option  
is connected to the CWD pin. The state machine can take up to 381 μs to determine if the CWD pin is left  
floating, pulled-up through a resistor, or connected to a capacitor.  
If the CWD pin is being pulled up to VDD using a pull-up resistor then a 10-kΩ resistor should be used.  
版权 © 2016, Texas Instruments Incorporated  
13  
TPS3852  
ZHCSFP5 NOVEMBER 2016  
www.ti.com.cn  
Feature Description (接下页)  
7.3.4.5 Watchdog Output WDO  
The TPS3852 features a window watchdog with an independent watchdog output (WDO). The independent  
watchdog output gives the flexibility to flag when there is a fault in the watchdog timing without performing an  
entire system reset. For legacy applications WDO can be tied to RESET. While the RESET output is not  
asserted the WDO signal will maintain normal operation. However, when the RESET signal is asserted the WDO  
pin will go into a high impedance state. This is due to using the standard RESET timing options when a fault  
occurs on WDO. Once RESET is unasserted the window watchdog timer will resume normal operation.  
14  
版权 © 2016, Texas Instruments Incorporated  
TPS3852  
www.ti.com.cn  
ZHCSFP5 NOVEMBER 2016  
7.4 Device Functional Modes  
1 summarises the functional modes of TPS3852.  
1. Device Functional Modes  
VDD  
WDI  
WDO  
RESET  
Undefined  
Low  
VDD < VPOR  
VPOR VDD < VDD(min)  
DD(min) VDD VITN + VHYST  
Ignored  
Ignored  
High  
High  
High  
(1)  
V
Low  
(2)  
VDD > VITN  
tWDL(max) < tPU(3L)SE  
tWDU(min)  
<
High  
(3)  
tPULSE > tWDU(min)  
tPULSE < tWDL(max)  
Low  
Low  
High  
High  
(3)  
(1) Only valid before VDD has gone above VITN + VHYST  
(2) Only valid after VDD has gone above VITN + VHYST  
(3) Where tPULSE is the time between falling edges on WDI  
7.4.1 VDD is Below VPOR ( VDD < VPOR  
)
When VDD is less than VPOR, RESET is undefined and can be either high or low. The state of RESET largely  
depends on the load that the RESET pin is experiencing.  
7.4.2 Above Power-On-Reset, But Less Than VDD(min) (VPOR VDD < VDD(min)  
)
When the voltage on VDD is less than VDD(min), and greater than or equal to VPOR, the RESET signal is asserted  
(logic low). When RESET is asserted, the watchdog output WDO is in a high-impedance state regardless of the  
WDI signal that is input to the device.  
7.4.3 Normal Operation (VDD VDD(min)  
)
When VDD is greater than or equal to VDD(min), the RESET signal is determined by VDD. When RESET is asserted,  
WDO goes to a high-impedance state. WDO is then pulled high through the pullup resistor.  
版权 © 2016, Texas Instruments Incorporated  
15  
 
TPS3852  
ZHCSFP5 NOVEMBER 2016  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 CWD Functionality  
The TPS3852 features three options for setting the watchdog window: connecting a capacitor to the CWD pin,  
connecting a pullup resistor to VDD, and leaving the CWD pin unconnected. 18 shows a schematic drawing of  
all three options. If this pin is connected to VDD through a 10-kpullup resistor or left unconnected (high  
impedance), then the factory-programmed watchdog timeouts are enabled; see the Timing Requirements table.  
Otherwise, the watchdog timeout can be adjusted by placing a capacitor from the CWD pin to ground.  
VDD  
VDD  
VDD  
TPS3852  
TPS3852  
TPS3852  
VDD  
VDD  
VDD  
375 nA  
375 nA  
375 nA  
CWD  
CCWD  
CWD  
CWD  
Cap  
Cap  
Cap  
Control  
Control  
Control  
User Programmable  
Capacitor to GND  
CWD  
Unconnected  
10 kΩ Resistor  
to VDD  
Copyright © 2016, Texas Instruments Incorporated  
18. CWD Charging Circuit  
8.1.1.1 Factory-Programmed Timing Options  
If using the factory-programmed timing options (listed in 2), the CWD pin must either be unconnected or  
pulled up to VDD through a 10-kpullup resistor. Using these options enables high-precision, 15% accurate  
watchdog timing.  
2. Factory-Programmed Watchdog Timing  
INPUT  
CWD  
WATCHDOG LOWER BOUNDARY (tWDL  
)
WATCHDOG UPPER BOUNDARY (tWDU)  
UNIT  
SET1  
MIN  
680  
1.5  
TYP  
Watchdog disabled  
800  
MAX  
920  
2.2  
MIN  
1360  
8.8  
TYP  
Watchdog disabled  
1600  
MAX  
1840  
13.2  
0
1
0
1
NC  
ms  
ms  
Watchdog disabled  
1.85  
Watchdog disabled  
11.0  
10 kΩ to VDD  
16  
版权 © 2016, Texas Instruments Incorporated  
 
 
TPS3852  
www.ti.com.cn  
ZHCSFP5 NOVEMBER 2016  
8.1.1.2 Adjustable Capacitor Timing  
Adjustable capacitor timing is achievable by connecting a capacitor to the CWD pin. If a capacitor is connected to  
CWD, then a 375-nA current source charges CCWD until VCWD = 1.21 V. The TPS3852 determines the window  
watchdog upper boundary with the formula given in 公式 1, where CCWD is in microfarads (µF) and tWDU is in  
seconds.  
tWDU(typ)(s) = 77.4 × CCWD(µF) + 0.055(s)  
(1)  
The TPS3852 is limited to using CCWD capacitors between 100 pF and 1 µF. Note that 公式 1 is for ideal  
capacitors, capacitor tolerances cause the actual device timing to vary. For the most accurate timing, use  
ceramic capacitors with COG dielectric material. As shown in 4, when using the minimum capacitance of 100  
pF, the watchdog upper boundary is 62.74 ms; whereas with a 1-µF capacitance, the watchdog upper boundary  
is 77.455 seconds. If a CCWD capacitor is used, 公式 1 can be used to set tWDU the window watchdog upper  
boundary. 3 shows how tWDU can be used to calculate tWDL  
.
3. Programmable CWD Timing  
INPUT  
CWD  
WATCHDOG LOWER BOUNDARY (tWDL  
)
WATCHDOG UPPER BOUNDARY (tWDU)  
UNIT  
SET1  
MIN  
TYP  
Watchdog disabled  
tWDU x 0.5  
MAX  
MIN  
TYP  
MAX  
0
1
Watchdog disabled  
CCWD  
(1)  
tWDU(min) x 0.5  
tWDU(max) x 0.5  
0.85 x tWDU(typ)  
tWDU(typ)  
1.15 x tWDU(typ)  
s
(1) Calculated from 公式 1 using ideal capacitors.  
4. tWDU Values for Common Ideal Capacitor Values  
WATCHDOG UPPER BOUNDARY (tWDU  
)
CCWD  
UNIT  
MIN(1)  
53.32  
112.5  
704  
TYP  
62.74  
132.4  
829  
MAX(1)  
100 pF  
1 nF  
72.15  
152.2  
953  
ms  
ms  
ms  
ms  
ms  
10 nF  
100 nF  
1 µF  
6625  
65836  
7795  
77455  
8964  
89073  
(1) Minimum and maximum values are calculated using ideal capacitors.  
版权 © 2016, Texas Instruments Incorporated  
17  
 
 
 
TPS3852  
ZHCSFP5 NOVEMBER 2016  
www.ti.com.cn  
8.1.2 Overdrive Voltage  
Forcing a RESET is dependent on two conditions: the amplitude VDD is beyond the trip point (ΔV1 and ΔV2), and  
the length of time that the voltage is beyond the trip point (t1 and t2). If the voltage is just under the trip point for a  
long period of time, RESET asserts and the output is pulled low. However, if VDD is just under the trip point for a  
few nanoseconds, RESET does not assert and the output remains high. The length of time required for RESET  
to assert can be changed by increasing the amount VDD goes under the trip point. If VDD is under the trip point by  
10%, the amount of time required for the comparator to respond is much faster and causes RESET to assert  
much quicker than when barely under the trip point voltage. 公式 2 shows how to calculate the percentage  
overdrive.  
Overdrive = |( VDD / VITX – 1) × 100% |  
(2)  
In 公式 2, VITX corresponds to the threshold trip point. If VDD is exceeding the positive threshold, VITN + VHYST is  
used. VITN is used when VDD is falling below the negative threshold. In 19, t1 and t2 correspond to the amount  
of time that VDD is over the threshold; the propagation delay versus overdrive for VITN and VITN + VHYST is  
illustrated in 13 and 14, respectively.  
The TPS3852 is relatively immune to short positive and negative transients on VDD because of the overdrive  
voltage.  
ûV1  
t1  
VITN + VHYST  
VDD  
VITN  
ûV2  
t2  
Time  
Copyright © 2016, Texas Instruments Incorporated  
19. Overdrive Voltage  
18  
版权 © 2016, Texas Instruments Incorporated  
 
 
TPS3852  
www.ti.com.cn  
ZHCSFP5 NOVEMBER 2016  
8.2 Typical Application  
A typical application for the TPS3852 is shown in 20. The TPS3852G33 is used to monitor the 3.3-V, VCORE  
rail powering the microcontroller.  
3.3 V  
VCORE  
aicroconꢀroller  
Çt{3852  
Çt{3890  
w9{9Ç  
ë55  
aw  
w9{9Ç  
í5h  
í5L  
ë55  
aw  
CT  
{9b{9  
w9{9Ç  
baL  
{9Ç1  
DtLh  
Db5  
/í5  
6.8 µF  
Db5  
Db5  
2.2 nF  
Copyright © 2016, Texas Instruments Incorporated  
20. Monitoring Supply Voltage and Watchdog Supervision of a Microcontroller  
8.2.1 Design Requirements  
Parameter  
Design Requirement  
Design Result  
Watchdog Disable For  
Initialization Period  
Watchdog must remain disabled for 7 seconds until  
logic enables the watchdog timer  
7.21 seconds (typ)  
Output Logic Voltage  
Monitored Rail  
3.3V CMOS  
3.3V CMOS  
3.3 V with a 5% threshold  
Worst Case VITN = 3.142 V  
(- 4.7% threshold)  
Watchdog Window  
250 ms, maximum  
50 uA  
tWDL(max) = 135 ms, tWDU(min) = 181 ms  
Maximum Device Current  
Consumption  
52 uA (worst case) when RESET or WDO is  
asserted(1)  
(1) Only includes the TPS3852G33 current consumption.  
8.2.2 Detailed Design Procedure  
8.2.2.1 Monitoring the 3.3V Rail  
This application calls for very tight monitoring of the rail with only 5% of variation allowed on the rail. To ensure  
this requirement is met, the TPS3852G33 was chosen for its -4% threshold. To calculate the worst-case for VITN  
,
the accuracy must also be taken into account. The worst-case for VITN can be calculated by 公式 3:  
VITN(Worst Case) = VITN(typ) x 0.992 = 3.3 x 0.96 x 0.992 = 3.142 V  
(3)  
版权 © 2016, Texas Instruments Incorporated  
19  
 
 
TPS3852  
ZHCSFP5 NOVEMBER 2016  
www.ti.com.cn  
8.2.2.2 Calculating RESET and WDO Pullup Resistor  
The TPS3852 uses an open-drain configuration for the RESET circuit, as shown in 21. When the FET is off,  
the resistor pulls the drain of the transistor to VDD and when the FET is turned on, the FET attempts to pull the  
drain to ground, thus creating an effective resistor divider. The resistors in this divider must be chosen to ensure  
that VOL is below the maximum value. To choose the proper pullup resistor, there are three key specifications to  
keep in mind: the pullup voltage (VPU), the recommended maximum RESET pin current (IRESET), and VOL. The  
maximum VOL is 0.4 V, meaning that the effective resistor divider created must be able to bring the voltage on  
the reset pin below 0.4 V with IRESET kept below 10 mA. For this example, with a VPU of 3.3 V, a resistor must be  
chosen to keep IRESET below 50 μA because this value is the maximum consumption current allowed. To ensure  
this specification is met, a pullup resistor value of 100 kΩ was selected, which sinks a maximum of 33 μA when  
RESET or WDO is asserted. As illustrated in 11, when the RESET current is at 33 μA and the low-level output  
voltage is approximately zero.  
VPU  
RESET  
RESET  
CONTROL  
Copyright © 2016, Texas Instruments Incorporated  
21. RESET Open-Drain Configuration  
8.2.2.3 Setting the Window Watchdog  
As illustrated in 18, there are three options for setting the window watchdog. The design specifications in this  
application require the programmable timing option (external capacitor connected to CWD). When a capacitor is  
connected to the CWD pin, the window is governed by 公式 4. 公式 4 is only valid for ideal capacitors, any  
temperature or voltage derating must be accounted for separately.  
tWDU - 0.055  
0.25 - 0.055  
CCWD mF =  
=
= 0.0025 mF  
(
)
77.4  
77.4  
(4)  
The nearest standard capacitor value to 2.5 nF is 2.2 nF. Selecting 2.2 nF for the CCWD capacitor gives the  
following minimum and maximum timing parameters:  
tWDU(MIN) = 0.85ì tWDU(TYP) = 0.85ì 77.4ì2.2ì10-3 + 0.055 = 191 ms  
(
)
(5)  
-3  
»
ÿ
tWDL(MAX) = 0.5ìtWDU(MAX) = 0.5ì 1.15ì 77.4ì2.2ì10 + 0.055 =129 ms  
(
)
(6)  
Capacitor tolerance also influence tWDU(MIN) and tWDL(MAX). Select a ceramic COG dielectric capacitor for high  
accuracy. For 2.2 nF, COG capacitors are readily available with a 5% tolerance, which results in a 5% decrease  
in tWDU(MIN) and a 5% increase in tWDL(MAX), giving 181 ms and 135 ms, respectively. A falling edge must be  
issued within this window.  
8.2.2.4 Watchdog Disabled During Initialization Period  
The watchdog is often needed to be disabled during startup to allow for an initialization period. When the  
initialization period is over, the watchdog timer is turned back on to allow the microcontroller to be monitored by  
the TPS3852. To achieve this setup SET1 must start at GND. In this design, SET1 is controlled by a TPS3890  
supervisor. In this application, the TPS3890 was chosen to monitor VDD as well, which means that RESET on the  
TPS3890 stays low until VDD rises above VITN. When VDD comes up, the delay time can be adjusted through the  
CT capacitor on the TPS3890. With this approach, the RESET delay can be adjusted from a minimum of 25 µs  
to a maximum of 30 seconds. For this design, a minimum delay of 7 seconds is needed until the watchdog timer  
is enabled. The CT capacitor calculation (see the TPS3890 data sheet) yields an ideal capacitance of 6.59 µF,  
giving a closest standard ceramic capacitor value of 6.8 µF. When connecting a 6.8-µF capacitor from CT to  
GND, the typical delay time is 7.21 seconds. 22 illustrates the typical startup waveform for this circuit when  
the watchdog input is off. 22 illustrates that when the watchdog is disabled, the WDO output remains high.  
See the TPS3890 data sheet for detailed information on the TPS3890.  
20  
版权 © 2016, Texas Instruments Incorporated  
 
 
TPS3852  
www.ti.com.cn  
ZHCSFP5 NOVEMBER 2016  
8.2.3 Glitch Immunity  
25 shows the high to low glitch immunity for the TPS3852G33 with a 7% overdrive with VDD starting at 3.3 V.  
This curve shows that VDD can go below the threshold for 5.2 µs without RESET asserting.  
8.2.4 Application Curves  
Unless otherwise stated, application curves were taken at TA = 25°C.  
VDD  
2V/div  
VDD  
2V/div  
128 ms  
7.94 s  
SET1  
WDI  
2V/div  
2V/div  
WDO  
2V/div  
WDO  
2V/div  
RESET  
2V/div  
RESET  
2V/div  
1s/div  
50ms/div  
22. Startup Without a WDI Signal  
23. Typical WDI Signal  
VDD  
1V/div  
(yellow)  
VDD  
1V/div  
RESET  
1V/div  
5.2 µs  
(green)  
204 ms  
RESET  
2V/div  
2µs/div  
50ms/div  
24. Typical RESET Delay  
25. High to Low Glitch Immunity  
版权 © 2016, Texas Instruments Incorporated  
21  
 
TPS3852  
ZHCSFP5 NOVEMBER 2016  
www.ti.com.cn  
9 Power Supply Recommendations  
These devices are designed to operate from an input supply with a voltage range between 1.6 V and 6.5 V. An  
input supply capacitor is not required for this device; however, if the input supply is noisy, then good analog  
practice is to place a 0.1-µF capacitor between the VDD pin and the GND pin.  
10 Layout  
10.1 Layout Guidelines  
Make sure that the connection to the VDD pin is low impedance. Good analog design practice is to place a  
0.1-µF ceramic capacitor as near as possible to the VDD pin.  
If a CCWD capacitor or pull-up resistor is used place them as close as possible to the CWD pin. If the CWD pin  
is left unconnected make sure to minimize the amount of parasitic capacitance on the pin.  
The pull-up resistors on RESET and WDO should be placed as close to the pin as possible.  
10.2 Layout Example  
Vin  
RPU1  
CVDD  
Vin  
RPU2  
1
2
3
4
8
7
6
5
Vin  
CCWD  
VDD  
CWD  
MR  
RESET  
WDO  
WDI  
GND  
SET1  
GND Plane  
Denotes a via  
26. Typical Layout For TPS3852  
22  
版权 © 2016, Texas Instruments Incorporated  
TPS3852  
www.ti.com.cn  
ZHCSFP5 NOVEMBER 2016  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 评估模块  
TPS3851EVM-780  
评估模块可用于评估此部件。如果使用此评估模块,则必须将  
EVM  
上的部件更换为  
TPS3852。  
11.1.2 器件命名规则  
5. 器件命名规则  
说明  
命名规则  
TPS3852  
(具有窗口看门狗的高精度监控器)  
G
H
VITN = –4%  
VITN = -7%  
X
(标称阈值,受监视电压标称值的百分比)  
yy(y)(1)  
(受监视电压标称值选项)  
33  
3.3V  
(1) 例如,TPS3852G33 对应的受监视电压标称值为 3.3V,标称阈值为 -4%。  
11.2 文档支持  
11.2.1 相关文档ꢀ  
相关文档如下:  
TPS3890 延迟可编程的低静态电流、1% 精密监控器》(文献编号:SLVSD65)  
TPS3851EVM-780 评估模块》(文献编号:SBVU033)  
11.3 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
版权 © 2016, Texas Instruments Incorporated  
23  
TPS3852  
ZHCSFP5 NOVEMBER 2016  
www.ti.com.cn  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS3852G33DRBR  
TPS3852G33DRBT  
TPS3852H33DRBR  
TPS3852H33DRBT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SON  
SON  
SON  
SON  
DRB  
DRB  
DRB  
DRB  
8
8
8
8
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
852GA  
NIPDAU  
NIPDAU  
NIPDAU  
852GA  
852PA  
852PA  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS3852 :  
Automotive : TPS3852-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE OUTLINE  
DRB0008A  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
DIM A  
OPT 1  
(0.1)  
OPT 2  
(0.2)  
1.5 0.1  
4X (0.23)  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
4
5
2X  
1.95  
1.75 0.1  
8
1
6X 0.65  
0.37  
0.25  
8X  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
(0.65)  
0.05  
0.5  
0.3  
8X  
4218875/A 01/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRB0008A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.5)  
(0.65)  
SYMM  
8X (0.6)  
(0.825)  
8
8X (0.31)  
1
SYMM  
(1.75)  
(0.625)  
6X (0.65)  
4
5
(R0.05) TYP  
(
0.2) VIA  
(0.23)  
TYP  
(0.5)  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218875/A 01/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRB0008A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.65)  
4X (0.23)  
SYMM  
METAL  
TYP  
8X (0.6)  
4X  
(0.725)  
8
1
8X (0.31)  
(2.674)  
(1.55)  
SYMM  
6X (0.65)  
4
5
(R0.05) TYP  
(1.34)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
84% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218875/A 01/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS3852G33QDRBRQ1

具有集成式窗口看门狗计时器的汽车类高精度电压监控器 | DRB | 8 | -40 to 125
TI

TPS3852H18QDRBRQ1

具有集成式窗口看门狗计时器的汽车类高精度电压监控器 | DRB | 8 | -40 to 125
TI

TPS3852H33DRBR

具有可编程窗口看门狗计时器的高精度电压监控器 | DRB | 8 | -40 to 125
TI

TPS3852H33DRBT

具有可编程窗口看门狗计时器的高精度电压监控器 | DRB | 8 | -40 to 125
TI

TPS3852H33QDRBRQ1

具有集成式窗口看门狗计时器的汽车类高精度电压监控器 | DRB | 8 | -40 to 125
TI

TPS386000

Quad Supply Voltage Supervisors with Programmable Delay and Watchdog Timer
TI

TPS386000-Q1

Quad Supply Voltage Supervisors with Programmable Delay and Watchdog Timer
TI

TPS386000-Q1_16

Quad Supply Voltage Supervisors
TI

TPS386000QRGPRQ1

Quad Supply Voltage Supervisors with Programmable Delay and Watchdog Timer
TI

TPS386000RGPR

Quad Supply Voltage Supervisors with Programmable Delay and Watchdog Timer
TI

TPS386000RGPT

Quad Supply Voltage Supervisors with Programmable Delay and Watchdog Timer
TI

TPS386020

Quad Supply Voltage Supervisors with Programmable Delay and Watchdog Timer
TI