TPS389001DSET [TI]

具有可编程延迟的低静态电流、1% 精度监控器 | DSE | 6 | -40 to 125;
TPS389001DSET
型号: TPS389001DSET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可编程延迟的低静态电流、1% 精度监控器 | DSE | 6 | -40 to 125

监控 光电二极管
文件: 总27页 (文件大小:1405K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS3890  
ZHCSF70A MARCH 2016REVISED MAY 2016  
TPS3890  
延迟可编程的低静态电流、1% 精密监控器  
1 特性  
3 说明  
1
上电复位 (POR) 发生器,可调节延迟时间:40μs  
TPS3890 是一款静态电流较低的精密电压监控器,可  
30s  
监视低至 1.15V 的系统电压,开漏 RESET 信号在  
SENSE 电压降至低于预设阈值或手动复位 (MR) 引脚  
降为逻辑低电平时置为有效。RESET 输出在用户可调  
节延迟时间内保持低电平,条件是 SENSE 电压和手动  
复位 (MR) 返回至超出相应阈值。TPS3890 系列使用  
精密电压实现 1% 的阈值精度。通过将 CT 引脚与外部  
电容相连,可在 40μs 30s 范围内调节复位延迟时  
间。TPS3890 具有 2.1μA 的超低静态电流,采用  
1.5mm × 1.5mm 小型封装,使得器件非常适用于电池  
供电和空间受限 应用。该器件的额定工作温度范围为 -  
40℃ 至 +125(TJ)。  
超低静态电流:2.1μA(典型值)  
高阈值精度:1%(最大值)  
高精度迟滞  
固定和可调节阈值电压:  
固定阈值适用于标准电压轨:  
1.2V 3.3V  
可调节阈值电压低至 1.15V  
手动复位 (MR) 输入  
开漏 RESET 输出  
温度范围:-40°C +125°C  
封装:1.5mm × 1.5mm 晶圆级小外形无引线  
(WSON) 封装  
器件信息(1)  
器件型号  
TPS3890  
封装  
WSON (6)  
封装尺寸(标称值)  
2 应用  
1.50mm x 1.50mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
数字信号处理器 (DSP) 或微控制器  
现场可编程门阵列 (FPGA)、专用集成电路 (ASIC)  
笔记本电脑、台式计算机  
智能手机,手持产品  
便携式电池供电产品  
固态硬盘  
机顶盒  
工业控制系统  
典型应用电路  
VITN 精度与温度间的关系  
1.8 V  
1.2 V  
0.75  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
Avg  
0.5  
0.25  
0
VDD  
SENSE  
VCORE  
VI/O  
MR  
CT  
TPS389012  
Microcontroller  
RESET  
RESET  
-0.25  
-0.5  
-0.75  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
D001  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSD65  
 
 
 
 
TPS3890  
ZHCSF70A MARCH 2016REVISED MAY 2016  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 14  
Application and Implementation ........................ 15  
9.1 Application Information............................................ 15  
9.2 Typical Application ................................................. 15  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings ............................................................ 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 5  
7.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagram ....................................... 11  
9
10 Power Supply Recommendations ..................... 16  
11 Layout................................................................... 17  
11.1 Layout Guidelines ................................................. 17  
11.2 Layout Example .................................................... 17  
12 器件和文档支持 ..................................................... 18  
12.1 文档支持 ............................................................... 18  
12.2 社区资源................................................................ 18  
12.3 ....................................................................... 18  
12.4 静电放电警告......................................................... 18  
12.5 Glossary................................................................ 18  
13 机械、封装和可订购信息....................................... 18  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (March 2016) to Revision A  
Page  
已发布为量产 .......................................................................................................................................................................... 1  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPS3890  
www.ti.com.cn  
ZHCSF70A MARCH 2016REVISED MAY 2016  
5 Device Comparison Table  
PART NUMBER  
TPS389001  
TPS389012  
TPS389015  
TPS389018  
TPS389020  
TPS389025  
TPS389030  
TPS389033  
NOMINAL SUPPLY VOLTAGE NEGATIVE THRESHOLD (VITN  
)
POSITIVE THRESHOLD (VITP)  
Adjustable  
1.2 V  
1.15 V  
1.15 V  
1.44 V  
1.73 V  
1.90 V  
2.40 V  
2.89 V  
3.17 V  
1.157 V  
1.157 V  
1.449 V  
1.740 V  
1.911 V  
2.414 V  
2.907 V  
3.189 V  
1.5 V  
1.8 V  
2.0 V  
2.5 V  
3.0 V  
3.3 V  
6 Pin Configuration and Functions  
DSE Package  
6-Pin WSON  
Top View  
SENSE  
GND  
MR  
1
2
3
6
5
4
RESET  
CT  
VDD  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
The CT pin offers a user-adjustable delay time. Connecting this pin to a ground-referenced capacitor sets  
the RESET delay time to deassert.  
5
CT  
tPD(r) (sec) = CCT (µF) × 1.07 + 25 µs (nom).  
2
3
GND  
MR  
I
Ground  
Driving the manual reset pin (MR) low causes RESET to go low (assert).  
RESET is an open-drain output that is driven to a low-impedance state when either the MR pin is driven to  
a logic low or the monitored voltage on the SENSE pin is lower than the negative threshold voltage (VITN).  
RESET remains low (asserted) for the delay time period after both MR is set to a logic high and the  
SENSE input is above VITP. A pullup resistor from 10 kΩ to 1 MΩ can be used on this pin.  
6
RESET  
O
This pin is connected to the voltage to be monitored. When the voltage on SENSE falls below the  
negative threshold voltage VITN, RESET goes low (asserts). When the voltage on SENSE rises above the  
positive threshold voltage VITP, RESET goes high (deasserts).  
1
4
SENSE  
VDD  
I
I
Supply voltage pin. Good analog design practice is to place a 0.1-µF ceramic capacitor close to this pin.  
Copyright © 2016, Texas Instruments Incorporated  
3
 
TPS3890  
ZHCSF70A MARCH 2016REVISED MAY 2016  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–20  
MAX  
7
UNIT  
VDD  
SENSE  
7
Voltage  
RESET  
7
V
MR  
7
VCT  
7
Current  
RESET  
20  
125  
150  
mA  
°C  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–40  
Temperature  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±1000  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.5  
0
NOM  
MAX  
5.5  
5.5  
5.5  
5
UNIT  
V
VDD  
Power-supply voltage  
VSENSE  
VRESET  
IRESET  
CIN  
SENSE voltage  
V
RESET pin voltage  
0
V
RESET pin current  
–5  
0
mA  
µF  
µF  
kΩ  
Input capacitor, VDD pin  
Reset timeout capacitor, CT pin  
Pullup resistor, RESET pin  
Junction temperature (free-air temperature)  
0.1  
25  
CCT  
0
22  
1000  
125  
RPU  
1
TJ  
–40  
7.4 Thermal Information  
TPS3890  
THERMAL METRIC(1)  
DSE (WSON)  
6 PINS  
321.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
207.9  
281.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
42.4  
ψJB  
284.8  
RθJC(bot)  
142.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2016, Texas Instruments Incorporated  
TPS3890  
www.ti.com.cn  
ZHCSF70A MARCH 2016REVISED MAY 2016  
7.5 Electrical Characteristics  
over the operating junction temperature range of –40°C to +125°C, 1.5 V VDD 5.5 V, and MR = VDD (unless otherwise  
noted); typical values are at VDD = 5.5 V and TJ = 25°C  
PARAMETER  
Input supply voltage  
Power-on reset voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
5.5  
UNIT  
V
VDD  
1.5  
VPOR  
VOL(max) = 0.2 V, IRESET = 15 µA  
0.8  
V
VDD = 3.3 V, IRESET = 0 mA,  
–40°C < TJ < 85°C  
2.09  
3.72  
VDD = 3.3 V, IRESET = 0 mA,  
–40°C < TJ < 105°C  
4.5  
5.8  
4
VDD= 3.3 V, IRESET = 0 mA  
IDD  
Supply current (into VDD pin)  
µA  
VDD = 5.5 V, IRESET = 0 mA,  
–40°C < TJ < 85°C  
2.29  
VDD = 5.5 V, IRESET = 0 mA,  
–40°C < TJ < 105°C  
5.2  
6.5  
1%  
VDD = 5.5 V, IRESET = 0 mA  
SENSE input threshold voltage  
accuracy  
Hysteresis(1)  
VITN, VITP  
VHYST  
–1%  
±0.5%  
0.325%  
0.575%  
0.825%  
8
VSENSE = 5 V  
µA  
nA  
ISENSE  
Input current  
VSENSE = 5 V, TPS389001,  
TPS389012  
10  
100  
ICT  
CT pin charge current  
0.90  
1.17  
1.15  
1.23  
200  
1.35  
1.29  
µA  
V
VCT  
RCT  
VIL  
CT pin comparator threshold voltage  
CT pin pulldown resistance  
Low-level input voltage (MR pin)  
High-level output voltage  
When RESET is deasserted  
Ω
V
0.25 × VDD  
VIH  
0.7 x VDD  
V
V
V
V
DD 1.5 V, IRESET = 0.4 mA  
DD 2.7 V, IRESET = 2 mA  
DD 4.5 V, IRESET = 3 mA  
0.25  
0.25  
0.3  
VOL  
Low-level output voltage  
Open-drain output leakage  
V
High impedance,  
VSENSE = VRESET = 5.5 V  
ILKG(OD)  
250  
nA  
(1) VHYST = [(VITP – VITN) / VITN] × 100%.  
7.6 Timing Requirements  
over the operating junction temperature range of –40°C to +125°C, 1.5 V VDD 5.5 V, MR = VDD, and 5% input overdrive(1)  
(unless otherwise noted); typical values are at VDD = 5.5 V and TJ = 25°C  
MIN  
NOM  
18  
8
MAX  
UNIT  
CT = open, VDD = 3.3 V  
CT = open, VDD = 5.5 V  
CT = open, VDD = 3.3 V  
VDD = 5.5 V  
tPD(f)  
SENSE (falling) to RESET propagation delay  
µs  
tPD(r)  
SENSE (rising) to RESET propagation delay  
SENSE pin glitch immunity  
MR pin glitch immunity  
25  
9
µs  
µs  
ns  
µs  
ns  
µs  
tGI(SENSE)  
tGI(MR)  
tMRW  
VDD = 5.5 V  
100  
MR pin pulse duration to assert RESET  
MR pin low to out delay  
1
td(MR)  
250  
325  
tSTRT  
Startup delay  
(1) Overdrive = | (VIN / VTHRESH – 1) × 100% |.  
版权 © 2016, Texas Instruments Incorporated  
5
TPS3890  
ZHCSF70A MARCH 2016REVISED MAY 2016  
www.ti.com.cn  
VDD  
0.8 V  
RESET  
tPD(f)  
=SENSE Falling Propagation Delay  
=SENSE Rising Propagation Delay  
= Undefined State  
tPD(r)  
tPD(r)  
tPD(r)  
tPD(f)  
td(MR)  
SENSE  
VITP  
VITN  
MR  
0.7 VDD  
0.3 VDD  
Time  
1. Timing Diagram  
6
版权 © 2016, Texas Instruments Incorporated  
TPS3890  
www.ti.com.cn  
ZHCSF70A MARCH 2016REVISED MAY 2016  
7.7 Typical Characteristics  
over the operating junction temperature range of –40°C to +125°C, 1.5 V VDD 5.5 V, and MR = VDD (unless otherwise  
noted)  
0.75  
0.5  
0.75  
0.5  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
Avg  
Unit 1  
Unit 2  
Unit 3  
Unit 4  
Unit 5  
Avg  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-0.25  
-0.5  
-0.75  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D001  
D002  
2. VITN Accuracy vs Temperature  
3. VITP Accuracy vs Temperature  
12  
10  
8
12  
10  
8
6
6
4
4
2
2
0
0
-0.25  
-0.15  
-0.05  
0.05  
0.15  
0.25  
-0.25  
-0.15  
-0.05  
0.05  
0.15  
0.25  
VITN Accuracy (%)  
VITP Accuracy (%)  
Tested at VDD = 1.5 V and VDD = 5.5 V, total tests = 136,348  
Tested at VDD = 1.5 V and VDD = 5.5 V, total tests = 136,348  
4. VITN Accuracy Histogram  
5. VITP Accuracy Histogram  
15  
1.2  
1.5 V  
5.5 V  
12  
9
1.15  
1.1  
1.05  
1
6
3
0
0.47  
0.51  
0.55  
0.59  
0.63  
0.67  
-50  
-25  
0
25  
50  
75  
100  
125  
Hysteresis (%)  
Temperature (èC)  
D005  
Tested at VDD = 1.5 V and VDD = 5.5 V, total tests = 136,348  
6. Hysteresis Histogram  
7. CT Current vs Temperature  
版权 © 2016, Texas Instruments Incorporated  
7
TPS3890  
ZHCSF70A MARCH 2016REVISED MAY 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
over the operating junction temperature range of –40°C to +125°C, 1.5 V VDD 5.5 V, and MR = VDD (unless otherwise  
noted)  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
-40èC  
0èC  
25èC  
85èC  
105èC  
125è  
-40èC  
0èC  
25èC  
85èC  
105èC  
125èC  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
VDD (V)  
D0  
D004  
MR = VDD  
MR = 0 V  
9. Supply Current vs Power-Supply Voltage  
8. Supply Current vs Power-Supply Voltage  
3
1
VIL  
VIH  
VIL  
VIH  
2.75  
2.5  
2.25  
2
0.75  
0.5  
0.25  
0
1.75  
1.5  
1.25  
1
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D006  
VDD = 5.5 V  
VDD = 1.5 V  
11. MR Threshold vs Temperature  
10. MR Threshold vs Temperature  
600  
500  
400  
300  
200  
100  
0
34  
33  
32  
31  
30  
29  
VCC = 1.5 V  
VCC = 3.3 V  
VCC = 5.5 V  
-40èC  
0èC  
25èC  
85èC  
125èC  
-50  
-25  
0
25  
50  
75  
100  
125  
1
10  
100  
Temperature (èC)  
Overdrive (%)  
D008  
D009  
VDD = 5.5 V  
12. Startup Delay vs Temperature  
13. Propagation Delay (tPD(r)) vs Overdrive  
8
版权 © 2016, Texas Instruments Incorporated  
 
 
TPS3890  
www.ti.com.cn  
ZHCSF70A MARCH 2016REVISED MAY 2016  
Typical Characteristics (接下页)  
over the operating junction temperature range of –40°C to +125°C, 1.5 V VDD 5.5 V, and MR = VDD (unless otherwise  
noted)  
34  
33  
32  
31  
30  
29  
34  
30  
26  
22  
18  
14  
10  
6
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
2
1
10  
100  
1
10  
100  
Overdrive (%)  
Overdrive (%)  
D010  
D011  
VDD = 1.5 V  
VDD = 5.5 V  
14. Propagation Delay (tPD(r)) vs Overdrive  
15. Propagation Delay (tPD(f)) vs Overdrive  
34  
30  
26  
22  
18  
14  
10  
6
32  
31.5  
31  
-40èC  
0èC  
25èC  
85èC  
125èC  
Overdrive=3%  
Overdrive=5%  
Overdrive=10%  
30.5  
30  
29.5  
29  
2
-50  
-25  
0
25  
50  
75  
100  
125  
1
10  
100  
Temperature (èC)  
Overdrive (%)  
D012  
VDD = 5.5 V  
VDD = 1.5 V  
17. Low-to-High Glitch Immunity vs Temperature  
16. Propagation Delay (tPD(f)) vs Overdrive  
32  
31.5  
31  
20  
18  
16  
14  
12  
10  
8
Overdrive=3%  
Overdrive=5%  
Overdrive=10%  
Overdrive=3%  
Overdrive=5%  
Overdrive=10%  
30.5  
30  
6
4
29.5  
29  
2
0
-50  
-50  
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D017  
VDD = 1.5 V  
VDD = 5.5 V  
18. Low-to-High Glitch Immunity vs Temperature  
19. High-to-Low Glitch Immunity vs Temperature  
版权 © 2016, Texas Instruments Incorporated  
9
 
 
TPS3890  
ZHCSF70A MARCH 2016REVISED MAY 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
over the operating junction temperature range of –40°C to +125°C, 1.5 V VDD 5.5 V, and MR = VDD (unless otherwise  
noted)  
20  
18  
16  
14  
12  
10  
8
1.6  
1.4  
1.2  
1
Overdrive=3%  
Overdrive=5%  
Overdrive=10%  
-40èC  
0èC  
25èC  
85èC  
105èC  
125èC  
0.8  
0.6  
0.4  
0.2  
0
6
4
2
0
-50  
-25  
0
25  
50  
75  
100  
125  
0
1
2
3
4
5
Temperature (èC)  
IRESET (mA)  
D018  
D015  
VDD = 1.5 V  
VDD = 5.5 V  
21. Low-Level Output Voltage vs RESET Current  
20. High-to-Low Glitch Immunity vs Temperature  
1.6  
-40èC  
0èC  
25èC  
85èC  
105èC  
125èC  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0
1
2
3
4
5
IRESET (mA)  
VDD = 1.5 V  
22. Low-Level Output Voltage vs RESET Current  
10  
版权 © 2016, Texas Instruments Incorporated  
 
TPS3890  
www.ti.com.cn  
ZHCSF70A MARCH 2016REVISED MAY 2016  
8 Detailed Description  
8.1 Overview  
The TPS3890 supervisory product family is designed to assert a RESET signal when either the SENSE pin  
voltage drops below VITN or the manual reset (MR) is driven low. The RESET output remains asserted for a user-  
adjustable time after both the manual reset (MR) and SENSE voltages return above their respective thresholds.  
8.2 Functional Block Diagram  
VDD  
VDD  
TPS389001  
Adjustable Version  
RESET  
RESET  
MR  
MR  
SENSE  
Reset  
Logic  
Timer  
Reset  
Logic  
Timer  
R1  
CT  
SENSE  
CT  
R2  
1.15 V  
VREF  
1.15 V  
VREF  
GND  
GND  
Adjustable Voltage Version  
Fixed Voltage Version  
Copyright © 2016, Texas Instruments Incorporated  
8.3 Feature Description  
The combination of user-adjustable reset delay time with a broad range of threshold voltages allow these devices  
to be used in a wide array of applications. Fixed negative threshold voltages (VITN) can be factory set from 1.15 V  
to 3.17 V (see the Device Comparison Table for available options), and the adjustable device can be used to  
customize the threshold voltage for other application needs by using an external resistor divider. The CT pin  
allows the reset delay to be set between 25 μs and 30 s with the use of an external capacitor.  
8.3.1 User-Configurable RESET Delay Time  
The rising RESET delay time (tPD(r)) can be configured by installing a capacitor connected to the CT pin. The  
TPS3890 uses a CT pin charging current (ICT) of 1.15 µA to help counter the effect of capacitor and board-level  
leakage currents that can be substantial in certain applications. The rising RESET delay time can be set to any  
value between 25 µs (no CCT installed) and 30 s (CCT = 26 µF).  
The capacitor value needed for a given delay time can be calculated using 公式 1:  
tPD(r) (sec) = CCT × VCT ÷ ICT+ tPD(r)(nom)  
(1)  
The slope of 公式 1 is determined by the time that the CT charging current (ICT) takes to charge the external  
capacitor up to the CT comparator threshold voltage (VCT). When RESET is asserted, the capacitor is discharged  
through the internal CT pulldown resistor (RCT). When the RESET conditions are cleared, the internal precision  
current source is enabled and begins to charge the external capacitor and when the voltage on this capacitor  
reaches 1.22 V, RESET is deasserted. Note that in order to minimize the difference between the calculated  
RESET delay time and the actual RESET delay time, use a low-leakage type capacitor (such as a ceramic  
capacitor) and minimize parasitic board capacitance around this pin.  
版权 © 2016, Texas Instruments Incorporated  
11  
 
TPS3890  
ZHCSF70A MARCH 2016REVISED MAY 2016  
www.ti.com.cn  
Feature Description (接下页)  
8.3.2 Manual Reset (MR) Input  
The manual reset (MR) input allows a processor or other logic circuits to initiate a reset. A logic low on MR  
causes RESET to assert. After MR returns to a logic high and SENSE is above VITP, RESET is deasserted after  
the user-defined reset delay. If MR is not controlled externally, then MR must be connected to VDD. Note that if  
the logic signal driving MR is not greater than or equal to VDD, then some additional current flows into VDD and  
out of MR and the difference is apparent when comparing 8 and 9.  
23 shows how MR can be used to monitor multiple system voltages when only a single CT capacitor is  
needed to set the RESET delay time.  
1.2 V  
3.3 V  
V
V
CORE  
SENSE VDD  
SENSE VDD  
I/O  
3.3 V  
TPS389012  
TPS389033  
DSP  
MR  
CT  
RESET  
MR  
GPIO  
GND  
RESET  
CT  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
23. Using MR to Monitor Multiple System Voltages  
8.3.3 RESET Output  
RESET remains high (deasserted) as long as SENSE is above the positive threshold (VITP) and the manual reset  
signal (MR) is logic high. If SENSE falls below the negative threshold (VITN) or if MR is driven low, then RESET is  
asserted, driving the RESET pin to a low impedance.  
When MR is again logic high and SENSE is above VITP, a delay circuit is enabled that holds RESET low for a  
specified reset delay period (tPD(r)). When the reset delay has elapsed, the RESET pin goes to a high-impedance  
state and uses a pullup resistor to hold RESET high. Connect the pullup resistor to the proper voltage rail to  
enable the outputs to be connected to other devices at the correct interface voltage level. RESET can be pulled  
up to any voltage up to 5.5 V, independent of the device supply voltage. To ensure proper voltage levels, give  
some consideration when choosing the pullup resistor values. The pullup resistor value is determined by VOL, the  
output capacitive loading, and the output leakage current (ILKG(OD)).  
8.3.4 SENSE Input  
The SENSE input can vary from ground to 5.5 V (7.0 V, absolute maximum), regardless of the device supply  
voltage used. The SENSE pin is used to monitor the critical voltage rail. If the voltage on this pin drops below  
VITN, then RESET is asserted. When the voltage on the SENSE pin exceeds the positive threshold voltage,  
RESET deasserts after the user-defined RESET delay time.  
The internal comparator has built-in hysteresis to ensure well-defined RESET assertions and deassertions even  
when there are small changes on the voltage rail being monitored.  
The TPS3890 device is relatively immune to short transients on the SENSE pin. Glitch immunity is dependent on  
threshold overdrive, as illustrated in 19 for VITN and 18 for VITP. Although not required in most cases, for  
noisy applications good analog design practice is to place a 1-nF to 10-nF bypass capacitor at the SENSE input  
to reduce sensitivity to transient voltages on the monitored signal.  
12  
版权 © 2016, Texas Instruments Incorporated  
 
TPS3890  
www.ti.com.cn  
ZHCSF70A MARCH 2016REVISED MAY 2016  
Feature Description (接下页)  
The adjustable version (TPS389001) can be used to monitor any voltage rail down to 1.15 V using the circuit  
shown in 24.  
VIN  
VMON  
VDD  
MR  
R1  
RPU  
TPS389001  
SENSE  
RESET  
R2  
GND  
Copyright © 2016, Texas Instruments Incorporated  
24. Using the TPS389001 to Monitor a User-Defined Threshold Voltage  
The target threshold voltage for the monitored supply (VITx(MON)) and the resistor divider values can be calculated  
by using 公式 2 and 公式 3, respectively:  
VITx(MON)= VITx × (1 + R1 ÷ R2)  
(2)  
公式 3 can be used to calculate either the negative threshold or the positive threshold by replacing VITx with  
either VITN or VITP, respectively.  
RTOTAL = R1 + R2  
(3)  
Resistors with high values minimize current consumption; however, the input bias current of the device degrades  
accuracy if the current through the resistors is too low. Therefore, choosing an RTOTAL value so that the current  
through the resistor divider is at least 100 times larger than the SENSE input current is simplest. See application  
report Optimizing Resistor Dividers at a Comparator Input (SLVA450) for more details on sizing input resistors.  
8.3.4.1 Immunity to SENSE Pin Voltage Transients  
The TPS3702 is immune to short voltage transient spikes on the input pins. Sensitivity to transients depends on  
both transient duration and overdrive (amplitude) of the transient. Overdrive is defined by how much VSENSE  
exceeds the specified threshold, and is important to know because the smaller the overdrive, the slower the  
response of the outputs (that is, undervoltage and overvoltage). Threshold overdrive is calculated as a percent of  
the threshold in question, as shown in 公式 4.  
Overdrive = | (VSENSE / VITx – 1) × 100% |  
(4)  
17 to 20 illustrate the glitch immunity that the TPS3890 has versus temperature with three different  
overdrive voltages. The propagation delay versus overdrive curves (13 to 16) can be used to determine  
how sensitive the TPS3890 family of devices are across an even wider range of overdrive voltages.  
版权 © 2016, Texas Instruments Incorporated  
13  
 
 
 
 
TPS3890  
ZHCSF70A MARCH 2016REVISED MAY 2016  
www.ti.com.cn  
8.4 Device Functional Modes  
1 summarizes the various functional modes of the device.  
1. Truth Table  
VDD  
MR  
L
SENSE  
RESET  
VDD < VPOR  
Undefined  
(1)  
VPOR < VDD < VDD(MIN)  
L
L
V
V
V
DD VDD(MIN)  
DD VDD(MIN)  
DD VDD(MIN)  
H
VSENSE < VITN  
VSENSE > VITP  
L
H
H
(1) When VDD falls below VDD(MIN), undervoltage-lockout (UVLO) takes effect and RESET is held low until VDD falls below VPOR  
.
8.4.1 Normal Operation (VDD > VDD(min)  
)
When VDD is greater than VDD(min), the RESET signal is determined by the voltage on the SENSE pin and the  
logic state of MR.  
MR high: when the voltage on VDD is greater than 1.5 V, the RESET signal corresponds to the voltage on  
the SENSE pin relative to the threshold voltage.  
MR low: in this mode, RESET is held low regardless of the voltage on the SENSE pin.  
8.4.2 Above Power-On-Reset But Less Than VDD(min) (VPOR < VDD < VDD(min)  
)
When the voltage on VDD is less than the VDD(min) voltage, and greater than the power-on-reset voltage (VPOR),  
the RESET signal is asserted regardless of the voltage on the SENSE pin.  
8.4.3 Below Power-On-Reset (VDD < VPOR  
)
When the voltage on VDD is lower thanVPOR, the device does not have enough voltage to internally pull the  
asserted output low and RESET is undefined and must not be relied upon for proper device function.  
14  
版权 © 2016, Texas Instruments Incorporated  
 
TPS3890  
www.ti.com.cn  
ZHCSF70A MARCH 2016REVISED MAY 2016  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The following sections describe in detail how to properly use this device, depending on the requirements of the  
final application.  
9.2 Typical Application  
A typical application for the TPS389018 is shown in 25. The TPS389018 can be used to monitor the 1.8-V  
VDD rail required by the TI Delfino™ microprocessor family. The open-drain RESET output of the TPS389018 is  
connected to the XRS input of the microprocessor. A reset event is initiated when the VDD voltage is less than  
VITN or when MR is driven low by an external source.  
1.8 V  
3.3 V  
SENSE VDD  
VDD  
TPS389018  
Delfino MCU  
1 MW  
External  
Reset  
MR  
RESET  
XRS  
GND  
CT  
GND  
1.5 nF  
Copyright © 2016, Texas Instruments Incorporated  
25. TPS3890 Monitoring the Supply Voltage for a Delfino Microprocessor  
9.2.1 Design Requirements  
The TPS3890 RESET output can be used to drive the reset (XRS) input of a microprocessor. The RESET pin of  
the TPS3890 is pulled high with a 1-Mresistor; the reset delay time is controlled by the CT capacitor and is set  
depending on the reset requirement times of the microprocessor. During power-up, XRS must remain low for at  
least 1 ms after VDD reaches 1.5 V for the C2000™ Delfino family of microprocessors. For 100-MHz operation,  
the Delfino TMS320F2833x microcontroller uses a supply voltage of 1.8 V that must be monitored by the  
TPS3890.  
9.2.2 Detailed Design Procedure  
The primary constraint for this application is choosing the correct device to monitor the supply voltage of the  
microprocessor. The TPS389018 has a negative threshold of 1.73 V and a positive threshold of 1.74 V, making  
the device suitable for monitoring a 1.8-V rail. The secondary constraint for this application is the reset delay time  
that must be at least 1 ms to allow the Delfino microprocessor enough time to startup up correctly. Because a  
minimum time is required, the worst-case scenario is a supervisor with a high CT charging current (ICT) and a low  
CT comparator threshold (VCT). For applications with ambient temperatures ranging from –40°C to +125°C, CCT  
can be calculated using ICT(Max), VCT(MIN), and solving for CCT in 公式 1 such that the minimum capacitance  
required at the CT pin is 1.149 nF. If standard capacitors with ±20% tolerances are used, then the CT capacitor  
must be 1.5 nF or larger to ensure that the 1-ms delay time is met.  
A 0.1-µF decoupling capacitor is connected to the VDD pin as a good analog design practice and a 1-MΩ  
resistor is used as the RESET pullup resistor to minimize the current consumption when RESET is asserted. The  
MR pin can be connected to an external signal if desired or connected to VDD if not used.  
版权 © 2016, Texas Instruments Incorporated  
15  
 
TPS3890  
ZHCSF70A MARCH 2016REVISED MAY 2016  
www.ti.com.cn  
Typical Application (接下页)  
9.2.3 Application Curve  
600  
VCC = 1.5 V  
VCC = 3.3 V  
VCC = 5.5 V  
500  
400  
300  
200  
100  
0
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
D008  
26. Startup Delay vs Temperature  
10 Power Supply Recommendations  
These devices are designed to operate from an input supply with a voltage range between 1.5 V and 5.5 V. An  
input supply capacitor is not required for this device; however, if the input supply is noisy, then good analog  
practice is to place a 0.1-µF capacitor between the VDD pin and the GND pin. This device has a 7-V absolute  
maximum rating on the VDD pin. If the voltage supply providing power to VDD is susceptible to any large voltage  
transient that can exceed 7 V, additional precautions must be taken.  
16  
版权 © 2016, Texas Instruments Incorporated  
TPS3890  
www.ti.com.cn  
ZHCSF70A MARCH 2016REVISED MAY 2016  
11 Layout  
11.1 Layout Guidelines  
Make sure that the connection to the VDD pin is low impedance. Good analog design practice is to place a 0.1-  
µF ceramic capacitor near the VDD pin. If a capacitor is not connected to the CT pin, then minimize parasitic  
capacitance on this pin so the RESET delay time is not adversely affected.  
11.2 Layout Example  
The layout example in shows how the TPS3890 is laid out on a printed circuit board (PCB) with a user-defined  
delay.  
RPU  
SENSE  
GND  
MR  
RESET  
CT  
CCT  
VDD  
CIN  
GND  
Vias used to connect pins for application-specific connections  
27. Recommended Layout  
版权 © 2016, Texas Instruments Incorporated  
17  
TPS3890  
ZHCSF70A MARCH 2016REVISED MAY 2016  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
以下相关文档可从 www.ti.com 下载:  
优化比较器输入上的电阻分压器SLVA450  
《电源设计灵敏度分析》SLVA481  
TMS320C28x 数字信号控制器入门》SPRAAM0  
TPS3890EVM-775 评估模块用户指南》,SBVU030  
C2000 Delfino 系列微处理器  
TMS320F2833x 微控制器》,SPRS439  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
Delfino, C2000, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
18  
版权 © 2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS389001DSER  
TPS389001DSET  
TPS389012DSER  
TPS389012DSET  
TPS389015DSER  
TPS389015DSET  
TPS389018DSER  
TPS389018DSET  
TPS389020DSER  
TPS389020DSET  
TPS389025DSER  
TPS389025DSET  
TPS389030DSER  
TPS389030DSET  
TPS389033DSER  
TPS389033DSET  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2V  
2V  
2W  
2W  
2X  
2X  
2Y  
2Y  
2Y  
2Y  
2Z  
2Z  
3A  
3A  
3B  
3B  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Feb-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS389001DSER  
TPS389001DSET  
TPS389012DSER  
TPS389012DSET  
TPS389015DSER  
TPS389015DSET  
TPS389018DSER  
TPS389018DSET  
TPS389020DSER  
TPS389020DSET  
TPS389025DSER  
TPS389025DSET  
TPS389030DSER  
TPS389030DSET  
TPS389033DSER  
TPS389033DSET  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
1.83  
0.89  
0.89  
0.89  
0.89  
0.89  
0.89  
0.89  
0.89  
0.89  
0.89  
0.89  
0.89  
0.89  
0.89  
0.89  
0.89  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Feb-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS389001DSER  
TPS389001DSET  
TPS389012DSER  
TPS389012DSET  
TPS389015DSER  
TPS389015DSET  
TPS389018DSER  
TPS389018DSET  
TPS389020DSER  
TPS389020DSET  
TPS389025DSER  
TPS389025DSET  
TPS389030DSER  
TPS389030DSET  
TPS389033DSER  
TPS389033DSET  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
250  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DSE0006A  
WSON - 0.8 mm max height  
SCALE 6.000  
PLASTIC SMALL OUTLINE - NO LEAD  
1.55  
1.45  
A
B
1.55  
1.45  
PIN 1 INDEX AREA  
0.8 MAX  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
0.6  
0.4  
5X  
3
4
2X 1  
4X 0.5  
6
1
0.3  
6X  
0.7  
0.5  
0.2  
0.1  
0.05  
PIN 1 ID  
C A B  
C
4220552/A 04/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSE0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
(0.8)  
5X (0.7)  
1
6
6X (0.25)  
SYMM  
4X 0.5  
4
3
(R0.05) TYP  
(1.6)  
LAND PATTERN EXAMPLE  
SCALE:40X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
PADS 4-6  
NON SOLDER MASK  
DEFINED  
PADS 1-3  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4220552/A 04/2021  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSE0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
5X (0.7)  
(0.8)  
6X (0.25)  
1
6
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:40X  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS389001QDSERQ1

具有可编程延迟的汽车类低静态电流 1% 精度监控器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS389012DSER

具有可编程延迟的低静态电流、1% 精度监控器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS389012DSET

具有可编程延迟的低静态电流、1% 精度监控器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS389012QDSERQ1

具有可编程延迟的汽车类低静态电流 1% 精度监控器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS389015DSER

具有可编程延迟的低静态电流、1% 精度监控器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS389015DSET

具有可编程延迟的低静态电流、1% 精度监控器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS389015QDSERQ1

具有可编程延迟的汽车类低静态电流 1% 精度监控器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS389018DSER

具有可编程延迟的低静态电流、1% 精度监控器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS389018DSET

具有可编程延迟的低静态电流、1% 精度监控器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS389018QDSERQ1

具有可编程延迟的汽车类低静态电流 1% 精度监控器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI