TPS51200MDRCTEP [TI]

灌电流/拉电流 DDR 终端稳压器 | DRC | 10 | -55 to 125;
TPS51200MDRCTEP
型号: TPS51200MDRCTEP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

灌电流/拉电流 DDR 终端稳压器 | DRC | 10 | -55 to 125

双倍数据速率 稳压器
文件: 总37页 (文件大小:1288K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS51200-EP  
ZHCSF57 JUNE 2016  
TPS51200-EP /DDR 终端稳压器  
1 特性  
2 应用范围  
1
输入电压:支持 2.5V 3.3V 电源轨  
VLDOIN 电压范围:1.1V 3.5V  
用于 DDRDDR2DDR3、低功耗 DDR3 和  
DDR4 的存储器终端稳压器  
笔记本、台式机和服务器  
电信和数据通信  
具有压降补偿功能的灌电流和拉电流终端稳压器  
所需最小输出电容为 20μF(通常为 3 × 10μF  
MLCC),用于存储器终端 应用 (DDR)  
基站  
用于监视输出稳压的 PGOOD  
EN 输入  
液晶 (LCD) 电视和等离子 (PDP) 电视  
复印机和打印机  
REFIN 输入允许直接或通过电阻分压器灵活进行输  
入跟踪  
机顶盒  
3 说明  
远程感测 (VOSNS)  
TPS51200-EP 器件是一款灌电流和拉电流双倍数据速  
(DDR) 终端稳压器,专用于空间问题是重要考量因  
素的低输入电压、低成本、低噪声系统。  
±10mA 缓冲基准 (REFOUT)  
内置软启动,欠压锁定 (UVLO) 和过流限制 (OCL)  
热关断  
符合 DDR DDR2 JEDEC 规范  
支持 DDR3、低功耗 DDR3 DDR4 VTT 应用  
TPS51200-EP 能够保持快速瞬态响应,最低仅需  
20μF 输出电容。TPS51200-EP 支持远程感测功能并  
且可满足 DDRDDR2DDR3、低功耗 DDR3 和  
DDR4 VTT 总线的所有电源要求。  
带有散热焊盘的 10 引脚超薄小外形尺寸无引线  
(VSON) 封装  
支持国防、航天和医疗 应用  
此外,TPS51200-EP 还提供一个开漏 PGOOD 信号  
监测输出稳压,提供一个 EN 信号在 S3(挂起至  
RA4M)期间针对 DDR 进行 VTT 放电。  
受控基线  
一个组装和测试场所  
一个制造场所  
支持军用温度范围(-55°C 125°C)  
延长的产品使用寿命周期  
延长的产品变更通知  
产品可追溯性  
TPS51200-EP 采用带散热焊盘的高效散热型 10 引脚  
超薄小外形尺寸无引线 (VSON) 封装,无铅且绿色环  
保。其额定工作温度范围为 -55°C +125°C。  
器件信息(1)  
器件型号  
封装  
VSON (10)  
封装尺寸(标称值)  
TPS51200-EP  
3.00mm x 3.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化的 DDR 应用  
1
REFIN  
VIN 10  
3.3 VIN  
VDDQ  
TPS51200  
VLDOIN  
VTT  
2
3
4
5
VLDOIN PGOOD  
9
8
7
6
PGOOD  
VO  
GND  
EN  
PGND  
SLP_S3  
VTTREF  
VOSNS REFOUT  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSA48  
 
 
 
TPS51200-EP  
ZHCSF57 JUNE 2016  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical VTT DIMM Applications.............................. 14  
8.3 System Examples ................................................... 19  
Power Supply Recommendations...................... 25  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 13  
10 Layout................................................................... 25  
10.1 Layout Guidelines ................................................. 25  
10.2 Layout Example .................................................... 26  
10.3 Thermal Design Considerations............................ 26  
11 器件和文档支持 ..................................................... 28  
11.1 器件支持................................................................ 28  
11.2 文档支持 ............................................................... 28  
11.3 接收文档更新通知 ................................................. 28  
11.4 社区资源................................................................ 28  
11.5 ....................................................................... 28  
11.6 静电放电警告......................................................... 28  
11.7 Glossary................................................................ 29  
12 机械、封装和可订购信息....................................... 29  
7
4 修订历史记录  
日期  
修订版本  
注释  
2016 6 月  
*
最初发布。  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPS51200-EP  
www.ti.com.cn  
ZHCSF57 JUNE 2016  
5 Pin Configuration and Functions  
DRC Package  
10-Pin VSON With Exposed Thermal Pad  
Top View  
REFIN  
VLDOIN  
VO  
1
2
3
4
10 VIN  
9
8
7
PGOOD  
GND  
EN  
Thermal  
Pad  
PGND  
VOSNS  
5
6
REFOUT  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
For DDR VTT application, connect EN to SLP_S3. For any other application, use the EN pin  
as the ON/OFF function.  
EN  
7
I
GND  
8
4
9
1
6
G
G
O
I
Signal ground. Connect to negative terminal of the output capacitor.  
Power ground output for the LDO.  
PGND(2)  
PGOOD  
REFIN  
PGOOD output. Indicates regulation.  
Reference input.  
REFOUT  
O
Reference output. Connect to GND through 0.1-μF ceramic capacitor.  
2.5-V or 3.3-V power supply. A ceramic decoupling capacitor with a value between 1-μF and  
4.7-μF is required.  
VIN  
10  
I
VLDOIN  
VO  
2
3
I
Supply voltage for the LDO.  
Power output for the LDO.  
O
Voltage sense input for the LDO. Connect to positive terminal of the output capacitor or the  
load.  
VOSNS  
5
I
(1) I = Input, O = Output, G = Ground.  
(2) Thermal pad connection. See Figure 31 in the Thermal Design Considerations section for additional information.  
Copyright © 2016, Texas Instruments Incorporated  
3
TPS51200-EP  
ZHCSF57 JUNE 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–55  
MAX  
3.6  
UNIT  
REFIN, VIN, VLDOIN, VOSNS  
Input voltage(2)  
EN  
6.5  
V
PGND to GND  
REFOUT, VO  
PGOOD  
0.3  
3.6  
Output voltage(2)  
V
6.5  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal unless otherwise noted.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
2.375  
–0.1  
0.5  
NOM  
MAX  
3.5  
UNIT  
Supply voltages  
Voltage  
VIN  
V
EN, VLDOIN, VOSNS  
REFIN  
3.5  
1.8  
PGOOD, VO  
REFOUT  
–0.1  
–0.1  
–0.1  
–55  
3.5  
V
1.8  
PGND  
0.1  
Operating junction temperature, TJ  
125  
°C  
6.4 Thermal Information  
TPS51200-EP  
THERMAL METRIC(1)  
DRC (VSON)  
10 PINS  
55.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
84.6  
Junction-to-board thermal resistance  
30  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
5.5  
ψJB  
30.1  
RθJC(bot)  
10.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2016, Texas Instruments Incorporated  
 
TPS51200-EP  
www.ti.com.cn  
ZHCSF57 JUNE 2016  
6.5 Electrical Characteristics  
Over recommended junction temperature range, VVIN = 3.3 V, VVLDOIN = 1.8 V, VREFIN = 0.9 V, VVOSNS = 0.9 V, VEN = VVIN  
,
COUT = 3 × 10 μF and circuit shown in (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
IIN  
Supply current  
TJ = 25 °C, VEN = 3.3 V, no load  
0.7  
65  
1
mA  
TJ = 25 °C, VEN = 0 V, VREFIN = 0,  
no load  
80  
IIN(SDN)  
Shutdown current  
μA  
TJ = 25 °C, VEN = 0 V, VREFIN > 0.4 V, no  
load  
200  
400  
ILDOIN  
Supply current of VLDOIN  
TJ = 25 °C, VEN = 3.3 V, no load  
TJ = 25 °C, VEN = 0 V, no load  
1
50  
50  
μA  
μA  
ILDOIN(SDN)  
INPUT CURRENT  
IREFIN  
Shutdown current of VLDOIN  
0.1  
Input current, REFIN  
VEN = 3.3 V  
1
μA  
VO OUTPUT  
1.25  
0.9  
V
VREFOUT = 1.25 V (DDR1), IO = 0 A  
VREFOUT = 0.9 V (DDR2), IO = 0 A  
–15  
–15  
15  
15  
mV  
V
VVOSNS  
Output DC voltage, VO  
mV  
V
0.75  
VLDOIN = 1.5 V, VREFOUT = 0.75 V (DDR3),  
IO = 0 A  
–15  
–25  
15  
25  
mV  
mV  
VVOTOL  
IVOSRCL  
IVOSNCL  
IDSCHRG  
Output voltage tolerance to REFOUT  
VO source current Limit  
–2 A < IVO < 2 A  
With reference to REFOUT,  
VOSNS = 90% × VREFOUT  
3
4.5  
5.5  
25  
A
A
With reference to REFOUT,  
VOSNS = 110% × VREFOUT  
VO sink current Limit  
Discharge current, VO  
3.5  
VREFIN = 0 V, VVO = 0.3 V, VEN = 0 V, TJ  
25°C  
=
18  
POWERGOOD COMPARATOR  
PGOOD window lower threshold with  
respect to REFOUT  
–23.5%  
17.5%  
–20%  
–17.5%  
23.5%  
VTH(PG)  
VO PGOOD threshold  
PGOOD window upper threshold with  
respect to REFOUT  
20%  
5%  
2
PGOOD hysteresis  
Start-up rising edge, VOSNS within 15%  
of REFOUT  
tPGSTUPDLY  
VPGOODLOW  
tPBADDLY  
PGOOD start-up delay  
Output low voltage  
PGOOD bad delay  
ms  
V
ISINK = 4 mA  
0.4  
1
VOSNS is outside of the ±20% PGOOD  
window  
10  
μs  
VOSNS = VREFIN (PGOOD high  
impedance), VPGOOD = VVIN + 0.2 V  
IPGOODLK  
Leakage current(1)  
μA  
REFIN AND REFOUT  
VREFIN  
REFIN voltage range  
0.5  
1.8  
V
mV  
mV  
V
VREFINUVLO  
VREFINUVHYS  
VREFOUT  
REFIN undervoltage lockout  
REFIN undervoltage lockout hysteresis  
REFOUT voltage  
REFIN rising  
360  
390  
20  
420  
REFIN  
–10 mA < IREFOUT < 10 mA,  
VREFIN = 1.25 V  
–15  
–15  
–15  
–15  
15  
15  
15  
15  
–10 mA < IREFOUT < 10 mA,  
VVREFIN = 0.9 V  
VREFOUTTOL  
REFOUT voltage tolerance to VREFIN  
mV  
–10 mA < IREFOUT < 10 mA,  
VREFIN = 0.75 V  
–10 mA < IREFOUT < 10 mA,  
VREFIN = 0.6 V  
IREFOUTSRCL  
IREFOUTSNCL  
REFOUT source current limit  
REFOUT sink current limit  
VREFOUT = 0 V  
VREFOUT = 0 V  
10  
10  
40  
40  
mA  
mA  
(1) Ensured by design. Not production tested.  
Copyright © 2016, Texas Instruments Incorporated  
5
TPS51200-EP  
ZHCSF57 JUNE 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended junction temperature range, VVIN = 3.3 V, VVLDOIN = 1.8 V, VREFIN = 0.9 V, VVOSNS = 0.9 V, VEN = VVIN  
,
COUT = 3 × 10 μF and circuit shown in (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.2  
TYP  
MAX  
UNIT  
UVLO AND EN LOGIC THRESHOLD  
Wake up, TJ = 25°C  
2.3  
50  
2.375  
V
mV  
V
VVINUVVIN  
UVLO threshold  
Hysteresis  
Enable  
VENIH  
High-level input voltage  
Low-level input voltage  
Hysteresis voltage  
1.7  
VENIL  
Enable  
0.3  
1
V
VENYST  
IENLEAK  
Enable  
0.5  
V
Logic input leakage current  
EN, TJ = 25°C  
–1  
μA  
THERMAL SHUTDOWN  
TSON  
Thermal shutdown threshold(1)  
Shutdown temperature  
Hysteresis  
150  
25  
°C  
100  
70  
METTOP  
50  
40  
30  
20  
10  
7
5
4
3
2
1
80  
85  
90  
95  
100  
105  
110  
115  
120  
125  
130  
135  
140  
145  
150  
Continuous Junction Temperature, TJ (èC)  
D013  
(1) Electromigration fail mode = time at temperature with bias.  
(2) Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect  
life).  
(3) The predicted operating lifetime versus junction temperature is based on reliability modeling and available  
qualification data.  
Figure 1. Predicted Lifetime Derating Chart for TPS51200-EP  
6
Copyright © 2016, Texas Instruments Incorporated  
TPS51200-EP  
www.ti.com.cn  
ZHCSF57 JUNE 2016  
6.6 Typical Characteristics  
3 × 10-µF MLCCs (0805) are used on the output.  
1.3  
1.28  
1.26  
1.24  
1.22  
1.2  
0.94  
0.93  
0.92  
0.91  
0.9  
-55°C  
-40°C  
0°C  
25°C  
85°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
0.89  
0.88  
0.87  
1.18  
-3  
-3  
-3  
-2  
-1  
0
1
2
3
-3  
-3  
-3  
-2  
-1  
0
1
2
3
Output Current (A)  
Output Current (A)  
D001  
D002  
VVIN = 3.3 V  
Figure 2. Load Regulation  
DDR  
VVIN = 3.3 V  
Figure 3. Load Regulation  
DDR2  
0.8  
0.79  
0.78  
0.77  
0.76  
0.75  
0.74  
0.73  
0.72  
0.71  
0.7  
0.67  
0.65  
0.63  
0.61  
0.59  
0.57  
0.55  
-55°C  
-40°C  
0°C  
25°C  
85°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
-2  
-1  
0
1
2
3
-2  
-1  
0
1
2
3
Output Current (A)  
Output Current (A)  
D003  
D004  
VVIN = 3.3 V  
Figure 4. Load Regulation  
DDR3  
VVIN = 3.3 V  
LP DDR3 or DDR4  
Figure 5. Load Regulation  
1.3  
1.25  
1.2  
1
0.95  
0.9  
1.15  
1.1  
0.85  
0.8  
1.05  
1
-55°C  
-40°C  
0°C  
25°C  
85°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
0.75  
0.7  
0.95  
0.9  
-2  
-1  
0
1
2
3
-2  
-1  
0
1
2
3
Output Current (A)  
Output Current (A)  
D005  
D006  
VVIN = 2.5 V  
Figure 6. Load Regulation  
DDR  
VVIN = 2.5 V  
Figure 7. Load Regulation  
DDR2  
Copyright © 2016, Texas Instruments Incorporated  
7
TPS51200-EP  
ZHCSF57 JUNE 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
3 × 10-µF MLCCs (0805) are used on the output.  
0.8  
0.75  
0.7  
-55°C  
-40°C  
0°C  
25°C  
85°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
0.775  
0.75  
0.725  
0.7  
0.65  
0.6  
0.55  
0.675  
0.65  
0.5  
-3  
-2  
-1  
0
1
2
3
-3  
-2  
-1  
0
1
2
3
Output Current (A)  
Output Current (A)  
D007  
D008  
VVIN = 2.5 V  
Figure 8. Load Regulation  
DDR3  
VVIN = 2.5 V  
LP DDR3 or DDR4  
Figure 9. Load Regulation  
1.255  
1.254  
1.253  
1.252  
1.251  
1.25  
0.905  
0.904  
0.903  
0.902  
0.901  
0.9  
-55°C  
-55°C  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
1.249  
1.248  
1.247  
0.899  
0.898  
0.897  
-15  
-10  
-5  
0
5
10  
15  
-15  
-10  
-5  
0
5
10  
15  
REFOUT Output Current (mA)  
REFOUT Output Current (mA)  
D009  
D010  
DDR  
DDR2  
Figure 10. REFOUT Load Regulation  
Figure 11. REFOUT Load Regulation  
0.755  
0.605  
0.604  
0.603  
0.602  
0.601  
0.6  
-55°C  
-40°C  
25°C  
85°C  
-55°C  
0.754  
0.753  
0.752  
0.751  
0.75  
-40°C  
25°C  
85°C  
0.749  
0.748  
0.747  
0.599  
0.598  
0.597  
-15  
-10  
-5  
0
5
10  
15  
-15  
-10  
-5  
0
5
10  
15  
REFOUT Output Current (mA)  
REFOUT Output Current (mA)  
D011  
D012  
DDR3  
LP DDR3 or DDR4  
Figure 12. REFOUT Load Regulation  
Figure 13. REFOUT Load Regulation  
8
Copyright © 2016, Texas Instruments Incorporated  
TPS51200-EP  
www.ti.com.cn  
ZHCSF57 JUNE 2016  
Typical Characteristics (continued)  
3 × 10-µF MLCCs (0805) are used on the output.  
1.4  
200  
150  
60  
50  
1.2  
1
40  
30  
100  
50  
0.8  
0.6  
0.4  
0.2  
0
20  
0
10  
0
œ50  
VOUT (V)  
0.6  
œ100  
œ150  
œ10  
0.75  
0.9  
Gain  
Phase  
œ20  
œ30  
1.25  
œ200  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
1 k  
10 k  
100 k  
1 M  
10 M  
Output Current (A)  
Frequency (Hz)  
DDR2  
Figure 14. DROPOUT Voltage vs Output Current  
Figure 15. Bode Plot  
200  
60  
50  
150  
40  
30  
100  
50  
20  
0
10  
0
œ50  
œ100  
œ150  
œ200  
œ10  
Gain  
Phase  
œ20  
œ30  
1 k  
10 k  
100 k  
Frequency (Hz)  
1 M  
10 M  
DDR3  
Figure 16. Bode Plot  
Copyright © 2016, Texas Instruments Incorporated  
9
TPS51200-EP  
ZHCSF57 JUNE 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS51200-EP device is a sink and source double data rate (DDR) termination regulator specifically  
designed for low-input voltage, low-cost, low-noise systems where space is a key consideration.  
The device maintains a fast transient response and only requires a minimum output capacitance of 20 μF. The  
device supports a remote sensing function and all power requirements for DDR, DDR2, DDR3, Low-Power  
DDR3, and DDR4 VTT bus termination.  
7.2 Functional Block Diagram  
2
6
VLDOIN  
REFIN  
1
+
REFOUT  
2.3 V  
UVLO  
+
VIN 10  
Gm  
DchgREF  
DchgVTT  
VOSNS  
5
3
VO  
+
ENVTT  
EN  
7
8
Gm  
4
9
PGND  
REFINOK  
GND  
PGOOD  
+
+
Start-up  
Delay  
Copyright © 2016, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Sink and Source Regulator (VO Pin)  
The TPS51200-EP is a sink and source tracking termination regulator specifically designed for low-input voltage,  
low-cost, and low-external component count systems where space is a key application parameter. The device  
integrates a high-performance, low-dropout (LDO) linear regulator that is capable of both sourcing and sinking  
current. The LDO regulator employs a fast feedback loop so that small ceramic capacitors can be used to  
support the fast load transient response. To achieve tight regulation with minimum effect of trace resistance,  
connect a remote sensing terminal, VOSNS, to the positive terminal of each output capacitor as a separate trace  
from the high-current path from VO.  
7.3.2 Reference Input (REFIN Pin)  
The output voltage, VO, is regulated to REFOUT. When REFIN is configured for standard DDR termination  
applications, REFIN can be set by an external equivalent ratio voltage divider connected to the memory supply  
bus (VDDQ). The TPS51200-EP device supports REFIN voltages from 0.5 V to 1.8 V, making it versatile and  
ideal for many types of low-power LDO applications.  
10  
Copyright © 2016, Texas Instruments Incorporated  
TPS51200-EP  
www.ti.com.cn  
ZHCSF57 JUNE 2016  
Feature Description (continued)  
7.3.3 Reference Output (REFOUT Pin)  
When it is configured for DDR termination applications, REFOUT generates the DDR VTT reference voltage for  
the memory application. It is capable of supporting both a sourcing and sinking load of 10 mA. REFOUT  
becomes active when REFIN voltage rises to 0.39 V and VIN is above the UVLO threshold. When REFOUT is  
less than 0.375 V, it is disabled and subsequently discharges to GND through an internal 10-kMOSFET.  
REFOUT is independent of the EN pin state.  
7.3.4 Soft-Start Sequencing  
A current clamp implements the soft-start function of the VO pin. The current clamp allows the output capacitors  
to be charged with low and constant current, providing a linear ramp-up of the output voltage. When VO is  
outside of the powergood (PGOOD) window, the current clamp level is one-half of the full overcurrent limit (OCL)  
level. When VO rises or falls within the PGOOD window, the current clamp level switches to the full OCL level.  
The soft-start function is completely symmetrical and the overcurrent limit works for both directions. The soft-start  
function works not only from GND to the REFOUT voltage, but also from VLDOIN to the REFOUT voltage.  
7.3.5 Enable Control (EN Pin)  
When EN is driven high, the VO regulator begins normal operation. When the device drives EN low, VO  
discharges to GND through an internal 18-MOSFET. REFOUT remains on when the device drives EN low.  
Ensure that the EN pin voltage remains lower than or equal to VVIN at all times.  
7.3.6 Powergood Function (PGOOD Pin)  
The TPS51200-EP device provides an open-drain PGOOD output that goes high when the VO output is within  
±20% of REFOUT. PGOOD de-asserts within 10 μs after the output exceeds the size of the PGOOD window.  
During initial VO start-up, PGOOD asserts high 2 ms (typ) after the VO enters PGOOD window. Because  
PGOOD is an open-drain output, a pull-up resistor with a value between 1 kand 100 k, placed between  
PGOOD and a stable active supply voltage rail, is required.  
7.3.7 Current Protection (VO Pin)  
The LDO has a constant overcurrent limit (OCL). The OCL level reduces by one-half when the output voltage is  
not within the PGOOD window. This reduction is a non-latch protection.  
7.3.8 UVLO Protection (VIN Pin)  
For VIN undervoltage lockout (UVLO) protection, the TPS51200-EP monitors VIN voltage. When the VIN voltage  
is lower than the UVLO threshold voltage, both the VO and REFOUT regulators are powered off. This shutdown  
is a non-latch protection.  
7.3.9 Thermal Shutdown  
The TPS51200-EP monitors junction temperature. If the device junction temperature exceeds the threshold  
value, (typically 150°C), the VO and REFOUT regulators both shut off, discharged by the internal discharge  
MOSFETs. This shutdown is a non-latch protection.  
7.3.10 Tracking Start-up and Shutdown  
The TPS51200-EP also supports tracking start-up and shutdown when the EN pin is tied directly to the system  
bus and not used to turn on or turn off the device. During tracking start-up, VO follows REFOUT once REFIN  
voltage is greater than 0.39 V. REFIN follows the rise of VDDQ rail through a voltage divider. The typical soft-  
start time (tSS) for the VDDQ rail is approximately 3 ms, however it may vary depending on the system  
configuration. The soft-start time of the VO output no longer depends on the OCL setting, but it is a function of  
the soft-start time of the VDDQ rail. PGOOD is asserted 2 ms after VVO is within ±20% of REFOUT. During  
tracking shutdown, the VO pin voltage falls following REFOUT until REFOUT reaches 0.37 V. When REFOUT  
falls below 0.37 V, the internal discharge MOSFETs turn on and quickly discharge both REFOUT and VO to  
GND. PGOOD is deasserted once VO is beyond the ±20% range of REFOUT. Figure 18 shows the typical timing  
diagram for an application that uses tracking start-up and shutdown.  
Copyright © 2016, Texas Instruments Incorporated  
11  
TPS51200-EP  
ZHCSF57 JUNE 2016  
www.ti.com.cn  
Feature Description (continued)  
3.3VIN  
V
VDDQ  
= 1.5 V  
VLDOIN  
REFIN  
REFOUT  
(VTTREF)  
EN  
(S3_SLP)  
V
t
= 0.75 V  
VO  
t
SS .  
VO  
C
x V  
O
OUT  
=
SS  
I
OOCL  
PGOOD  
2 ms  
Figure 17. Typical Timing Diagram for S3 and Pseudo-S5 Support  
3.3VIN  
EN  
VLDOIN  
REFIN  
REFOUT  
(VTTREF)  
tSS determined  
by the SS time  
V
= 0.75 V  
VO  
of VLDOIN  
VO  
PGOOD  
2 ms  
Figure 18. Typical Timing Diagram of Tracking Start-up and Shutdown  
12  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TPS51200-EP  
www.ti.com.cn  
ZHCSF57 JUNE 2016  
7.4 Device Functional Modes  
7.4.1 Low-Input Voltage Applications  
TPS51200-EP can be used in an application system that offers either a 2.5-V rail or a 3.3-V rail. If only a 5-V rail  
is available, consider using the TPS51100 device as an alternative. The TPS51200-EP device has a minimum  
input voltage requirement of 2.375 V. If a 2.5-V rail is used, ensure that the absolute minimum voltage (both DC  
and transient) at the device pin is be 2.375 V or greater. The voltage tolerance for a 2.5-V rail input is between  
–5% and 5% accuracy, or better.  
7.4.2 S3 and Pseudo-S5 Support  
The TPS51200-EP provides S3 support by an EN function. The EN pin could be connected to an SLP_S3 signal  
in the end application. Both REFOUT and VO are on when EN = high (S0 state). REFOUT is maintained while  
VO is turned off and discharged via an internal discharge MOSFET when EN = low (S3 state). When EN = low  
and the REFIN voltage is less than 0.39 V, TPS51200-EP enters pseudo-S5 state. Both VO and REFOUT  
outputs are turned off and discharged to GND through internal MOSFETs when pseudo-S5 support is engaged  
(S4 or S5 state). Figure 17 shows a typical start-up and shutdown timing diagram for an application that uses S3  
and pseudo-S5 support.  
Copyright © 2016, Texas Instruments Incorporated  
13  
TPS51200-EP  
ZHCSF57 JUNE 2016  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS51200-EP device is specifically designed to power up the memory termination rail (as shown in  
Figure 19). The DDR memory termination structure determines the main characteristics of the VTT rail, which is  
to be able to sink and source current while maintaining acceptable VTT tolerance. See Figure 20 for typical  
characteristics for a single memory cell.  
8.2 Typical VTT DIMM Applications  
DDR3 240 Pin Socket  
VO  
TPS51200  
10 mF  
10 mF  
10 mF  
UDG-08022  
Figure 19. Typical Application Diagram for DDR3 VTT DIMM Using TPS51200-EP  
8.2.1 Design Requirements  
Use the information listed in Table 1 as the design parameters.  
Table 1. DDR, DDR2, DDR3, and LP DDR3 Termination Technology and Differences  
LOW-POWER  
DDR3  
PARAMETER  
DDR  
DDR2  
DR3  
FSB data rates  
200, 266, 333 and 400 MHz  
400, 533, 677 and 800 MHz  
800, 1066, 1330 and 1600 MHz  
Same as DDR3  
On-die termination for data group. VTT On-die termination for data group. VTT  
Motherboard termination to VTT  
for all signals  
Termination  
termination for address, command and  
control signals.  
termination for address, command and  
control signals.  
Same as DDR3  
Same as DDR3  
Not as demanding  
Not as demanding  
Only  
34  
signals  
(address,  
Only  
34  
signals  
(address,  
Termination current Max sink and source transient  
demand  
command, control) tied to VTT  
command, control) tied to VTT  
currents of up to 2.6 A to 2.9 A  
ODT handles data signals  
ODT handles data signals  
Less than 1 A of burst current  
2.5-V core and I/O 1.25-V VTT 1.8-V core and I/O 0.9-V VTT  
Less than 1 A of burst current  
1.5-V core and I/O 0.75-V VTT  
1.2-V core and I/O  
0.6-V VTT  
Voltage level  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TPS51200-EP  
www.ti.com.cn  
ZHCSF57 JUNE 2016  
8.2.2 Detailed Design Procedure  
8.2.2.1 Input Voltage Capacitor  
Add a ceramic capacitor, with a value between 1-μF and 4.7-μF, placed close to the VIN pin, to stabilize the bias  
supply (2.5-V rail or 3.3-V rail) from any parasitic impedance from the supply.  
8.2.2.2 VLDO Input Capacitor  
Depending on the trace impedance between the VLDOIN bulk power supply to the device, a transient increase of  
source current is supplied mostly by the charge from the VLDOIN input capacitor. Use a 10-μF (or greater)  
ceramic capacitor to supply this transient charge. Provide more input capacitance as more output capacitance is  
used at the VO pin. In general, use one-half of the COUT value for input.  
8.2.2.3 Output Capacitor  
For stable operation, the total capacitance of the VO output pin must be greater than 20 μF. Attach 3 × 10-μF  
ceramic capacitors in parallel to minimize the effect of equivalent series resistance (ESR) and equivalent series  
inductance (ESL). If the ESR is greater than 2 m, insert an RC filter between the output and the VOSNS input  
to achieve loop stability. The RC filter time constant should be almost the same as or slightly lower than the time  
constant of the output capacitor and its ESR.  
Copyright © 2016, Texas Instruments Incorporated  
15  
TPS51200-EP  
ZHCSF57 JUNE 2016  
www.ti.com.cn  
8.2.2.4 Output Tolerance Consideration for VTT DIMM Applications  
Figure 20 shows the typical characteristics for a single memory cell.  
V
V
TT  
DDQ  
Q1  
Q2  
25 W  
R
S
20 W  
Receiver  
Ouput  
Buffer  
(Driver)  
V
V
IN  
OUT  
V
SS  
UDG-08023  
Figure 20. DDR Physical Signal System Bi-Directional SSTL Signaling  
In Figure 20, when Q1 is on and Q2 is off:  
Current flows from VDDQ via the termination resistor to VTT  
VTT sinks current  
In Figure 20, when Q2 is on and Q1 is off:  
Current flows from VTT via the termination resistor to GND  
VTT sources current  
Because VTT accuracy has a direct impact on the memory signal integrity, it is imperative to understand the  
tolerance requirement on VTT. Equation 1 applies to both DC and AC conditions and is based on JEDEC VTT  
specifications for DDR and DDR2 (JEDEC standard: DDR JESD8-9B May 2002; DDR2 JESD8-15A Sept 2003).  
VVTTREF – 40 mV < VVTT < VVTTREF + 40 mV  
(1)  
The specification itself indicates that VTT must keep track of VTTREF for proper signal conditioning.  
The TPS51200-EP ensures the regulator output voltage to be as shown in Equation 2, which applies to both DC  
and AC conditions.  
VVTTREF –25 mV < VVTT < VVTTREF + 25 mV  
where  
–2 A < IVTT < 2 A  
(2)  
The regulator output voltage is measured at the regulator side, not the load side. The tolerance is applicable to  
DDR, DDR2, DDR3, Low Power DDR3, and DDR4 applications (see Table 1 for detailed information). To meet  
the stability requirement, a minimum output capacitance of 20 μF is needed. Considering the actual tolerance on  
the MLCC capacitors, 3 × 10-μF ceramic capacitors sufficiently meet the VTT accuracy requirement.  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
TPS51200-EP  
www.ti.com.cn  
ZHCSF57 JUNE 2016  
The TPS51200-EP device uses transconductance (gM) to drive the LDO. The transconductance and output  
current of the device determine the voltage droop between the reference input and the output regulator. The  
typical transconductance level is 250 S at 2 A and changes with respect to the load in order to conserve the  
quiescent current (that is, the transconductance is very low at no load condition). The (gM) LDO regulator is a  
single pole system. Only the output capacitance determines the unity gain bandwidth for the voltage loop, as a  
result of the bandwidth nature of the transconductance (see Equation 3).  
gM  
ƒUGBW  
=
2 ´ p ´ COUT  
where  
ƒUGBW is the unity gain bandwidth  
gM is transconductance  
COUT is the output capacitance  
(3)  
Consider these two limitations to this type of regulator that come from the output bulk capacitor requirement. In  
order to maintain stability, the zero location contributed by the ESR of the output capacitors must be greater than  
the –3-dB point of the current loop. This constraint means that higher ESR capacitors should not be used in the  
design. In addition, the impedance characteristics of the ceramic capacitor should be well understood in order to  
prevent the gain peaking effect around the transconductance (gM) –3-dB point because of the large ESL, the  
output capacitor, and the parasitic inductance of the VO pin voltage trace.  
Copyright © 2016, Texas Instruments Incorporated  
17  
 
TPS51200-EP  
ZHCSF57 JUNE 2016  
www.ti.com.cn  
8.2.3 Application Curves  
Figure 21 shows the bode plot simulation for this DDR3 design example of the TPS51200-EP device.  
The unity-gain bandwidth is approximately 1 MHz and the phase margin is 52°. When the 0-dB level is crossed,  
the gain peaks because of the ESL effect. However, the peaking maintains a level well below 0 dB.  
Figure 22 shows the load regulation and Figure 23 shows the transient response for a typical DDR3  
configuration. When the regulator is subjected to ±1.5-A load step and release, the output voltage measurement  
shows no difference between the DC and AC conditions.  
0
80  
40  
0
œ90  
œ180  
œ270  
œ360  
œ40  
œ80  
Gain  
Phase  
1
10  
100  
1000  
10 k  
100 k  
1 M  
10 M  
100 M  
Frequency (Hz)  
VVLDOIN = 1.5 V  
VIN = 3.3 V  
VVO = 0.75 V  
ESR = 2.5 m  
ESL = 800 pH  
IIO = 2 A  
3 × 10-μF capacitors  
Figure 21. DDR3 Design Example Bode Plot  
0.8  
-55°C  
-40°C  
0°C  
25°C  
85°C  
0.79  
0.78  
0.77  
0.76  
0.75  
0.74  
0.73  
0.72  
0.71  
0.7  
-3  
-2  
-1  
0
1
2
3
Output Current (A)  
D003  
VVIN = 3.3 V  
Figure 22. Load Regulation  
DDR3  
Figure 23. Transient Waveform  
18  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TPS51200-EP  
www.ti.com.cn  
ZHCSF57 JUNE 2016  
8.3 System Examples  
8.3.1 3.3-VIN, DDR2 Configuration  
This design example describes a 3.3-VIN, DDR2 configuration application.  
R1  
10 kW  
TPS51200  
1
2
REFIN  
VIN 10  
3.3 VIN  
VVDDQ = 1.8 V  
VVLDOIN = VVDDQ = 1.8 V  
VVTT = 0.9 V  
R2  
10 kW  
C4  
1000 pF  
R3  
100 kW  
C6  
4.7 mF  
VLDOIN PGOOD  
9
PGOOD  
C7  
10 mF  
C8  
10 mF  
3
4
5
VO  
GND  
EN  
8
7
6
C1  
C2  
C3  
PGND  
SLP_S3  
VTTREF  
10 mF 10 mF 10 mF  
VOSNS REFOUT  
C5  
0.1 mF  
UDG-08028  
Copyright © 2016, Texas Instruments Incorporated  
Figure 24. 3.3-VIN, DDR2 Configuration  
Table 2. 3.3-VIN, DDR2 Configuration List of Materials  
REFERENCE  
DESIGNATOR  
DESCRIPTION  
Resistor  
SPECIFICATION  
PART NUMBER  
MANUFACTURER  
R1, R2  
10 kΩ  
R3  
100 kΩ  
C1, C2, C3  
C4  
10 μF, 6.3 V  
1000 pF  
GRM21BR70J106KE76L  
Murata  
C5  
Capacitor  
0.1 μF  
C6  
4.7 μF, 6.3 V  
10 μF, 6.3 V  
GRM21BR60J475KA11L  
GRM21BR70J106KE76L  
Murata  
Murata  
C7, C8  
Copyright © 2016, Texas Instruments Incorporated  
19  
TPS51200-EP  
ZHCSF57 JUNE 2016  
www.ti.com.cn  
8.3.2 2.5-VIN, DDR3 Configuration  
This design example describes a 2.5-VIN, DDR3 configuration application.  
R1  
10 kW  
TPS51200  
1
2
REFIN  
VIN 10  
2.5 VIN  
VVDDQ = 1.5 V  
VVLDOIN = VVDDQ = 1.5 V  
VVTT = 0.75 V  
R2  
10 kW  
C4  
1000 pF  
R3  
100 kW  
C6  
4.7 mF  
VLDOIN PGOOD  
9
PGOOD  
C7  
10 mF  
C8  
10 mF  
3
4
5
VO  
GND  
EN  
8
7
6
C1  
C2  
C3  
PGND  
SLP_S3  
VTTREF  
10 mF 10 mF 10 mF  
VOSNS REFOUT  
C5  
0.1 mF  
UDG-08030  
Copyright © 2016, Texas Instruments Incorporated  
Figure 25. 2.5-VIN, DDR3 Configuration  
Table 3. 2.5-VIN, DDR3 Configuration List of Materials  
REFERENCE  
DESIGNATOR  
DESCRIPTION  
Resistor  
SPECIFICATION  
PART NUMBER  
MANUFACTURER  
R1, R2  
10 kΩ  
R3  
100 kΩ  
C1, C2, C3  
C4  
10 μF, 6.3 V  
1000 pF  
GRM21BR70J106KE76L  
Murata  
C5  
Capacitor  
0.1 μF  
C6  
4.7 μF, 6.3 V  
10 μF, 6.3 V  
GRM21BR60J475KA11L  
GRM21BR70J106KE76L  
Murata  
Murata  
C7, C8  
20  
Copyright © 2016, Texas Instruments Incorporated  
TPS51200-EP  
www.ti.com.cn  
ZHCSF57 JUNE 2016  
8.3.3 3.3-VIN, LP DDR3 or DDR4 Configuration  
This design example describes a 3.3-VIN, LP DDR3 or DDR4 configuration application.  
R1  
10 kW  
TPS51200  
1
2
REFIN  
VIN 10  
3.3 VIN  
VVDDQ = 1.2 V  
VVLDOIN = VVDDQ = 1.2 V  
VVTT = 0.6 V  
R2  
10 kW  
C4  
1000 pF  
R3  
100 kW  
C6  
4.7 mF  
VLDOIN PGOOD  
9
PGOOD  
C7  
10 mF  
C8  
10 mF  
3
4
5
VO  
GND  
EN  
8
7
6
C1  
C2  
C3  
PGND  
SLP_S3  
VTTREF  
10 mF 10 mF 10 mF  
VOSNS REFOUT  
C5  
0.1 mF  
UDG-08031  
Copyright © 2016, Texas Instruments Incorporated  
Figure 26. 3.3-VIN, LP DDR3 or DDR4 Configuration  
Table 4. 3.3-VIN, LP DDR3 or DDR4 Configuration List of Materials  
REFERENCE  
DESIGNATOR  
DESCRIPTION  
Resistor  
SPECIFICATION  
PART NUMBER  
MANUFACTURER  
R1, R2  
10 kΩ  
R3  
100 kΩ  
C1, C2, C3  
C4  
10 μF, 6.3 V  
1000 pF  
GRM21BR70J106KE76L  
Murata  
C5  
Capacitor  
0.1 μF  
C6  
4.7 μF, 6.3 V  
10 μF, 6.3 V  
GRM21BR60J475KA11L  
GRM21BR70J106KE76L  
Murata  
Murata  
C7, C8  
Copyright © 2016, Texas Instruments Incorporated  
21  
TPS51200-EP  
ZHCSF57 JUNE 2016  
www.ti.com.cn  
8.3.4 3.3-VIN, DDR3 Tracking Configuration  
This design example describes a 3.3-VIN, DDR3 tracking configuration application.  
R1  
10 kW  
TPS51200  
1
2
REFIN  
VIN 10  
3.3 VIN  
VVDDQ = 1.5 V  
VVLDOIN = VVDDQ = 1.5 V  
VVTT = 0.75 V  
R2  
10 kW  
C4  
1000 pF  
R3  
C6  
100 kW 4.7 mF  
VLDOIN PGOOD  
9
PGOOD  
C7  
10 mF  
C8  
10 mF  
3
4
5
VO  
GND  
EN  
8
7
6
C1  
C2  
C3  
PGND  
10 mF 10 mF 10 mF  
VOSNS REFOUT  
VTTREF  
C5  
0.1 mF  
UDG-08032  
Copyright © 2016, Texas Instruments Incorporated  
Figure 27. 3.3-VIN, DDR3 Tracking Configuration  
Table 5. 3.3-VIN, DDR3 Tracking Configuration List of Materials  
REFERENCE  
DESIGNATOR  
DESCRIPTION  
Resistor  
SPECIFICATION  
PART NUMBER  
MANUFACTURER  
R1, R2  
10 kΩ  
R3  
100 kΩ  
C1, C2, C3  
C4  
10 μF, 6.3 V  
1000 pF  
GRM21BR70J106KE76L  
Murata  
C5  
Capacitor  
0.1 μF  
C6  
4.7 μF, 6.3 V  
10 μF, 6.3 V  
GRM21BR60J475KA11L  
GRM21BR70J106KE76L  
Murata  
Murata  
C7, C8  
22  
Copyright © 2016, Texas Instruments Incorporated  
TPS51200-EP  
www.ti.com.cn  
ZHCSF57 JUNE 2016  
8.3.5 3.3-VIN, LDO Configuration  
This design example describes a 3.3-VIN, LDO configuration application.  
R1  
10 kW  
TPS51200  
2.5 V  
VVLDOIN = VVLDOREF = 2.5 V  
VVLDO = 1.8 V  
1
2
REFIN  
VIN 10  
3.3 VIN  
R2  
C4  
3.86 kW 1000 pF  
R3  
100 kW  
C6  
4.7 mF  
VLDOIN PGOOD  
9
PGOOD  
C7  
10 mF  
C8  
10 mF  
3
4
5
VO  
GND  
EN  
8
7
6
C1  
C2  
C3  
PGND  
ENABLE  
REFOUT  
10 mF 10 mF 10 mF  
VOSNS REFOUT  
C5  
0.1 mF  
UDG-08033  
Copyright © 2016, Texas Instruments Incorporated  
Figure 28. 3.3-VIN, LDO Configuration  
Table 6. 3.3-VIN, LDO Configuration List of Materials  
REFERENCE  
DESIGNATOR  
DESCRIPTION  
SPECIFICATION  
PART NUMBER  
MANUFACTURER  
R1  
3.86 kΩ  
R2  
Resistor  
10 kΩ  
R3  
100 kΩ  
C1, C2, C3  
C4  
10 μF, 6.3 V  
1000 pF  
GRM21BR70J106KE76L  
Murata  
C5  
Capacitor  
0.1 μF  
C6  
4.7 μF, 6.3 V  
10 μF, 6.3 V  
GRM21BR60J475KA11L  
GRM21BR70J106KE76L  
Murata  
Murata  
C7, C8  
Copyright © 2016, Texas Instruments Incorporated  
23  
TPS51200-EP  
ZHCSF57 JUNE 2016  
www.ti.com.cn  
8.3.6 3.3-VIN, DDR3 Configuration with LFP  
This design example describes a 3.3-VIN, DDR3 configuration with LFP application.  
R1  
10 kW  
TPS51200  
1
2
REFIN  
VIN 10  
3.3 VIN  
VVDDQ = 1.5 V  
VVLDOIN = VVDDQ = 1.5 V  
VVTT = 0.75 V  
R2  
10 kW  
C4  
1000 pF  
R3  
100 kW  
C6  
4.7 mF  
VLDOIN PGOOD  
9
PGOOD  
C7  
10 mF  
C8  
10 mF  
3
4
5
VO  
GND  
EN  
8
7
6
R4(1)  
C1  
C2  
C3  
PGND  
SLP_S3  
VTTREF  
10 mF 10 mF 10 mF  
VOSNS REFOUT  
C5  
0.1 mF  
C9(1)  
UDG-08034  
Copyright © 2016, Texas Instruments Incorporated  
Figure 29. 3.3-VIN, DDR3 Configuration with LFP  
Table 7. 3.3-VIN, DDR3 Configuration with LFP List of Materials  
REFERENCE  
DESIGNATOR  
DESCRIPTION  
SPECIFICATION  
PART NUMBER  
MANUFACTURER  
R1, R2  
10 kΩ  
R3  
Resistor  
100 kΩ  
R4(1)  
C1, C2, C3  
C4  
10 μF, 6.3 V  
1000 pF  
GRM21BR70J106KE76L  
Murata  
C5  
0.1 μF  
Capacitor  
C6  
4.7 μF, 6.3 V  
10 μF, 6.3 V  
GRM21BR60J475KA11L  
GRM21BR70J106KE76L  
Murata  
Murata  
C7, C8  
C9(1)  
(1) Choose values for R4 and C9 to reduce the parasitic effect of the trace (between VO and the output MLCCs) and the output capacitors  
(ESR and ESL).  
24  
Copyright © 2016, Texas Instruments Incorporated  
TPS51200-EP  
www.ti.com.cn  
ZHCSF57 JUNE 2016  
9 Power Supply Recommendations  
The TPS51200-EP device is designed to operate from an input bias voltage from 2.375 V to 3.5 V, with LDO  
input from 1.1 V to 3.5 V. Refer to Figure 17 and Figure 18 for recommended power-up sequence. Maintain an  
EN voltage equal or lower than VVIN at all times. VLDOIN can ramp up earlier than VIN if the sequence in  
Figure 17 and Figure 18 cannot be used. The input supplies should be well regulated. VLDOIN decoupling  
capacitance  
of 2 × 10 µF is recommended, and VIN decoupling capacitance of 1 × 4.7 µF is recommended.  
10 Layout  
10.1 Layout Guidelines  
Consider the following points before starting the TPS51200-EP device layout design.  
The input bypass capacitor for VLDOIN should be placed as close as possible to the pin with short and wide  
connections.  
The output capacitor for VO should be placed close to the pin with short and wide connection in order to  
avoid additional ESR and/or ESL trace inductance.  
Connect VOSNS to the positive node of each VO output capacitor as a separate trace from the high-current  
power line. This configuration is strongly recommended to avoid additional ESR and/or ESL. If sensing the  
voltage at the point of the load is required, attach each output capacitor at that point. This layout design  
minimizes any additional ESR and/or ESL of ground trace between the GND pin and each output capacitor.  
Consider adding low-pass filter at VOSNS if the ESR of any VO output capacitor is larger than 2 m.  
REFIN can be connected separately from VLDOIN. Remember that this sensing potential is the reference  
voltage of REFOUT. Avoid any noise-generating lines.  
Tie the negative node of each VO output capacitor to the REFOUT capacitor by avoiding common impedance  
to the high current path of the VO source and sink current.  
The GND and PGND pins should be connected to the thermal land underneath the die pad with multiple vias  
connecting to the internal system ground planes (for better result, use at least two internal ground planes).  
Use as many vias as possible to reduce the impedance between PGND or GND and the system ground  
plane. Also, place bulk capacitors close to the DIMM load point, route the VOSNS to the DIMM load sense  
point.  
In order to effectively remove heat from the package, properly prepare the thermal land. Apply solder directly  
to the thermal pad. The wide traces of the component and the side copper connected to the thermal land pad  
help to dissipate heat. Connected the numerous vias that are 0.33 mm in diameter from the thermal land to  
any internal and solder-side ground plane to increase dissipation.  
Consult the TPS51200-EP-EVM User's Guide (SLUU323) for detailed layout recommendations.  
Copyright © 2016, Texas Instruments Incorporated  
25  
TPS51200-EP  
ZHCSF57 JUNE 2016  
www.ti.com.cn  
10.2 Layout Example  
VDDQ Trace  
VIN Trace  
To  
GND  
VLDOIN  
Plane  
GND  
PGOOD Trace  
EN Trace  
VTT Sense Trace,  
terminate near the load  
VTT  
Figure 30. Layout Recommendation  
10.3 Thermal Design Considerations  
Because the TPS51200-EP is a linear regulator, the VO current flows in both source and sink directions, thereby  
dissipating power from the device. When the device is sourcing current, the voltage difference shown in  
Equation 4 calculates the power dissipation.  
PD _ SRC = (VVLDOIN - VVO ) ´ IO _ SRC  
(4)  
In this case, if the VLDOIN pin is connected to an alternative power supply lower than the VDDQ voltage, overall  
power loss can be reduced. During the sink phase, the device applies the VO voltage across the internal LDO  
regulator. Equation 5 calculates the power dissipation, PD_SNK  
.
PD _ SNK = VVO ´ ISNK  
(5)  
Because the device does not sink and source current at the same time and the I/O current may vary rapidly with  
time, the actual power dissipation should be the time average of the above dissipations over the thermal  
relaxation duration of the system. The current used for the internal current control circuitry from the VIN supply  
and the VLDOIN supply are other sources of power consumption. This power can be estimated as 5 mW or less  
during normal operating conditions and must be effectively dissipated from the package.  
26  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TPS51200-EP  
www.ti.com.cn  
ZHCSF57 JUNE 2016  
Thermal Design Considerations (continued)  
Maximum power dissipation allowed by the package is calculated by Equation 6.  
TJ(max) - TA(max)  
PPKG  
=
qJA  
where  
TJ(max) is 125°C.  
TA(max) is the maximum ambient temperature in the system.  
θJA is the thermal resistance from junction to ambient.  
(6)  
NOTE  
Because Equation 6 demonstrates the effects of heat spreading in the ground plane, use it  
as a guideline only. Do not use Equation 6 to estimate actual thermal performance in real  
application environments.  
In an application where the device is mounted on PCB, TI strongly recommends using ψJT and ψJB, as explained  
in the section pertaining to estimating junction temperature in the Semiconductor and IC Package Thermal  
Metrics application report, SPRA953. Using the thermal metrics ψJT and ψJB, as shown in the Thermal  
Information table, estimate the junction temperature with corresponding formulas shown in Equation 7. The older  
θJC top parameter specification is listed as well for the convenience of backward compatibility.  
TJ = TT + YJT ´ PD  
(7)  
TJ = TB + YJB ´ PD  
where  
PD is the power dissipation shown in Equation 4 and Equation 5.  
TT is the temperature at the center-top of the IC package.  
TB is the PCB temperature measured 1-mm away from the thermal pad package on the PCB surface (see  
Figure 32).  
(8)  
NOTE  
Both TT and TB can be measured on actual application boards using a thermo-gun (an  
infrared thermometer). For more information about measuring TT and TB, see the  
application report Using New Thermal Metrics (SBVA025).  
.
TT on top of package  
Land Pad  
3 mm x 1.9 mm  
TB on PCB surface  
Exposed Thermal  
Die Pad,  
2.48 mm x 1.74 mm  
1 mm  
UDG-08018  
Figure 31. Recommended Land Pad Pattern  
Figure 32. Package Thermal Measurement  
版权 © 2016, Texas Instruments Incorporated  
27  
 
 
 
TPS51200-EP  
ZHCSF57 JUNE 2016  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.1.2 开发支持  
11.1.2.1 评估模块  
评估模块 (EVM) 可与 TPS51200-EP 器件配套使用,协助评估电路初始性能。TPS51200-EPEVM 评估模块及相关  
用户指南(文献编号:SLUU323)可在德州仪器 (TI) 网站的产品文件夹下或直接从 TI eStore 获取。  
11.1.2.2 Spice 模型  
分析模拟电路和系统的性能时,使用  
TPS51200-EP SPICE 模型。  
SPICE  
模型对电路性能进行计算机仿真非常有用。点击此处可获取  
11.2 文档支持  
11.2.1 相关文档  
《使用新的热指标》SBVA025  
《半导体和 IC 封装热指标》SPRA953  
《使用 TPS51200-EP EVM /拉电流 DDR 终端稳压器》SLUU323  
有关 TPS51100 器件的更多信息,请参见 ti.com 上的产品文件夹。  
11.3 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
28  
版权 © 2016, Texas Instruments Incorporated  
TPS51200-EP  
www.ti.com.cn  
ZHCSF57 JUNE 2016  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
29  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS51200MDRCTEP  
V62/16610-01XE  
ACTIVE  
ACTIVE  
VSON  
VSON  
DRC  
DRC  
10  
10  
250  
250  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-55 to 125  
-55 to 125  
1200M  
1200M  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS51200QDRCRQ1

SINK/SOURCE DDR TERMINATION REGULATOR
TI

TPS51200_1

SINK/SOURCE DDR TERMINATION REGULATOR
TI

TPS51206

2-A Peak Sink/Source DDR Termination Regulator with VTTREF Buffered Reference
TI

TPS51206DSQR

具有用于 DDR2/3/3L/4 的 VTTREF 缓冲基准的 2A 峰值灌电流/拉电流 DDR 终端稳压器 | DSQ | 10 | -40 to 105
TI

TPS51206DSQT

具有用于 DDR2/3/3L/4 的 VTTREF 缓冲基准的 2A 峰值灌电流/拉电流 DDR 终端稳压器 | DSQ | 10 | -40 to 105
TI

TPS5120DBT

DUAL OUTPUT, TWO PHASE SYNCHRONOUS BUCK DC/DC CONTROLLER
TI

TPS5120DBTR

DUAL OUTPUT, TWO PHASE SYNCHRONOUS BUCK DC/DC CONTROLLER
TI

TPS5120DBTRG4

4.5V 至 28V、双路输出、两相同步降压控制器 | DBT | 30 | -40 to 85
TI

TPS5120EVM-151

DUAL OUTPUT, TWO PHASE SYNCHRONOUS BUCK DC/DC CONTROLLER
TI

TPS5120MDBTREP

DUAL OUTPUT, TWO-PHASE SYNCHRONOUS BUCK DC/DC CONTROLLER
TI

TPS5120QDBTREP

DUAL OUTPUT, TWO-PHASE SYNCHRONOUS BUCK DC/DC CONTROLLER
TI

TPS5120QDBTRQ1G4

汽车类 4.5V 至 28V 双路两相同步降压控制器 | DBT | 30 | -40 to 125
TI