TPS51397ARJER [TI]

4.5V 至 24V 输入、10A 同步降压稳压器 | RJE | 20 | -40 to 125;
TPS51397ARJER
型号: TPS51397ARJER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4.5V 至 24V 输入、10A 同步降压稳压器 | RJE | 20 | -40 to 125

稳压器
文件: 总31页 (文件大小:3524K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS51397A  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
ULQ™ 运行TPS51397A 4.5V 24V10A 同步降压转换器  
1 特性  
3 说明  
• 输入电压范围4.5V 24V  
• 输出电压范围0.6V 5.5V  
• 支10A 的连续输出电流  
该器件是单片 10A 步降压转换器成了  
MOSFET简单易用且高效只需极少的外部组件,  
适合空间受限的电源系统。  
D-CAP3架构控制可实现快速瞬态响应  
0.6V ± 1% 反馈电压精(25°C)  
• 集17mΩ5.9mΩFET  
ULQ(110μA)能够在系统待机期间延长电  
池寿命  
• 可通MODE 引脚选Eco-mode和无声™  
500kHz 800kHz 可选开关频率  
• 可调内部软启动时间默认1.2ms  
• 大占空比运行  
• 集成式电源正常状态指示器  
• 内置输出放电功能  
• 逐周期过流保护  
• 锁存输OV UV 保护  
• 非锁UVLO OT 保护  
TPS51397A 采用了 D-CAP3控制此控制方式只需  
内部补偿即可实现快速瞬态响应以及出色的线路和负载  
调整。ULQ超低静态电流特性则非常有益于在低  
功耗运行时延长电池寿命。输入电压较低时大负荷运  
行可显著改善负载瞬态性能。  
可使用 MODE 脚来设置 Eco-mode无声™  
(OOA) 实现轻负载运行以及 500kHz 或  
800kHz 的开关频率。Eco-mode可在轻负载运行期  
间维持高效率。OOA 模式可将开关频率保持在可闻频  
率以上同时将对效率的影响降至最低。  
此器件同时支持内部和外部软启动选项。它具1.2ms  
的内部固定软启动时间。如果应用需要更长的软启动时  
可将外SS 引脚连接至外部电容器。  
-40°C 125°C 的工作结温范围  
20 3.0mm × 3.0mm HotRodVQFN 封装  
12A TPS56C230 引脚对引脚兼容  
• 利TPS51397A 并借WEBENCH® Power  
Designer 创建定制设计方案  
TPS51397A 集成了电源正常状态指示器并具备输出放  
电功能。它提供包括 OVPUVPOCPOTP 和  
UVLO 在内的全面保护。该器件可采20 3.0mm  
× 3.0mm HotRod封装额定结温范围为 –40°C 至  
125°C。  
2 应用  
器件信息  
封装(1)  
笔记本电脑和台式机  
• 超极本、手持平板电脑  
PC、单板计算机  
封装尺寸标称值)  
器件型号  
TPS51397A  
VQFN (20)  
3.00mm × 3.00mm  
非军用无人机  
• 分布式电源系统  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
L
100  
95  
90  
85  
80  
75  
70  
65  
VIN  
VOUT  
R1  
VIN  
EN  
SW  
CIN  
VCC  
EN  
CBST  
COUT  
RM_H  
BST  
FB  
TPS51397A  
MODE  
PGOOD  
VCC  
PGOOD  
RM_L  
R2  
VCC  
SS  
60  
VIN=12V, VOUT=1.2V  
VIN=12V, VOUT=2.5V  
VIN=12V, VOUT=5V  
Css  
AGND  
PGND  
55  
50  
0.01  
0.1  
1
10  
I-Load (A)  
Eff5  
简化版原理图  
效率与输出电流500kHzEco-mode  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDX7  
 
 
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
Table of Contents  
7.4 Device Functional Modes..........................................14  
8 Application and Implementation..................................16  
8.1 Application Information............................................. 16  
8.2 Typical Application.................................................... 16  
9 Power Supply Recommendations................................22  
10 Layout...........................................................................23  
10.1 Layout Guidelines................................................... 23  
10.2 Layout Example...................................................... 23  
11 Device and Documentation Support..........................24  
11.1 Receiving Notification of Documentation Updates..24  
11.2 支持资源..................................................................24  
11.3 Trademarks............................................................. 24  
11.4 静电放电警告...........................................................24  
11.5 术语表..................................................................... 24  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................11  
7.1 Overview................................................................... 11  
7.2 Functional Block Diagram......................................... 11  
7.3 Feature Description...................................................12  
Information.................................................................... 25  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (September 2020) to Revision A (September 2020)  
Page  
• 将器件状态从“预告信息”更改为“量产数据”。.............................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS51397A  
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
5 Pin Configuration and Functions  
SW  
SW  
PGND VCC  
NC  
18  
17  
20  
16  
19  
MODE  
FB  
1
15  
BST  
VIN  
VIN  
VIN  
VIN  
3
3
14  
2
4
3
4
13  
PGND  
AGND  
EN  
4
5
12  
11  
SS  
8
6
10  
7
9
NC  
PGOOD  
PGND PGND  
SW  
5-1. 20-Pin VQFN RJE Package (Top View)  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Supply input for the gate drive voltage of the high-side MOSFET. Connect the bootstrap capacitor  
between BST and SW. 0.1 μF is recommended.  
BST  
1
O
P
Input voltage supply pin for the control circuitry. Connect the input decoupling capacitors between VIN  
and PGND.  
VIN  
2,3,4,5  
Switching node connection to the inductor and bootstrap capacitor for buck. This pin voltage swings  
from a diode voltage below the ground up to input voltage of buck.  
SW  
6,19,20  
7,8,18,  
O
G
O
O
PGND  
PGOOD  
SS  
Power GND terminal for the controller circuit and the internal circuitry  
Thermal Pad  
Open-drain power-good indicator. It is asserted low if output voltage is out of PG threshold, over  
voltage, or if the device is under thermal shutdown, EN shutdown, or during soft start.  
9
Soft-Start time selection pin. Connecting an external capacitor sets the soft-start time and if no external  
capacitor is connected, the soft-start time is about 1.2 ms.  
11  
NC  
10,16  
12  
Not connect. Can be connected to GND plane for better thermal achieved.  
Enable input of buck converter  
EN  
I
AGND  
13  
G
Ground of internal analog circuitry. Connect AGND to GND plane with a short trace.  
Feedback sensing pin for Buck output voltage. Connect this pin to the resistor divider between output  
voltage and AGND.  
FB  
14  
15  
17  
I
I
Switching frequency and light load operation mode selection pin. Connect this pin to a resistor divider  
from VCC and AGND for different MODE options shown in 7-1.  
MODE  
VCC  
The driver and control circuits are powered from this voltage. Decouple with a minimum 1-μF ceramic  
capacitor as close to VCC as possible.  
O
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS51397A  
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
1  
MAX  
26  
31  
6
UNIT  
V
VIN  
VBST  
V
Input voltage  
VBST-SW  
V
EN, MODE, FB, SS, VCC  
PGND, AGND  
SW  
6
V
0.3  
26  
29  
6
V
V
Output voltage  
SW (10-ns transient)  
PGOOD  
V
3  
V
0.3  
40  
55  
TJ  
Operating junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
Charged-device model (CDM), per JEDEC specification JESD22- V C101(2)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
MAX  
UNIT  
V
VIN  
24  
29.5  
5.5  
5.5  
0.3  
24  
VBST  
V
0.3  
0.3  
0.3  
0.3  
1  
VBST-SW  
V
Input voltage  
EN, MODE, FB, SS, VCC  
PGND, AGND  
SW  
V
V
V
Output voltage  
PGOOD  
5.5  
10  
V
0.3  
IOUT  
TJ  
Output current  
A
Operating junction temperature  
125  
°C  
40  
6.4 Thermal Information  
TPS51397A  
THERMAL METRIC(1)  
RJE (VQFN)  
20 PINS  
49.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA_effective  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance (4-layer custom board)(2)  
39.6  
Junction-to-case (top) thermal resistance  
26.2  
Junction-to-board thermal resistance  
14.4  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS51397A  
 
 
 
 
 
 
 
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
TPS51397A  
THERMAL METRIC(1)  
RJE (VQFN)  
20 PINS  
0.9  
UNIT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
°C/W  
°C/W  
°C/W  
ψJT  
14.3  
ψJB  
RθJC(bot)  
13.0  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.  
(2) 70 mm x 70 mm, 4 layers, thickness: 1.5 mm. 2 oz. copper traces located on the top and bottom of the PCB. 4 thermal vias in the  
PowerPAD area under the device package.  
6.5 Electrical Characteristics  
TJ = -40°C to 125°C, VIN = 12 V, unless otherwise noted.  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
VIN  
IVIN  
Input voltage range  
Non-switching supply current No load, VEN = 5V  
4.5  
90  
1
24  
150  
4
V
110  
2
μA  
μA  
IVINSDN  
Shutdown supply current  
No load, VEN = 0V  
VCC OUTPUT  
VIN > 5.0V  
VIN = 4.5V  
4.85  
20  
5
5.15  
V
VCC  
VCC output voltage  
VCC current limit  
4.5  
ICC  
mA  
FEEDBACK VOLTAGE  
VFB FB voltage  
DUTY CYCLE and FREQUENCY CONTROL  
TJ = 25°C  
594  
591  
600  
600  
606  
609  
mV  
mV  
TJ = -40°C to 125°C  
FSW  
Switching frequency  
SW minumum on time  
SW minimum off time  
VOUT = 2.5V  
VFB = 0.5V  
450  
30  
500  
60  
550  
100  
180  
kHz  
ns  
tON(MIN)  
tOFF(MIN)  
130  
ns  
OOA Function  
TOOA  
Mode Operation Period  
22  
30  
42  
us  
MOSFET and DRIVERS  
RDS(ON)H High side switch resistance  
RDS(ON)L Low side switch resistance  
OUTPUT DISCHARGE and SOFT START  
TJ = 25°C  
TJ = 25°C  
17  
mΩ  
mΩ  
5.9  
RDIS  
tSS  
Discharge resistance  
Soft start time  
VEN = 0V  
300  
0.5  
350  
1.2  
5
400  
2.5  
Ω
ms  
μA  
Internal soft-start time, SS pin  
floating  
ISS  
Soft start charge current  
POWER GOOD  
tPGDLY  
PG start-up delay  
PG from low to high  
VFB falling (fault)  
VFB rising (good)  
VFB rising (fault)  
VFB falling (good)  
IOL = 4mA  
1
ms  
%
85  
90  
%
VPGTH  
PG threshold  
115  
110  
%
%
VPG_L  
IPGLK  
PG sink current capability  
PG leak current  
0.4  
1
V
VPGOOD = 5.5V  
μA  
CURRENT LIMIT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS51397A  
 
 
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
TJ = -40°C to 125°C, VIN = 12 V, unless otherwise noted.  
PARAMETER  
TEST CONDITION  
MIN  
11  
TYP  
12  
MAX  
13  
UNIT  
A
TJ = 25°C  
Over current threshold  
(valley)  
IOCL  
TJ = -40°C to 125°C  
10.5  
12  
14  
A
Negative over current  
threshold  
INOCL  
3.2  
A
LOGIC THRESHOLD  
VENH  
VENL  
EN high-level input voltage  
1.2  
0.9  
1.3  
1.1  
1.4  
1.2  
V
V
EN low-level input voltage  
Enable internal pull down  
current  
IEN  
VEN = 0.8V  
2
µA  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
VOVP  
OVP trip threshold  
OVP prop deglitch  
UVP trip threshold  
UVP prop deglitch  
125  
120  
60  
%
us  
%
tOVPDLY  
VUVP  
tUVPDLY  
UVLO  
256  
us  
Wake up  
4.1  
3.6  
4.2  
4.4  
3.9  
V
VUVLO  
VIN UVLO threshold  
Shutdown  
Hysteresis  
3.7  
0.5  
V
V
OVER TEMPERATURE PROTECTION  
TOTP  
OTP trip threshold(1)  
OTP hysteresis(1)  
Shutdown temperature  
Hysteresis  
150  
20  
°C  
°C  
TOTPHSY  
(1) Not production tested.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS51397A  
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
6.6 Typical Characteristics  
TJ = -40°C to 125°C, VIN = 12 V, unless otherwise noted.  
130  
125  
120  
115  
110  
105  
100  
4
3.5  
3
2.5  
2
1.5  
1
-50  
-20  
10  
Junction Temperature (°C)  
40  
70  
100  
130  
-50  
-20  
10  
Junction Temperature (°C)  
40  
70  
100  
130  
IQ  
Ishu  
6-2. Shutdown Current vs Junction Temperature  
6-1. Supply Current vs Junction Temperature  
615  
1.45  
610  
605  
600  
595  
590  
585  
1.4  
1.35  
1.3  
1.25  
1.2  
1.15  
-50  
-20  
10  
Junction Temperature (°C)  
40  
70  
100  
130  
-50  
-20  
10  
Junction Temperature (°C)  
40  
70  
100  
130  
VFB  
ENon  
6-3. Feedback Voltage vs Junction Temperature 6-4. Enable On Voltage vs Junction Temperature  
1.24  
32  
28  
24  
20  
16  
12  
8
1.2  
1.16  
1.12  
1.08  
1.04  
1
-50  
-20  
10  
Junction Temperature (°C)  
40  
70  
100  
130  
-50  
-20  
10  
Junction Temperature (°C)  
40  
70  
100  
130  
ENof  
Rdsh  
6-5. Enable Off Voltage vs Junction Temperature 6-6. High-Side RDS(on) vs Junction Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS51397A  
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
12  
10  
8
128  
127  
126  
125  
124  
123  
122  
6
4
2
0
-50  
-20  
10  
Junction Temperature (°C)  
40  
70  
100  
130  
-50  
-20  
10  
Junction Temperature (°C)  
40  
70  
100  
130  
Rdsl  
OVPt  
6-7. Low-Side RDS(on) vs Junction Temperature  
6-8. OVP Threshold vs Junction Temperature  
64  
380  
63  
62  
61  
60  
59  
58  
370  
360  
350  
340  
330  
320  
-50  
-20  
10  
Junction Temperature (°C)  
40  
70  
100  
130  
-50  
-20  
10  
Junction Temperature (°C)  
40  
70  
100  
130  
UVPt  
Rdis  
6-9. UVP Threshold vs Junction Temperature  
6-10. Discharge Resistor vs Junction  
Temperature  
15  
14  
13  
12  
11  
10  
9
4.5  
4
3.5  
3
2.5  
2
1.5  
-50  
-20  
10  
Junction Temperature (°C)  
40  
70  
100  
130  
-50  
-20  
10  
Junction Temperature (°C)  
40  
70  
100  
130  
OCli  
NOC  
6-11. Valley Current Limit vs Junction  
6-12. Negative Current Limit vs Junction  
Temperature  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS51397A  
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
1.5  
45  
40  
35  
30  
25  
20  
15  
1.4  
1.3  
1.2  
1.1  
1
0.9  
-50  
-20  
10  
40  
Junction Temperature (°C)  
70  
100  
130  
-50  
-20  
10  
40  
Junction Temperature (°C)  
70  
100  
130  
Tss  
TOOA  
6-13. Soft-Start Time vs Junction Temperature  
6-14. OOA Period vs Junction Temperature  
100  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
60  
60  
VIN=12V, VOUT=1.2V  
VIN=12V, VOUT=2.5V  
VIN=12V, VOUT=5V  
VIN=12V, VOUT=1.2V  
VIN=12V, VOUT=2.5V  
VIN=12V, VOUT=5V  
55  
50  
55  
50  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
I-Load (A)  
I-Load (A)  
Eff5  
Eff8  
6-15. Efficiency vs Load Current,  
6-16. Efficiency vs Load Current,  
FSW = 500 kHz, Eco-mode  
FSW = 800 kHz, Eco-mode  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN=12V, VOUT=1.2V  
VIN=12V, VOUT=2.5V  
VIN=12V, VOUT=5V  
VIN=12V, VOUT=1.2V  
VIN=12V, VOUT=2.5V  
VIN=12V, VOUT=5V  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
I-Load (A)  
I-Load (A)  
Eff5  
Eff8  
6-17. Efficiency vs Load Current,  
6-18. Efficiency vs Load Current, FSW = 800 kHz,  
FSW = 500 kHz, OOA  
OOA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS51397A  
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
700  
600  
500  
400  
300  
200  
1000  
800  
600  
400  
200  
0
VIN=12V, VOUT=1.2V  
VIN=12V, VOUT=2.5V  
VIN=12V, VOUT=5V  
VIN=12V, VOUT=1.2V  
VIN=12V, VOUT=2.5V  
VIN=12V, VOUT=5V  
100  
0
0
1
2
3
4
5
I-Load (A)  
6
7
8
9
10  
0
1
2
3
4
5
I-Load (A)  
6
7
8
9
10  
Fsw5  
Fsw8  
6-19. Switching Frequency vs Load Current,  
6-20. Switching Frequency vs Load Current, FSW  
FSW = 500 kHz, Eco-mode  
= 800 kHz, Eco-mode  
700  
600  
500  
400  
300  
1000  
800  
600  
400  
200  
200  
VIN=12V, VOUT=1.2V  
VIN=12V, VOUT=2.5V  
VIN=12V, VOUT=5V  
VIN=12V, VOUT=1.2V  
VIN=12V, VOUT=2.5V  
VIN=12V, VOUT=5V  
100  
0
0
0
1
2
3
4
5
I-Load (A)  
6
7
8
9
10  
0
1
2
3
4
5
I-Load (A)  
6
7
8
9
10  
Fsw5  
Fsw8  
6-21. Switching Frequency vs Load Current, FSW 6-22. Switching Frequency vs Load Current, FSW  
= 500 kHz, OOA  
= 800k Hz, OOA  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS51397A  
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
7 Detailed Description  
7.1 Overview  
TheTPS51397A is a high density synchronous buck converter that operates from 4.5-V to 24-V input voltage,  
and 0.6-V to 5.5-V output voltage range. It has 17-mΩ and 5.9-mΩ integrated MOSFETs that enable high  
efficiency up to 10 A. The ULQ(Ultra Low Quiescent) feature is extremely beneficial for long battery life in low  
power operation. The large duty operation greatly improves the load transient performance when input voltage is  
low. The device employs DCAP3mode control that enables low external component count, ease of design,  
optimization of the power design for cost, size, and efficiency, and provides fast transient response with no  
external compensation components and an accurate feedback voltage. The control topology supports seamless  
transition between CCM mode at heavy load conditions and DCM operation at light load conditions. Eco-mode™  
allows the TPS51397A to maintain high efficiency at light load and OOA mode makes switching frequency above  
audible frequency (20 kHz), even there is no loading at output side. The TPS51397A is able to adapt to both low  
equivalent series resistance (ESR) output capacitors such as POSCAP or SP-CAP, and ultra-low ESR ceramic  
capacitors.  
7.2 Functional Block Diagram  
PG high  
threshold  
PGOOD  
+
+
UV threshold  
+
UV  
OV  
Delay  
PG low  
threshold  
+
VIN  
OV threshold  
FB  
+
LDO  
VCC  
0.6 V  
VREGOK  
4.2 V /  
3.7 V  
+
+
PWM  
+
+
Control Logic  
BST  
VIN  
SS  
Ripple injection  
SW  
ñ
ñ
ñ
ñ
ñ
ñ
ñ
On/Off time  
Minimum On/Off  
TON Extension  
OVP/UVP/TSD  
Eco-mode/OOA  
Soft-Start  
VCC  
SW  
XCON  
Internal SS  
PGOOD  
SS  
PGND  
One shot  
+
OCL  
EN threshold  
+
+
+
EN  
ZC  
NOCL  
+
THOK  
150°C / 20°C  
AGND  
Light load operation  
/Switching frequency selection  
Discharge control  
MODE  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS51397A  
 
 
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
7.3 Feature Description  
7.3.1 PWM Operation and DCAP3Control  
The main control loop of the buck is an adaptive on-time pulse width modulation (PWM) controller that supports  
a proprietary DCAP3mode control. The DCAP3mode control combines adaptive on-time control with an  
internal compensation circuit for pseudo-fixed frequency and low external component count configuration with  
both low-ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output. The  
TPS51397A also includes an error amplifier that makes the output voltage high accurate.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after an internal  
one-shot timer expires. This one-shot duration is set proportional to the converter input voltage, VIN, and is  
inversely proportional to the output voltage, VOUT, to maintain a pseudo-fixed frequency over the input voltage  
range, hence it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is  
turned on again when the feedback voltage falls below the reference voltage. An internal ripple generation circuit  
is added to the reference voltage to emulate the output ripple. This enables the use of very low-ESR output  
capacitors such as multi-layered ceramic caps (MLCC). No external current sense network or loop compensation  
is required for DCAP3control topology.  
For any control topology that is compensated internally, there is a range of the output filter it can support. The  
output filter used with the TPS51397A is a low-pass L-C circuit. This L-C filter has a double-pole frequency  
described in 方程1.  
1
¦
=
P
2´ p´ LOUT ´ COUT  
(1)  
At low frequencies, the overall loop gain is set by the external output set-point resistor divider network and the  
internal gain of the TPS51397A. The low-frequency L-C double pole has a 180 degree lag in-phase. At the  
output filter frequency, the gain rolls off at a 40 dB per decade rate and the phase drops rapidly. The internal  
ripple generation network introduces a mid-frequency zero that reduces the gain roll off from 40 dB to 20 dB  
per decade and increases the phase to 90 degree one decade above the zero frequency. The inductor and  
capacitor selected for the output filter must be such that the double pole is placed close enough to the mid-  
frequency zero so that the phase boost provided by this mid-frequency zero provides adequate phase margin for  
the stability requirement. The crossover frequency of the overall system should usually be targeted to be less  
than one-third of the switching frequency (FSW).  
7.3.2 Soft Start  
The TPS51397A has an internal 1.2-ms soft start. An external SS pin is provided for setting higher soft-start time  
if needed. When the EN pin becomes high, the soft-start function begins ramping up the reference voltage to the  
PWM comparator.  
If the application needs a higher soft-start time, it can be set by connecting a capacitor on SS pin. When the EN  
pin becomes high, the soft-start charge current (ISS) begins charging the external capacitor (CSS) connected  
between SS and AGND. The devices tracks the lower of the internal soft-start voltage or the external soft-start  
voltage as the reference. The equation for the soft-start time (TSS) is shown in 方程2:  
%OO (J() × 84'( (8)  
6 (IO) =  
OO  
:
;
Q#  
+
OO  
(2)  
where  
VREF is 0.6 V and ISS is 5 μA  
7.3.3 Large Duty Operation  
The TPS51397A can support large duty operation by its internal TON extension function. When VIN/VOUT < 1.6  
and the VFB keeps lower than internal VREF, TON is extended to implement the large duty operation which greatly  
improves the load transient performance.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS51397A  
 
 
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
7.3.4 Power Good  
The Power Good (PGOOD) pin is an open-drain output. A pullup resistor of 100 kΩ is recommended to pull the  
voltage up to VCC. Once VFB is between 90% and 110% of the target output voltage, the PGOOD is pulled high  
after a 1-ms de-glitch time. The PGOOD pin is pulled low when:  
FB pin voltage is lower than 85% or greater than 115% of the target output voltage,  
In OVP, UVP, or thermal shutdown event, or  
During the soft-start period.  
7.3.5 Overcurrent Protection and Undervoltage Protection  
The TPS51397A has overcurrent protection and undervoltage protection. The output overcurrent limit (OCL) is  
implemented using a cycle-by-cycle valley detect control circuit. The switch current is monitored during the OFF  
state by measuring the low-side FET drain-to-source voltage. This voltage is proportional to the switch current.  
To improve accuracy, the voltage sensing is temperature compensated.  
During the on-time of the high-side FET switch, the switch current increases at a linear rate determined by Vin,  
Vout, the on-time, and the output inductor value. During the on-time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current IOUT. If the monitored current is  
above the OCL level, the converter maintains low-side FET on and delays the creation of a new pulse, even the  
voltage feedback loop requires one, until the current level becomes OCL level or lower. In subsequent switching  
cycles, the on-time is set to a fixed value and the current is monitored in the same manner.  
There are some important considerations for this type of overcurrent protection. When the load current is higher  
than the overcurrent threshold by one half of the peak-to-peak inductor ripple current, the OCL is triggered and  
the output current is being limited, the output voltage tends to drop because the load demand is higher than what  
the converter can support. When the output voltage falls below 60% of the target voltage, the UVP comparator  
detects it, and the device is shut off after a wait time of 256 μs. This protection is a latched function. The fault  
latching can be reset by EN going low or VCC power cycling.  
The TPS51397A also implements negative overcurrent protection, which can prevent inductor current runaway  
when IC works in OOA mode. When the inductor valley current hits the negative overcurrent threshold (NOCL =  
3.2 A typical), the low-side FET turns off, then high-side FET turns on.  
7.3.6 Overvoltage Protection  
The TPS51397A has an overvoltage protection feature, which has the same implementation. When the output  
voltage becomes higher than 125% of the target voltage, the OVP comparator output goes high, and the output  
will be discharged and latched after a wait time of 120 µs. This function is a latching operation, so it needs to  
reset by EN going low or VCC power cycling.  
7.3.7 UVLO Protection  
The VIN undervoltage lockout (UVLO) protection monitors the VCC pin voltage to protect the internal circuitry  
from low input voltage. When the VCC voltage is lower than the UVLO threshold voltage, the device shuts off  
and outputs are discharged to prevent mis-operation of the device. The converter begins operation again when  
the input voltage exceeds the threshold by a hysteresis of 500 mV (typical). This is a non-latch protection.  
7.3.8 Output Voltage Discharge  
The TPS51397A has a discharge function by using internal MOSFET about 350 , which is connected to the  
output terminal SW. The discharge is slow due to the lower current capability of the MOSFET.  
7.3.9 Thermal Shutdown  
The TPS51397A monitors the internal die temperature. If the temperature exceeds the threshold value (typically  
150°C), the device is shut off and the output is discharged. This is a non-latch protection. The device restarts  
operation when the temperature goes below the thermal shutdown threshold.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS51397A  
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
7.4 Device Functional Modes  
7.4.1 Light Load Operation  
The TPS51397A has a MODE pin that can control two different states of operation at light load. The light load  
operation includes advanced Eco-mode and OOA mode.  
7.4.2 Advanced Eco-mode Control  
The advanced Eco-mode control schemes to maintain high light load efficiency. As the output current decreases  
from heavy load conditions, the inductor current is also reduced and eventually comes to a point where the  
rippled valley touches zero level, which is the boundary between continuous conduction and discontinuous  
conduction modes. The rectifying MOSFET is turned off when the zero inductor current is detected. As the load  
current further decreases, the converter runs into discontinuous conduction mode. The on-time is kept almost  
the same as it was in continuous conduction mode so that it takes longer to discharge the output capacitor with  
smaller load current to the level of the reference voltage. This makes the switching frequency lower, proportional  
to the load current, and keeps the light load efficiency high. The light load current where the transition to Eco-  
mode operation happens (IOUT(LL)) can be calculated from 方程3.  
(V -VOUT ) × VOUT  
1
IN  
IOUT(LL)  
=
×
2 × LOUT × FSW  
V
IN  
(3)  
After identifying the application requirements, design the output inductance (LOUT) so that the inductor peak-to-  
peak ripple current is approximately between 20% and 40% of IOUT(ma×) (peak current in the application). It is  
also important to size the inductor properly so that the valley current does not hit the negative low-side current  
limit.  
7.4.3 Out-of-Audio  
Out-of-Audio (OOA) light-load mode is a unique control feature that keeps the switching frequency above  
audible frequency with minimum reduction in efficiency. It prevents audio noise generation from the output  
capacitors and inductor. During Out-of-Audio operation, the OOA control circuit monitors the states of both high-  
side and low-side MOSFETs and forces them to switch. When both high-side and low-side MOSFETs are off for  
more than 30 μs during a light-load condition, the low-side FET will discharge until output voltage drops to  
trigger the high-side FET on or inductor current hits negative OC limit.  
If the MODE pin is selected to operate in OOA mode, when the device works at light load, the minimum  
switching frequency is above 20 kHz which avoids the audible noise in the system. When the device works in  
OOA mode, TI recommends setting the peak value of inductor current above 1 A by choosing appropriate  
inductor.  
7.4.4 Mode Selection  
The device detects the voltage on the MODE pin during start-up and latches onto one of the MODE options  
listed in 7-1. The voltage on the MODE pin is recommended to be set by connecting this pin to the center tap  
of a resistor divider connected between VCC and AGND. A guideline for the top resistor (RM_H) and the bottom  
resistor (RM_L) as 1% resistors is shown in 7-1. It is recommended to choose the resistor to set the voltage at  
around the middle value of each range. It is important that the voltage for the MODE pin is derived from the VCC  
rail only since internally this voltage is referenced to detect the MODE option, and not to leave the mode pin  
floating. The MODE pin setting can be reset only by a VIN power cycling or EN toggle.  
7-1. MODE Pin Resistor Settings  
VOLTAGE ON MODE  
(0~10%)*VCC  
LIGHT LOAD OPERATION  
FREQUENCY (kHz)  
RM_H(kΩ)  
RM_L (kΩ)  
330  
15  
Eco-mode  
500  
500  
800  
800  
(10%~20%)*VCC  
180  
160  
75  
33  
51  
51  
OOA  
Eco-mode  
OOA  
(20%~30%)*VCC  
(30%~50%)*VCC  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS51397A  
 
 
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
7-1 shows the typical start-up sequence of the device once the enable signal crosses the EN turnon  
threshold. After the voltage on VCC crosses the rising UVLO threshold, it takes about 500 μs to finish the  
working mode and frequency selection. The output voltage starts ramping after about 0.2*TSS delay time.  
EN threshold  
1.3V  
EN  
VCC UVLO  
4.2V  
VCC  
500us  
MODE/FSW  
Selection  
MODE  
VOUT  
TSS  
0.2*TSS  
1ms  
PGOOD  
7-1. Power-Up Sequence  
7.4.5 Standby Operation  
The TPS51397A can be placed in standby mode by pulling the EN pin low. The device operates with a shutdown  
current of 2 µA when in standby condition. EN pin is pulled low internally. When floating, the part is disabled by  
default.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS51397A  
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
8 Application and Implementation  
Note  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The schematic in 8-1 shows a typical application for TPS51397A with 5-V output. This design converts an  
input voltage range of 5.5 V to 24 V down to 5 V with a maximum output current of 10 A.  
8.2 Typical Application  
C1  
U1  
VCC  
C2  
0.1uF  
R1  
0
17  
1
VCC  
BST  
1uF  
L1  
VIN = 5.5V t 24V  
VOUT = 5V/10A  
VOUT  
GND  
SW  
2
3
4
5
6
19  
20  
VIN  
VIN  
VIN  
VIN  
SW  
SW  
SW  
VIN  
1.8uH  
C3  
22uF  
C4  
22uF  
C5  
0.1uF  
R2  
51.1  
C6  
0.1uF  
C7  
47µF  
C8  
47µF  
C9  
47µF  
C10  
47µF  
TP6  
14  
FB  
C11  
R3  
SS  
EN  
11  
12  
15  
9
10  
16  
SS  
NC  
NC  
0
100pF  
R4  
110k  
GND  
EN  
13  
7
8
18  
21  
GND  
AGND  
PGND  
PGND  
PGND  
PGND  
MODE  
MODE  
PGOOD  
R6  
100k  
R8  
VCC  
R5  
15.0k  
R7  
330k  
TPS51397A  
15k  
GND  
GND  
GND  
8-1. 5-V, 10-A Reference Design  
8.2.1 Design Requirements  
8-1 lists the design parameters for this example.  
8-1. Design Parameters  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
VOUT  
IOUT  
Output voltage  
5
10  
V
A
Output current  
Transient response  
Input voltage  
±5% x VOUT  
12  
ΔVOUT  
VIN  
1-A 9-A load step, 2.5 A/μs  
0-A 10-A loading  
5.5  
24  
V
VOUT(ripple)  
FSW  
Output voltage ripple  
Switching frequency  
Light load operating mode  
Ambient temperature  
2% x VOUT  
500  
kHz  
°C  
Eco-mode  
25  
TA  
8.2.2 Detailed Design Procedure  
8.2.2.1 External Component Selection  
8.2.2.1.1 Output Voltage Set Point  
To change the output voltage of the application, it is necessary to change the value of the upper feedback  
resistor. By changing this resistor, you can change the output voltage above 0.6 V. See 方程4.  
4722'4  
4.19'4  
8
176  
= 0.6 × (1 +  
)
(4)  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS51397A  
 
 
 
 
 
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
8.2.2.1.2 MODE Selection  
The light load operation mode (Eco-mode or OOA) and switching frequency are set by a voltage divider from  
VCC to GND connected to the MODE pin. See 7-1 for possible MODE pin configurations. For this design  
example, the switching frequency is about 500 KHz, the light load operation mode is Eco-mode, and the output  
current is 10 A.  
8.2.2.1.3 Inductor Selection  
The inductor ripple current is filtered by the output capacitor. A higher inductor ripple current means the output  
capacitor should have a ripple current rating higher than the inductor ripple current. See 8-2 for recommended  
inductor values.  
The RMS and peak currents through the inductor can be calculated using 方程式 5 and 方程式 6. It is important  
that the inductor is rated to handle these currents.  
æ
2 ö  
÷
÷
÷
ø
æ
ç
ö
÷
VOUT × V  
- VOUT  
(
× LOUT × FSW  
IN(max)  
)
1
IN(max)  
ç 2  
I
IL(rms)=  
+
×
OUT  
ç
ç
è
÷
ø
12  
V
ç
è
(5)  
(6)  
IOUT(ripple)  
I
= IOUT  
+
L(peak)  
2
Under transient and short-circuit conditions, the inductor current can increase up to the current limit of the  
device, so it is safe to choose an inductor with a saturation current higher than the peak current under current  
limit condition.  
8.2.2.1.4 Output Capacitor Selection  
After selecting the inductor, the output capacitor needs to be optimized. In D-CAP3, the regulator reacts within  
one cycle to the change in the duty cycle, so good transient performance can be achieved without needing large  
amounts of output capacitance. The recommended output capacitance range is given in 8-2. Ceramic  
capacitors have very low ESR, otherwise the maximum ESR of the capacitor should be less than VOUT(ripple)  
/
IOUT(ripple)  
.
8-2. Recommended Component Values  
VOUT (V)  
Fsw (kHz)  
LOUT (µH)  
0.33  
0.22  
0.68  
0.47  
1.2  
COUT(min) (µF)  
COUT(max) (µF)  
CFF (pF)  
RLOWER (kΩ) RUPPER (kΩ)  
500  
66  
66  
66  
66  
66  
66  
66  
66  
66  
66  
330  
330  
330  
330  
330  
330  
330  
330  
330  
330  
-
0.6  
10  
10  
15  
20  
15  
0
800  
-
500  
-
1.2  
2.5  
3.3  
5.0  
10  
800  
-
500  
-
47.5  
90  
800  
1.0  
-
500  
1.5  
22-110  
22-110  
22-110  
22-110  
800  
1.2  
500  
1.8  
110  
800  
1.5  
8.2.2.1.5 Input Capacitor Selection  
The TPS51397A requires input decoupling capacitors on power supply input pin VIN, and the bulk capacitors are  
needed depending on the application. The minimum input capacitance required is given in 方程7.  
IOUT×VOUT  
CIN(min)  
=
V
INripple×V ×FSW  
IN  
(7)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS51397A  
 
 
 
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
TI recommends using a high-quality X5R or X7R input decoupling capacitors of nominal 44 µF/35 V on the input  
voltage pin VIN. The voltage rating on the input capacitor must be greater than the maximum input voltage. The  
capacitor must also have a ripple current rating greater than the maximum input current ripple of the application.  
The input ripple current is calculated by 方程8:  
VIN(min)-VOUT  
(
)
VOUT  
ICIN(rms) = IOUT ×  
×
VIN(min)  
VIN(min)  
(8)  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS51397A  
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
8.2.3 Application Curves  
8-2 through 8-17 apply to the circuit of 8-1. VIN = 12 V, TA = 25°C, unless otherwise specified.  
100  
90  
80  
70  
60  
50  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
VIN=7.4V, VOUT=5V  
VIN=12V, VOUT=5V  
VIN=18V, VOUT=5V  
VIN=24V, VOUT=5V  
VIN=7.4V, VOUT=5V  
VIN=12V, VOUT=5V  
VIN=18V, VOUT=5V  
VIN=24V, VOUT=5V  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
I-Load (A)  
1
10  
I-Load (A)  
EffV  
load  
8-2. Efficiency Curve  
8-3. Load Regulation  
800  
700  
600  
500  
400  
300  
200  
700  
600  
500  
400  
300  
200  
100  
0
VIN=7.4V, VOUT=5V  
VIN=12V, VOUT=5V  
VIN=18V, VOUT=5V  
VIN=24V, VOUT=5V  
6
8
10  
12  
14  
VIN (V)  
16  
18  
20  
22  
24  
0
1
2
3
4
5
I-Load (A)  
6
7
8
9
10  
Fswv  
Fswl  
8-4. Switching Frequency vs Input Voltage, IOUT  
8-5. Switching Frequency vs Output Load  
= 5 A  
0.2  
0.15  
0.1  
0.2  
0.15  
0.1  
0.05  
0
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.05  
-0.1  
-0.15  
-0.2  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
VIN (V)  
VIN (V)  
line  
line  
8-6. Line Regulation, IOUT = 0.1 A  
8-7. Line Regulation, IOUT = 5 A  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS51397A  
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
EN = 5V/div  
EN = 5V/div  
Vout = 5V/div  
IL = 5A/div  
Vout = 5V/div  
IL = 5A/div  
1ms/div  
1ms/div  
8-8. Start-Up Through EN, IOUT = 5 A  
8-9. Shut-down Through EN, IOUT = 5 A  
Vin = 10V/div  
Vin = 10V/div  
Vout = 5V/div  
Vout = 5V/div  
IL = 5A/div  
IL = 5A/div  
1ms/div  
1ms/div  
8-10. Start-up Relative to VIN Rising,  
8-11. Shut Down Relative to VIN Falling,  
IOUT = 5 A  
IOUT = 5 A  
Vout = 50mV/div (AC coupled)  
Vout = 50mV/div (AC coupled)  
SW = 10V/div  
SW = 10V/div  
20us/div  
2us/div  
8-12. Output Voltage Ripple, IOUT = 0.1 A  
8-13. Output Voltage Ripple, IOUT = 5 A  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS51397A  
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
Vout = 200mV/div (AC coupled)  
Vout = 50mV/div (AC coupled)  
SW = 10V/div  
Iout = 10A/div  
400us/div  
2us/div  
8-15. Transient Response, 1 A to 9 A,  
Slew Rate = 2.5 A/μs  
8-14. Output Voltage Ripple, IOUT = 10 A  
Vout = 200mV/div (AC coupled)  
Vout = 5V/div  
SW = 10V/div  
Iout = 10A/div  
IL = 10A/div  
400us/div  
80us/div  
8-16. Transient Response, 0 A to 10 A,  
Slew Rate = 2.5 A/μs  
8-17. Normal Operation to Output Hard Short  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS51397A  
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
9 Power Supply Recommendations  
The TPS51397A is intended to be powered by a well-regulated DC voltage. The input voltage range is 4.5 V to  
24 V. The TPS51397A is a buck converter. The input supply voltage must be greater than the desired output  
voltage for proper operation. Input supply current must be appropriate for the desired output current. If the input  
voltage supply is located far away from the TPS51397A circuit, some additional input bulk capacitance is  
recommended. Typical values are 100 μF to 470 μF.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS51397A  
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
10 Layout  
10.1 Layout Guidelines  
A four-layer PCB is recommended for good thermal performance and with maximum ground plane. 3-inch ×  
2.75-inch, top and bottom layer PCB with 2-oz copper is used as example.  
Place the decoupling capacitors right across VIN and VCC as close as possible.  
Place output inductors and capacitors with IC at the same layer. SW routing should be as short as possible to  
minimize EMI, and should be a width plane to carry big current, enough vias should be added to the PGND  
connection of output capacitors and also as close to the output pin as possible.  
Place BST resistor and capacitor with IC at the same layer, close to BST and SW plane. >10-mil width trace  
is recommended to reduce line parasitic inductance.  
Feedback can be 10 mil and must be routed away from the switching node, BST node, or other high speed  
digital signal.  
VIN trace must be wide to reduce the trace impedance and provide enough current capability.  
Place multiple vias under the device near VIN and PGND and near input capacitors to reduce parasitic  
inductance and improve thermal performance.  
10.2 Layout Example  
10-1 shows the recommended top-side layout. Component reference designators are the same as the circuit  
shown in 8-1.  
Trace on the top layer  
C
C
VIN  
Trace on the bottom layer  
Close to VIN pin  
R
C
Vias to GND plane  
SW  
SW  
SW  
Trace on the bottom layer  
SW  
PGND  
PGND  
PGND  
PGND  
L
VCC  
PGOOD  
R
C
Vias to GND plane  
PGND  
NC  
NC  
R
R
VOUT  
C
Vias to  
GND plane  
R
R
Vias to GND plane  
Vias to GND plane  
0  
AGND  
PGND  
10-1. Top-Side Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS51397A  
 
 
 
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
11 Device and Documentation Support  
11.1 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
ULQ, DCAP3, D-CAP3, Eco-mode, 无声, HotRod, TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS51397A  
 
 
 
 
 
 
TPS51397A  
www.ti.com.cn  
ZHCSLU8A SEPTEMBER 2020 REVISED OCTOBER 2020  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS51397A  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS51397ARJER  
ACTIVE  
VQFN-HR  
RJE  
20  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
51397A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
RJE 20  
3 x 3, 0.45 mm pitch  
VQFN-HR - 1 mm max height  
QUAD FLATPACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224683/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RJE0020B  
3.1  
2.9  
A
B
(45°X0.08) TYP  
(0.25)  
DETAIL A  
CHAMFERS ARE OPTIONAL  
TYPICAL  
3.1  
2.9  
PIN 1 INDEX AREA  
0.5  
0.3  
0.25  
0.15  
DETAIL B  
OPTIONAL PIN 1  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 1.8  
PKG  
(0.1) TYP  
SEE TERMINAL  
DETAIL A  
10  
6
16X 0.45  
11  
5
(0.007)  
PKG  
2X  
1.8  
0.975±0.1  
21  
0.25  
0.15  
20X  
0.1  
C B A  
1
15  
0.05  
C
16  
20  
(0.123)  
PIN 1 ID  
DETAIL B  
0.5  
0.3  
20X  
0.926±0.1  
4224338 / B 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RJE0020B  
(0.926)  
(0.123)  
20  
16  
20X (0.6)  
20X (0.2)  
1
15  
(0.007)  
16X (0.45)  
21  
PKG  
(2.8)  
(0.975)  
11  
5
(R0.05) TYP  
6
10  
PKG  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
SOLDER MASK  
OPENING  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224338 / B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RJE0020B  
(0.926)  
(0.123)  
20  
16  
20X (0.6)  
20X (0.2)  
1
15  
(0.007)  
(0.975)  
16X (0.45)  
21  
PKG  
(2.8)  
5
11  
(R0.05) TYP  
10  
6
PKG  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE: 20X  
4224338 / B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021,德州仪器 (TI) 公司  

相关型号:

TPS5140

FOUR-CHANNEL DC/DC CONTROLLER FOR NOTEBOOK PC POWER
TI

TPS5140PAG

FOUR-CHANNEL DC/DC CONTROLLER FOR NOTEBOOK PC POWER
TI

TPS5140PAGG4

1.5A SWITCHING CONTROLLER, 300kHz SWITCHING FREQ-MAX, PQFP64, GREEN, PLASTIC, TQFP-64
TI

TPS5140PAGR

FOUR-CHANNEL DC/DC CONTROLLER FOR NOTEBOOK PC POWER
TI

TPS5140PAGRG4

FOUR-CHANNEL DC/DC CONTROLLER FOR NOTEBOOK PC POWER
TI

TPS51427

DUAL D-CAP⑩ SYNCHRONOUS STEP-DOWN CONTROLLER FOR NOTEBOOK POWER RAILS
TI

TPS51427A

DUAL D-CAP™ SYNCHRONOUS STEP-DOWN CONTROLLER FOR NOTEBOOK POWER RAILS
TI

TPS51427ARHBR

DUAL D-CAP™ SYNCHRONOUS STEP-DOWN CONTROLLER FOR NOTEBOOK POWER RAILS
TI

TPS51427ARHBRG4

DUAL D-CAP™ SYNCHRONOUS STEP-DOWN CONTROLLER FOR NOTEBOOK POWER RAILS
TI

TPS51427ARHBT

DUAL D-CAP™ SYNCHRONOUS STEP-DOWN CONTROLLER FOR NOTEBOOK POWER RAILS
TI

TPS51427ARHBTG4

DUAL D-CAP™ SYNCHRONOUS STEP-DOWN CONTROLLER FOR NOTEBOOK POWER RAILS
TI

TPS51427RHBR

DUAL D-CAP⑩ SYNCHRONOUS STEP-DOWN CONTROLLER FOR NOTEBOOK POWER RAILS
TI