TPS53126

更新时间:2024-09-18 07:47:05
品牌:TI
描述:DUAL SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS

TPS53126 概述

DUAL SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS 双路同步降压控制器,适用于低压电源轨

TPS53126 数据手册

通过下载TPS53126数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
TPS53126  
www.ti.com ........................................................................................................................................................................................................ SLUS909MAY 2009  
DUAL SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS  
1
FEATURES  
APPLICATIONS  
Point-of-Load Regulation in Low Power  
Systems for Wide Range of Applications  
2
D-CAP2™ Mode Control  
Fast Transient Response  
Digital TV Power Supply  
Networking Home Terminal  
Digital Set Top Box (STB)  
DVD Player/Recorder  
No External Parts Required For Loop  
Compensation  
Compatible with Ceramic Output  
Capacitors  
Gaming Consoles and Other  
High Initial Reference Accuracy (±1%)  
Low Output Ripple  
DESCRIPTION  
Wide Input Voltage Range: 4.5 V to 24 V  
Output Voltage Range: 0.76 V to 5.5 V  
Low-Side RDS(on) Loss-Less Current Sensing  
The TPS53126 is  
a
dual, adaptive on-time,  
D-CAP2™ mode synchronous Buck controller. The  
TPS53126 enables system designers to complete the  
suite of various end equipment's power bus  
Adaptive Gate Drivers with Integrated Boost  
Diode  
regulators with  
a
cost effective, low external  
component count, and low standby current solution.  
The main control loop for the TPS53126 uses the  
D-CAP2™ mode control which provides a very fast  
transient response with no external components. The  
TPS53126 also has a proprietary circuit that enables  
the device to adapt to both low equivalent series  
resistance (ESR) output capacitors, such as  
POSCAP or SP-CAP, and ultra-low ESR ceramic  
capacitors. The device provides convenient and  
efficient operation with input voltages from 4.5 V to 24  
V and output voltages from 0.76 V to 5.5 V.  
Internal 1.2 ms Voltage-Servo Soft Start  
Pre-Biased Soft Start  
Selectable Switching Frequency: 350 kHz / 700  
kHz  
Cycle-by-Cycle Over-Current Limiting Control  
30 mV to 300 mV OCP Threshold Voltage  
Thermally Compensated OCP by 4000 ppm/C°  
at ITRIP  
The TPS53126 is available in 4mm x 4mm 24 pin  
QFN (RGE) or 24 pin TSSOP (PW) packages and is  
specified from –40°C to 85°C ambient temperature  
range.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
D-CAP2 is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2009, Texas Instruments Incorporated  
TPS53126  
SLUS909MAY 2009........................................................................................................................................................................................................ www.ti.com  
QFN APPLICATION DIAGRAM  
Input Voltage  
4.5V to 24V  
C9  
10mF  
SGND  
R5  
10kW  
R2  
10kW  
R4  
3.52kW  
R1  
13kW  
PGND  
6
5
4
3
2
1
7
8
9
EN2  
EN1 24  
Q3  
FDS8878  
Q1  
FDS8878  
C2  
0.1mF  
C5  
0.1mF  
VBST2  
DRVH2  
VBST1 23  
DRVH1 22  
SW1 21  
C3  
10mF  
C6  
10mF  
L2  
SPM6530T  
1.5mH  
L1  
SPM6530T  
1.5mH  
PowerPAD  
TPS53126  
RGE  
(QFN)  
10 SW2  
VO2  
1.05V/4A  
VO1  
1.8V/4A  
C1  
22mF ´ 4  
Q4  
FDS8690  
Q2  
FDS8690  
11 DRVL2  
12 PGND2  
DRVL1 20  
PGND1 19  
C4  
22mF ´ 4  
13  
14  
15  
16  
17  
18  
R6  
3.3kW  
C7  
4.7mF  
R3  
4.7kW  
C8  
1mF  
PGND  
PGND  
PGND  
SGND  
2
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS53126  
TPS53126  
www.ti.com ........................................................................................................................................................................................................ SLUS909MAY 2009  
TSSOP APPLICATION DIAGRAM  
Q1  
FDS8878  
C3  
10mF  
C2  
0.1mF  
L1  
SPM6530T  
1.5mH  
1
2
DRVH1  
VBST1  
SW1 24  
VO1  
1.8V/4A  
C1  
22mF ´ 4  
Q2  
FDS8690  
DRVL1 23  
3
4
EN1  
VO1  
PGND1 22  
TRIP1 21  
R1  
13kW  
R3  
3.3kW  
PGND  
R2  
10kW  
Input Voltage  
4.5V to 24V  
5
6
7
8
9
VFB1  
GND  
VIN 20  
VREG5 19  
V5FILT 18  
TEST2 17  
TRIP2 16  
C7  
4.7mF  
C9  
10mF  
TPS53126  
PW  
(TSSOP)  
TEST1  
VFB2  
VO2  
R5  
10kW  
C8  
1mF  
PGND  
SGND  
R6  
4.3kW  
R4  
3.52kW  
SGND  
10 EN2  
PGND2 15  
DRVL2 14  
SW2 13  
Q4  
FDS8690  
PGND  
11 VBST2  
12 DRVH2  
C4  
22mF ´ 4  
VO2  
1.05V/4A  
L2  
SPM6530T  
1.5mH  
C6  
10mF  
C5  
0.1mF  
Q3  
FDS8878  
ORDERING INFORMATION(1)(2)  
ORDERING PART  
TA  
PACKAGE  
PINS  
OUTPUT SUPPLY  
ECO PLAN  
NUMBER  
Plastic Quad  
Flat Pack (QFN)  
TPS53126RGET  
TPS53126RGER  
TPS53126PWR  
TPS53126PW  
Tape-and-Reel  
Tape-and-Reel  
Tape-and-Reel  
Tube  
Green  
(RoHS and no Sb/Br)  
–40°C to 85°C  
24  
TSSOP  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) All packaging options have Cu NIPDAU lead/ball finish.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TPS53126  
TPS53126  
SLUS909MAY 2009........................................................................................................................................................................................................ www.ti.com  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
(1)  
VALUE  
–0.3 to 26  
–0.3 to 32  
–0.3 to 6  
–0.3 to 6  
–2 to 26  
UNIT  
VIN, EN1, EN2  
VBST1, VBST2  
Input voltage range  
Output voltage range  
VBST1, VBST2 (wrt SWx)  
V5FILT, VFB1, VFB2, TRIP1, TRIP2, VO1, VO2, TEST1, TEST2  
SW1, SW2  
V
DRVH1, DRVH2  
–1 to 32  
DRVH1, DRVH2 (wrt SWx)  
DRVL1, DRVL2, VREG5  
PGND1, PGND2  
–0.3 to 6  
–0.3 to 6  
–0.3 to 0.3  
–40 to 85  
–55 to 150  
–40 to 150  
V
TA  
Operating ambient temperature range  
Storage temperature range  
°C  
°C  
°C  
TSTG  
TJ  
Junction temperature range  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
DISSIPATION RATING TABLE (2 OZ. TRACE AND COPPER PAD WITH SOLDER)  
TA < 25°C  
POWER RATING  
DERATING FACTOR  
ABOVE TA = 25°C  
TA = 85°C  
POWER RATING  
PACKAGE  
24 pin QFN  
2.33 W  
23.3 mW/°C  
7.8 mW/°C  
0.93 W  
0.31 W  
24 pin TSSOP  
0.778 W  
RECOMMENDED OPERATING CONDITIONS  
MIN  
4.5  
MAX UNIT  
VIN  
Supply input voltage range  
V5FILT  
24  
5.5  
30  
V
4.5  
VBST1, VBST2  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–1.8  
–0.1  
–0.1  
–0.1  
–0.1  
–40  
VBST1, VBST2 (wrt SWx)  
5.5  
5.5  
0.3  
24  
VFB1, VFB2, VO1, VO2, TEST1, TEST2  
Input voltage range  
Output voltage range  
V
TRIP1, TRIP2  
EN1, EN2  
SW1, SW2  
24  
DRVH1, DRVH2  
VBST1, VBST2 (wrt SWx)  
DRVL1, DRVL2, VREG5  
PGND1, PGND2  
30  
5.5  
5.5  
0.1  
85  
V
TA  
TJ  
Operating free-air temperature  
Operating junction temperature  
°C  
°C  
–40  
125  
ELECTRICAL CHARACTERISTICS  
over recommended free-air temperature range, VIN = 12 V (Unless otherwise noted)  
PARAMETER  
SUPPLY CURRENT  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN current, TA = 25°C, VREG5 tied to V5FLT, EN1 =  
EN2 = 5V, VFB1 = VFB2 = 0.8V, SW1 = SW2 = 0.5V  
IIN  
VIN supply current  
450  
30  
800  
60  
µA  
µA  
VIN current, TA = 25°C, No load, EN1 = EN2 = 0 V,  
VREG5 = ON  
IVINSDN  
VIN shutdown current  
4
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS53126  
TPS53126  
www.ti.com ........................................................................................................................................................................................................ SLUS909MAY 2009  
ELECTRICAL CHARACTERISTICS (continued)  
over recommended free-air temperature range, VIN = 12 V (Unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VFB VOLTAGE and DISCHARGE RESISTANCE  
Bandgap initial regulation  
VBG  
TA = 25°C  
-1.0%  
1.0%  
accuracy  
TA = 25°C, TEST2 = 0 V, SWinj = OFF  
TA = –40°C to 85°C, TEST2 = 0 V, SWinj = OFF(1)  
TA = 25°C, TEST2 = V5FILT, SWinj = OFF  
TA = –40°C to 85°C, TEST2 = V5FILT, SWinj = OFF(1)  
VFBx = 0.8 V, TA = 25°C  
755  
752  
748  
745  
765  
758  
775  
778  
768  
771  
±0.1  
80  
VVFBTHLx  
VFBx threshold voltage  
mV  
mV  
VVFBTHHx  
VFBx threshold voltage  
IVFB  
VFB input current  
–0.01  
40  
µA  
RDischg  
VO discharge resistance  
ENx = 0 V, VOx = 0.5 V, TA = 25°C  
VREG5 OUTPUT  
TA = 25°C, 5.5 V < VIN < 24 V,  
0 < IVREG5 < 10 mA  
VVREG5  
VREG5 output voltage  
4.8  
5.0  
5.2  
V
VLN5  
Line regulation  
Load regulation  
Output current  
5.5 V < VIN < 24 V, IVREG5 = 10 mA  
1 mA < IVREG5 < 10 mA  
20  
40  
mV  
mV  
mA  
VLD5  
IVREG5  
VIN = 5.5 V, VVREG5 = 4 V, TA = 25°C  
170  
OUTPUT: N-CHANNEL MOSFET GATE DRIVERS  
Source, IDRVHx = –100 mA  
Sink, IDRVHx = 100 mA  
Source, IDRVLx = –100 mA  
Sink, IDRVLx = 100 mA  
5.5  
2.5  
4
11  
5
RDRVH  
RDRVL  
TD  
DRVH resistance  
DRVL resistance  
Dead time  
8
2
4
DRVHx-low to DRVLx-on  
DRVLx-low to DRVHx-on  
20  
20  
50  
40  
80  
80  
ns  
INTERNAL BOOST DIODE  
VFBST  
Forward voltage  
VVREG5-VBSTx, IF = 10 mA, TA = 25°C  
VBSTx = 29 V, SWx = 24 V, TA = 25°C  
0.7  
0.8  
0.1  
0.9  
1
V
IVBSTLK  
VBST leakage current  
µA  
ON-TIME TIMER CONTROL  
TON1L  
TON2L  
TOFF1L  
TOFF2L  
TON1H  
TON2H  
CH1 on time  
SW1 = 12 V, VO1 = 1.8 V, TEST2 = 0 V  
490  
390  
285  
285  
165  
140  
ns  
ns  
ns  
ns  
ns  
ns  
CH2 on time  
SW2 = 12 V, VO2 = 1.8 V, TEST2 = 0 V  
CH1 min off time  
CH2 min off time  
CH1 on time  
SW1 = 0.7 V, TA = 25°C, VFB1 = 0.7 V, TEST2 = 0 V  
SW2 = 0.7 V, TA = 25°C, VFB2 = 0.7 V, TEST2 = 0 V  
SW1 = 12 V, VO1 = 1.8 V, TEST2 = V5FILT  
SW2 = 12 V, VO2 = 1.8 V, TEST2 = V5FILT  
CH2 on time  
SW1 = 0.7 V, TA = 25°C, VFB1 = 0.7 V, TEST2 =  
V5FILT  
TOFF1H  
TOFF2H  
SOFT START  
CH1 min off time  
216  
216  
ns  
ns  
SW2 = 0.7 V, TA = 25°C, VFB2 = 0.7 V, TEST2 =  
V5FILT  
CH2 min off time  
Tss  
Internal SS time  
Internal soft start VFBx = 0.735 V  
0.85  
1.2  
1.4  
ms  
V
UVLO  
Wake up  
3.7  
0.2  
4.0  
0.3  
4.3  
0.4  
VUV5VFILT V5FILT UVLO threshold  
Hysteresis  
LOGIC THRESHOLD  
VENH  
VENL  
ENx H-level input voltage  
ENx L-level input voltage  
EN  
EN  
2.0  
8.5  
V
V
0.3  
CURRENT SENSE  
ITRIP  
TRIP source current  
VTRIPx = 0.1 V, TA = 25°C  
10  
11.5  
µA  
(1) Ensured by design. Not production tested.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TPS53126  
TPS53126  
SLUS909MAY 2009........................................................................................................................................................................................................ www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
over recommended free-air temperature range, VIN = 12 V (Unless otherwise noted)  
PARAMETER  
CONDITIONS  
On the basis of 25°C(2)  
MIN  
TYP  
MAX  
UNIT  
TCITRIP  
ITRIP temperature coefficient  
4000  
ppm/°C  
(VTRIPx-GND-VPGNDx-SWx) voltage,  
VTRIPx-GND = 60 mV, TA = 25°C  
–15  
–20  
30  
0
15  
20  
VOCLoff  
OCP compensation offset  
mV  
mV  
(VTRIPx-GND-VPGNDx-SWx) voltage,  
VTRIPx-GND = 60 mV  
Current limit threshold setting  
range  
VRtrip  
VTRIPx-GND voltage  
300  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
VOVP  
Output OVP trip threshold  
Output OVP prop delay time  
OVP detect  
110% 115% 120%  
1.5  
TOVPDEL  
µs  
UVP detect  
65%  
70%  
10%  
30  
75%  
VUVP  
Output UVP trip threshold  
Output UVP delay time  
Hysteresis (recovery < 20 µs)  
TUVPDEL  
TUVPEN  
THERMAL SHUTDOWN  
17  
40  
µs  
Output UVP enable delay time UVP enable delay  
1.2  
2
2.5  
ms  
Shutdown temperature(3)  
Hysteresis(3)  
150  
20  
TSDN  
Thermal shutdown threshold  
°C  
(2) Ensured by design. Not production tested.  
(3) Ensured by design. Not production tested.  
DEVICE INFORMATION  
PIN FUNCTIONS  
PIN  
I/O  
DESCRIPTION  
QFN  
24  
TSSOP  
24  
NAME  
Supply input for high-side NFET driver (Boost Terminal). Bypass to SWx with a  
high-quality 0.1µF ceramic capacitor. An external schottky diode can be added if forward  
drop is critical to drive the high-side FET.  
VBST1,  
VBST2  
23, 8  
2, 11  
I
EN1, EN2  
VO1, VO2  
24, 7  
1, 6  
3, 10  
4, 9  
I
I
Channel 1 and channel 2 high level enable pins.  
Output voltage inputs for on-time adjustment and output discharge. Connect directly to the  
output voltage.  
VFB1,  
VFB2  
2, 5  
3
5, 8  
6
I
I
D-CAP2 feedback inputs. Connect to output voltage with resistor divider.  
GND  
Signal ground pin. Connect to PGND1, PGND2 and system ground at a single point.  
DRVH1,  
DRVH2  
High-side MOSFET gate driver outputs. SWx referenced drivers switch between SWx  
(OFF) and VBSTx (ON).  
22, 9  
21, 10  
20, 11  
1, 12  
24, 13  
23, 14  
O
SW1, SW2  
I/O Switch node connections for both the high-side drivers and the current comparators.  
DRVL1,  
DRVL2  
Low-side MOSFET gate driver outputs. PGND referenced drivers switch between PGNDx  
(OFF) and VREG5 (ON).  
O
PGND1,  
PGND2  
Power ground connections for both the low-side drivers and the current comparators.  
Connect PGND1, PGND2 and GND strongly together near the IC.  
19, 12  
22, 15  
I/O  
TRIP1,  
TRIP2  
Over current trip point programming pin. Connect to GND with a resistor to GND to set  
threshold for low-side RDS(on) current limit.  
18, 13  
17  
21, 16  
20  
I
VIN  
I
I
Supply Input for 5V linear regulator.  
5V supply input for the entire control circuit except the MOSFET drivers. Bypass to GND  
with a minimum 1.0µF, high-quality ceramic capacitor. V5FILT is connected to VREG5 via  
an internal 10resistor.  
V5FILT  
15  
16  
18  
19  
Output of 5V linear regulator and supply for MOSFET drivers. Bypass to GND with a  
minimum 4.7µF high-quality ceramic capacitor. VREG5 is connected to V5FILT via an  
internal 10resistor.  
VREG5  
O
6
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS53126  
TPS53126  
www.ti.com ........................................................................................................................................................................................................ SLUS909MAY 2009  
PIN FUNCTIONS (continued)  
PIN  
I/O  
DESCRIPTION  
QFN  
24  
TSSOP  
24  
NAME  
TEST1  
TEST2  
4
7
O
I
Test interface pin, not used during application. Connect directly to GND.  
Frequency select pin. Connect to GND for 350kHz switching. Connect to V5FILT for  
700kHz switching.  
14  
17  
QFN (RGE) Package  
(Top View)  
TSSOP (PW) Package  
(Top View)  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
DRVH1  
VBST1  
EN1  
SW1  
2
DRVL1  
PGND1  
TRIP1  
VIN  
3
4
VO1  
1
2
3
4
5
6
18  
VO1  
VFB1  
GND  
TRIP1  
VIN  
5
VFB1  
GND  
6
VREG5  
V5FILT  
TEST2  
TRIP2  
PGND2  
DRVL2  
SW2  
17  
16  
15  
14  
13  
7
TEST1  
VFB2  
VO2  
VREG5  
V5FILT  
TEST2  
TRIP2  
8
TEST1  
VFB2  
VO2  
9
10  
11  
12  
EN2  
VBST2  
DRVH2  
FUNCTIONAL BLOCK DIAGRAM  
VREG5  
4V/3.7V  
TSD  
V5FILT  
VO1  
VO2  
VBST1  
VBST2  
Ref  
Fault  
Sdn  
BGR  
Ref  
DRVH1  
DRVH2  
SW2  
Switcher Controller  
Switcher Controller  
SW1  
Fault  
Sdn  
DRVL1  
PGND1  
DRVL2  
PGND2  
EN/SS Control  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TPS53126  
TPS53126  
SLUS909MAY 2009........................................................................................................................................................................................................ www.ti.com  
–30%  
UV  
V5FILT  
GND  
OV  
15%  
Ref  
ERR  
SSx  
COMP  
V5OK  
VFBx  
VREG5  
GND  
Control Logic  
TRIPx  
VBSTx  
DRVHx  
SWx  
OCP  
LL  
1 Shot  
PGNDx  
XCON  
VREG5  
DRVLx  
PGNDx  
LLx  
VOx  
On/Off Time  
VOx  
Minimun On/Off  
OVP/UVP,  
Discharge  
Control  
Fault  
Sdn  
ENx  
PGNDx  
8
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS53126  
TPS53126  
www.ti.com ........................................................................................................................................................................................................ SLUS909MAY 2009  
DETAILED DESCRIPTION  
PWM OPERATION  
The main control loop of the TPS53126 is an adaptive on-time pulse width modulation (PWM) controller that  
supports a proprietary D-CAP2 mode control. D-CAP2 Mode control combines constant on-time control with an  
internal compensation circuit for pseudo-fixed frequency and low external component count configuration with  
both low ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal one  
shot timer expires. This one shot timer is set by the converter input voltage ,VIN, and the output voltage ,VO, to  
maintain a pseudo-fixed frequency over the input voltage range, hence it is called adaptive on-time control. The  
one-shot timer is reset and the high-side MOSFET is turned on again when the feedback voltage falls below the  
reference voltage. An internal ramp is added to the reference voltage to simulate output ripple, eliminating the  
need for ESR induced output ripple from D-CAP mode control.  
DRIVERS  
Each SMPS of the TPS53126 contains 2 high-current resistive MOSFET drivers. The Low-side driver is a ground  
referenced, VREG5 powered driver designed to drive the gate of a high-current, low RDS(on) N-channel MOSFET  
whose source is connected to PGND. The High-side Driver is a floating SW referenced VBST powered driver  
designed to drive the gate of a high-current, low RDS(on) N-channel MOSFET. To maintain the BST voltage during  
the high-side driver ON time, a capacitor is placed from SW to VBST. Each driver draws average current equal to  
Gate Charge (Qg AT Vgs = 5V) times Switching Frequency (fsw).  
To prevent cross-conduction, there is a narrow dead-time when both high-side and low-side drivers are OFF  
between each driver transition. During this time the inductor current is carried by one of the MOSFETs body  
diodes.  
PWM FREQUENCY AND ADAPTIVE ON-TIME CONTROL  
The TPS53126 uses an adaptive on-time control scheme and does not have a dedicated on board oscillator. The  
TPS53126 runs with pseudo-constant frequency by using the input voltage and output voltage to set the on-time  
one-shot timer. The on-time is inversely proportional to the input voltage and proportional to the output voltage,  
therefore, when the duty ratio is VOUT/VIN, the frequency is constant.  
5 VOLT REGULATOR  
The TPS53126 has an internal 5V Low-Dropout (LDO) Regulator to provide a regulated voltage for all four  
drivers and the ICs internal logic. A capacitor from VREG5 to GND is required to stabilize the internal regular. An  
internal 10resistor from VREG5 filters the regulator output to the IC’s analog and logic input voltage, V5FILT.  
An additional capacitor is required from V5FILT to GND to filter switching noise from VREG5.  
SOFT START  
The TPS53126 has an internal, 1.2ms, voltage servo soft-start for each channel. When the ENx pin becomes  
high, an internal DAC begins ramping up the reference voltage to the PWM comparator. Smooth control of the  
output voltage is maintained during start up. As the TPS53126 shares one DAC with both channels, if ENx pin is  
set to high while another channel is starting up, soft start is postponed until another channel soft start has  
completed. If both of EN1 and EN2 are set high at a same time, both channels start up at same time.  
PRE-BIAS SUPPORT  
The TPS53126 supports pre-bias start-up without sinking current from the output capacitor. When enabled, the  
low-side driver is held off until the soft-start commands a voltage higher than the pre-bias level (internal soft-start  
becomes greater than feedback voltage [VFB]), then the TPS53126 slowly activates synchronous rectification by  
limiting the first DRVL pulses with a narrow on-time. This limited on-time is then incremented on a cycle-by-cycle  
basis until it coincides with the full 1-D off-time. This scheme prevents the initial sinking of current from the  
pre-bias output, and ensure that the output voltage (VOUT) starts and ramps up smoothly into regulation and the  
control loop is given time to transition from pre-biased start-up to normal mode operation.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TPS53126  
TPS53126  
SLUS909MAY 2009........................................................................................................................................................................................................ www.ti.com  
SWITCHING FREQUENCY SELECTION  
The TPS53126 allows the user to select from 2 different switching frequencies by connecting the TEST2 pin to  
either GND or V5FILT. Connect TEST2 to GND for a switching frequency (fsw) of 350KHz. Connect TEST2 to  
V5FILT for a switching frequency of 700KHz.  
OUTPUT DISCHARGE CONTROL  
The TPS53126 discharges the outputs when ENx is low, or when the controller is turned off by the protection  
functions (OVP, UVP, UVLO, and thermal shutdown). The device discharges an output using an internal 40-Ω  
MOSFET which is connected to VOx and PGNDx. The external low-side MOSFET is not turned on during the  
output discharge operation to avoid the possibility of causing negative voltage at the output. This discharge  
ensures that, on start, the regulated voltage always initializes from zero volts.  
OVERCURRENT LIMIT  
The TPS53126 has a cycle-by-cycle over current limit feature. The over current limits the inductor valley current  
by monitoring the voltage drop across the low-side MOSFET RDS(on) during the low-side driver on-time. If the  
inductor current is larger than the over current limit (OCL), the TPS53126 delays the start of the next switching  
cycle until the sensed inductor current falls below the OCL current. MOSFET RDS(on) current sensing is used to  
provide an accuracy and cost effective solution without external devices. To program the OCL, the TRIPx pin  
should be connected to GND through a trip voltage setting resistor, according to the following equations.  
(VIN - Vo)  
VO  
Vtrip = IOCL ´ RDS(on)  
-
´
2 ´ L1 ´ ¦sw  
V
IN  
(1)  
Vtrip(mV)  
Rtrip(kW) =  
Itrip(mA)  
(2)  
The trip voltage should be between 30mV to 300mV over all operational temperature, including the 4000ppm/°C  
temperature slope compensation for the temperature dependency of the RDS(on). If the load current exceeds the  
over-current limit, the voltage will begin to drop. If the over-current conditions continues the output voltage will fall  
below the under voltage protection threshold and the TPS53126 will shut down.  
OVER/UNDER VOLTAGE PROTECTION  
The TPS53126 monitors the output voltage via the feedback voltage to detect over and under voltage. When the  
feedback voltage becomes higher than 115% of the reference voltage, the TPS53126 turns off the high-side  
MOSFET driver, turns on the low-side MOSFET driver and latches off.  
When the feedback voltage becomes lower than 70% of the reference voltage, the TPS53126 begins an internal  
UVP delay counter. After 30µs, the TPS53126 turns off both top and bottom MOSFET drivers and latches off.  
The UVP function is enabled approximately 2.0ms after power-on to prevent detecting UVP during soft-start.  
Both OVP and UVP latch conditions are reset when V5FILT triggers UVLO or the ENx pin goes low.  
UVLO PROTECTION  
The TPS53126 has under voltage lock out protection (UVLO) that monitors the voltage of V5FILT pin. When the  
V5FILT voltage is lower than UVLO threshold voltage, the device is shut off. During shut-off, VREG5 and all  
output drivers are OFF and output discharge is ON. The UVLO is non-latch protection.  
THERMAL SHUTDOWN  
The TPS53126 includes an over temperature protection shut-down feature. If the TPS53126 die temperature  
exceeds the OTP threshold (typically 150°C), both the high-side and low-side drivers are shut off, the output  
voltage discharge function is enabled and then the device is shut off until the die temperature drops. Thermal  
shutdown is a non-latch protection.  
10  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS53126  
TPS53126  
www.ti.com ........................................................................................................................................................................................................ SLUS909MAY 2009  
TYPICAL CHARACTERISTICS  
VIN SUPPLY CURRENT  
vs  
JUNCTION TEMPERATURE  
VIN SHUTDOWN CURRENT  
vs  
JUNCTION TEMPERATURE  
60  
50  
40  
30  
20  
10  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
−50  
0
50  
100  
150  
−50  
0
50  
100  
150  
T − Junction Temperature − °C  
J
T − Junction Temperature − °C  
J
G001  
G002  
Figure 1.  
Figure 2.  
TRIP SOURCE CURRENT  
vs  
JUNCTION TEMPERATURE  
VREG5 VOLTAGE  
vs  
JUNCTION TEMPERATURE  
20  
15  
10  
5
5.07  
5.06  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
0
−50  
0
50  
100  
150  
−50  
0
50  
100  
150  
T − Junction Temperature − °C  
J
T − Junction Temperature − °C  
J
G003  
G004  
Figure 3.  
Figure 4.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TPS53126  
TPS53126  
SLUS909MAY 2009........................................................................................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VREG5 VOLTAGE  
vs  
INPUT VOLTAGE  
VFB1 VOLTAGE (CH1 = 1.8 V, IO = 4 A)  
vs  
JUNCTION TEMPERATURE  
5.5  
5.3  
5.1  
4.9  
4.7  
4.5  
0.800  
0.795  
0.790  
0.785  
0.780  
0.775  
0.770  
0.765  
0.760  
0.755  
0.750  
I
= 4A  
OUT  
VO1 = 1.8V  
TEST2 = GND  
0
5
10  
15  
20  
25  
−50  
0
50  
100  
150  
V
IN  
− Input Voltage − V  
T − Junction Temperature − °C  
J
G005  
G006  
Figure 5.  
Figure 6.  
VFB2 VOLTAGE (CH2 = 1.05 V, IO = 4 A)  
VFB1 VOLTAGE (CH1 = 1.8 V, IO = 4 A)  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
0.800  
0.795  
0.790  
0.785  
0.780  
0.775  
0.770  
0.765  
0.760  
0.755  
0.750  
0.800  
0.795  
0.790  
0.785  
0.780  
0.775  
0.770  
0.765  
0.760  
0.755  
0.750  
I
= 4A  
I
= 4A  
OUT  
OUT  
VO2 = 1.05V  
VO1 = 1.8V  
TEST2 = GND  
TEST2 = V5FILT  
−50  
0
50  
100  
150  
−50  
0
50  
100  
150  
T − Junction Temperature − °C  
J
T − Junction Temperature − °C  
J
G007  
G008  
Figure 7.  
Figure 8.  
12  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS53126  
TPS53126  
www.ti.com ........................................................................................................................................................................................................ SLUS909MAY 2009  
TYPICAL CHARACTERISTICS (continued)  
VFB2 VOLTAGE (CH2 = 1.05 V, IO = 4 A)  
VFB1 VOLTAGE (CH1 = 1.8 V)  
vs  
vs  
JUNCTION TEMPERATURE  
INPUT VOLTAGE  
0.800  
0.795  
0.790  
0.785  
0.780  
0.775  
0.770  
0.765  
0.760  
0.755  
0.750  
0.800  
0.795  
0.790  
0.785  
0.780  
0.775  
0.770  
0.765  
0.760  
0.755  
0.750  
I
= 4A  
VO1 = 1.8V  
OUT  
VO2 = 1.05V  
TEST2 = GND  
TEST2 = V5FILT  
−50  
0
50  
100  
150  
0
5
10  
15  
20  
25  
T − Junction Temperature − °C  
J
V
IN  
− Input Voltage − V  
G009  
G010  
Figure 9.  
Figure 10.  
VFB2 VOLTAGE (CH2 = 1.05 V)  
VFB1 VOLTAGE (CH1 = 1.8 V)  
vs  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
0.800  
0.795  
0.790  
0.785  
0.780  
0.775  
0.770  
0.765  
0.760  
0.755  
0.750  
0.800  
0.795  
0.790  
0.785  
0.780  
0.775  
0.770  
0.765  
0.760  
0.755  
0.750  
VO2 = 1.05V  
VO1 = 1.8V  
TEST2 = GND  
TEST2 = V5FILT  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
V
IN  
− Input Voltage − V  
V
IN  
− Input Voltage − V  
G011  
G012  
Figure 11.  
Figure 12.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TPS53126  
TPS53126  
SLUS909MAY 2009........................................................................................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
VFB2 VOLTAGE (CH2 = 1.05 V)  
vs  
INPUT VOLTAGE  
0.800  
VO2 = 1.05V  
0.795  
0.790  
0.785  
0.780  
0.775  
TEST2 = V5FILT  
0.770  
0.765  
0.760  
0.755  
0.750  
0
5
10  
15  
20  
25  
V
IN  
− Input Voltage − V  
G013  
Figure 13.  
TYPICAL APPLICATION PERFORMANCE  
SWITCHING FREQUENCY (IO1 = 3A)  
SWITCHING FREQUENCY (IO2 = 3A)  
vs  
vs  
INPUT VOLTAGE (CH1)  
INPUT VOLTAGE (CH2)  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
TEST2 = V5FILT  
TEST2 = V5FILT  
TEST2 = GND  
TEST2 = GND  
I
= 3A  
I
= 3A  
OUT  
OUT  
VO1 = 1.8V  
VO2 = 1.05V  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
V
IN  
− Input Voltage − V  
V
IN  
− Input Voltage − V  
G014  
G015  
Figure 14.  
Figure 15.  
14  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS53126  
TPS53126  
www.ti.com ........................................................................................................................................................................................................ SLUS909MAY 2009  
TYPICAL APPLICATION PERFORMANCE (continued)  
OUTPUT VOLTAGE (VIN = 12V)  
vs  
OUTPUT VOLTAGE (VIN = 12V)  
vs  
OUTPUT CURRENT (CH1)  
OUTPUT CURRENT (CH2)  
1.85  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
1.10  
1.09  
1.08  
1.07  
1.06  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
TEST2 = V5FILT  
TEST2 = GND  
TEST2 = V5FILT  
TEST2 = GND  
VIN = 12V  
VO1 = 1.8V  
VIN = 12V  
VO2 = 1.05V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
I
− Output Current − A  
I
− Output Current − A  
OUT  
OUT  
G016  
G017  
Figure 16.  
Figure 17.  
VO1 (50mV/div)  
VO1 (50mV/div)  
TEST2 = V5FILT  
700kHz Selection  
TEST2 = GND  
350kHz Selection  
Iout1 (2A/div)  
Iout1 (2A/div)  
t − time − 100µs/div  
C
OUT  
= 22µF × 2  
t − time − 100µs/div  
C
OUT  
= 22µF × 4  
G019  
G018  
Figure 18. 1.8V LOAD TRANSIENT RESPONSE  
(CH1,TEST2 = GND)  
Figure 19. 1.8V LOAD TRANSIENT RESPONSE  
(CH1,TEST2 = V5FILT)  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TPS53126  
TPS53126  
SLUS909MAY 2009........................................................................................................................................................................................................ www.ti.com  
TYPICAL APPLICATION PERFORMANCE (continued)  
VO2 (50mV/div)  
VO2 (50mV/div)  
TEST2 = GND  
350kHz Selection  
TEST2 = V5FILT  
700kHz Selection  
Iout2 (2A/div)  
Iout2 (2A/div)  
t − time − 100µs/div  
C
OUT  
= 22µF × 4  
t − time − 100µs/div  
C
OUT  
= 22µF × 2  
G020  
G021  
Figure 20. 1.05V LOAD TRANSIENT RESPONSE  
(CH2,TEST2 = V5FILT)  
Figure 21. 1.05V LOAD TRANSIENT RESPONSE  
(CH2,TEST2 = V5FILT)  
EN2 (5V/div)  
EN1 (10V/div)  
VO2 (0.2V/div)  
VO1 (0.5V/div)  
TEST2 = GND  
350kHz Selection  
TEST2 = V5FILT  
700kHz Selection  
G022  
G023  
Figure 22. 1.8V START-UP WAVEFORMS  
Figure 23. 1.05V START-UP WAVEFORMS  
16  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS53126  
TPS53126  
www.ti.com ........................................................................................................................................................................................................ SLUS909MAY 2009  
TYPICAL APPLICATION PERFORMANCE (continued)  
1.8V EFFICIENCY (VIN = 12V)  
vs  
OUTPUT CURRENT (CH1)  
1.05V EFFICIENCY (VIN = 12V)  
vs  
OUTPUT CURRENT (CH2)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
TEST2 = GND  
350kHz Selection  
TEST2 = V5FILT  
700kHz Selection  
VIN = 12V  
VO1 = 1.8V  
VIN = 12V  
VO2 = 1.05V  
0
1
2
3
4
0
1
2
3
4
I
− Output Current − A  
I
− Output Current − A  
OUT  
OUT  
G024  
G025  
Figure 24.  
Figure 25.  
1.8V OUTPUT VOLTAGE (IO = 3A)  
1.05V OUTPUT VOLTAGE (IO = 3A)  
vs  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
1.90  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
1.15  
1.13  
1.11  
1.09  
1.07  
1.05  
1.03  
1.01  
0.99  
0.97  
0.95  
TEST2 = V5FILT  
TEST2 = GND  
TEST2 = V5FILT  
TEST2 = GND  
I
= 3A  
I
= 3A  
OUT  
OUT  
VO1 = 1.8V  
VO2 = 1.05V  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
V
IN  
− Input Voltage − V  
V
IN  
− Input Voltage − V  
G026  
G027  
Figure 26.  
Figure 27.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TPS53126  
TPS53126  
SLUS909MAY 2009........................................................................................................................................................................................................ www.ti.com  
TYPICAL APPLICATION PERFORMANCE (continued)  
VO1 (20mV/div)  
VO2 (20mV/div)  
TEST2 = GND  
350kHz Selection  
TEST2 = V5FILT  
700kHz Selection  
VO1 = 1.8V  
VO2 = 1.05V  
G028  
G029  
Figure 28. 1.8V OUTPUT RIPPLE VOLTAGE  
Figure 29. 1.05V OUTPUT RIPPLE VOLTAGE  
18  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS53126  
TPS53126  
www.ti.com ........................................................................................................................................................................................................ SLUS909MAY 2009  
APPLICATION INFORMATION  
Input Voltage  
4.5V to 24V  
C9  
10mF  
SGND  
R5  
10kW  
R2  
10kW  
R4  
3.52kW  
R1  
13kW  
PGND  
6
5
4
3
2
1
7
8
9
EN2  
EN1 24  
Q3  
FDS8878  
Q1  
FDS8878  
C2  
0.1mF  
C5  
0.1mF  
VBST2  
DRVH2  
VBST1 23  
DRVH1 22  
SW1 21  
C3  
10mF  
C6  
10mF  
L2  
SPM6530T  
1.5mH  
L1  
SPM6530T  
1.5mH  
PowerPAD  
TPS53126  
RGE  
(QFN)  
10 SW2  
VO2  
1.05V/4A  
VO1  
1.8V/4A  
C1  
22mF ´ 4  
Q4  
FDS8690  
Q2  
FDS8690  
11 DRVL2  
12 PGND2  
DRVL1 20  
PGND1 19  
C4  
22mF ´ 4  
13  
14  
15  
16  
17  
18  
R6  
3.3kW  
C7  
4.7mF  
R3  
4.7kW  
PGND  
PGND  
C8  
1mF  
PGND  
SGND  
Figure 30. Typical Application Circuit at 350kHz Switching Frequency Selection (TEST2 Pin = GND)  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TPS53126  
TPS53126  
SLUS909MAY 2009........................................................................................................................................................................................................ www.ti.com  
Input Voltage  
4.5V to 24V  
C9  
10mF  
SGND  
R5  
10kW  
R2  
10kW  
R4  
3.52kW  
R1  
13kW  
PGND  
6
5
4
3
2
1
7
8
9
EN2  
EN1 24  
Q3  
FDS8878  
Q1  
FDS8878  
C2  
0.1mF  
C5  
0.1mF  
VBST2  
DRVH2  
VBST1 23  
DRVH1 22  
SW1 21  
C3  
10mF  
C6  
10mF  
L2  
SPM6530T  
1.5mH  
L1  
SPM6530T  
1.5mH  
PowerPAD  
TPS53126  
RGE  
(QFN)  
10 SW2  
VO2  
1.05V/4A  
VO1  
1.8V/4A  
C1  
22mF ´ 4  
Q4  
FDS8690  
Q2  
FDS8690  
11 DRVL2  
12 PGND2  
DRVL1 20  
PGND1 19  
C4  
22mF ´ 4  
13  
14  
15  
16  
17  
18  
R6  
3.3kW  
C7  
4.7mF  
R3  
4.7kW  
PGND  
PGND  
C8  
1mF  
PGND  
SGND  
Figure 31. Typical Application Circuit at 700 kHz Switching frequency Selection (TEST2 Pin = V5FILT)  
Component Selection:  
1. Choose inductor.  
The inductance value is selected to provide approximately 30% peak to peak ripple current at maximum load.  
Larger ripple current increases output ripple voltage, improve S/N ratio and contribute to stable operation.  
Equation 3 can be used to calculate L1.  
V
- Vo1  
3 ´  
V
- Vo1  
(
)
(
Io1 ´ ¦sw  
)
´
IN(max)  
IN(max)  
Vo1  
Vo1  
L1 =  
´
=
IL1(ripple) ´ ƒsw  
V
V
IN(max)  
IN(max)  
(3)  
The inductors current ratings needs to support both the RMS (thermal) current and the Peak (saturation)  
current. The RMS and peak inductor current can be estimated as follows:  
V
- Vo1  
Vo1  
IN(max)  
IL1(ripple)  
IL1(peak)  
IL1(RMS)  
=
´
L1 ´ ¦sw  
V
IN(max)  
(4)  
Vtrip  
=
+ IL1(ripple)  
RDS(on)  
(5)  
(6)  
2
)
=
Io12 + 1  
I
(
L1(ripple)  
12  
Note: The calculation above shall serve as a general reference. To further improve transient response, the  
output inductance could be reduced further. This needs to be considered along with the selection of the  
output capacitor.  
2. Choose output capacitor.  
20  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS53126  
 
TPS53126  
www.ti.com ........................................................................................................................................................................................................ SLUS909MAY 2009  
The capacitor value and ESR determines the amount of output voltage ripple and load transient response.  
Recommend to use ceramic output capacitor.  
DIload2 ´ L1  
C1 =  
2 ´ Vo1 ´ DVos  
(7)  
ΔIload2 ´ L1  
C1 =  
2 ´ K ´ DVus  
(8)  
Where:  
Tmin(off)  
Ton1  
Ton1  
æ
ö
K = (V - Vo1) -  
´ Vo1 ´  
IN  
ç
÷
Ton1 + Tmin(off)  
è
ø
(9)  
IL1(ripple)  
1
C1 =  
´
8 Vo1(ripple)  
¦sw  
(10)  
Select the capacitance value greater than the largest value calculated from Equation 7, Equation 8 and  
Equation 10. The capacitance for C1 should be greater than 66 µF.  
Where:  
ΔVos = the allowable amount of overshoot voltage in load transition  
ΔVus = the allowable amount of undershoot voltage in load transition  
Tmin(off) = Min-off time  
3. Choose input capacitor.  
The TPS53126 requires an input decoupling capacitor and a bulk capacitor is needed depending on the  
application. A minimum 10-µF high-quality ceramic capacitor is recommended for the input capacitor. The  
capacitor voltage rating needs to be greater than the maximum input voltage.  
4. Choose bootstrap capacitor.  
The TPS53126 requires a bootstrap capacitor from SWx to VBSTx to provide the floating supply for the  
high-side drivers. A minimum 0.1-µF high-quality ceramic capacitor is recommended. The voltage rating  
should be greater than 6 V.  
5. Choose VREG5 and V5FILT capacitors.  
The TPS53126 requires both the VREG5 regulator and V5FILT input are bypassed. A minimum 4.7-µF  
high-quality ceramic capacitor must be connected between the VREG5 and GND for proper operation. A  
minimum 1.0-µF high-quality ceramic capacitor must be connected between the V5FILT and GND for proper  
operation. Both of these capacitors’ voltage ratings should be greater than 6 V.  
6. Choose output voltage divide resistors.  
The output voltage is set with a resistor divider from output voltage node to the VFBx pin. It is recommended  
to use 1% tolerance or better resisters. Select R2 between 10 kand 100 kand use Equation 11 and  
Equation 12 to calculate R1.  
æ
ç
ç
ç
ç
è
ö
÷
Vo1  
÷
R1 =  
-1 ´R2  
(TEST2=GND)  
VFB1  
÷
÷
ø
(ripple)  
0.765 +  
2
(11)  
(12)  
æ
ö
ç
÷
Vo1  
R1 = ç  
-1÷ ´R2  
(TEST2 = V5FILT)  
VFB1  
(ripple)  
ç
ç
è
÷
÷
ø
0.758 +  
2
Where:  
VFB1(ripple) = Ripple Voltage at VFB1  
7. Choose resister setting for over current limit.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TPS53126  
 
 
 
 
 
TPS53126  
SLUS909MAY 2009........................................................................................................................................................................................................ www.ti.com  
æ
ö
÷
ø
(V - Vo)  
VO  
IN  
Vtrip  
=
I
+
´
´ RDS(on)  
ç OCL  
2 ´ L1 ´ ¦sw  
V
IN  
è
(13)  
(14)  
Vtrip(mV)  
Rtrip(kW) =  
Itrip(mA)  
Where:  
RDS(on) = Low Side FET on-resistance  
Itrip = TRIP pin source current = 10 µA)  
IOCL = Over current limit  
LAYOUT SUGGESTIONS  
Keep the input switching current loop as small as possible.  
Place the input capacitor (C3,C6) close to the top switching FET. The output current loop should also  
be kept as small as possible.  
Keep the SW node as physically small and short as possible as to minimize parasitic capacitance and  
inductance and to minimize radiated emissions Kelvin connections should be brought from the  
output to the feedback pin (FBx) of the device.  
Keep analog and non-switching components away from switching components  
Make a single point connection from the signal ground to power ground  
Do not allow switching current to flow under the device  
22  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): TPS53126  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Jun-2009  
PACKAGING INFORMATION  
Orderable Device  
TPS53126PW  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TSSOP  
PW  
24  
24  
24  
24  
60 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TPS53126PWR  
TPS53126RGER  
TPS53126RGET  
TSSOP  
VQFN  
VQFN  
PW  
RGE  
RGE  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Jun-2009  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
TPS53126PWR  
TPS53126RGER  
TPS53126RGET  
TSSOP  
VQFN  
VQFN  
PW  
RGE  
RGE  
24  
24  
24  
2000  
3000  
250  
330.0  
330.0  
180.0  
16.4  
12.4  
12.4  
6.95  
4.3  
8.3  
4.3  
4.3  
1.6  
1.5  
1.5  
8.0  
8.0  
8.0  
16.0  
12.0  
12.0  
Q1  
Q2  
Q2  
4.3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Jun-2009  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS53126PWR  
TPS53126RGER  
TPS53126RGET  
TSSOP  
VQFN  
VQFN  
PW  
RGE  
RGE  
24  
24  
24  
2000  
3000  
250  
346.0  
346.0  
190.5  
346.0  
346.0  
212.7  
33.0  
29.0  
31.8  
Pack Materials-Page 2  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

TPS53126 替代型号

型号 制造商 描述 替代类型 文档
TPS53124 TI Dual Synchronous Step-Down Controller For Low-Voltage Power Rails 功能相似
TPS53125 TI DUAL SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS 功能相似
TPS53127 TI DUAL SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS 功能相似

TPS53126 相关器件

型号 制造商 描述 价格 文档
TPS53126PW TI DUAL SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS 获取价格
TPS53126PWR TI DUAL SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS 获取价格
TPS53126RGER TI DUAL SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS 获取价格
TPS53126RGET TI DUAL SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS 获取价格
TPS53127 TI DUAL SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS 获取价格
TPS53127PW TI DUAL SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS 获取价格
TPS53127PWR TI DUAL SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS 获取价格
TPS53127RGER TI DUAL SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS 获取价格
TPS53127RGET TI DUAL SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS 获取价格
TPS53127_1 TI DUAL SYNCHRONOUS STEP-DOWN CONTROLLER FOR LOW VOLTAGE POWER RAILS 获取价格

TPS53126 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6