TPS53515RVET [TI]

1.5V 至 18V、12A 同步 SWIFT™ 降压转换器 | RVE | 28 | -40 to 85;
TPS53515RVET
型号: TPS53515RVET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1.5V 至 18V、12A 同步 SWIFT™ 降压转换器 | RVE | 28 | -40 to 85

输入元件 开关 转换器
文件: 总31页 (文件大小:35297K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS53515  
www.ti.com.cn  
ZHCSBL7 AUGUST 2013  
高性能 12A 单通道同步降压转换器  
1
特性  
应用范围  
2
宽转换输入电压范围:  
1.5V 22V  
服务器和云计算负载点 (POL)  
I/O 电源  
打印机  
电信类  
VDD 输入电压:4.5V 25V  
输出电压范围:0.6V 5.5V  
带有 12A 持续输出电流的集成型功率金属氧化物半  
导体场效应晶体管 (MOSFET)  
说明  
支持所有陶瓷输出电容器  
TPS53515 是一款具有自适应接通时间 D-CAP3 模式  
控制的小尺寸、单通道降压转换器。 此器件为空间有  
限的电源系统提供易于使用且低外部组件数量。  
基准电压 600mV(耐受幅度 ±0.5%)  
内置 5V 低压降稳压器 (LDO)  
D-CAP3™ 100ns 负载阶跃响应模式  
自动跳跃 Eco-mode™ 用于轻负载有效性  
这个器件特有高性能集成 MOSFET,精准 0.5% 0.6V  
基准和集成的升压开关。 竞争优势包括极低外部组件  
数量、快速负载瞬态响应、自动跳跃模式运行、内部软  
启动控制,并且无需补偿。  
针对严格输出纹波和电压要求的连续传导模式  
(FCCM)  
具有八个可选择频率设置的自适应接通时间控制架  
转换输入电压范围介于 1.5V 22V 之间。 VDD 输入  
电压的范围介于 4.5V 25V 之间。输出电压范围为  
0.6V 5.5VTPS53515 采用 28 引脚 QFN 封装,  
额定温度范围介于 -40°C +85°C 之间。  
热关断  
预充电启动功能  
内置输出放电  
开漏电源正常输出  
集成升压开关  
内置保护:过压、欠压、过流  
3.5mm × 4.5mm 28 引脚四方扁平无引线 (QFN)  
封装  
PGOOD  
VIN  
23  
22  
21  
20  
19  
18  
17  
16  
15  
24 VO  
PGND 14  
PGND 13  
PGND 12  
PGND 11  
PGND 10  
25 TRIP  
26 DNC  
27 GND1  
28 GND2  
TPS53515  
1
2
3
4
5
6
7
8
9
VOUT  
Thermal Pad  
VREG  
EN  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
D-CAP3, Eco-mode are trademarks of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
English Data Sheet: SLUSBN5  
TPS53515  
ZHCSBL7 AUGUST 2013  
www.ti.com.cn  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
MIN  
UNIT  
MAX  
7.7  
30  
32  
36  
6
EN  
–0.3  
–3  
DC  
SW  
Transient < 10 nS  
–5  
VBST  
–0.3  
–0.3  
Input voltage range(2)  
VBST(3)  
V
V
VBST when transient < 10 nS  
VDD  
38  
28  
30  
6
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
VIN  
VO, FB, MODE, RF  
PGOOD  
7.7  
6
Output voltage range  
Temperature  
VREG, TRIP  
Junction, TJ  
Storage, Tstg  
150  
150  
°C  
°C  
–55  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.  
(2) All voltages are with respect to network ground terminal.  
(3) Voltage values are with respect to the SW terminal.  
THERMAL INFORMATION  
TPS53515  
THERMAL METRIC(1)  
RVE  
28 PINS  
37.5  
UNITS  
θJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
θJCtop  
θJB  
34.1  
18.1  
°C/W  
ψJT  
1.8  
ψJB  
18.1  
θJCbot  
2.2  
(1) 有关传统和全新热度量的更多信息,请参阅 IC 封装热度量 应用报告 (文献号:ZHCA543。  
(2) JESD51-2a 描述的环境中,按照 JESD51-7 的规定,在一个 JEDEC 标准高 K 电路板上进行仿真,从而获得自然对流条件下的结至环  
境热阻抗。  
(3) 通过在封装顶部模拟一个冷板测试来获得结至芯片外壳(顶部)的热阻。 不存在特定的 JEDEC 标准测试,但可在 ANSI SEMI 标准 G30-  
88 中找到内容接近的说明。  
(4) 按照 JESD51-8 中的说明,通过在配有用于控制 PCB 温度的环形冷板夹具的环境中进行仿真,以获得结至电路板的热阻。  
(5) 结至顶部的特征参数,( ψJT),估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第 7 章)中描述的程序从仿真数据中提取出该  
参数以便获得 θJA  
(6) 结至电路板的特征参数,(ψJB),估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第7 章)中描述的程序从仿真数据中提取出该  
参数以便获得 θJA  
(7) 通过在外露(电源)焊盘上进行冷板测试仿真来获得结至芯片外壳(底部)热阻。 不存在特定的 JEDEC 标准测试,但可在 ANSI SEMI  
标准 G30-88 中找到了内容接近的说明。  
间距  
2
Copyright © 2013, Texas Instruments Incorporated  
TPS53515  
www.ti.com.cn  
ZHCSBL7 AUGUST 2013  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.1  
–3  
MAX  
7
UNIT  
EN  
SW  
27  
28  
5.5  
25  
18  
5.5  
7
VBST  
VBST(1)  
–0.1  
–0.1  
4.5  
Input voltage range  
V
VDD  
VIN  
1.5  
VO, FB, MODE, RF  
PGOOD  
–0.1  
–0.1  
–0.1  
–40  
Output voltage range  
TA  
V
VREG, TRIP  
5.5  
85  
Operating free-air temperature  
°C  
(1) Voltage values are with respect to the SW pin.  
ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range, VREG = 5 V, EN = 5 V (unless otherwise noted)  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA = 25°C, No load  
Power conversion enabled (no switching)  
IVDD  
VDD bias current  
1350  
850  
1850  
µA  
TA = 25°C, No load  
Power conversion disabled  
IVDDSTBY  
IVIN(leak)  
VDD standby current  
VIN leakage current  
1150  
0.5  
µA  
µA  
VEN = 0 V  
VREF OUTPUT  
VVREF  
Reference voltage  
FB w/r/t GND, TA = 25°C  
597  
–0.7%  
–1%  
600  
603  
1.0%  
1%  
mV  
FB w/r/t GND, TJ = 0°C to 85°C  
FB w/r/t GND, TJ = –40°C to 85°C  
VVREFTOL Reference voltage tolerance  
OUTPUT VOLTAGE  
IFB  
FB input current  
VFB = 600 mV  
50  
12  
100  
15  
nA  
IVODIS  
VO discharge current  
VVO = 0.5 V, Power Conversion Disabled  
10  
mA  
SMPS FREQUENCY  
VIN = 12 V, VVO = 3.3 V, RDR < 0.041  
VIN = 12 V, VVO = 3.3 V, RDR = 0.096  
VIN = 12 V, VVO = 3.3 V, RDR = 0.16  
VIN = 12 V, VVO = 3.3 V, RDR = 0.229  
VIN = 12 V, VVO = 3.3 V, RDR = 0.297  
VIN = 12 V, VVO = 3.3 V, RDR = 0.375  
VIN = 12 V, VVO = 3.3 V, RDR = 0.461  
VIN = 12 V, VVO = 3.3 V, RDR > 0.557  
TA = 25°C(2)  
250  
300  
400  
500  
600  
750  
850  
1000  
60  
fSW  
VO switching frequency(1)  
kHz  
tON(min)  
Minimum on-time  
Minimum off-time  
ns  
ns  
tOFF(min)  
TA = 25°C  
175  
240  
310  
INTERNAL BOOTSTRAP SW  
VF  
Forward Voltage  
VVREG–VBST, TA = 25°C, IF = 10 mA  
TA = 25°C, VVBST = 33 V, VSW = 28 V  
0.15  
0.01  
0.25  
1.5  
V
IVBST  
VBST leakage current  
µA  
(1) Resistor divider ratio (RDR) is described in Equation 1.  
(2) Specified by design. Not production tested.  
Copyright © 2013, Texas Instruments Incorporated  
3
TPS53515  
ZHCSBL7 AUGUST 2013  
www.ti.com.cn  
ELECTRICAL CHARACTERISTICS (continued)  
over operating free-air temperature range, VREG = 5 V, EN = 5 V (unless otherwise noted)  
PARAMETER  
LOGIC THRESHOLD  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VENH  
EN enable threshold voltage  
EN disable threshold voltage  
EN hysteresis voltage  
1.3  
1.1  
1.4  
1.2  
0.22  
0
1.5  
1.3  
V
V
VENL  
VENHYST  
VENLEAK  
V
EN input leakage current  
–1  
1
µA  
SOFT START  
tSS  
Soft-start time(3)  
1
ms  
PGOOD COMPARATOR  
PGOOD in from higher  
104%  
89%  
113%  
80%  
4
108%  
92%  
116%  
84%  
6
111%  
96%  
PGOOD in from lower  
PGOOD out to higher  
PGOOD out to lower  
VPGTH  
VDDQ PGOOD threshold  
120%  
87%  
IPG  
PGOOD sink current  
PGOOD delay time  
VPGOOD = 0.5 V  
mA  
Delay tolerance for PGOOD going in  
Delay for PGOOD coming out  
VPGOOD = 5 V  
–20%  
20%  
1
tPGDLY  
IPGLK  
2
0
µs  
PGOOD leakage current  
–1  
µA  
CURRENT DETECTION  
RTRIP TRIP pin resistance range  
20  
10.1  
7.2  
70  
13.9  
11.0  
–8.5  
–6  
kΩ  
RTRIP = 52.3 kΩ  
RTRIP = 38 kΩ  
RTRIP = 52.3 kΩ  
RTRIP = 38 kΩ  
12.0  
9.1  
IOCL  
Current limit threshold, valley  
A
–15.3  
–12  
–11.9  
–9  
Negative current limit threshold,  
valley  
IOCLN  
VZC  
A
Zero cross detection offset  
0
mV  
PROTECTIONS  
Wake-up  
3.25  
3.05  
4.2  
3.34  
3.12  
4.3  
3.41  
3.19  
4.4  
VREG undervoltage-lockout  
(UVLO) threshold voltage  
VVREGUVLO  
V
V
Shutdown  
Wake-up (default)  
Shutdown  
VVDDUVLO VDD UVLO threshold voltage  
4
4.03  
120%  
4.16  
124%  
VOVP  
Overvoltage-protection (OVP)  
threshold voltage  
OVP detect voltage  
116%  
tOVPDLY  
VUVP  
OVP propagation delay  
With 100-mV overdrive  
UVP detect voltage  
300  
ns  
Undervoltage-protection (UVP)  
threshold voltage  
64%  
68%  
71%  
tUVPDLY  
UVP delay  
UVP filter delay  
1
ms  
°C  
THERMAL SHUTDOWN  
Shutdown temperature  
Hysteresis  
140  
40  
TSDN  
Thermal shutdown threshold(4)  
LDO VOLTAGE  
VREG  
LDO output voltage  
VIN = 12 V, ILOAD = 10 mA  
VIN = 4.5 V, ILOAD = 30 mA, TA = 25°C  
VIN = 12 V, TA = 25°C  
4.65  
170  
5
5.45  
365  
V
VDOVREG  
ILDOMAX  
LDO low droop drop-out voltage  
LDO over-current limit  
mV  
mA  
200  
INTERNAL MOSFETS  
RDS(on)H High-side MOSFET on-resistance  
RDS(on)L Low-side MOSFET on-resistance  
13.8  
5.9  
18  
8
mΩ  
mΩ  
(3) tSS = 4 ms typical for the special trimming option.  
(4) Specified by design. Not production tested.  
4
Copyright © 2013, Texas Instruments Incorporated  
TPS53515  
www.ti.com.cn  
ZHCSBL7 AUGUST 2013  
DEVICE INFORMATION  
QFN  
28-PIN  
(TOP VIEW)  
28  
27  
26  
25  
24  
1
2
3
4
5
6
7
8
9
23  
22  
21  
20  
19  
18  
17  
16  
15  
RF  
PGOOD  
EN  
FB  
GND  
MODE  
VREG  
VDD  
NC  
VBST  
NC  
TPS53515  
SW  
SW  
VIN  
SW  
VIN  
Thermal Pad  
SW  
VIN  
10  
11  
12  
13  
14  
PIN DESCRIPTIONS  
PIN  
I/O(1) DESCRIPTION  
NAME  
EN  
NO.  
3
I
I
The enable pin turns on the DC-DC switching converter.  
FB  
23  
VOUT feedback input. Connect this pin to a resistor divider between the VOUT pin and GND.  
This pin is the ground of internal analog circuitry and driver circuitry. Connect GND to the PGND plane  
with a short trace (For example, connect this pin to the thermal pad with a single trace and connect the  
thermal pad to PGND pins and PGND plane).  
GND  
22  
G
GND1  
GND2  
27  
28  
G
G
Connect this pin to ground. GND1 is the input of unused internal circuitry and must connect to ground.  
Connect this pin to ground. GND2 is the input of unused internal circuitry and must connect to ground.  
The MODE pin sets the forced continuous-conduction mode (FCCM) or Skip-mode operation. It also  
selects the ramp coefficient of D-CAP3 mode.  
MODE  
21  
I
5
NC  
O
Not connected. These pins are floating internally.  
18  
26  
10  
11  
12  
13  
14  
DNC  
Do not connect. This pin is the output of unused internal circuitry and must be floating.  
PGND  
G
These ground pins are connected to the return of the internal low-side MOSFET.  
Open-drain power-good status signal which provides startup delay after the FB voltage falls within the  
specified limits. After the FB voltage moves outside the specified limits, PGOOD goes low within 2 µs.  
PGOOD  
RF  
2
1
O
I
RF is the SW-frequency configuration pin. Connect this pin to a resistor divider between VREG and  
GND to program different SW frequency settings.  
6
7
8
9
SW  
B
SW is the output switching terminal of the power converter. Connect this pin to the output inductor.  
(1) I = Input, O = Output, B = Bidirectional, P = Supply, G = Ground  
Copyright © 2013, Texas Instruments Incorporated  
5
TPS53515  
ZHCSBL7 AUGUST 2013  
www.ti.com.cn  
PIN DESCRIPTIONS (continued)  
PIN  
I/O(1) DESCRIPTION  
NAME  
NO.  
TRIP is the OCL detection threshold setting pin. ITRIP = 10 µA at room temp, 3000 ppm/°C current is  
I/O sourced and sets the OCL trip voltage. See the Current Sense and Overcurrent Protection section for  
detailed OCP setting.  
TRIP  
25  
VBST is the supply rail for the high-side gate driver (boost terminal). Connect the bootstrap capacitor  
from this pin to the SW node. Internally connected to VREG via bootstrap PMOS switch.  
VBST  
VDD  
4
P
19  
15  
16  
17  
20  
24  
P
P
Power-supply input pin for controller. Input of the VREG LDO. The input range is from 4.5 to 25 V.  
VIN is the conversion power-supply input pins.  
VIN  
VREG  
VO  
O
I
VREG is the 5-V LDO output. This voltage supplies the internal circuitry and gate driver.  
VOUT voltage input to the controller.  
6
Copyright © 2013, Texas Instruments Incorporated  
TPS53515  
www.ti.com.cn  
ZHCSBL7 AUGUST 2013  
BLOCK DIAGRAM  
PGOOD  
+
+
0.6 V + 8/16%  
0.6 V ± 32%  
+
UV  
+
Delay  
Delay  
VREG  
OV  
0.6 V ± 8/16%  
0.6 V+20%  
Internal Ramp  
Control Logic  
RF  
0.6 V  
SS  
UVP / OVP  
Logic  
+
+
PWM  
OCP  
VBST  
VIN  
VFB  
10 µA  
GND  
+
+
1 SHOT  
TRIP  
LL  
SW  
XCON  
+
ZC  
Control  
Logic  
PGND  
PGND  
VO  
SW  
xꢀ On/Off time  
xꢀ Minimum On/Off  
xꢀ Light load  
xꢀ OVP/UVP  
xꢀ FCCM/SKIP  
xꢀ Soft-Start  
FCCM / SKIP  
RC time Constant  
MODE  
Fault  
Shut Down  
LDO  
VREG  
VDD  
+
VREGOK  
3.34 V /  
3.12 V  
+
+
EN  
VDDOK  
THOK  
Enable  
4.3 V /  
4.03 V  
1.4 V / 1.2 V  
+
140°C /  
100°C  
GND  
GND1  
GND2  
NC  
TPS53515  
Copyright © 2013, Texas Instruments Incorporated  
7
TPS53515  
ZHCSBL7 AUGUST 2013  
www.ti.com.cn  
APPLICATION CIRCUIT DIAGRAM  
R1  
6.65 NŸꢀ  
PGOOD  
R2  
C3  
C4  
2 kŸꢀꢀ  
1 µF  
1 µF  
Thermal  
Pad  
VIN  
CIN  
R6  
150 NŸꢀ  
CIN  
2.2 nF  
23  
22  
21  
20  
19  
18  
17  
16  
15  
3 × 22 µF  
24 VO  
PGND 14  
PGND 13  
PGND 12  
PGND 11  
PGND 10  
25 TRIP  
26 DNC  
27 GND1  
28 GND2  
R8  
34.8 NŸꢀ  
TPS53515  
1
2
3
4
5
6
7
8
9
PIMB065T±1R0MS-63  
VOUT  
R4  
249 NŸꢀ  
R10  
100 NŸꢀ  
1 µH  
R7  
C2  
R3  
3 Ÿꢀ  
Thermal Pad  
0 Ÿꢀꢀ 0.1 µF  
COUT  
COUT  
4 × 10 µF  
6 × 22 µF  
R5  
105 NŸꢀ  
VREG  
EN  
C1  
470 pF  
Figure 1. Typical Application Circuit Diagram  
8
Copyright © 2013, Texas Instruments Incorporated  
 
TPS53515  
www.ti.com.cn  
ZHCSBL7 AUGUST 2013  
TYPICAL CHARACTERISTICS  
100  
90  
100  
90  
80  
80  
fSW = 500 KHz, VIN = 12 V, VDD = 5 V  
TA = 25°C, L OUT = 1 H, Mode = Auto-skip  
fSW = 500 KHz, VIN = 12 V, VDD = 5 V  
TA = 25°C, L OUT = 1 H, Mode = FCCM  
70  
70  
60  
V
VOUT = 0.6 V  
VOUT = 1 V  
VOUT= 1.5 V  
V
VOUT = 0.6 V  
VOUT = 1 V  
VOUT= 1.5 V  
V= 1.2 V  
V= 1.2 V  
OUT  
OUT  
V
OUT  
= 1.8 V  
V
= 2.5 V  
V
OUT  
= 1.8 V  
V
= 2.5 V  
OUT  
OUT  
V
= 3.3 V  
V
= 5 V  
V
= 3.3 V  
V
= 5 V  
OUT
OUT
OUT  
OUT  
60  
0
2
4
6
8
10  
12  
0
0
0
2
4
6
8
10  
12  
Output Current (A)  
Output Current (A)  
C003  
C004  
Figure 2. Efficiency vs. Output Current  
Figure 3. Efficiency vs. Output Current  
100  
90  
100  
90  
80  
70  
60  
50  
80  
70  
fSW = 1 MHz, VIN = 12 V, VDD = 5 V  
TA = 25°C, L OUT = 1 H, Mode = Auto-Skip  
fSW = 1 MHz, VIN = 12 V, VDD = 5 V  
TA = 25°C, L OUT = 1 H, Mode = FCCM  
VOUT = 0.6 V  
VOUT = 0.6 V  
VOUT = 1 V  
VOUT = 1 V  
60  
V
= 1.2 V  
V
= 1.5 V  
= 2.5 V  
= 5 V  
V
= 1.2 V  
V
= 1.5 V  
= 2.5 V  
= 5 V  
OUT
OUT
OUT  
OUT  
V
= 1.8 V  
= 3.3 V  
V
V
= 1.8 V  
= 3.3 V  
V
OUT
OUT
OUT
OUT
V
V
V
V
OUT
OUT
OUT
OUT
50  
0
2
4
6
8
10  
12  
2
4
6
8
10  
12  
Output Current (A)  
Output Current (A)  
C005  
C006  
Figure 4. Efficiency vs. Output Current  
Figure 5. Efficiency vs. Output Current  
1.3  
1.25  
1.2  
1.3  
1.25  
1.2  
fSW = 500 KHz  
VDD = 5 V  
VOUT = 1.2 V  
TA = 25°C  
LOUT = 1 H  
fSW = 1 MHz  
VDD = 5 V  
VOUT = 1.2 V  
TA = 25°C  
LOUT = 1 H  
Mode = Auto-skip  
Mode = Auto-skip  
1.15  
1.15  
1.1  
VIN=5V
VIN=5V
VIN = 12 V  
VIN = 12 V  
VIN = 18 V  
VIN = 18 V  
10 12  
1.1  
0
2
4
6
8
10  
12  
2
4
6
8
Output Current (A)  
Output Current (A)  
C007  
C008  
Figure 6. Output Voltage vs. Output Current  
Figure 7. Output Voltage vs. Output Current  
Copyright © 2013, Texas Instruments Incorporated  
9
TPS53515  
ZHCSBL7 AUGUST 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
1.3  
1.25  
1.2  
1.3  
fSW = 500 KHz  
VDD = 5 V  
TA = 25°C  
fSW = 1 MHz  
VDD = 5 V  
TA = 25°C  
LOUT = 1 H  
Mode = FCCM  
VOUT = 1.2 V  
LOUT = 1 H  
Mode = FCCM  
VOUT = 1.2 V  
1.25  
1.2  
1.15  
1.1  
1.15  
1.1  
VIN=5V
VIN=5V
VIN = 12 V  
VIN = 12 V  
VIN = 18 V  
VIN = 18 V  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Output Current (A)  
Output Current (A)  
C009  
C010  
Figure 8. Output Voltage vs. Output Current  
Figure 9. Output Voltage vs. Output Current  
1200  
1000  
800  
600  
550  
500  
450  
400  
fSW = 500 kHz  
VDD = 5 V  
VOUT = 1.2 V  
TA = 25°C  
LOUT = 1 H  
Mode = FCCM  
VIN = 12 V, VDD = 5 V, TA = 25°C  
LOUT = 1 H, Mode = FCCM, VOUT = 1.2 V  
fSW = 250 KHz  
fSW=500KHz
fSW=1MHz
600  
VIN=5V
400  
VIN = 12 V  
VIN = 18 V  
200  
1
2
3
4
5
6
7
8
9
10 11 12  
1
2
3
4
5
6
7
8
9
10 11 12  
Output Current (A)  
Output Current (A)  
C011  
C012  
Figure 10. Switching Frequency vs. Output Current  
Figure 11. Switching Frequency vs. Output Current  
100  
85  
70  
55  
40  
25  
100  
85  
70  
55  
40  
25  
VIN = VDD = 18 V  
VOUT = 1.2 V  
fSW = 1 MHz  
LOUT = 1 µH  
VIN = VDD = 18 V  
VOUT = 5 V  
fSW = 1 MHz  
LOUT = 1 µH  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
Output Current (A)  
Output Current (A)  
C001  
C002  
Figure 12. Safe Operating Area, VOUT = 1.2 V  
Figure 13. Safe Operating Area, VOUT = 5 V  
10  
Copyright © 2013, Texas Instruments Incorporated  
TPS53515  
www.ti.com.cn  
ZHCSBL7 AUGUST 2013  
TYPICAL CHARACTERISTICS (continued)  
VIN = 12 V  
VIN = 12 V  
VOUT = 1.2 V  
Fsw = 1 MHz  
VOUT = 1.2 V  
Fsw = 1 MHz  
Mode = Auto-skip  
IOUT = 0 A  
Mode = FCCM  
IOUT = 0 A  
Figure 14. Auto-Skip Steady-State Operation  
Figure 15. FCCM Steady-State Operation  
VIN = 12 V  
VIN = 12 V  
VOUT = 1.2 V  
Fsw = 1 MHz  
VOUT = 1.2 V  
Fsw = 1 MHz  
Mode = Auto-skip  
IOUT = 0.1 A  
Mode = FCCM  
IOUT = 0.1 A  
Figure 16. Auto-Skip Steady-State Operation  
Figure 17. FCCM Steady-State Operation  
VIN = 12 V  
VIN = 12 V  
VOUT = 1.2 V  
Fsw = 1 MHz  
VOUT = 1.2 V  
Fsw = 1 MHz  
Mode = Auto-skip  
IOUT = 6 A  
Mode = FCCM  
IOUT = 6 A  
Figure 18. Auto-Skip Steady-State Operation  
Figure 19. FCCM Steady-State Operation  
Copyright © 2013, Texas Instruments Incorporated  
11  
TPS53515  
ZHCSBL7 AUGUST 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
VIN = 12 V  
VIN = 12 V  
VOUT = 1.2 V  
Fsw = 1 MHz  
VOUT = 1.2 V  
Fsw = 1 MHz  
Mode = Auto-skip  
Idyn = 0 A to 6 A  
Mode = FCCM  
Idyn = 0 A to 6 A  
Figure 20. Auto-Skip Mode Load Transient  
Figure 21.  
VIN = 12 V  
VIN = 12 V  
VOUT = 1.2 V  
Fsw = 1 MHz  
VOUT = 1.2 V  
Fsw = 1 MHz  
Mode = Auto-skip  
IOUT = 0 A  
Mode = FCCM  
IOUT = 0 A  
Figure 22. Start-Up  
Figure 23. Start-Up  
VIN = 12 V  
VIN = 12 V  
VOUT = 1.2 V  
Fsw = 1 MHz  
VOUT = 1.2 V  
Fsw = 1 MHz  
Mode = Auto-skip  
IOUT = 6 A  
Mode = FCCM  
IOUT = 6 A  
Figure 24. Start-Up  
Figure 25. Start-Up  
12  
Copyright © 2013, Texas Instruments Incorporated  
TPS53515  
www.ti.com.cn  
ZHCSBL7 AUGUST 2013  
TYPICAL CHARACTERISTICS (continued)  
VIN = 12 V  
VIN = 12 V  
VOUT = 1.2 V  
Fsw = 1 MHz  
VOUT = 1.2 V  
Fsw = 1 MHz  
Mode = Auto-skip  
IOUT = 0 A  
Mode = FCCM  
IOUT = 0 A  
Figure 26. Shut-Down Operation  
Figure 27. Shut-Down Operation  
VIN = 12 V  
VIN = 12 V  
VOUT = 1.2 V  
Fsw = 1 MHz  
VOUT = 1.2 V  
Fsw = 1 MHz  
Mode = Auto-skip  
IOUT = 6 A  
Mode = FCCM  
IOUT = 6 A  
Figure 28. Shut-Down Operation  
Figure 29. Shut-Down Operation  
VIN = 12 V  
VOUT = 1.2 V  
Fsw = 500 KHz  
Mode = Auto-skip  
IOUT = 0 A  
VIN = 12 V  
VOUT = 1.2 V  
Fsw = 1 MHz  
Mode = Auto-skip  
IOUT = 0 A  
Pre-bias = 0.6 V  
Figure 30. Pre-Bias Operation  
Figure 31. Overvoltage Protection  
Copyright © 2013, Texas Instruments Incorporated  
13  
TPS53515  
ZHCSBL7 AUGUST 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
VIN = 12 V  
VOUT = 1.2 V  
Fsw = 500 MHz  
Mode = FCCM  
Figure 32. Overcurrent Protection  
14  
Copyright © 2013, Texas Instruments Incorporated  
TPS53515  
www.ti.com.cn  
ZHCSBL7 AUGUST 2013  
APPLICATION INFORMATION  
General Description  
The TPS53515 is a high-efficiency, single-channel, synchronous-buck converter. The device suits low-output  
voltage point-of-load applications with 12-A or lower output current in computing and similar digital consumer  
applications. The TPS53515 features proprietary D-CAP3 mode control combined with adaptive on-time  
architecture. This combination builds modern low-duty-ratio and ultra-fast load-step-response DC-DC converters  
in an ideal fashion. The output voltage ranges from 0.6 V to 5.5 V. The conversion input voltage ranges from 1.5  
V to 22 V and the VDD input voltage ranges from 4.5 V to 25 V. The D-CAP3 mode uses emulated current  
information to control the modulation. An advantage of this control scheme is that it does not require a phase-  
compensation network outside which makes the device easy-to-use and also allows low-external component  
count. Adaptive on-time control tracks the preset switching frequency over a wide range of input and output  
voltage while increasing switching frequency as needed during load-step transient.  
Frequency Selection  
TPS53515 allows users to select the switching frequency by using the RF pin. Table 1 lists the divider ratio and  
some example resistor values for the switching frequency selection. The 1% tolerance resistors with a typical  
temperature coefficient of ±100 ppm/ºC are recommended. If the design requires a tighter noise margin for more  
reliable SW-frequency detection, use higher performance resistors.  
Table 1. Switching Frequency Selection  
SWITCHING  
FREQUENCY  
(fSW) (kHz)  
RESISTOR  
EXAMPLE RF FREQUENCY COMBINATIONS  
DIVIDER RATIO(1)  
RRF_H (kΩ)  
RRF_L (kΩ)  
(RDR  
)
1000  
850  
750  
600  
500  
400  
300  
250  
> 0.557  
0.461  
0.375  
0.297  
0.229  
0.16  
1
300  
154  
120  
105  
71.5  
47.5  
27  
180  
200  
249  
240  
249  
255  
270  
0.096  
< 0.041  
11.5  
(1) Resistor divider ratio (RDR) is described in Equation 1.  
space  
RDR  
RRF _L  
=
R
(
+ RRF _H  
)
RF _L  
where  
RRF_L is the low-side resistance of the RF pin resistor divider  
RRF_H is the high-side resistance of the RF pin resistor divider  
(1)  
Copyright © 2013, Texas Instruments Incorporated  
15  
 
 
TPS53515  
ZHCSBL7 AUGUST 2013  
www.ti.com.cn  
D-CAP3 Control and Mode Selection  
RR  
SW  
To comparator  
CR  
VOUT  
Figure 33. Internal RAMP Generation Circuit  
The TPS53515 uses D-CAP3 mode control to achieve fast load transient while maintaining the ease-of-use  
feature. An internal RAMP is generated and fed to the VFB pin to reduce jitter and maintain stability. The  
amplitude of the ramp is determined by the R-C time-constant as shown in Figure 33. At different switching  
frequencies, (fSW) the R-C time-constant varies to maintain relatively constant RAMP amplitude.  
Select a MODE pin configuration as shown in Table 2 to double the R-C time-constant option. The MODE pin  
also selects Skip-mode or FCCM-mode operation.  
D-CAP3 Mode  
From small-signal loop analysis, a buck converter using the D-CAP3 mode control architecture can be simplified  
as shown in Figure 34.  
VO  
SW  
CC1  
RC1  
VIN  
CC2  
RC2  
Sample  
and Hold  
DRVH  
PWM  
Comparator  
Lx  
RFBH  
Control  
Logic  
and  
G
+
+
VRAMP  
VOUT  
FB  
DRVL  
Driver  
RCO  
+
VREF  
RLOAD  
COUT  
RFBL  
Figure 34. D-CAP3 Mode  
The D-CAP3 control architecture in TPS53515 includes an internal ripple generation network enabling the use of  
very low-ESR output capacitors such as multi-layer ceramic capacitors (MLCC). No external current sensing  
networks or compensators are required with D-CAP3 control architecture in order to simplify the power supply  
design. The role of the internal ripple generation network is to emulate the ripple component of the inductor  
current information and then combine it with the voltage feedback signal. The 0-dB frequency of the D-CAP3  
architecture can be approximated as shown in Equation 2.  
R
´ C ´ 0.6´ 0.67 + D  
C1  
(
)
C1  
f =  
0
2p´ G´L ´ C  
´ V  
OUT  
X
OUT  
where  
G is gain of the amplifier which amplifies the ripple current information generated by the network  
D is the duty ratio  
(2)  
16  
Copyright © 2013, Texas Instruments Incorporated  
 
 
 
TPS53515  
www.ti.com.cn  
ZHCSBL7 AUGUST 2013  
The typical G value is 0.25. The RC1CC1 time constant value varies according to the selected switching frequency  
as shown in Table 2  
In order to secure enough phase margin, consider that f0 should be lower than 1/3 of the switching frequency, but  
is also higher than 5 times the fC2 as shown in Equation 3.  
f
SW  
5´ f £ f £  
C2  
0
3
where  
fC2 is determined by the internal network of RC2 and CC2 (2.7 kHz typ)  
(3)  
This example describes a DC-DC converter with an input voltage range of 12-V and an output voltage of 1.2-V. If  
the switching frequency is 500 kHz and the inductor is given as 1 uH, then COUT should be larger than 80 μF,  
and also be smaller than 1.7 mF based on the design requirements. The characteristics of the capacitors should  
be also taken into considerations. For MLCC, use X5R or better dielectric and take into account derating of the  
capacitance by both DC bias and AC bias. When derating by DC bias and AC bias are 80% and 50%,  
respectively, the effective derating is 40% because 0.8 × 0.5 = 0.4. The capacitance of specialty polymer  
capacitors may change depending on the operating frequency. Consult capacitor manufacturers for specific  
characteristics.  
Copyright © 2013, Texas Instruments Incorporated  
17  
 
TPS53515  
ZHCSBL7 AUGUST 2013  
www.ti.com.cn  
Sample and Hold Circuitry  
S3  
S1  
R1  
S2  
S1  
S2  
CSP  
Sampled_CSP  
C1  
C2  
Buffer 1  
Buffer 2  
Figure 35. Sample and Hold Circuitry  
The sample and hold circuitry is the difference between D-CAP3 and D-CAP2. The sample and hold circuitry,  
which is a advance control scheme to boost output voltage accuracy higher on the TPS53515, is one of features  
of the TPS53515. The sample and hold circuitry generates a new DC voltage of CSN instead of the voltage  
which is produced by RC2 and CC2 which allows for tight output-voltage accuracy and makes the TPS53515 more  
competitive.  
CSP  
CSN  
CSP  
CSN  
CSN_NEW  
(sample at valley of CSP)  
CSN_NEW  
(sample at valley of CSP)  
Figure 36. Continuous Conduction Mode (CCM)  
With Sample and Hold Circuitry  
Figure 37. Dicontinuous Conduction Mode (DCM)  
With Sample and Hold Circuitry  
CSP  
CSN  
CSP  
CSN  
Figure 38. Continuous Conduction Mode (CCM)  
Without Sample and Hold Circuitry  
Figure 39. Dicontinuous Conduction Mode (DCM)  
Without Sample and Hold Circuitry  
18  
Copyright © 2013, Texas Instruments Incorporated  
TPS53515  
www.ti.com.cn  
ZHCSBL7 AUGUST 2013  
1.25  
1.25  
1.23  
1.21  
1.19  
1.17  
1.15  
1.23  
1.21  
VIN = 12 V  
VDD = 5 V  
VIN = 12 V  
VDD = 5 V  
1.19  
1.17  
1.15  
VOUT = 1.2 V  
fSW = 500 kHz  
TA = 25°C  
LOUT = 1 H  
Mode = FCCM  
VOUT = 1.2 V  
fSW = 500 kHz  
TA = 25°C  
LOUT = 1 H  
Mode = Auto-skip  
D-CAP3  
D-CAP2  
D-CAP3  
D-CAP2  
1
2
3
4
5
6
7
8
9
10 11 12  
1
2
3
4
5
6
7
8
9
10 11 12  
Output Current (A)  
Output Current (A)  
C013  
C014  
Figure 40. Output Voltage vs Output Current  
Figure 41. Output Voltage vs Output Current  
Table 2. Mode Selection and Internal RAMP RC Time Constant  
SWITCHING  
FREQUENCIES  
fSW (kHz)  
MODE  
ACTION  
RMODE  
(kΩ)  
R-C TIME  
CONSTANT (µs)  
SELECTION  
60  
50  
250  
and  
and  
and  
300  
400  
600  
850  
250  
400  
600  
850  
250  
400  
600  
850  
250  
400  
600  
850  
250  
400  
600  
850  
500  
750  
0
40  
30  
and 1000  
Skip Mode  
Pull down to GND  
120  
100  
80  
and  
and  
and  
300  
500  
750  
150  
20  
150  
0
60  
and 1000  
60  
and  
and  
and  
300  
500  
750  
50  
40  
30  
and 1000  
Connect to  
PGOOD  
FCCM(1)  
120  
100  
80  
and  
and  
and  
300  
500  
750  
60  
and 1000  
120  
100  
80  
and  
and  
and  
300  
500  
750  
FCCM  
Connect to VREG  
60  
and 1000  
(1) Device goes into Forced CCM (FCCM) after PGOOD becomes high.  
Auto-Skip Eco-mode™ Light Load Operation  
While the MODE pin is pulled to GND directly or via 150-kΩ resistor, the TPS53515 automatically reduces the  
switching frequency at light-load conditions to maintain high efficiency. This section describes the operation in  
detail.  
Copyright © 2013, Texas Instruments Incorporated  
19  
 
TPS53515  
ZHCSBL7 AUGUST 2013  
www.ti.com.cn  
As the output current decreases from heavy load condition, the inductor current also decreases until the rippled  
valley of the inductor current touches zero level. Zero level is the boundary between the continuous-conduction  
and discontinuous-conduction modes. The synchronous MOSFET turns off when this zero inductor current is  
detected. As the load current decreases further, the converter runs into discontinuous-conduction mode (DCM).  
The on-time is maintained to a level approximately the same as during continuous-conduction mode operation so  
that discharging the output capacitor with a smaller load current to the level of the reference voltage requires  
more time. The transition point to the light-load operation IO(LL) (for example: the threshold between continuous-  
and discontinuous-conduction mode) is calculated as shown in Equation 4.  
V
- V  
´ V  
(
)
OUT OUT  
V
IN  
1
IN  
I
=
´
OUT LL  
( )  
2´L ´ f  
SW  
where  
fSW is the PWM switching frequency  
(4)  
Using only ceramic capacitors is recommended for Auto-skip mode.  
Adaptive Zero-Crossing  
The TPS53515 uses an adaptive zero-crossing circuit to perform optimization of the zero inductor-current  
detection during skip-mode operation. This function allows ideal low-side MOSFET turn-off timing. The function  
also compensates the inherent offset voltage of the Z-C comparator and delay time of the Z-C detection circuit.  
Adaptive zero-crossing prevents SW-node swing-up caused by too-late detection and minimizes diode  
conduction period caused by too-early detection. As a result, the device delivers better light-load efficiency.  
Forced Continuous-Conduction Mode  
When the MODE pin is tied to the PGOOD pin through a resistor, the controller operates in continuous  
conduction mode (CCM) during light-load conditions. During CCM, the switching frequency maintained to an  
amost constant level over the entire load range which is suitable for applications requiring tight control of the  
switching frequency at the cost of lower efficiency.  
Power-Good  
The TPS53515 has power-good output that indicates high when switcher output is within the target. The power-  
good function is activated after the soft-start operation is complete. If the output voltage becomes within ±8% of  
the target value, internal comparators detect the power-good state and the power-good signal becomes high  
after a 1-ms internal delay. If the output voltage goes outside of ±16% of the target value, the power-good signal  
becomes low after a 2-μs internal delay. The power-good output is an open-drain output and must be pulled-up  
externally.  
Current Sense and Overcurrent Protection  
The TPS53515 has cycle-by-cycle overcurrent limiting control. The inductor current is monitored during the OFF  
state and the controller maintains the OFF state during the period that the inductor current is larger than the  
overcurrent trip level. In order to provide good accuracy and a cost-effective solution, the TPS53515 supports  
temperature compensated MOSFET RDS(on) sensing. Connect the TRIP pin to GND through the trip-voltage  
setting resistor, RTRIP. The TRIP terminal sources ITRIP current, which is 10 μA typically at room temperature, and  
the trip level is set to the OCL trip voltage VTRIP as shown in Equation 5.  
VTRIP = RTRIP ´ITRIP  
where  
VTRIP is in mV  
RTRIP is in kΩ  
ITRIP is in µA  
(5)  
The inductor current is monitored by the voltage between the GND pin and SW pin so that the SW pin is properly  
connected to the drain terminal of the low-side MOSFET. ITRIP has a 3000-ppm/°C temperature slope to  
compensate the temperature dependency of RDS(on). The GND pin acts as the positive current-sensing node.  
Connect the GND pin to the proper current sensing device, (for example, the source terminal of the low-side  
MOSFET.)  
20  
Copyright © 2013, Texas Instruments Incorporated  
 
 
TPS53515  
www.ti.com.cn  
ZHCSBL7 AUGUST 2013  
Because the comparison occurs during the OFF state, VTRIP sets the valley level of the inductor current. Thus,  
the load current at the overcurrent threshold, IOCP, is calculated as shown in Equation 6.  
I
V
- V  
´ V  
(
)
OUT OUT  
V
IN  
V
V
TRIP  
1
IND(ripple)  
IN  
TRIP  
I
=
+
=
+
´
OCP  
2
2´L ´ f  
8´R  
8´R  
DS(on)  
SW  
(
)
(
)
DS(on)  
where  
RDS(on) is the on-resistance of the low-side MOSFET  
RTRIP is in kΩ  
(6)  
In an overcurrent condition, the current to the load exceeds the current to the output capacitor thus the output  
voltage tends to decrease. Eventually, the output voltage crosses the undervoltage-protection threshold and  
shuts down.  
A special trimming option uses hiccup mode as the overcurrent protection (OCP).  
Overvoltage and Undervoltage Protection  
The TPS53515 monitors a resistor-divided feedback voltage to detect overvoltage and undervoltage. When the  
feedback voltage becomes lower than 68% of the target voltage, the UVP comparator output goes high and an  
internal UVP delay counter begins counting. After 1 ms, the TPS53515 latches OFF both high-side and low-side  
MOSFETs drivers. The UVP function enables after soft-start is complete.  
When the feedback voltage becomes higher than 120% of the target voltage, the OVP comparator output goes  
high and the circuit latches OFF the high-side MOSFET driver and turns on the low-side MOSFET until reaching  
a negative current limit. Upon reaching the negative current limit, the low-side FET is turned off and the high-side  
FET is turned on again for a minimum on-time. The TPS53515 operates in this cycle until the output voltage is  
pulled down under the UVP threshold voltage for 1 ms. After the 1-ms UVP delay time, the high-side FET is  
latched off and low-side FET is latched on. The fault is cleared with a reset of VDD or by re-toggling EN pin.  
Out-Of-Bounds Operation (OOB)  
The TPS53515 has an out-of-bounds (OOB) overvoltage protection that protects the output load at a much lower  
overvoltage threshold of 8% above the target voltage. OOB protection does not trigger an overvoltage fault, so  
the device is not latched off after an OOB event. OOB protection operates as an early no-fault overvoltage-  
protection mechanism. During the OOB operation, the controller operates in forced PWM mode only by turning  
on the low-side FET. Turning on the low-side FET beyond the zero inductor current quickly discharges the output  
capacitor thus causing the output voltage to fall quickly towards the setpoint. During the operation, the cycle-by-  
cycle negative current limit is also activated to ensure the safe operation of the internal FETs.  
UVLO Protection  
The TPS53515 monitors the voltage on the VDD pin. If the VDD pin voltage is lower than the UVLO off-threshold  
voltage, the switch mode power supply shuts off. If the VDD voltage increases beyond the UVLO on-threshold  
voltage, the controller turns back on. UVLO is a non-latch protection.  
Thermal Shutdown  
The TPS53515 monitors internal temperature. If the temperature exceeds the threshold value (typically 140°C),  
TPS53515 shuts off. When the temperature falls approximately 40°C below the threshold value, the device turns  
on. Thermal shutdown is a non-latch protection.  
Copyright © 2013, Texas Instruments Incorporated  
21  
 
TPS53515  
ZHCSBL7 AUGUST 2013  
www.ti.com.cn  
External Parts Selection  
The external components selection is a simple process using D-CAP3™ Mode. Select the external components  
using the following steps  
1. CHOOSE THE SW FREQUENCY  
The SW frequency is configured by the resistor divider on the RF pin. Select one of eight SW frequencies  
from 250 kHz to 1 MHz. Refer Table 1 for the relationship between the SW frequency and resistor-divider  
configuration.  
2. CHOOSE THE OPERATION MODE  
Select the operation mode using Table 2.  
3. CHOOSE THE INDUCTOR  
Determine the inductance value to set the ripple current at approximately ¼ to ½ of the maximum output  
current. Larger ripple current increases output ripple voltage, improves S/N ratio, and helps stable operation.  
V
(
IN  
max  
(
- V  
´ V  
V
- V  
max  
´ V  
OUT  
OUT  
)
)
OUT  
(
IN  
OUT  
)
)
(
)
1
3
L =  
´
=
´
I
´ f  
V
I
´ f  
V
IN(max)  
SW  
IN  
max  
(
OUT  
SW  
IND ripple  
(
max  
)
(
)
(7)  
The inductor requires a low DCR to achieve good efficiency. The inductor also requires enough room above  
peak inductor current before saturation. The peak inductor current is estimated using Equation 8.  
V
(
IN  
max  
(
- V  
´ V  
OUT  
OUT  
)
)
)
V
1
TRIP  
I
=
+
´
IND peak  
(
)
8´R  
L ´ f  
V
IN  
SW  
DS on  
max  
( )  
(
(8)  
4. CHOOSE THE OUTPUT CAPACITOR  
The output capacitor selection is determined by output ripple and transient requirement. When operating in  
CCM, the output ripple has two components as shown in Equation 9. Equation 10 and Equation 11 define  
these components.  
V
= V  
+ V  
RIPPLE  
RIPPLE(C) RIPPLE(ESR)  
(9)  
IL ripple  
(
)
VRIPPLE C  
=
( )  
8´ COUT ´ fSW  
VRIPPLE ESR = IL ripple ´ESR  
(10)  
(11)  
(
)
(
)
5. DETERMINE THE VALUE OF R1 AND R2  
The output voltage is programmed by the voltage-divider resistors, R1 and R2, shown in Figure 1. R1 is  
connected between the VFB pin and the output, and R2 is connected between the VFB pin and GND. The  
recommended R2 value is from 1 kΩ to 20 kΩ. Determine R1 using Equation 12.  
VOUT - 0.6  
R1=  
´R2  
0.6  
(12)  
LAYOUT CONSIDERATIONS  
Before beginning a design using the TPS53515, consider the following:  
Place the power components (including input and output capacitors, the inductor, and the TPS53515) on the  
solder side of the PCB. In order to shield and isolate the small signal traces from noisy power lines, insert and  
connect at least one inner plane to ground.  
All sensitive analog traces and components such as VFB, PGOOD, TRIP, MODE, and RF must be placed  
away from high-voltage switching nodes such as SW and VBST to avoid coupling. Use internal layers as  
ground planes and shield the feedback trace from power traces and components.  
Pin 22 (GND pin) must be connected directly to the thermal pad. Connect the thermal pad to the PGND pins  
and then to the GND plane.  
Place the VIN decoupling capacitors as close to the VIN and PGND pins as possible to minimize the input  
AC-current loop.  
Place the feedback resistor near the IC to minimize the VFB trace distance.  
22  
Copyright © 2013, Texas Instruments Incorporated  
 
 
 
 
 
TPS53515  
www.ti.com.cn  
ZHCSBL7 AUGUST 2013  
Place the frequency-setting resistor (RF), OCP-setting resistor (RTRIP) and mode-setting resistor (RMODE  
close to the device. Use the common GND via to connect the resistors to the GND plane if applicable.  
Place the VDD and VREG decoupling capacitors as close to the device as possible. Provide GND vias for  
each decoupling capacitor and ensure the loop is as small as possible.  
The PCB trace is defined as switch node, which connects the SW pins and high-voltage side of the inductor.  
The switch node should be as short and wide as possible.  
Use separated vias or trace to connect SW node to the snubber, bootstrap capacitor, and ripple-injection  
resistor. Do not combine these connections.  
Place one more small capacitor (2.2 nF- 0402 size) between the VIN and PGND pins. This capacitor must be  
placed as close to the IC as possible.  
TI recommends placing a snubber between the SW shape and GND shape for effective ringing reduction.  
The value of snubber design starts at 3 Ω + 470 pF.  
)
Consider R,C,Cc network (Ripple injection network) component placement and place the AC coupling  
capacitor, Cc, close to the device, and R and C close to the power stage.  
See Figure 42 for the layout recommendation.  
VIN Shape  
To inner GND plane  
CIN  
HF cap.  
Cc  
2
3
2
1
2
0
1
9
1
8
1
7
1
6
1
5
To VOUT Shape  
VO  
TRIP  
PGND  
PGND  
PGND  
PGND  
PGND  
DNC  
GND Shape  
GND1  
GND2  
COUT  
1
2
3
4
5
6
7
8
9
VOUT Shape  
SW Shape  
LOUT  
To VREG Pin  
Cap.  
Res.  
Trace on bottom layer  
Trace of top layer  
RCC On Bottom layer  
Trace of bottom layer  
Trace on inner layer  
Figure 42. Layout Recommendation  
Copyright © 2013, Texas Instruments Incorporated  
23  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
3000  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS53515RVER  
TPS53515RVET  
ACTIVE  
VQFN-CLIP  
VQFN-CLIP  
RVE  
28  
28  
RoHS-Exempt  
& Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
TPS53515  
TPS53515  
ACTIVE  
RVE  
RoHS-Exempt  
& Green  
NIPDAU | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
RVE0028A  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
3
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
B
A
PIN 1 INDEX AREA  
4.6  
4.4  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.1 0.1  
2X 1.6  
(0.2) TYP  
14  
EXPOSED  
THERMAL PAD  
10  
24X 0.4  
9
15  
2X  
29  
SYMM  
3.2  
3.1 0.1  
23  
1
0.25  
28X  
0.15  
28  
24  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
SYMM  
28X  
0.05  
0.5  
0.3  
4219151/A 07/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RVE0028A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.1)  
SYMM  
28  
24  
28X (0.6)  
28X (0.2)  
23  
1
(1.3) TYP  
SYMM  
24X (0.4)  
29  
(4.3)  
(3.1)  
(R0.05)  
TYP  
9
15  
(
0.2) TYP  
VIA  
10  
14  
(3.3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219151/A 07/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RVE0028A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X (0.94)  
(0.57) TYP  
28  
24  
28X (0.6)  
1
23  
28X (0.2)  
24X (0.4)  
(0.775)  
TYP  
29  
SYMM  
(4.3)  
(R0.05) TYP  
4X (1.35)  
9
15  
METAL  
TYP  
10  
14  
SYMM  
(3.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 29  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219151/A 07/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS535G1

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS535G10

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS535G14

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS535G2

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS535G20

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS535G4

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS535G5

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS535G7

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS535G9

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS53622

具有 NVM 和 PMBus 的 VR13 双通道 D-CAP+™ 2+0/1+1 降压控制器
TI

TPS53622RSBR

具有 NVM 和 PMBus 的 VR13 双通道 D-CAP+™ 2+0/1+1 降压控制器 | RSB | 40 | -40 to 125
TI

TPS53622RSBT

具有 NVM 和 PMBus 的 VR13 双通道 D-CAP+™ 2+0/1+1 降压控制器 | RSB | 40 | -40 to 125
TI