TPS54116-Q1 [TI]

采用 4A 2MHZ VDDQ 直流/直流转换器、1A VTT LDO 和 VTTREF 的汽车类 DDR 电源解决方案;
TPS54116-Q1
型号: TPS54116-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 4A 2MHZ VDDQ 直流/直流转换器、1A VTT LDO 和 VTTREF 的汽车类 DDR 电源解决方案

双倍数据速率 转换器
文件: 总41页 (文件大小:1180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
TPS54116-Q1 2.95V 6V 输入、4A 降压转换器和 1A /灌电流 DDR 终  
端稳压器  
1 特性  
TPS54116-Q1 降压稳压器通过集成 MOSFET 和减小  
电感尺寸来最大限度减小解决方案尺寸,开关频率最高  
2.5MHz。开关频率可设置在中波频段以上以满足噪  
声敏感型 应用 的需求,而且能够与外部时钟同步。同  
步整流使频率在整个输出负载范围内保持为固定值。效  
率通过集成 25m低侧 MOSFET 33mΩ 高侧  
MOSFET 得到了最大限度的提升。逐周期峰值电流限  
制在过流状态下保护器件,并且可通过 ILIM 引脚上的  
电阻进行调整,从而针对小尺寸电感进行优化。  
1
具有符合 AEC-Q100 标准的下列结果:  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
器件人体模型 (HBM) 静电放电 (ESD) 分类等级  
2
器件组件充电模式 (CDM) ESD 分类等级 C6  
单片 DDR2DDR3 DDR3L 存储器电源解决方  
4A 同步降压转换器  
VTT 终端稳压器仅利用 2 × 10µF 的陶瓷输出电容即可  
保持快速瞬态响应,从而减少外部组件数量。  
TPS54116-Q1 使用 VTT 进行远程感测,从而实现最  
佳的稳压效果。  
集成了 33mΩ 高侧和 25mΩ 低侧金属氧化物半  
导体场效应晶体管 (MOSFET)  
固定频率电流模式控制  
可调频率范围:100kHz 2.5MHz  
与一个外部时钟同步  
该器件可利用使能引脚进入关断模式,从而使电源电流  
降至 1µA。欠压闭锁阈值可通过任一使能引脚上的电  
阻网络进行设置。VTT VTTREF 输出被 ENLDO 禁  
用时会进行放电。  
整个温度范围内的电压基准为 0.6V ± 1%  
可调逐周期峰值电流限制  
针对预偏置输出的单调性启动  
直流精度为 ±20mV 1A /灌电流终端低压降  
(LDO) 稳压器  
该器件具备全集成特性,并且采用小尺寸的 4mm ×  
4mm 耐热增强型 WQFN 封装,最大限度地减小了 IC  
尺寸。  
2 × 10µF 多层陶瓷电容 (MLCC) 电容一起工  
作时保持稳定  
10mA /灌电流缓冲参考输出稳定在 VDDQ 的  
49% 51% 之间  
器件信息(1)  
器件型号  
封装  
WQFN (24)  
封装尺寸(标称值)  
独立使能引脚,欠压闭锁 (UVLO) 和迟滞均可调  
热关断  
TPS54116-Q1  
4.00mm x 4.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
运行温度 (TJ) 范围:-40°C 150°C  
简化电路原理图  
24 引脚 4mm x 4mm 超薄四方扁平无引线  
(WSON) 封装  
TPS54116-Q1 BOOT  
VIN  
AVIN  
2 应用  
SW  
ENSW  
ENLDO  
PGOOD  
ILIM  
嵌入式计算系统中的 DDR2DDR3DDR3L 和  
VIN  
PVIN  
PGND  
DDR4 存储器电源  
SSTL_18SSTL_15SSTL_135SSTL_12 和  
HSTL 终端  
VDDQSNS  
LDOIN  
SS/TRK  
VDDQ  
信息娱乐和仪表板  
COMP  
FB  
VTT  
先进的驾驶员辅助系统 (ADAS)  
VTTSNS  
VTTGND  
VTTREF  
VTT  
3 说明  
AGND  
RT/SYNC  
TPS54116-Q1 器件是一款功能全面的 6V4A 同步降  
压转换器,其配有两个集成型 MOSFET 以及带  
VTTREF 缓冲参考输出的 1A /灌电流双倍数据速率  
(DDR) VTT 终端稳压器。  
VTTREF  
PAD  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCO3  
 
 
 
 
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 23  
Application and Implementation ........................ 24  
8.1 Application Information............................................ 24  
8.2 Typical Application ................................................. 25  
Power Supply Recommendations...................... 34  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 16  
7.3 Feature Description................................................. 17  
8
9
10 Layout................................................................... 34  
10.1 Layout Guidelines ................................................. 34  
10.2 Layout Example .................................................... 35  
11 器件和文档支持 ..................................................... 36  
11.1 接收文档更新通知 ................................................. 36  
11.2 社区资源................................................................ 36  
11.3 ....................................................................... 36  
11.4 静电放电警告......................................................... 36  
11.5 Glossary................................................................ 36  
12 机械、封装和可订购信息....................................... 36  
7
4 修订历史记录  
Changes from Original (August 2016) to Revision A  
Page  
Changed pin 18 From: RT/CLK To: RT/SYNC in the Pin Functions table............................................................................. 4  
Changed R(RT/CLK) To: R(RT/SYNC) in 16 and 17............................................................................................................... 9  
Changed "The RT/CLK is typically 0.5 V.." To: "The RT/SYNC is typically 0.5 V.." in Constant Switching Frequency  
and Timing Resistor (RT/SYNC) .......................................................................................................................................... 20  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPS54116-Q1  
www.ti.com.cn  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
5 Pin Configuration and Functions  
RTW Package  
WQFN 24 Pins  
Top View  
1
18  
17  
16  
15  
14  
13  
SW  
RT/SYNC  
SS/TRK  
COMP  
FB  
2
BOOT  
3
AVIN  
PAD  
4
ENSW  
5
ENLDO  
AGND  
ILIM  
6
PGOOD  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
SW  
1, 23, 24  
O
I
Switching node of the buck converter.  
Bootstrap capacitor node for high-side MOSFET gate driver of the buck converter. Connect  
the bootstrap capacitor from this pin to the SW pin.  
BOOT  
AVIN  
2
3
The input supply pin to the IC, powering the control circuits of both the buck converter and  
DDR termination regulator. Connect AVIN to a supply voltage between 2.95 V and 6 V.  
I
I
Buck converter enable pin with internal pull-up current source. Floating this pin will enable  
the IC. Pull below 1.17 V to enter low current standby mode. Pull below 0.4 V to enter  
shutdown mode. The ENSW pin can be used to implement adjustable under-voltage lockout  
(UVLO) using two resistors.  
ENSW  
4
5
VTT LDO enable pin with internal pull-up current source. Floating this pin will enable the IC.  
Pull below 1.17 V to enter low current standby mode. Pull below 0.4 V to enter shutdown  
mode. The ENLDO pin can be used to implement adjustable under-voltage lockout (UVLO)  
using two resistors.  
ENLDO  
I
Power good indicator for the buck regulator. This pin is an open-drain output. A 10-kΩ pull-  
up resistor is recommended between PGOOD and AVIN or an external logic supply pin.  
PGOOD  
6
7
O
I
VDDQSNS  
VDDQ sense input to generate VDDQ/2 reference for VTTREF.  
Power supply input for VTT LDO. Connected VDDQ in typical application. Alternatively this  
pin can be used for split-rail configuration to reduce power dissipation when sourcing current  
to the VTT output by powering the VTT LDO with a lower voltage.  
LDOIN  
8
I
VTT  
9
O
I
1-A LDO output. Connect 2 x 10-µF ceramic capacitors to VTTGND for stability.  
Power ground for VTT LDO.  
VTTGND  
VTTSNS  
10  
11  
I
VTT LDO voltage feedback.  
Buffered low-noise VTT reference output. Connect to a 0.22 µF or larger ceramic capacitor to  
AGND for stability.  
VTTREF  
12  
13  
14  
O
Programmable current limit pin. An internal amplifier holds this pin at a fixed voltage then  
sets the high-side MOSFET peak current limit based on the value of an external resistor to  
AGND.  
ILIM  
I
Analog signal ground of the IC. AGND should be connected to PGND via a single point on  
the PCB, typically to the thermal pad.  
AGND  
I
Copyright © 2016, Texas Instruments Incorporated  
3
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Error amplifier inverting input and feedback pin for voltage regulation of the buck converter.  
Connect this pin to the center of a resistor divider to set the output voltage of the buck  
converter. The resistor divider should go from the regulated output voltage to AGND.  
FB  
15  
I
I
I
Output of the internal transconductance error amplifier for the buck converter. The feedback  
loop compensation network is connected from this pin to AGND.  
COMP  
16  
17  
Soft-start programming pin. A capacitor between the SS/TRK pin and AGND pin sets soft-  
start time. The voltage on this pin overrides the internal reference allowing it to be used for  
tracking and sequencing.  
SS/TRK  
Resistor Timing and External Clock. An internal amplifier holds this pin at a fixed voltage  
when using an external resistor to AGND to set the switching frequency. If the pin is pulled  
above the upper threshold, a mode change occurs and the pin becomes a synchronization  
input. The internal amplifier is disabled and the pin is a high impedance clock input. If  
clocking edges stop, the internal amplifier is re-enabled and the operating mode returns to  
resistor frequency programming.  
RT/SYNC  
18  
I
Power ground of the buck regulator. PGND should be connected to AGND via a single point  
on PCB board, typically to the thermal pad.  
PGND  
PVIN  
19, 20  
21, 22  
I
I
The input supply pin for power MOSFETs. Connect PVIN to a supply voltage between 2.95 V  
and 6 V.  
The exposed thermal pad must be electrically connected to AGND and PGND on the printed  
circuit board for proper operation. Connect to the largest possible copper area for best  
thermal performance.  
PAD  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.6  
-4  
MAX  
7
UNIT  
V
PVIN, AVIN, ENSW, ENLDO, PGOOD  
FB, COMP, SS/TRK, ILIM  
RT/SYNC  
3
V
6
V
BOOT with respect to SW  
Voltage Range  
7
V
LDOIN, VTTSNS, VDDQSNS  
3.6  
7
V
SW  
V
SW, 10-ns transient  
VTT, VTTREF  
10  
3.6  
100  
5
V
-0.3  
-100  
-5  
V
RT/SYNC  
Current Range  
µA  
mA  
°C  
°C  
PGOOD  
Operating junction temperature  
Storage temperature, Tstg  
-40  
150  
150  
-65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4
Copyright © 2016, Texas Instruments Incorporated  
TPS54116-Q1  
www.ti.com.cn  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
6
UNIT  
V
V(AVIN), V(PVIN)  
VOUT  
Input voltage  
2.95  
Buck output voltage  
Buck output current  
0.6  
4.5  
4
V
IOUT  
0
A
V(VDDQSNS)  
V(LDOIN)  
VDDQSNS input voltage  
LDOIN input voltage  
VTT and VTTREF output voltage  
1
VTT + VDO  
0.5  
3.5  
3.5  
3.5  
V
V
V(VTT), V(VTTREF)  
V
6.4 Thermal Information  
TPS54116-Q1  
THERMAL METRIC(1)  
RTW (WQFN)  
24 PINS  
36.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
35.0  
14.3  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
14.4  
RθJC(bot)  
4.6  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.  
6.5 Electrical Characteristics  
TJ = -40°C to 150°C, AVIN = PVIN = 2.95 V to 6 V, VLDOIN = VDDQSNS (unless otherwise noted)  
PARAMETER  
SUPPLY VOLTAGE (AVIN and PVIN PINS)  
AVIN and PVIN operating  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
2.95  
6
2.8  
V
V
V
AVIN internal UVLO threshold  
AVIN rising  
2.7  
AVIN internal UVLO hysteresis  
0.05  
0.12  
V(ENSW) = V(ENLDO) = 0 V, V(VDDQSNS) = 1.8  
V, TJ = 25°C  
Iq shutdown  
1
650  
190  
3.5  
800  
300  
µA  
µA  
µA  
V(ENSW) = V(ENLDO) = V(AVIN) = 5 V, V(FB)  
0.7 V, V(VDDQSNS) = 1.8 V, TJ = 25°C  
=
Iq operating — LDO and buck enabled  
Iq operating — LDO enabled, buck  
disabled  
V(ENLDO) = V(AVIN) = 5 V, V(ENSW) = 0 V,  
V(VDDQSNS) = 1.8 V, TJ = 25°C  
V(ENSW) = V(AVIN) = 5 V, V(ENLDO) = 0 V,  
V(FB) = 0.7 V, V(VDDQSNS) = 1.8 V, TJ =  
25°C  
Iq operating — LDO disabled, buck  
enabled  
570  
700  
µA  
V
ENABLE (ENSW and ENLDO PINS)  
VENRISING  
ENLDO rising threshold  
ENLDO falling threshold  
ENLDO voltage ramping up  
1.20  
1.17  
VENFALLING  
ENLDO voltage ramping down  
ENLDO input current above voltage  
threshold  
V(ENLDO) = Enable threshold + 50 mV  
V(ENLDO) = Enable threshold - 50 mV  
-4.4  
-1.7  
ENLDO input current below voltage  
threshold  
µA  
V
Ip  
Ih  
ENLDO hysteresis current  
ENSW rising threshold  
ENSW falling threshold  
-2.7  
1.20  
1.17  
VENRISING  
VENFALLING  
ENSW voltage ramping up  
ENSW voltage ramping down  
ENSW input current above voltage  
threshold  
V(ENSW) = Enable threshold + 50 mV  
V(ENSW) = Enable threshold - 50 mV  
-4.4  
ENSW input current below voltage  
threshold  
µA  
µA  
Ip  
Ih  
-1.7  
-2.7  
-8.5  
ENSW hysteresis current  
Input current above voltage threshold with V(ENLDO) = V(ENSW) = Enable threshold +  
ENLDO and ENSW connected 50 mV  
Copyright © 2016, Texas Instruments Incorporated  
5
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
TJ = -40°C to 150°C, AVIN = PVIN = 2.95 V to 6 V, VLDOIN = VDDQSNS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input current below voltage threshold with V(ENLDO) = V(ENSW) = Enable threshold -  
-3.4  
µA  
ENLDO and ENSW connected  
50 mV  
Hysteresis current with ENLDO and  
ENSW connected  
-5.1  
µA  
VOLTAGE REFERENCE AND ERROR AMPLIFIER (FB AND COMP PINS)  
VREF  
Voltage Reference  
0.594  
0.6  
7
0.606  
360  
V
FB pin input current  
nA  
µS  
µA  
gmEA  
Error Amp transconductance (gm)  
Error Amp source/sink  
-2 µA < I(COMP) < 2 µA, V(COMP) = 1 V  
V(COMP) = 1 V, V(FB) = 100 mV overdrive  
260  
22  
MOSFETS AND POWER STAGE (SW AND BOOT PINS)  
V(BOOT-SW) = 5 V  
33  
42  
25  
30  
2.2  
6.6  
3
66  
84  
50  
60  
High side switch resistance  
mΩ  
mΩ  
V(BOOT-SW) = 3.3 V  
V(PVIN) = 5 V  
Low side switch resistance  
V(PVIN) = 3.3 V  
BOOT-SW UVLO  
V(PVIN) = 2.95 V  
V
A
High-side FET current limit  
High-side FET current limit  
Low-side FET reverse current limit  
V(PVIN) = 6V, R(ILIM) = 100k  
V(PVIN) = 6V, R(ILIM) = 200k  
5.2  
1.5  
2
8.2  
3.8  
A
4.5  
16  
A
gmPS  
V(COMP) to I(SW)peak transconductance  
Minimum pulse width  
R(ILIM) = 100k  
A/V  
Measured at 50% points on V(SW), IOUT  
2 A  
=
60  
ns  
Measured at 50% points V(SW), V(PVIN) = 5  
V, IOUT = 0 A, TJ = -40°C to 125°C  
Minimum pulse width  
Minimum off-time  
100  
60  
125  
ns  
ns  
Prior to skipping off pulses, IOUT = 2 A  
TIMING RESISTOR AND EXTERNAL CLOCK (RT/SYNC PIN)  
Switching frequency range using RT  
mode  
100  
2500  
kHz  
R(RT/SYNC) = 150 kΩ  
370  
1910  
340  
400  
2070  
420  
430  
2230  
480  
kHz  
kHz  
kHz  
Switching frequency  
R(RT/SYNC) = 27 kΩ  
V(RT/SYNC) > 2.2 V or V(RT/SYNC) < 0.35 V  
Switching frequency range using SYNC  
mode  
100  
10  
2500  
kHz  
Minimum SYNC input pulse width  
RT/SYNC high threshold  
ns  
V
1.5  
0.4  
2.2  
RT/SYNC low threshold  
0.35  
30  
V
RT/SYNC rising edge to SW rising edge  
delay  
fSW = 500 kHz  
45  
80  
ns  
RT to SYNC lock in time  
SYNC to RT lock in time  
R(RT/SYNC) = 150 kΩ  
55  
60  
µs  
µs  
Logic high or logic low at RT/SYNC to  
SYNC signal  
Internal RT to SYNC lock in time  
55  
60  
µs  
µs  
SYNC signal to logic high or logic low at  
RT/SYNC  
SYNC to internal RT lock in time  
SOFT START AND TRACKING (SS/TRK PIN)  
VSSTHR  
SS voltage threshold  
0.15  
47  
V
V(SS/TRK) < VSSTHR  
V(SS/TRK) > VSSTHR  
V(SS/TRK) = 0.3 V  
98% normal  
µA  
µA  
mV  
V
ISS  
Charge Current  
1.5  
2.4  
60  
3.2  
1
SS/TRK to FB matching  
SS/TRK to reference crossover  
SS/TRK discharge voltage (overload)  
SS/TRK discharge voltage (fault)  
SS/TRK discharge current (overload)  
0.85  
120  
5
V(FB) = 0 V  
mV  
mV  
µA  
V(FB) = 0 V  
V(FB) = 0 V, V(SS/TRK) = 0.4 V  
160  
6
Copyright © 2016, Texas Instruments Incorporated  
TPS54116-Q1  
www.ti.com.cn  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
Electrical Characteristics (continued)  
TJ = -40°C to 150°C, AVIN = PVIN = 2.95 V to 6 V, VLDOIN = VDDQSNS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SS/TRK discharge current (AVIN UVLO,  
ENSW low, thermal fault)  
V(AVIN) = 5 V, V(SS/TRK) = 0.4 V  
760  
µA  
POWER GOOD (PGOOD PIN)  
V(FB) falling (fault)  
91  
94  
109  
106  
3
95  
V(FB) rising (good)  
Threshold  
V(FB) rising (fault)  
105  
% VREF  
V(FB) falling (good)  
Hysteresis  
V(FB) falling and rising  
V(FB) = VREF, V(PGOOD) = 5.5 V  
V(AVIN) = 2.95 V  
Output high leakage  
On resistance  
5
125  
170  
1.7  
nA  
Ω
85  
1.3  
Minimum V(AVIN) for valid output  
V(PGOOD) < 0.5 V, I(PGOOD) = 100 µA  
V
TERMINATION REGULATOR INPUTS (VLDOIN AND VDDQSNS PINS)  
V(LDOIN) Operating  
3.5  
V
V
1.2 V < V(VDDQSNS) < 2.5 V, I(VTT) = 0.5 A,  
V(VTT) = V(VTTREF) - 40 mV  
VDO  
VDO  
DC V(LDOIN) – V(VTT) dropout  
DC V(LDOIN) – V(VTT) dropout  
0.15  
1.2 V < V(VDDQSNS) < 2.5 V, I(VTT) = 1.5 A,  
V(VTT) = V(VTTREF) - 40 mV  
0.45  
V
VLDOIN supply current  
VDDQSNS input current  
V(LDOIN) = 1.8 V, TJ = 25°C  
V(VDDQSNS) = 1.8 V  
1
µA  
µA  
39  
46  
VTTREF OUTPUT (VTTREF PIN)  
V(VTTREF)  
VTTREF output voltage  
V(VDDQSNS)/2  
V
|I(VTTREF)| < 10 mA, V(VDDQSNS) = 1.8 V  
|I(VTTREF)| < 10 mA, V(VDDQSNS) = 1.5 V  
|I(VTTREF)| < 10 mA, V(VDDQSNS) = 1.2 V  
|I(VTTREF)| < 5 mA, V(VDDQSNS) = 1.2 V  
V(VDDQSNS) = 1.8 V, V(VTTREF) = 0 V  
V(VDDQSNS) = 0 V, V(VTTREF) = 1.8 V  
-18  
-15  
-15  
-12  
10  
18  
15  
15  
12  
VTTREF output voltage difference from  
V(VDDQSNS)/2  
V(VTTREF)TOL  
mV  
I(VTTREF)SRC  
I(VTTREF)SNK  
VTTREF source current limit  
VTTREF sink current limit  
18  
19  
mA  
mA  
10  
TJ = 25°C, V(VTTREF) = 0.5V, V(ENLDO) = 0  
V
I(VTTREF)DIS  
VTTREF discharge current  
0.9  
1.1  
mA  
VTT OUTPUT (VTT PIN)  
V(VTT)  
VTT output voltage  
V(VTTREF)  
V
|I(VTT)|10 mA, 1.2 V V(VDDQSNS) 1.8 V  
VTT output voltage tolerance to VTTREF |I(VTT)|1 A, 1.2 V V(VDDQSNS) 1.8 V  
|I(VTT)|1.5 A, 1.2 V V(VDDQSNS) 1.8 V  
-20  
-30  
-40  
20  
30  
40  
V(VTT)TOL  
mV  
V(VDDQSNS) = 1.8 V, V(VTT) = V(VTTSNS)  
0.7 V  
=
I(VTT)SRC  
I(VTT)SNK  
VTT source current limit  
VTT sink current limit  
1.5  
1.5  
2.5  
2.5  
A
A
V(VDDQSNS) = 1.8 V, V(VTT) = V(VTTSNS)  
1.1 V  
=
I(VTTSNS)BIAS VTTSNS input bias current  
I(VTT)DIS VTT discharge current  
THERMAL SHUTDOWN  
Thermal shutdown temperature  
-0.1  
4.8  
0.1  
µA  
TJ = 25°C, V(VTT) = 0.5 V, V(ENLDO) = 0 V  
6
mA  
175  
16  
Thermal shutdown hysteresis  
版权 © 2016, Texas Instruments Incorporated  
7
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
6.6 Typical Characteristics  
8
800  
775  
750  
725  
700  
675  
650  
625  
600  
VIN = 3.3 V  
VIN = 5 V  
VIN = 3.3 V  
VIN = 5 V  
7
6
5
4
3
2
1
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D001  
D002  
1. Shutdown Supply Current vs Temperature  
2. Non-switching Supply Current - LDO and Buck  
Enabled vs Temperature  
325  
300  
275  
250  
225  
200  
175  
150  
125  
610  
605  
600  
595  
590  
585  
580  
575  
570  
565  
560  
555  
VIN = 3.3 V  
VIN = 5 V  
VIN = 3.3 V  
VIN = 5 V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D003  
D004  
3. Non-switching Supply Current - LDO Enabled and  
4. Non-switching Supply Current - LDO Disabled and  
Buck Disabled vs Temperature  
Buck Enabled vs Temperature  
1.21  
-1  
EN Rising  
EN Falling  
1.205  
1.2  
-1.5  
-2  
-2.5  
-3  
1.195  
1.19  
1.185  
1.18  
V(EN) = Threshold - 50 mV  
V(EN) = Threshold + 50 mV  
-3.5  
-4  
1.175  
1.17  
1.165  
1.16  
-4.5  
-5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
D005  
Junction Temperature (èC)  
D006  
5. ENSW and ENLDO Voltage Threshold vs Temperature  
6. ENSW and ENLDO Individual Input Current vs  
Temperature  
8
版权 © 2016, Texas Instruments Incorporated  
TPS54116-Q1  
www.ti.com.cn  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
Typical Characteristics (接下页)  
0.606  
0.605  
0.604  
0.603  
0.602  
0.601  
0.6  
-2  
-3  
-4  
-5  
V(EN) = Threshold - 50 mV  
V(EN) = Threshold + 50 mV  
-6  
0.599  
0.598  
0.597  
0.596  
0.595  
0.594  
-7  
-8  
-9  
-10  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D008  
D007  
8. Voltage Reference vs Temperature  
7. ENSW and ENLDO Parallel Input Current vs  
Temperature  
320  
300  
280  
260  
240  
220  
200  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
High-side, V(BOOT-SW) = 3.3 V  
High-side, V(BOOT-SW) = 5 V  
Low-side, V(PVIN) = 3.3 V  
Low-side, V(PVIN) = 5 V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D009  
D010  
9. Error Amplifier Transconductance vs Temperature  
10. MOSFET Rds(on) vs Temperature  
7
7
6.5  
6
6.5  
6
5.5  
5
5.5  
5
R(ILIM) = 100 k  
R(ILIM) = 200 k  
4.5  
4
4.5  
4
3.5  
3
3.5  
3
2.5  
2.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
100 110 120 130 140 150 160 170 180 190 200  
R(ILIM)  
Junction Temperature (èC)  
D011  
D012  
V(PVIN) = 5 V  
11. High-side Current Limit vs Temperature  
V(PVIN) = 5 V  
TA = 25°C  
12. High-side Current Limit vs RILIM  
版权 © 2016, Texas Instruments Incorporated  
9
 
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
140  
130  
120  
110  
100  
90  
19  
VIN = 3.3 V, IOUT = 0 A  
VIN = 5 V, IOUT = 0 A  
VIN = 3.3 V, IOUT = 2 A  
VIN = 5 V, IOUT = 2 A  
VIN = 3.3 V  
VIN = 5 V  
18  
17  
16  
15  
14  
13  
12  
80  
70  
60  
50  
40  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D013  
D014  
13. V(COMP) to I(SW) Transconductance vs Temperature  
14. Minimum Pulse-width vs Temperature  
100  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
VIN = 3.3 V  
VIN = 5 V  
95  
90  
85  
80  
75  
70  
65  
60  
55  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
100 150 200 250 300 350 400 450 500 550 600 650  
IOUT (A)  
R(RT/SYNC) (kW)  
D015  
D016  
TA = 25°C  
TA = 25°C  
15. Minimum pulse-width vs Load Current  
16. Switching Frequency vs R(RT/SYNC) Low Range  
2800  
2600  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
410  
408  
406  
404  
402  
400  
398  
396  
394  
392  
390  
600  
20  
30  
40  
50  
60  
70  
80  
90  
100  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
R(RT/SYNC) (kW)  
Junction Temperature (èC)  
D017  
D018  
TA = 25°C  
R(RT/SYNC) = 150 kΩ  
18. Switching Frequency vs Temperature  
17. Switching Frequency vs R(RT/SYNC) High Range  
10  
版权 © 2016, Texas Instruments Incorporated  
 
 
TPS54116-Q1  
www.ti.com.cn  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
Typical Characteristics (接下页)  
2080  
2078  
2076  
2074  
2072  
2070  
2068  
2066  
2064  
2062  
2060  
430  
425  
420  
415  
410  
405  
400  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D019  
D020  
R(RT/SYNC) = 27 kΩ  
19. Switching Frequency vs Temperature  
Internal RT  
20. Switching Frequency vs Temperature  
55  
54.5  
54  
2.5  
2.48  
2.46  
2.44  
2.42  
2.4  
53.5  
53  
52.5  
52  
2.38  
2.36  
2.34  
51.5  
51  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D021  
D022  
V(SS/TRK) < VSS(THR)  
V(SS/TRK) > VSS(THR)  
21. I(SS/TRK) vs Temperature  
22. I(SS/TRK) vs Temperature  
110  
108  
106  
104  
102  
100  
98  
0.65  
0.6  
0.55  
0.5  
0.45  
0.4  
V(FB) falling (fault)  
V(FB) rising (good)  
V(FB) rising (fault)  
0.35  
0.3  
V(FB) falling (good)  
0.25  
0.2  
96  
0.15  
0.1  
94  
92  
0.05  
0
90  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
V(SS/TRK) (V)  
Junction Temperature (èC)  
D023  
D024  
TA = 25°C  
23. V(FB) vs V(SS/TRK)  
24. PGOOD Thresholds vs Temperature  
版权 © 2016, Texas Instruments Incorporated  
11  
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
10  
10  
8
TA = -40 C  
TA = 25 C  
TA = 125 C  
TA = -40 C  
TA = 25 C  
TA = 125 C  
8
6
6
4
4
2
2
0
0
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
VTTREF Current (mA)  
VTTREF Current (mA)  
D026  
D026  
VDDQSNS = 1.8 V  
VIN = 5 V  
VDDQSNS = 1.5 V  
VIN = 5 V  
25. VTTREF Regulation to VDDQSNS/2 vs I(VTTREF)  
26. VTTREF Regulation to VDDQSNS/2 vs I(VTTREF)  
10  
10  
TA = -40 C  
TA = 25 C  
TA = 125 C  
TA = -40 C  
TA = 25 C  
TA = 125 C  
8
6
8
6
4
4
2
2
0
0
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
VTTREF Current (mA)  
VTTREF Current (mA)  
D026  
D026  
VDDQSNS = 1.35  
V
VIN = 5 V  
VDDQSNS = 1.2 V  
VIN = 5 V  
28. VTTREF Regulation to VDDQSNS/2 vs I(VTTREF)  
27. VTTREF Regulation to VDDQSNS/2 vs I(VTTREF)  
25  
25  
TA = -40 C  
TA = 25 C  
TA = 125 C  
TA = -40 C  
TA = 25 C  
TA = 125 C  
20  
15  
10  
5
20  
15  
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
-1.5 -1.2 -0.9 -0.6 -0.3  
0
0.3 0.6 0.9 1.2 1.5  
-1.5 -1.2 -0.9 -0.6 -0.3  
0
0.3 0.6 0.9 1.2 1.5  
VTT Current (A)  
VTT Current (A)  
D030  
D030  
VDDQSNS = 1.8 V  
VIN = 5 V  
VDDQSNS = 1.5 V  
VIN = 5 V  
29. VTT Regulation to VTTREF vs I(VTT)  
30. VTT Regulation to VTTREF vs I(VTT)  
12  
版权 © 2016, Texas Instruments Incorporated  
TPS54116-Q1  
www.ti.com.cn  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
Typical Characteristics (接下页)  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
TA = -40 C  
TA = 25 C  
TA = 125 C  
TA = -40 C  
TA = 25 C  
TA = 125 C  
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
-1.5 -1.2 -0.9 -0.6 -0.3  
0
0.3 0.6 0.9 1.2 1.5  
-1.5 -1.2 -0.9 -0.6 -0.3  
0
0.3 0.6 0.9 1.2 1.5  
VTT Current (A)  
VTT Current (A)  
D030  
D030  
VDDQSNS = 1.35  
V
VIN = 5 V  
VDDQSNS = 1.2 V  
VIN = 5 V  
32. VTT Regulation to VTTREF vs I(VTT)  
31. VTT Regulation to VTTREF vs I(VTT)  
0.6  
0.55  
0.5  
40  
30  
20  
10  
0
200  
TA = -40 C  
TA = 25 C  
TA = 125 C  
Gain  
Phase  
150  
100  
50  
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0
0.15  
0.1  
-10  
-50  
0.05  
0
-20  
-100  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
IVTT Sourcing Transient (A)  
1
10000  
100000  
1000000  
1E+7  
Frequency (Hz)  
D034  
D035  
VDDQSNS = 1.5 V  
VIN = 5 V  
V(VTT) = 1.5 V  
TA = 25°C  
VIN = 5 V  
I(VTT) = +1 A  
33. VTT Dropout  
34. VTT Sourcing Frequency Response  
100  
40  
30  
20  
10  
0
200  
Gain  
Phase  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
150  
100  
50  
0
VDDQ = 1.8 V  
VDDQ = 1.5 V  
VDDQ = 1.35 V  
VDDQ = 1.2 V  
-10  
-50  
-20  
-100  
10000  
100000  
1000000  
1E+7  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Frequency (Hz)  
Output Current (A)  
D036  
D044  
V(VTT) = 1.5 V  
TA = 25°C  
VIN = 5 V  
I(VTT) = –1 A  
fSYNC = 2.1 MHz  
TA = 25°C  
VIN = 3.3 V  
L = 744373240068  
35. VTT Sinking Frequency Response  
36. Efficiency  
版权 © 2016, Texas Instruments Incorporated  
13  
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VDDQ = 1.8 V  
VDDQ = 1.5 V  
VDDQ = 1.35 V  
VDDQ = 1.2 V  
VDDQ = 1.8 V  
VDDQ = 1.5 V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Output Current (A)  
Output Current (A)  
D045  
D046  
fSYNC = 2.1 MHz  
TA = 25°C  
VIN = 5 V  
L = 744373240068  
fSYNC = 400 kHz  
TA = 25°C  
VIN = 3.3 V  
L = 744310200  
37. Efficiency  
38. Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VDDQ = 1.8 V  
VDDQ = 1.5 V  
VDDQ = 1.35 V  
VDDQ = 1.2 V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Output Current (A)  
D047  
fSYNC = 400 kHz  
TA = 25°C  
VIN = 5 V  
L = 744310200  
39. Efficiency  
14  
版权 © 2016, Texas Instruments Incorporated  
TPS54116-Q1  
www.ti.com.cn  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
7 Detailed Description  
7.1 Overview  
The TPS54116-Q1 is a 6-V, 4-A, synchronous step-down (buck) converter with two integrated N-channel  
MOSFETs and integrated 1-A sink/source double data rate (DDR) VTT termination regulator with a VTTREF  
buffed reference output.  
To improve the performance during line and load transients the buck converter implements a constant frequency,  
peak current mode control which reduces output capacitance and simplifies external frequency compensation  
design. The wide switching frequency range of 100 kHz to 2500 kHz allows for efficiency and size optimization  
when selecting the output filter components. The switching frequency is adjusted using a resistor to ground on  
the RT/SYNC pin. The RT/SYNC pin can also be used to synchronize the power switch turn on to the rising edge  
of an external clock. The switching frequency can be set using an internal resistor by pulling the RT/SYNC below  
the low threshold or above the high threshold.  
The TPS54116-Q1 has a typical default start-up voltage of 2.7 V. The ENSW pin can be used to enable the buck  
converter and the ENLDO pin can be used to enable VTT and VTTREF. The ENSW and ENLDO pins have  
internal pullup current sources that can be used to adjust the input voltage under voltage lockout (UVLO) with  
two external resistors. In addition, the pullup current provides a default condition when the ENSW or ENLDO pin  
is floating for the device to operate. The total operating current for the TPS54116-Q1 is typically 650 µA when  
not switching and under no load. When the device is disabled, the supply current is less than 3.5 µA.  
The integrated 33-mΩ and 25-mΩ MOSFETs allow for high-efficiency power supply designs with continuous  
output currents up to 4 amperes. The TPS54116-Q1 reduces the external component count by integrating the  
boot recharge diode. The bias voltage for the integrated high-side MOSFET is supplied by a capacitor between  
the BOOT and SW pins. The boot capacitor voltage is monitored by an UVLO circuit and turns off the high-side  
MOSFET when the voltage falls below the BOOT-SW UVLO threshold. This BOOT circuit allows the TPS54116-  
Q1 to operate approaching 100% duty cycle. The output voltage can be stepped down to as low as the 0.60-V  
reference.  
The TPS54116-Q1 features monotonic start-up under prebias conditions. The low-side FET turns on for a short  
time period every cycle before the output voltage reaches the prebiased voltage. This ensures the boot capacitor  
has enough charge to turn on the top FET when the output voltage reaches the prebiased voltage.  
The TPS54116-Q1 has a power good comparator (PGOOD) with 3% hysteresis. Excessive output overvoltage  
transients are minimized by taking advantage of the overvoltage power good comparator. When the regulated  
output voltage (as sensed by the FB voltage) is greater than 109% of the nominal voltage, the overvoltage  
comparator is activated, and the high-side MOSFET is turned off and masked from turning on until the output  
voltage is lower than 106%.  
The SS/TRK (soft-start or tracking) pin is used to minimize inrush currents or provide power supply sequencing  
during power up. A small value capacitor should be coupled to the pin for soft-start. The SS/TRK pin is  
discharged before the output power up to ensure a repeatable restart after an over temperature fault, UVLO fault  
or disabled condition. To optimize the output startup waveform, two levels of SS/TRK output current are  
implemented.  
The TPS54116-Q1 limits the peak inductor current by sensing the current through the high-side MOSFET with  
cycle-by-cycle protection. The peak current limit is adjusted using a resistor to ground on the ILIM pin. The  
reverse current through the low-side MOSFET is also limited.  
The 10-mA VTTREF buffered reference uses an internal resistor divider to regulate its output within 49% to 51%  
of VDDQSNS. The 1-A VTT termination regulates to VTTREF and maintains fast transient response with only 2 ×  
10-µF ceramic output capacitance. Remote sensing of VTT is used for best regulation. The VTT and VTTREF  
outputs are discharged when disabled with the AVIN UVLO or with ENLDO.  
版权 © 2016, Texas Instruments Incorporated  
15  
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
7.2 Functional Block Diagram  
PGOOD  
AVIN  
PVIN  
UVLO  
Comparator  
AGND  
Vref_UV  
BOOT  
Charge  
Voltage  
Reference  
Vref_OV  
BOOT  
UVLO  
Current  
Sense  
OVLO  
Comparator  
Error  
Amplifier  
FB  
BOOT  
PWM  
Comparator  
PWM Latch  
SS/TRK  
S
R
Q
Q
Logic  
Enable  
Switcher  
ENSW  
COMP  
SW  
Slope  
Compensation  
S
Current  
Sense  
Maximum  
Clamp  
Current  
Limit  
ILIM  
Reference  
ILIM  
Current  
Limit  
Oscillator  
with  
PGND  
RT/SYNC  
SYNC  
VLDOIN  
VDDQSNS  
VTTREF  
Shutdown  
VTT  
VTTSNS  
ENLDO  
Shutdown  
Enable LDO  
VTTGND  
PAD  
Copyright © 2016, Texas Instruments Incorporated  
16  
版权 © 2016, Texas Instruments Incorporated  
TPS54116-Q1  
www.ti.com.cn  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
7.3 Feature Description  
7.3.1 Fixed Frequency PWM Control  
The TPS54116-Q1 uses an adjustable fixed frequency, peak current mode control. The output voltage is  
compared through external resistors on the FB pin to an internal voltage reference by an error amplifier which  
drives the COMP pin. An internal oscillator initiates the turn on of the high-side power switch. The error amplifier  
output is compared to the high-side power switch current. When the power switch current reaches the COMP  
signal level the high-side power switch is turned off and the low-side power switch is turned on. The COMP pin  
voltage will increase and decrease as the output current increases and decreases. The device implements a  
current limit by clamping the internal COMP signal.  
An internal ramp is used to provide slope compensation to prevent sub-harmonic oscillations. The peak inductor  
current limit is constant over the full duty cycle range.  
7.3.2 Bootstrap Voltage (BOOT) and Low Dropout Operation  
The TPS54116-Q1 has an integrated boot regulator and requires a small ceramic capacitor between the BOOT  
and SW pins to provide the gate drive voltage for the high-side MOSFET. The value of the ceramic capacitor  
should be 0.1 µF. A ceramic capacitor with an X7R or X5R grade dielectric is recommended because of the  
stable characteristics over temperature and voltage.  
To improve dropout, the TPS54116-Q1 is designed to operate at 100% duty cycle as long as the BOOT-SW  
voltage is greater than 2.2 V. The high-side MOSFET is turned off using an UVLO circuit, allowing for the low-  
side MOSFET to conduct, when the BOOT-SW voltage drops below 2.2 V. Because the supply current sourced  
from the BOOT pin is low, the high-side MOSFET can remain on for more switching cycles than are required to  
refresh the capacitor, thus the effective duty of the switching regulator is high.  
7.3.3 Error Amplifier  
The TPS54116-Q1 has a transconductance amplifier for the error amplifier. The error amplifier compares the FB  
voltage to the lower of the SS/TRK pin voltage or the internal 0.6-V voltage reference. The transconductance  
(gmEA) of the error amplifier is 260 µA/V during normal operation. During soft-start, the gmEA is reduced to 90  
µA/V. The frequency compensation components are added to the COMP pin to ground.  
When operating at current limit the COMP pin voltage is clamped to a maximum level to improve response when  
the load current decreases. When FB is greater than the internal voltage reference or SS/TRK the COMP pin  
voltage is clamped to a minimum level and the devices enters a high-side skip mode.  
7.3.4 Voltage Reference and Adjusting the Output Voltage  
The voltage reference system produces a precise ±1% voltage reference over temperature by scaling the output  
of a temperature stable bandgap circuit. The FB voltage is regulated to the voltage reference. The output voltage  
is set with a resistor divider from the output node to the FB pin. It is recommended to use divider resistors with  
1% tolerance or better. Start with a 10.0 kfor the bottom resistor RFBB and use the 公式 1 to calculate RFBT  
.
The maximum recommend resistance value for the bottom resistor is 100 kΩ.  
vertical spacer  
«
VOUT  
VREF  
RFBT = RFBB  
ì
-1  
÷
(1)  
版权 © 2016, Texas Instruments Incorporated  
17  
 
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Feature Description (接下页)  
TPS54116-Q1  
VOUT  
RFBT  
FB  
+
0.6 V  
RFBB  
40. Voltage Divider Circuit  
7.3.5 Enable and Adjusting Undervoltage Lockout  
The TPS54116-Q1 is enabled when the AVIN pin voltage exceeds 2.7 V and is disabled when it falls below 2.65  
V. If an application requires a higher under-voltage lockout (UVLO) or more hysteresis, use the ENSW or ENLDO  
pins as shown in 41 to adjust the input voltage UVLO by using two external resistors. The EN pin has an  
internal pull-up current source (Ip) of 1.7 µA that provides the default condition of the TPS54116-Q1 operating  
when the EN pin floats. Once the EN pin voltage exceeds 1.2 V, an additional 2.7 μA hysteresis current (Ih) is  
added. When the EN pin is pulled below 1.17 V, the 2.7 μA is removed. This additional current facilitates input  
voltage hysteresis. It is recommended to use the EN resistors to set the UVLO falling threshold (VSTOP) at 2.65V  
or higher. The rising threshold (VSTART) should be set to provide enough hysteresis to allow for any input supply  
variations. 公式 2 can be used to calculate the top resistor in the EN divider and 公式 3 is used to calculate the  
bottom resistor.  
The ENSW and ENLDO can also be tied in parallel. Calculations can be done the same but with the increased  
EN current of Ip = 3.4 µA and Ih = 5.1 µA.  
TPS54116-Q1  
AVIN  
Ip  
Ih  
RENT  
+
ENLDO  
or  
RENB  
ENSW  
41. Adjustable Under Voltage Lock Out  
18  
版权 © 2016, Texas Instruments Incorporated  
 
TPS54116-Q1  
www.ti.com.cn  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
Feature Description (接下页)  
«
÷
VENFALLING  
VSTART  
ì
- V  
STOP  
VENRISING ◊  
RENT  
=
VENFALLING  
I ì 1-  
+I  
h
÷
p
VENRISING ◊  
«
(2)  
(3)  
vertical spacer  
RENB  
RENT ì VENFALLING  
=
VSTOP - VENFALLING + RENT ì I +I  
(
)
p
h
Where:  
Ih = 2.7 µA  
Ip = 1.7 µA  
VENRISING = 1.2 V  
VENFALLING = 1.17 V  
7.3.6 Soft Start and Tracking  
The TPS54116-Q1 regulates to the lower of the SS/TRK pin and the internal reference voltage. A capacitor on  
the SS/TRK pin to ground implements a soft start time. Before the SS pin reaches the voltage threshold VSSTHR  
of 0.15 V, the charge current is about 47 μA. The TPS54116-Q1 internal pull-up current source of 2.4 μA charges  
the external soft start capacitor after the SS pin voltage exceeds VSSTHR. 公式 4 calculates the required soft start  
capacitor value where tSS is the desired soft start time for the output voltage to reach 90% its final value in ms  
and CSS is the required capacitance in nF.  
vertical spacer  
CSS nF = 5.3ì t  
ms  
(
)
(
)
SS  
(4)  
If during normal operation, AVIN goes below the UVLO, ENSW pin pulled below 1.17 V, or a thermal shutdown  
event occurs, the TPS54116-Q1 stops switching. When the AVIN goes above UVLO, ENSW is released or pulled  
high, or a thermal shutdown is exited, then SS/TRK is discharged to below 5 mV before reinitiating a powering up  
sequence. The FB voltage will follow the SS/TRK pin voltage with a 60 mV offset up to 90% of the internal  
voltage reference. When the SS/TRK voltage is greater than 90% of the internal reference voltage the offset  
increases as the effective system reference transitions from the SS/TRK voltage to the internal voltage reference.  
When the COMP pin voltage is clamped by the maximum COMP clamp in an overload condition the soft-start pin  
is discharged to near the FB voltage. When the overload condition is removed, the soft-start circuit controls the  
recovery from the fault output level to the nominal regulation voltage. At the beginning of recovery a spike in the  
output voltage may occur as the COMP voltage transitions to the value determined by the loop.  
7.3.7 Start-up into Pre-Biased Output  
The TPS54116-Q1 features monotonic startup into pre-biased output. The low-side MOSFET turns on for a very  
short time period every cycle before the output voltage reaches the pre-biased voltage. This ensures the BOOT-  
SW cap has enough charge to turn on the high-side MOSFET when the output voltage reaches the pre-biased  
voltage. The low-side MOSFET reverse current protection provides another layer of protection but it should not  
be reached due to the implemented prebias function.  
7.3.8 Power Good  
The PGOOD pin is an open-drain output requiring an external pullup resistor to output a high signal. Once the FB  
pin is between 94% and 106% of the internal voltage reference, the PGOOD pin is de-asserted and the pin  
floats. A pull up resistor between the values of 10 kand 100 kto a voltage source that is 6 V or less is  
recommended. The PGOOD is in a defined state once the AVIN input voltage is greater than 1.3 V but with  
reduced current sinking capability.  
The PGOOD pin is pulled low when the FB is lower than 91% or greater than 109% of the nominal internal  
reference voltage. The PGOOD is also pulled low if AVIN falls below its UVLO, ENSW pin is pulled low or the  
TPS54116-Q1 enters thermal shutdown.  
版权 © 2016, Texas Instruments Incorporated  
19  
 
 
 
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Feature Description (接下页)  
7.3.9 Sequencing  
Many of the common power supply sequencing methods can be implemented using the SS/TRK, ENSW and  
PGOOD pins. The sequential method can be implemented using an open-drain or collector output of a power on  
reset pin of another device. An example sequential method is shown in 42. PGOOD is connected to the EN  
pin on the next power supply, which will enable the second power supply once the first supply reaches  
regulation.  
TPS54116-Q1  
PGOOD  
2nd DC/DC  
ENSW  
EN  
SS  
PGOOD  
SS/TRK  
CSS  
CSS  
42. Sequential Startup Example  
7.3.10 Constant Switching Frequency and Timing Resistor (RT/SYNC)  
The switching frequency of the TPS54116-Q1 is adjustable over a wide range from 100 kHz to 2500 kHz by  
placing a maximum of 620 kΩ and minimum of 22 kΩ, respectively, on the RT/SYNC pin. Alternatively the  
RT/SYNC pin can be tied above the high threshold or below the low threshold to use an internal RT resistor to  
set the switching frequency to 420 kHz. The RT/SYNC is typically 0.5 V and the current through the resistor sets  
the switching frequency. To determine the timing resistance for a given switching frequency, refer to the curve in  
16 and 17 or use 公式 5. For a given RT resistor the nominal switching frequency can be calculated with 公  
6. To reduce the solution size one would typically set the switching frequency as high as possible, but  
tradeoffs of the supply efficiency, maximum input voltage and minimum controllable on time should be  
considered. The minimum controllable on time is typically 60 ns at 2-A load current and 100 ns at no load, and  
will limit the maximum operating input voltage or minimum output voltage.  
72540  
RT kW =  
(
)
1.033  
fSW kHz  
(
)
(5)  
50740  
fSW kHz =  
(
)
0.968  
)
RT kW  
(
(6)  
The RT/SYNC pin can also be used to synchronize the converter to an external system clock. When using the  
internal RT resistor, the TPS54116-Q1 cannot be synchronized to an external clock. The synchronization  
frequency range is 100 kHz to 2500 kHz. The rising edge of SW will be synchronized to the rising edge of  
RT/SYNC. To implement the synchronization feature in a system connect a square wave to the RT/SYNC pin  
with on-time at least 10 ns. The square wave amplitude at this pin must transition lower than 0.35 V and higher  
than 2.2 V.  
See 43 for synchronizing to a high impedance system clock. See 44 and 45 for synchronizing to a low  
impedance system clock. A tri-state buffer with its output directly connected to the RT/SYNC pin is the  
recommended method to accomodate a wide range of external clock frequencies and duty cycles. Alternatively  
an AC blocking capacitor circuit can be used when synchronizing to frequencies greater than 800 kHz and with  
clock signals with duty cycle near 50%. When using an AC coupling capacitor to interface with an external clock,  
RT/SYNC is not actively pulled low by the external clock. As a result the TPS54116-Q1 begins its transition back  
to RT mode while the external clock is low. When connecting the RT/SYNC pin to the external clock source, it is  
important to minimize routing connected to the RT/SYNC pin as much as possible to minimize noise sensitivity  
when operating in RT mode.  
20  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
TPS54116-Q1  
www.ti.com.cn  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
Feature Description (接下页)  
TPS54116-Q1  
RT/SYNC  
RRT  
Oscillator  
43. Synchronizing to a High Impedance System Clock  
TPS54116-Q1  
OE  
RT/SYNC  
RRT  
Oscillator  
44. Interfacing to the RT/SYNC Pin with Buffer  
TPS54116-Q1  
RT/SYNC  
Oscillator  
1 k  
22 pF  
RRT  
45. Interfacing to the RT/SYNC Pin with RC  
版权 © 2016, Texas Instruments Incorporated  
21  
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
Feature Description (接下页)  
7.3.11 Buck Overcurrent Protection  
The TPS54116-Q1 implements current mode control which uses the COMP pin voltage to turn off the high-side  
MOSFET and turn on the low-side MOSFET on a cycle-by-cycle basis. Each cycle the switch current and the  
COMP pin voltage are compared, when the peak switch current intersects the COMP voltage the high-side  
switch is turned off. During overcurrent conditions that pull the output voltage low, the error amplifier will respond  
by driving the COMP pin high, increasing the switch current. The error amplifier output is clamped internally. This  
clamp functions as a high-side switch current limit.  
A resistor placed from ILIM to AGND sets the peak current limit of the buck converter in the TPS54116-Q1. A  
100 kΩ resistor sets it to the maximum value and a 200 kΩ resistor sets it to the minimum value. Any resistor  
within this range can be used. 12 shows the relationship between peak current limit and ILIM resistor. To  
determine the resistor value for a target current limit use 公式 7.  
vertical spacer  
-0.75  
RILIM = 420ìI  
limit  
(7)  
The TPS54116-Q1 also implements low-side current protection by detecting the voltage over the low-side  
MOSFET. When the converter sinks current through the low-side MOSFET is more than 4.5 A, the control circuit  
will turn the low-side MOSFET off immediately for the rest of the clock cycle. Under this condition, both the high-  
side and low-side are off until the start of the next cycle.  
7.3.12 Overvoltage Transient Protection  
The TPS54116-Q1 incorporates an overvoltage transient protection (OVTP) circuit to minimize voltage overshoot  
when recovering from output fault conditions or strong unload transients. The OVTP feature minimizes the output  
overshoot by implementing a circuit to compare the FB pin voltage to OVTP threshold which is 109% of the  
internal voltage reference. If the FB pin voltage is greater than the OVTP threshold, the high-side MOSFET is  
disabled preventing current from flowing to the output and minimizing output overshoot. The output voltage can  
overshoot the 109% threshold as the current in the inductor discharges to 0 A. When the FB voltage drops lower  
than the OVTP threshold the high-side MOSFET is allowed to turn on the next clock cycle.  
7.3.13 VTT Sink and Source Regulator  
The TPS54116-Q1 integrates a high-performance, low-dropout (LDO) linear regulator (VTT) that has ultimate fast  
response to track ½ VDDQSNS within 40 mV at all conditions, and its current capability is 1.5 A peak current for  
both sink and source directions. Two 10-µF (or greater) ceramic capacitor(s) need to be attached close to the  
VTT pin for stable operation. X5R grade or better is recommended. To achieve tight regulation with minimum  
effect of trace resistance, the remote sensing terminal, VTTSNS, should be connected to the positive terminal of  
the output capacitor(s) as a separate trace from the high current path from the VTT pin.  
The device has a dedicated pin, VLDOIN, for VTT power supply to minimize the LDO power dissipation on user  
application. The minimum VLDOIN voltage is 0.45 V above the ½ VDDQSNS voltage.  
7.3.14 VTTREF  
The VTTREF pin has a 10 mA sink and source current capability, and regulates to within 49% to 51% of  
VDDQSNS. A 0.22-µF ceramic capacitor needs to be attached close to the VTTREF terminal for stable  
operation. X5R grade or better is recommended.  
7.3.15 Thermal Shutdown  
The device implements an internal thermal shutdown to protect itself if the junction temperature exceeds 175°C.  
The thermal shutdown has a hysteresis of 16°C. When the junction temperature exceeds thermal trip threshold,  
thermal shutdown forces the device to stop switching and discharges both VTT and VTTREF. When the die  
temperature decreases below 159°C, the device reinitiates the power-up sequence by discharging the SS/TRK  
pin.  
22  
版权 © 2016, Texas Instruments Incorporated  
 
TPS54116-Q1  
www.ti.com.cn  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
7.4 Device Functional Modes  
The enable pins and an AVIN UVLO are used to control turn on and turn off of the TPS54116-Q1. The device  
becomes active when V(AVIN) exceeds the 2.7 V typical UVLO and when either V(ENSW) or V(ENLDO) exceeds 1.20  
V typical. The ENSW pin is used to control the turn on and turn off of the buck converter. The ENLDO pin is used  
to control the turn on and turn off of the VTTREF and VTT outputs of the termination regulator. The ENSW and  
ENLDO pins both have an internal current source to enable their respective outputs when left floating. Both  
ENSW and ENLDO need to be pulled low to put the device into a low quiescent current state.  
版权 © 2016, Texas Instruments Incorporated  
23  
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS54116-Q1 is a fully integrated power solution for DDR2, DDR3 and DDR3L memory supplying VDDQ,  
VTTREF and VTT as shown in 46. It can also be used to power LPDDR2, LPDDR3 and DDR4 memory but an  
additional power supply is required for VDD1 or VPP as shown in 47. The TPS54116-Q1 can supply 4 A for  
VDDQ and 1 A for VTT. The sourcing current for VTT comes from VDDQ and must be included as part of the  
total VDDQ load current. Use the following design procedure to select component values for the TPS54116-Q1.  
This procedure illustrates the design of a high-frequency switching regulator using ceramic output capacitors.  
Alternatively the WEBENCH® software can be used to generate a complete design. The WEBENCH® software  
uses an interactive design procedure and accesses a comprehensive database of components when generating  
a design. This section presents a simplified discussion of the design process.  
VDDQ  
5.0 V or 3.3 V  
TPS54116-Q1  
VTTREF  
VTT  
Copyright © 2016, Texas Instruments Incorporated  
46. DDR2, DDR3 and DDR3L Application Block Diagram  
VDDQ  
5.0 V or 3.3 V  
TPS54116-Q1  
VTTREF  
VTT  
TPS57112-Q1  
or other DC/DC  
VPP or  
VDD1  
Copyright © 2016, Texas Instruments Incorporated  
47. LPDDR2, LPDDR3 and DDR4 Application Block Diagram  
24  
版权 © 2016, Texas Instruments Incorporated  
 
 
TPS54116-Q1  
www.ti.com.cn  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
8.2 Typical Application  
VIN  
VDDQ  
L1 680nH  
R14  
15.0k  
C17  
180pF  
C1  
47µF  
C2  
0.1µF  
C3  
10µF  
C4  
1µF  
C8  
10µF  
C12  
47µF  
C13  
47µF  
C14  
47µF  
R1  
45.3k  
C10  
0.1µF  
R15  
10.0k  
U1  
TPS54116QRTWRQ1  
3
2
AVIN  
BOOT  
21  
22  
1
PVIN  
PVIN  
SW  
SW  
SW  
R2  
30.1k  
23  
24  
8
4
LDOIN  
ENSW  
ENLDO  
PGOOD  
ILIM  
7
VDDQSNS  
VTT  
9
VTT  
5
11  
12  
14  
VTTSNS  
VTTREF  
AGND  
R5  
C15  
10µF  
C16  
10µF  
6
100k  
VTTREF  
13  
17  
16  
15  
18  
C11  
0.22µF  
SS/TRK  
COMP  
FB  
19  
20  
PGND  
PGND  
R3  
100k  
C5  
3300pF  
10  
25  
VTTGND  
PAD  
R6  
20.5k  
NT1  
RT/SYNC  
Net-Tie  
C7  
180pF  
C9  
R6  
C6  
1800pF  
OSC IN  
AGND  
PGND  
1.00k  
R7  
26.7k  
22pF  
48. 3.3-V or 5-V Input, 2.1 MHz fsw, DDR3 Schematic  
8.2.1 Design Requirements  
1. Design Parameters  
DESIGN PARAMETERS  
EXAMPLE VALUES  
Input Voltage  
5 V nominal, 2.95 V to 5.25 V  
Output Voltage  
1.5 V  
4 A  
Maximum Output Current (VDDQ)  
Maximum Output Current (VTT)  
Output Voltage Ripple (VDDQ)  
Transient Response 1 A to 3 A load step  
Start Input Voltage (rising VIN)  
Stop Input Voltage (falling VIN)  
1 A  
0.5% of VOUT  
ΔVOUT = 4 %  
2.9 V  
2.6 V  
8.2.2 Detailed Design Procedure  
8.2.2.1 Switching Frequency  
The first step is to decide on a switching frequency for the regulator. The buck converter is capable of running  
from 100 kHz to 2.5 MHz. Typically the highest switching frequency possible is desired because it will produce  
the smallest solution size. A high switching frequency allows for lower valued inductors and smaller output  
capacitors compared to a power supply that switches at a lower frequency. Additionally in applications with EMI  
requirements, such as automotive, choosing a switching frequency of 2.1 MHz is desired to keep the switching  
noise above the medium wave band or AM band. They main trade off made with selecting a higher switching  
frequency is extra switching power loss, which hurt the converter’s efficiency.  
版权 © 2016, Texas Instruments Incorporated  
25  
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
The maximum switching frequency for a given application is limited by the minimum on-time of the converter and  
is estimated with 公式 8. For this application with the maximum minimum on-time of 125 ns at no load and 5.25 V  
maximum input voltage the maximum switching frequency is 2.28 MHz. A switching frequency of 2.1 MHz is  
selected to stay above the AM band. 公式 9 calculates R14 to be 26.8 kΩ. A standard 1% 26.7 kΩ value was  
chosen in the design.  
VOUT  
V max  
IN  
1
fSW max =  
ì
(
)
tonmin  
(
)
(8)  
(9)  
72540  
RT kW =  
(
)
1.033  
fSW kHz  
(
)
8.2.2.2 Output Inductor Selection  
To calculate the value of the output inductor, use 公式 10. KIND is a ratio that represents the amount of inductor  
ripple current relative to the maximum output current. The inductor ripple current is filtered by the output  
capacitor. Therefore, choosing high inductor ripple currents impacts the selection of the output capacitor since  
the output capacitor must have a ripple current rating equal to or greater than the inductor ripple current.  
Additionally the inductor current ripple is used as part of the PWM control system. Choosing small inductor ripple  
currents can degrade the transient response performance or introduce jitter in the duty cycle. In general, the  
inductor ripple value is at the discretion of the designer; however, KIND is normally from 0.1 to 0.3 for the majority  
of applications giving a peak to peak ripple current range of 0.4 A to 1.2 A. It is recommended to always keep the  
peak to peak ripple current above 0.4 A because with a current mode control the inductor current ramp is used in  
the PWM control system.  
For this design example, KIND = 0.3 is used and the inductor value is calculated to be 0.43 μH. The next standard  
value 0.68 µH is selected. It is important that the RMS current and saturation current ratings of the inductor not  
be exceeded. The RMS and peak inductor current can be found from 公式 12 and 公式 13. For this design, the  
RMS inductor current is 4.0 A and the peak inductor current is 4.4 A. The chosen inductor is a WE  
744373240068. It has a saturation current rating of 10.0 A (20% inductance loss) and a RMS current rating of 5.5  
A (40 °C. temperature rise). The series resistance is 16.0 mΩ typical.  
The current flowing through the inductor is the inductor ripple current plus the output current. During power up,  
faults or transient load conditions, the inductor current can increase above the calculated peak inductor current  
level calculated above. In transient conditions, the inductor current can increase up to the switch current limit of  
the device. For this reason, the most conservative approach is to specify an inductor with a saturation current  
rating equal to or greater than the switch current limit rather than the steady-state peak inductor current.  
Additionally if a hard short on the output occurs in a fault condition the peak inductor current can exceed the  
current limit and may reach up to 10 A. The peak current limit in this scenario is only limited by the minimum on-  
time of the TPS54116-Q1 and the parasitic DC voltage drops in the circuit. The peak current during a hard short  
will vary with the switching frequency and only exceeds the current limit when using the TPS54116-Q1 with  
higher switching frequencies like 2.1 MHz. To protect the inductor in a hard output short the inductor should be  
rated for this current.  
Vinmax - Vout  
Vout  
L1 =  
´
Io ´ Kind  
Vinmax ´ ¦sw  
(10)  
vertical spacer  
Vinmax - Vout  
Vout  
Iripple =  
´
L1  
Vinmax ´ ¦sw  
(11)  
vertical spacer  
æ
ö2  
÷
1
Vo ´ (Vinmax - Vo)  
Vinmax ´ L1 ´ ¦sw  
ILrms = Io2  
+
´
ç
12  
è
ø
(12)  
vertical spacer  
ILpeak = Iout +  
Iripple  
2
(13)  
26  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
 
 
TPS54116-Q1  
www.ti.com.cn  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
8.2.2.3 Output Capacitor  
There are three primary considerations for selecting the value of the output capacitor. The output capacitor  
determines the modulator pole, the output voltage ripple, and how the regulator responds to a large change in  
load current. The output capacitance needs to be selected based on the more stringent of these three criteria.  
The desired response to a large change in the load current is the first criteria and is often the most stringent. The  
output capacitor needs to supply the increased load current until the regulator responds to the load step. The  
regulator does not respond immediately to a large, fast increase in the load current such as transitioning from no  
load to a full load. The regulator usually needs two or more clock cycles for the control loop to sense the change  
in output voltage and adjust the peak switch current in response to the higher load. The output capacitance must  
be large enough to supply the difference in current for 2 clock cycles to maintain the output voltage within the  
specified range. At higher switching frequencies the fastest response time is about 4 µs. 公式 14 shows the  
minimum output capacitance necessary, where ΔIOUT is the change in output current, tresponse is the regulators  
response time and ΔVOUT is the allowable change in the output voltage. The minimum of 2/fsw or 4 µs should be  
used for the response time in the output capacitance calculation. It is important to realize the response to a  
transient load also depends on the loop compensation and slew rate of the transient load. This calculation  
assumes the loop compensation is designed for the output filter with the equations later on in this procedure.  
For this example, the transient load response is specified as a 4% change in VOUT for a load step of 2 A.  
Therefore, ΔIOUT is 2 A and ΔVOUT = 0.04 × 1.5 = 60 mV. Using these numbers with a 4 µs response time gives a  
minimum capacitance of 133 μF. This value does not take the ESR of the output capacitor into account in the  
output voltage change. For ceramic capacitors, the ESR is usually small enough to be ignored. Aluminum  
electrolytic and tantalum capacitors have higher ESR that must be considered for load step response.  
公式 15 calculates the minimum output capacitance needed to meet the output voltage ripple specification.  
Where fsw is the switching frequency, Vripple is the maximum allowable output voltage ripple, and Iripple is the  
inductor ripple current. In this case, the maximum output voltage ripple is 7.5 mV. Under this requirement, 公式  
15 yields 6.3 µF.  
vertical spacer  
DIout  
DVout  
Co > tresponse  
ì
(14)  
vertical spacer  
1
1
Co >  
´
Voripple  
Iripple  
8 ´ ¦sw  
Where:  
ΔIOUT is the change in output current  
fsw is the regulators switching frequency  
ΔVOUT is the allowable change in the output voltage  
(15)  
vertical spacer  
公式 16 calculates the maximum combined ESR the output capacitors can have to meet the output voltage ripple  
specification and this shows the ESR should be less than 10 m. In this case ceramic capacitors will be used  
and the combined ESR of the ceramic capacitors in parallel is much less than 10 m. Capacitors also generally  
have limits to the amount of ripple current they can handle without failing or producing excess heat. An output  
capacitor that can support the inductor ripple current must be specified. Some capacitor data sheets specify the  
RMS (Root Mean Square) value of the maximum ripple current. 公式 17 can be used to calculate the RMS ripple  
current the output capacitor needs to support. For this application, 公式 17 yields 220 mA. Ceramic capacitors  
used in this design will have a ripple current rating much higher than 220 mA.  
Voripple  
Resr <  
Iripple  
(16)  
vertical spacer  
Vout ´ (Vinmax - Vout)  
Icorms =  
12 ´ Vinmax ´ L1 ´ ¦sw  
(17)  
版权 © 2016, Texas Instruments Incorporated  
27  
 
 
 
 
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the  
capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that  
is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors  
because they have a high capacitance to volume ratio and are fairly stable over temperature. The output  
capacitor must also be selected with the DC bias taken into account. The capacitance value of a capacitor  
decreases as the DC bias across a capacitor increases. For this application example, three 47 μF 10 V 1210  
X7R ceramic capacitors each with 8 mof ESR at the fsw are used. The estimated capacitance after derating  
shown on the capcaitor manufacturer's website with 1.5 V DC bias is 51.4 µF each. With 3 parallel capacitors the  
total output capacitance is 154 µF and the ESR is 2.7 mΩ.  
8.2.2.4 Input Capacitor  
The TPS54116-Q1 requires a high quality ceramic, type X5R or X7R, input decoupling capacitor of at least 10 μF  
of effective capacitance placed across the PVIN and PGND pins and in some applications a bulk capacitance.  
The effective capacitance includes any DC bias effects. The voltage rating of the input capacitor must be greater  
than the maximum input voltage. The capacitor must also have a ripple current rating greater than the maximum  
RMS input current of the TPS54116-Q1. The RMS input current can be calculated using 公式 18. An input  
decoupling capacitor of 1 µF must also be placed at the AVIN pin to ensure a stable input voltage to the internal  
control circuits.  
For this example design, a ceramic capacitor with at least a 10 V voltage rating is required to support the  
maximum input voltage. For this example, one 47 µF 1210 X7R, one 10 µF 0603 X7R and one 0.1 μF 0603 X7R  
10 V capacitors in parallel have been selected for the PVIN to PGND pins. Additionally one 1 µF 0603 X5R 10 V  
capacitor is selected for the AVIN pin. The 0.1 µF at the PVIN pin is used to better bypass the higher frequency  
content when the high-side MOSFET switches on and off. Based on the capacitor manufacturer's website, the  
total input capacitance derates to 34 µF at the nominal input voltage of 5 V. The input capacitance value  
determines the input ripple voltage of the regulator. The input voltage ripple can be calculated using 公式 19.  
Using the design example values, Ioutmax = 4 A, Cin = 34 μF, fSW = 2.1 MHz, yields an input voltage ripple of 14  
mV and a rms input ripple current of 1.9 A.  
Vinmin - Vout  
(
)
Vout  
Icirms = Iout ´  
´
Vinmin  
Vinmin  
(18)  
(19)  
vertical spacer  
Ioutmax ´ 0.25  
Cin ´ ¦sw  
DVin =  
8.2.2.5 Soft Start Capacitor  
The soft-start capacitor determines the minimum amount of time it takes for the output voltage to reach its  
nominal programmed value during power up. This is useful if a load requires a controlled voltage slew rate. This  
is also used if the output capacitance is very large and would require large amounts of current to quickly charge  
the capacitor to the output voltage level. The large currents necessary to charge the capacitor may make the  
TPS54116-Q1 reach the current limit or excessive current draw from the input power supply may cause the input  
voltage rail to sag. Limiting the output voltage slew rate solves both of these problems.  
The soft-start capacitor value can be calculated using 公式 20. For the example circuit, the soft-start time is not  
too critical since the output capacitor value of 3 x 47 µF does not require much current to charge to 1.5 V. With  
the higher switching frequency used in this example a faster start-up time improves the start up behavior. Near  
the beginning of the start up time when the output voltage is low the minimum on-time of the converter is too  
large to regulate the output causing additional ripple on the output. A faster start-up time will reduce the time the  
converter spends in this region. The example circuit is designed for a soft-start time of 0.6 ms which requires a  
3300 pF capacitor.  
CSS nF = 5.3ì t  
ms  
(
)
(
)
SS  
(20)  
28  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
TPS54116-Q1  
www.ti.com.cn  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
8.2.2.6 Undervoltage Lock Out Set Point  
The Undervoltage Lock Out (UVLO) can be adjusted using an external voltage divider on the ENSW and ENLDO  
pin of the TPS54116. Each pin can have its own resistor divider if different thresholds are needed for the VTT  
LDO and the buck converter. If only one threshold is needed only one resistor divider is needed and the pins can  
be connected in parallel. If connected in parallel the pull up current and hysteresis current should be increased to  
3.4 µA and 5.1 µA respectively as shown in the electrical specifications. The UVLO has two thresholds, one for  
power-up when the input voltage is rising, and one for power-down or brown outs when the input voltage is  
falling.  
For the example design, the supply should turn on and start switching once the input voltage increases above  
2.9 V (enabled). After the regulator starts switching, it should continue to do so until the input voltage falls below  
2.6 V (UVLO stop). The EN pins are also connected in parallel so the higher pull up current and hysteresis  
current is used. 公式 2 through 公式 3 can be used to calculate the resistance values necessary. A 45.3 kΩ  
between PVIN and the EN pins (R1) and a 30.1 kbetween the EN pins and ground (R2) are used producing a  
start voltage of 2.85 V and stop voltage of 2.47 V. The 2.47 V stop voltage is below the 2.65 V AVIN UVLO so  
with this application example the TPS54116-Q1 will turn off due to the AVIN UVLO.  
8.2.2.7 Bootstrap Capacitor  
A 0.1 μF ceramic capacitor must be connected between the BOOT and SW pins for proper operation. It is  
recommended to use a ceramic capacitor with X5R or better grade dielectric. The capacitor should have 10 V or  
higher voltage rating.  
8.2.2.8 Power Good Pullup  
A 100 kΩ resistor is used to pull up the power good signal to VIN when FB conditions are met.  
8.2.2.9 ILIM Resistor  
The recommended peak current limit is calculated with 公式 21 using ILpeak from 公式 13. This calculation  
includes 10% margin for load transients and an additional 1.5 A for the tolerance of the peak current limit. In this  
application a 100 kΩ resistor is placed from ILIM to AGND to set the peak current limit to its maximum value. For  
applications requiring a different peak current limit 公式 7 is used to calculate the ILIM resistor.  
vertical spacer  
I
= ILpeak ì1.1+1.5A  
limit  
(21)  
8.2.2.10 Output Voltage and Feedback Resistors Selection  
For the example design, 10.0 kwas selected for R7. Using 公式 22, R5 is calculated as 15.0 kwhich is a  
standard 1% resistor.  
vertical spacer  
«
VOUT  
VREF  
RFBT = RFBB  
ì
-1  
÷
(22)  
8.2.2.11 Compensation  
There are several methods used to compensate DC - DC regulators. The method presented here is easy to  
calculate and ignores the effects of the slope compensation that is internal to the device. Because the slope  
compensation is ignored, the actual cross-over frequency will usually be lower than the cross-over frequency  
used in the calculations. This method assumes the cross-over frequency is between the modulator pole and the  
ESR zero and the ESR zero is at least 10 times greater the modulator pole. This is the case when using low  
ESR output capacitors. Use the WEBENCH software for more accurate loop compensation. These tools include  
a more comprehensive model of the control loop.  
版权 © 2016, Texas Instruments Incorporated  
29  
 
 
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
To get started, the modulator pole, fpmod, and the ESR zero, fz1 must be calculated using 公式 23 and 公式 24.  
For Cout, use a derated value of 154 μF. Use equations 公式 25 and 公式 26, to estimate a starting point for the  
crossover frequency, fco, to design the compensation. For the example design, fpmod is 2.8 kHz and fzmod is  
388 kHz. 公式 25 is the geometric mean of the modulator pole and the esr zero and 公式 26 is the mean of  
modulator pole and one half the switching frequency or 250 kHz, whichever is larger. For the 2.1 MHz switching  
frequency application 250 kHz is used so 公式 25 yields 33 kHz and 公式 26 gives 52 kHz. Use the lower value  
of 公式 25 or 公式 26 for an initial crossover frequency. Next, the compensation components are calculated. A  
resistor-in-series with a capacitor is used to create a compensating zero. A capacitor in parallel to these two  
components forms the compensating pole.  
Ioutmax  
¦p mod =  
2 × p × Vout × Cout  
1
(23)  
¦z mod =  
2 ´ p ´ Resr × Cout  
(24)  
(25)  
fco  
=
fpmod´ fzmod  
fsw  
fpmod´  
2
fco  
=
(26)  
To determine the compensation resistor, R6, use 公式 27. Assume the power stage transconductance, gmps, is  
16 A/V. The output voltage, Vo, reference voltage, VREF, and amplifier transconductance, gmea, are 1.5 V, 0.6  
V and 260 μA/V, respectively. R6 is calculated to be 19 kand the closest standard value 19.1 kΩ. Use 公式 28  
to set the compensation zero to the modulator pole frequency. 公式 28 yields 3020 pF for compensating  
capacitor C6 and the closest standard value is 3300 pF.  
«
’ ≈  
÷
2ì pì fCO ìCOUT  
VOUT  
RCOMP  
=
ì
÷ ∆  
gmPS  
VREF ì gmEA ◊  
◊ «  
(27)  
1
CCOMP  
=
2ì pìRCOMP ì fPMOD  
(28)  
A compensation pole is implemented using an additional capacitor C7 in parallel with the series combination of  
R6 and C6. This capacitor is recommended to help filter any noise that may couple to the COMP voltage signal.  
Use the larger value of 公式 29 and 公式 30 to calculate the C7, to set the compensation pole. C7 is calculated  
to 21 pF or 8 pF and the closest standard value is 22 pF.  
COUT ìRESR  
CHF  
=
RCOMP  
(29)  
1
CHF  
=
RCOMP ì fSW  
(30)  
Type III compensation is used by adding the feed forward capacitor (C17) in parallel with the upper feedback  
resistor. This increases the crossover and adds phase boost above what is normally possible from Type II  
compensation. It places an additional zero/pole pair. This zero and pole pair is not independent. Once the zero  
location is chosen, the pole is fixed as well. The zero is placed at the intended crossover frequency by  
calculating the value of C17 with 公式 31. The calculated value is 216 pF and the closest standard value is 220  
pF.  
1
CFF  
=
3ì pìRFBT ì fCO  
(31)  
The initial compensation based on these calculations is R6 = 19.1 kΩ, C6 = 3300 pF, C7 = 22 pF and C17 = 220  
pF. These values yield a stable design but after testing the real circuit these values were changed to optimize  
performance. The final values used in the schematic are R6 = 20.5 kΩ, C6 = 1800 pF, C7 = 180 pF and C17 =  
180 pF.  
8.2.2.12 LDOIN Capacitor  
Depending on the trace impedance between the LDOIN bulk power supply to the device, a transient increase of  
source current is supplied mostly by the charge from the LDOIN input capacitor. Use a 10-µF (or greater) and  
X5R grade (or better) ceramic capacitor to supply this transient charge.  
30  
版权 © 2016, Texas Instruments Incorporated  
 
 
 
 
 
 
 
 
 
TPS54116-Q1  
www.ti.com.cn  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
8.2.2.13 VTTREF Capacitor  
Add a ceramic capacitor, with a value 0.22 µF and X5R grade (or better), placed close to the VTTREF terminal  
for stable operation.  
8.2.2.14 VTT Capacitor  
For stable operation, two 10-µF (or greater) and X5R (or better) grade ceramic capacitor(s) need to be attached  
close to the VTT terminal. This capacitor is recommended to minimize any additional equivalent series resistance  
(ESR) and/or equivalent series inductance (ESL) of ground trace between the PGND terminal and the VTT  
capacitor(s).  
8.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
VIN = 5V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Output Current (A)  
Output Current (A)  
D037  
D039  
49. VDD Output Efficiency  
50. VDD Output Load Regulation, VIN = 5 V  
60  
180  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
50  
40  
150  
120  
90  
30  
20  
60  
10  
30  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-30  
-60  
-90  
-120  
-150  
-180  
Gain (dB)  
Phase (Deg)  
100 200 500 1000  
10000  
Frequency (Hz)  
100000  
500000  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Input Voltage (V)  
D043  
D041  
52. VDD Output Loop Response  
51. VDD Output Line Regulation, IOUT = 2 A  
版权 © 2016, Texas Instruments Incorporated  
31  
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
EN = 2 V / div  
SS= 1 V / div  
EN = 2 V / div  
VTT = 1 V / div  
VDD = 1 V / div  
VDD = 1 V / div  
PGOOD = 5 V / div  
PGOOD = 5 V / div  
Time = 1 msec / div  
Time = 1 msec / div  
53. VDD Start-Up Relative to Enable  
54. VTT and VDD Start-Up Relative to Enable  
EN = 2 V / div  
SS= 1 V / div  
VIN = 5 V / div  
SS= 1 V / div  
VDD = 1 V / div  
VDD = 1 V / div  
PGOOD = 5 V / div  
PGOOD = 5 V / div  
Time = 1 msec / div  
Time = 1 msec / div  
55. VDD Start-Up Relative to VIN  
56. VDD Shutdown Relative to Enable  
VIN = 5 V / div  
SS= 1 V / div  
EN = 2 V / div  
VTT = 1 V / div  
VDD = 1 V / div  
VDD = 1 V / div  
PGOOD = 5 V / div  
PGOOD = 5 V / div  
Time = 1 msec / div  
Time = 1 msec / div  
57. VTT and VDD Shutdown Relative to Enable  
58. VDD Shutdown Relative to VIN  
32  
版权 © 2016, Texas Instruments Incorporated  
TPS54116-Q1  
www.ti.com.cn  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
VTT = 20 mV / div (ac coupled)  
VDD = 10 mV / div (ac coupled)  
SW = 2 V / div  
SW = 2 V / div  
Time = 500 nsec / div  
Time = 500 nsec / div  
59. VDD Output Ripple  
60. VTTOutput Ripple  
VIN = 100 mV / div (ac coupled)  
VDD = 50 mV / div (ac coupled)  
IOUT = 1A / div  
SW = 2 V / div  
Load step 1 A to 3 A, slew rate 500 mA / µsec  
Time = 200 µsec / div  
Time = 500 nsec / div  
61. Input Ripple  
62. VDD Output Transient Response  
VTT = 20 mV / div (ac coupled)  
CLK = 2 V / div  
Time = 100 µsec / div  
63. VTT Output Transient Response  
版权 © 2016, Texas Instruments Incorporated  
33  
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPS54116-Q1 is designed to be powered by a well regulated dc voltage between 2.95 and 6 V. The  
TPS54116-Q1 is a buck converter so the input supply voltage must be greater than the desired output voltage to  
regulate the output voltage to the desired value. If the input supply voltage is not high enough the output voltage  
will begin to drop. Input supply current must be appropriate for the desired output current.  
10 Layout  
10.1 Layout Guidelines  
Layout is a critical portion of good power supply design. There are several signal paths that conduct fast  
changing currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise  
or degrade the power supplies performance. Guidelines are as follows. See 64 for a PCB layout example.  
The input bypass capacitor for PVIN to PGND should be placed as close as possible to the TPS54116-Q1  
with short and wide connections to minimize parasitic inductance.  
The input bypass capacitor for AVIN should be placed as close as possible to the TPS54116-Q1 with a short  
return to the AGND pin. This capacitor and pin should also be tied to the input voltage before the PVIN  
bypass capacitors to limit the switching noise from PVIN.  
The output capacitor for VTT to VTTGND should be placed as close as possible to the TPS54116-Q1 with  
short and wide connections to minimize parasitic inductance and resistance. Too much parasitic inductance  
and resistance can affect the stability of the high performance VTT LDO.  
The VTTSNS pin should be connected tothe VTT output capacitors as a seperate trace from the high current  
VTT power trace. If sensing the voltage at the pont of the load is required, it is recommended to also attach  
the output capacitors at that point while still minimizing parasitic inductance and resistance.  
The input bypass capacitor for LDOIN to VTTGND should be placed as close as possible to the TPS54116-  
Q1 with short and wide connections to minimize parasitic inductance. This capacitor is used to supply the  
transient current to the VTT output.  
The VDDQSNS pin should be routed as a separate trace from the high current VDDQ trace and connect near  
the point of regulation for VDDQ.  
The top of the FB resistor divider should be routed as a separate trace from the high current VDDQ trace and  
connect near the the point of regulation for VDDQ.  
The analog control circuits should have a return path to the quiet AGND and not overlap with the noisey  
PGND. Sensitive pins containing analog control circuits are RT/SYNC, SS/TRK, COMP, FB, ILIM, and  
VTTREF. It is important to minimize the length of the traces connected to the RT/SYNC, COMP, FB and ILIM  
pins.  
The PGND pins, AGND and VTTGND pin should be tied directly to the power pad under the IC to provide a  
low impedance connection between the pins.  
The BOOT capacitor should connect directly between the BOOT and SW pins.  
The SW pin should be routed to the output inductor with a short and wide trace to minimize capacitive  
coupling.  
The thermal pad should be connected to any internal PCB ground planes using multiple vias directly under  
the IC. For operation at full rated load, the top side ground area and bottom side ground area along with any  
additional internal ground planes must provide adequate heat dissipating area. For best thermal performance  
minimize cuts in the bottom side ground copper.  
Additional vias can be used to connect the top side ground area to the internal planes near the input and  
output capacitors for the buck converter and VTT LDO.  
The additional external components can be placed approximately as shown. It may be possible to obtain  
acceptable performance with alternate PCB layouts, however this layout has been shown to produce good  
results and is meant as a guideline.  
34  
版权 © 2016, Texas Instruments Incorporated  
TPS54116-Q1  
www.ti.com.cn  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
10.2 Layout Example  
GND  
VTT  
C
LDOIN  
VREF  
C
R
FF  
FBT  
ILIM  
AGND  
PGOOD  
ENLDO  
ENSW  
AVIN  
R
ENT  
R
ENT  
R
PG  
THERMAL PAD  
FB  
COMP  
SS/TRK  
RT/ SYNC  
R
CP  
BOOT  
SW  
C
BT  
SW  
VOUT  
L
COUT  
COUT  
COUT  
COUT  
GND  
GND  
VIN  
64. PCB Layout Example  
版权 © 2016, Texas Instruments Incorporated  
35  
TPS54116-Q1  
ZHCSFG9A AUGUST 2016REVISED AUGUST 2016  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏  
36  
版权 © 2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS54116QRTWRQ1  
TPS54116QRTWTQ1  
ACTIVE  
WQFN  
WQFN  
RTW  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
54116Q  
A2  
ACTIVE  
RTW  
NIPDAU  
54116Q  
A2  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS54116QRTWRQ1  
TPS54116QRTWTQ1  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS54116QRTWRQ1  
TPS54116QRTWTQ1  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS54116QRTWRQ1

采用 4A 2MHZ VDDQ 直流/直流转换器、1A VTT LDO 和 VTTREF 的汽车类 DDR 电源解决方案 | RTW | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54116QRTWTQ1

采用 4A 2MHZ VDDQ 直流/直流转换器、1A VTT LDO 和 VTTREF 的汽车类 DDR 电源解决方案 | RTW | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54120

Low-Noise, 1-A Power Supply

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54120EVM

TPS54120EVM, Low Noise 1A Power Supply Evaluation Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54120RGY

TPS54120EVM, Low Noise 1A Power Supply Evaluation Module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54120RGYR

Low-Noise, 1-A Power Supply

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54120RGYT

Low-Noise, 1-A Power Supply

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54122

TPS54122-Q1 Dual-Output, 3-A, QuietSupply™ with Integrated DC-DC Converter and Low-Noise LDO

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54122-Q1

TPS54122-Q1 Dual-Output, 3-A, QuietSupply™ with Integrated DC-DC Converter and Low-Noise LDO

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54122-Q1_15

TPS54122-Q1 Dual-Output, 3-A, QuietSupply™ with Integrated DC-DC Converter and Low-Noise LDO

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54122QRHLRQ1

TPS54122-Q1 Dual-Output, 3-A, QuietSupply™ with Integrated DC-DC Converter and Low-Noise LDO

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54140

1.5-A, 42V STEP DOWN SWIFT™ DC/DC CONVERTER WITH ECO-MODE™

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI