TPS54201 [TI]

4.5V 至 28V 输入电压、同步降压型 LED 驱动器;
TPS54201
型号: TPS54201
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4.5V 至 28V 输入电压、同步降压型 LED 驱动器

驱动 驱动器
文件: 总41页 (文件大小:2545K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS54200, TPS54201  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
TPS54200TPS54201 4.5V 28V 输入电压、1.5A 输出电流、  
同步降压单色或 IR LED 驱动器  
1 特性  
3 说明  
1
宽输入电压范围:4.5V 28V  
TPS54200 TPS54201 器件为 1.5A 同步降压单色  
IR最大输入电压为 28V 的驱动器。电流模式操作可  
提供快速瞬态响应,并且方便实现环路稳定。  
集成 150mΩ 70mΩ MOSFET,持续输出电流为  
1.5A  
关断电流低至 2μA  
TPS54200 TPS54201 可用于驱动单串或多串、单  
色或红外 (IR) LED 阵列,比如在夜视摄像机中。  
600kHz 固定频率  
具有内部补偿的峰值电流模式  
通过集成 MOSFET 并采用 SOT-23 薄型封  
装,TPS54200 TPS54201 器件实现了高功率密  
度,并且仅需在 PCB 上占用较小的空间。  
在模拟和 PWM 调光模式下,感应电压分别为  
200mV 100mV  
PWM 输入的精确模拟调光 (ADIM)  
LED 开路和短路保护  
在模拟调光模式下,TPS54200 TPS54201 器件通  
过改变与 PWM 信号输入占空比成比例的内部基准电  
压来实现模拟调光。此外,该器件还支持 PWM 调光  
模式。该模式下的内部基准电压将被减半至 100mV,  
从而可实现更高效率。  
传感电阻器开路和短路保护  
关断和锁存模式保护 (TPS54200)  
自动重试模式保护 (TPS54201)  
热关断  
6 引脚 SOT-23 薄型封装  
器件信息(1)  
2 应用  
器件型号  
封装  
封装尺寸(标称值)  
1.6mm x 2.9mm  
1.6mm x 2.9mm  
SOT-23 薄型 (6)中  
将封装说明从  
SOT23 更改为 SOT-  
23 薄型  
可调节昼/夜视的 IR LED  
TPS54200  
IP 网络摄像机  
模拟安防摄像机  
可视门铃  
TPS54201  
SOT-23 薄型 (6)  
(1) 要了解所有可用封装,请见产品说明书末尾的可订购产品附  
录。  
嵌入式摄像机系统  
LED 显示和照明  
冰箱和冷冻柜  
电子智能锁  
通用 LED 驱动器  
建筑照明  
ADIM 中的深度调光性能出色  
简化电路原理图  
LO  
6%  
5.5%  
5%  
CBOOT  
CO  
4.5%  
4%  
1
2
3
GND BOOT  
6
5
4
PWM Input  
CF  
SW  
VIN  
PWM  
FB  
3.5%  
Unit 1  
RF  
Unit 2  
Unit 3  
3%  
VIN  
RSENSE  
CIN  
2.5%  
2%  
Unit 4  
Unit 5  
Unit 6  
Unit 7  
Unit 8  
1.5%  
1%  
Copyright © 2016, Texas Instruments Incorporated  
1%  
1.5%  
2%  
2.5%  
3%  
3.5%  
4%  
4.5%  
5%  
PWM duty cycle  
D001  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLUSCO8  
 
 
 
TPS54200, TPS54201  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 13  
8.4 Device Functional Modes........................................ 17  
Application and Implementation ........................ 20  
9.1 Application Information............................................ 20  
9.2 Typical Application ................................................. 20  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements................................................ 7  
7.7 Switching Characteristics.......................................... 7  
7.8 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagram ....................................... 12  
9
10 Power Supply Recommendations ..................... 30  
11 Layout................................................................... 30  
11.1 Layout Guidelines ................................................. 30  
11.2 Layout Example .................................................... 31  
12 器件和文档支持 ..................................................... 32  
12.1 器件支持................................................................ 32  
12.2 文档支持 ............................................................... 32  
12.3 接收文档更新通知 ................................................. 32  
12.4 社区资源................................................................ 32  
12.5 ....................................................................... 32  
12.6 静电放电警告......................................................... 32  
12.7 术语表 ................................................................... 32  
13 机械、封装和可订购信息....................................... 33  
8
4 修订历史记录  
Changes from Revision A (March 2017) to Revision B  
Page  
已在特性部分和整个产品说明书内将断续模式更改为自动重试模式” ................................................................................ 1  
已更改封装 说明...................................................................................................................................................................... 1  
已更改 应用部分 ................................................................................................................................................................... 1  
已在说明部分的第一句中将“WLED”更改为单色或 IR LED”................................................................................................. 1  
已在器件信息....................................................................................................................................................................... 1  
Changed pinout diagram and associated text........................................................................................................................ 4  
Changed "PWM duty input" to "PWM input duty cycle" in the Pin Functions table................................................................ 4  
Changed "free-air" to "ambient" in the Absolute Maximum Ratings condition statement ...................................................... 5  
Changed "free-air" to "ambient" in the Recommended Operating Conditions condition statement....................................... 5  
Changed the package description in the Thermal Information table header.......................................................................... 5  
Changed "Rising" and "Falling" to "Rising VPWM" and "Falling VPWM" for the VADIM, VPDIM, and VPWM Electrical  
Characteristics table entries ................................................................................................................................................... 6  
Changed "SW" to "VSW" in the Test Conditions column for the RHSD entry in the Electrical Characteristics table................. 6  
Changed "dim mode" to "dimming mode" in the Test Conditions column for the ILIM_HS1 entry in the Electrical  
Characteristics table ............................................................................................................................................................... 6  
Changed the symbol for switching frequency from FSW to fSW .............................................................................................. 7  
Changed VIN to VVIN in the Typical Characteristics condition statement ................................................................................ 8  
Changed "hiccup up mode" to "auto-retry mode" ................................................................................................................ 11  
Changed "duty" to "duty cycle" in multiple locations throughout the data sheet .................................................................. 13  
Changed "PWM duty" to "PWM duty cycle" in the 16 image........................................................................................... 13  
Changed "floating driver" to "boot regulator" in the Bootstrap Voltage (BOOT) section ..................................................... 14  
Changed VIN to VVIN in multiple locations throughout the data sheet................................................................................... 14  
Changed various wording in the  
已添加器件支持文档支持 部分 section for clarity, and changed "512 switching cycles " to "tSHUTDOWN_DELAY" ....... 14  
Changed "hiccup up" to "auto-retry mode" in the Fault Protection section .......................................................................... 15  
Changed "hiccup" to "auto-retry" or "shuddown -and-restart," and deleted "programmed for XXX switching cycles" text.. 15  
2
版权 © 2016–2018, Texas Instruments Incorporated  
 
TPS54200, TPS54201  
www.ti.com.cn  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
修订历史记录 (接下页)  
Changed "will be clamped by low" to "is clamped at the low-"............................................................................................. 15  
Changed "hiccup" to "auto-retry" or "shuddown -and-restart," and deleted "programmed for XXX switching cycles" text.. 15  
Changed "hiccup" to "auto-retry" or "shuddown -and-restart," and deleted "programmed for XXX switching cycles" text.. 15  
Changed "hiccup" to "auto-retry" or "shuddown -and-restart," and deleted "programmed for XXX switching cycles" text.. 15  
Changed "Recycle VIN can reset" to "Cycling VIN resets".................................................................................................... 16  
Changed "once the device shuts down, it starts" to "a device shutdown starts".................................................................. 16  
Changed "hiccup" to "auto-retry" or "shuddown -and-restart," and deleted "programmed for XXX switching cycles" text.. 16  
Changed "hiccup" to "auto-retry" or "shuddown -and-restart," and deleted "programmed for XXX switching cycles" text.. 16  
Changed "Vin at" to "VVIN" .................................................................................................................................................... 17  
Changed "VADIM" to "VADIM" and "VPDIM" to "VPDIM".......................................................................................................... 17  
Changed "it's" to "the output is"............................................................................................................................................ 17  
Changed "VIN" to "VIN" and "recycled" to "cycled" at the end of the Mode Detection ......................................................... 17  
Changed "a little big" to "excessive" in the Analog Dimming Mode Operation section........................................................ 18  
Changed "PWM duty cycle" to "PWM state" ........................................................................................................................ 19  
Changed "12-VIN" to "12-V VVIN"........................................................................................................................................... 20  
Changed "FSW" to "fSW" and "VIN(max)" to "VVIN(max)" in 公式 3 from F to f .............................................................................. 21  
Changed "FSW" to "fSW" and "VIN(ripple)" to "VVIN(ripple)" in 公式 8 from F to f ........................................................................... 21  
Changed the symbol for frequency in 公式 11 from F to f.................................................................................................... 22  
Changed "RF" to "RF" and "CF" to "CF"................................................................................................................................ 22  
Changed "VOUT" to "VOUT" in the conditions of multiple application curves........................................................................ 24  
Changed the wording of the second and third paragraphs of the Inductor Selection section for clarity.............................. 27  
Changed the symbol for frequency in 公式 14 from F to f.................................................................................................... 27  
Changed "wide areas advantages" to "added width also".................................................................................................... 30  
Changed "reduce the possibility" to "minimize".................................................................................................................... 30  
已添加器件支持文档支持 部分 .......................................................................................................................................... 32  
Changes from Original (November 2016) to Revision A  
Page  
已添加 TPS54201 器件的初始发行版。.................................................................................................................................. 1  
已将 说明 更改为包含保护模式。 ........................................................................................................................................... 4  
Changed ILIM_HS1 and ILIM_HS2 CURRENT LIMIT. .................................................................................................................... 6  
Changed the low-side source-current limit from (2.4/3.4/4.4) to (2.3/3.3/4.4), ...................................................................... 6  
Added TPS54201 tHIC_THERMAL, tHIC_OV and tHIC_WAIT Timing Requirements. ........................................................................... 7  
已添加 TPS54201 LED Short Protection image................................................................................................................... 25  
已添加 TPS54201 LED Open Protection image. ................................................................................................................. 25  
已添加 TPS54201 Sense Resistor Short Protection image. ................................................................................................ 25  
版权 © 2016–2018, Texas Instruments Incorporated  
3
TPS54200, TPS54201  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
5 说明 (续)  
高侧 MOSFET 内的逐周期电流限制可在过载情况下保护转换器,并通过低侧 MOSFET 续流电流限制防止电流  
失控,增强限制效果。提供低侧 MOSFET 灌电流限制,可防止反向电流过大。在安全和保护方面,TPS54200  
TPS54201 器件具备 LED 开路和短路保护、感应电阻器开路和短路保护以及器件热保护功能。TPS54200  
器件使用关断和锁存模式保护,而 TPS54201 器件则采用自动重试模式保护。  
6 Pin Configuration and Functions  
DDC Package  
6-Pin SOT-23-THIN  
Top View  
GND  
SW  
1
2
3
6
5
4
BOOT  
PWM  
FB  
VIN  
Not to scale  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
BOOT  
FB  
NO.  
6
O
I
A bootstrap capacitor is required between BOOT and SW.  
LED current-detection feedback  
Power ground  
4
GND  
1
G
Dimming input. Default low (internally pulled low). In analog dimming mode, the internal reference is  
proportional to the PWM input duty cycle. In PWM dimming mode, LED current is ON during the PWM  
high period in each PWM cycle.  
PWM  
5
I
SW  
VIN  
2
3
O
P
Switching node to the external inductor  
Input supply voltage  
(1) I = Input, O = Output, P = Supply, G = Ground  
4
Copyright © 2016–2018, Texas Instruments Incorporated  
TPS54200, TPS54201  
www.ti.com.cn  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–5  
MAX UNIT  
VIN  
30  
Input voltage range, VI  
PWM  
7
7
V
V
FB  
BOOT–SW  
SW  
7
Output voltage range, VO  
30  
30  
150  
150  
SW (20 ns transient)  
Operating junction temperature, TJ  
Storage temperature range, Tstg  
–40  
–65  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
4.5  
MAX  
UNIT  
VIN  
28  
6
VI  
Input voltage range  
Output voltage range  
PWM  
FB  
–0.1  
–0.1  
–0.1  
–0.1  
–40  
V
6
BOOT-SW  
SW  
6.5  
28  
125  
VO  
TJ  
V
Operating junction temperature  
°C  
7.4 Thermal Information  
TPS5420x  
THERMAL METRIC(1)  
DDC (SOT-23-THIN)  
UNIT  
6 PINS  
89.2  
39.5  
14.7  
1.2  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
14.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2016–2018, Texas Instruments Incorporated  
5
TPS54200, TPS54201  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
7.5 Electrical Characteristics  
The electrical ratings specified in this section apply to all specifications in this document, unless otherwise noted. These  
specifications are interpreted as conditions that do not degrade the device parametric or functional specifications for the life of  
the product containing it. TJ = –40°C to 125°C, VVIN = 4.5 V to 28 V, (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INPUT SUPPLY  
VVIN  
IOFF  
Input voltage range  
Shutdown current  
4.5  
28  
8.6  
V
PWM = GND  
2
4.2  
µA  
Rising VVIN  
Falling VVIN  
3.83  
3.4  
4.47  
3.95  
VIN undervoltage lockout  
Hysteresis  
V
VVIN_UVLO  
3.7  
470  
mV  
DIMMING (PWM PIN)  
Rising VPWM  
Falling VPWM  
Rising VPWM  
Falling VPWM  
Rising VPWM  
Falling VPWM  
1.97  
0.9  
2.07  
1.8  
1
2.17  
1.1  
VADIM  
VPDIM  
VPWM  
Analog dimming-mode threshold  
V
V
PWM dimming-mode threshold  
0.8  
1
0.91  
0.5  
1.12  
0.72  
Threshold to identify PWM duty cycle  
V
V
0.63  
0.55  
VPWM_SHUTDOWN Shutdown threshold  
0.35  
FEEDBACK AND ERROR AMPLIFIER  
Feedback voltage in analog dimming  
mode  
VFB1  
PWM = 3.3 V, SW duty cycle > 90%  
201  
96  
205  
100  
210  
104  
mV  
mV  
VFB2  
Feedback voltage in PWM dimming mode PWM = 1.5 V, SW duty cycle > 90%  
BOOT PIN  
Rising  
BOOT-SW UVLO threshold  
Falling  
2.1  
2
2.33  
2.2  
VBOOT_UVLO  
V
POWER STAGE  
RHSD  
High-side FET on-resistance  
Low-side FET on-resistance  
VBOOT – VSW= 6 V  
VVIN > 6 V  
150  
70  
259 mΩ  
120 mΩ  
RLSD  
CURRENT LIMIT  
Either one of the following conditions:  
1. PWM dimming mode  
2. Analog dimming mode and PWM duty  
cycle >25%  
ILIM_HS1  
High-side current limit 1  
High-side current limit 2  
2.4  
1
3
3.6  
1.8  
A
A
Analog dimming mode and PWM duty  
cycle <25%  
ILIM_HS2  
1.4  
ILIM_LS_SOURCE  
ILIM_LS_SINK  
FAULT PROTECTION  
Low-side source current limit  
VVIN > 6 V  
VVIN > 6 V  
2.3  
3.3  
1.7  
4.4  
2.2  
A
A
Low-side sink current limit  
1.25  
Rising temperature  
150  
160  
10  
170  
°C  
°C  
V
Thermal  
shutdown(1)  
Hysteresis  
VOVP  
VOCP  
Overvoltage protection  
Overcurrent protection  
1
120%  
(1) Not production tested  
6
Copyright © 2016–2018, Texas Instruments Incorporated  
TPS54200, TPS54201  
www.ti.com.cn  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
7.6 Timing Requirements  
MIN  
TYP  
32 768  
32 768  
MAX  
UNIT  
Cycles  
Cycles  
THERMAL SHUTDOWN  
tHIC_THERMAL  
TPS54200 and TPS54201 thermal shutdown auto-retry time  
OVERVOLTAGE PROTECTION  
tHIC_OV  
TPS54201 auto-retry time for overvoltage protection  
OVERCURRENT AND OPEN-LOOP PROTECTION  
TPS54200 shutdown delay time for open-loop and overcurrent  
protection  
tSHUTDOWN_DELAY  
tHIC_WAIT  
512  
Cycles  
TPS54201 auto-retry wait time for open-loop and overcurrent  
protection  
512  
Cycles  
Cycles  
tHIC_OC  
TPS54201 auto-retry time for open-loop and overcurrent protection  
16 384  
SOFT START  
tSS  
Internal soft-start time  
0.6  
ms  
7.7 Switching Characteristics  
TJ = –40°C to 125°C, VVIN = 4.5 V to 28 V, (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OSCILLATOR  
fsw  
Switching frequency  
480  
600  
700  
kHz  
ON-TIME CONTROL  
Measured at 90% to 90% and 1-A  
loading  
tMIN_ON  
Minimum on-time  
90  
105  
ns  
版权 © 2016–2018, Texas Instruments Incorporated  
7
TPS54200, TPS54201  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
7.8 Typical Characteristics  
VVIN = 12 V, unless otherwise specified  
240  
220  
200  
180  
160  
140  
120  
100  
3
2.5  
2
1.5  
1
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
Junction Temperature (°C)  
D001  
D002  
1. Shutdown Quiescent Current vs Junction Temperature  
2. High-Side FET On-Resistance vs Junction Temperature  
110  
207  
206.5  
206  
100  
90  
80  
70  
60  
50  
205.5  
205  
204.5  
204  
203.5  
203  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
Junction Temperature (°C)  
D003  
D004  
3. Low-Side FET On-Resistance vs Junction Temperature  
4. FB Voltage in ADIM vs Junction Temperature  
610  
605  
600  
595  
590  
585  
580  
101  
100.5  
100  
99.5  
99  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
Junction Temperature (°C)  
D005  
D006  
5. FB Voltage in PDIM vs Junction Temperature  
6. Switching Frequency vs Junction Temperature  
8
版权 © 2016–2018, Texas Instruments Incorporated  
TPS54200, TPS54201  
www.ti.com.cn  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
Typical Characteristics (接下页)  
VVIN = 12 V, unless otherwise specified  
3.3  
1.65  
1.6  
3.25  
3.2  
3.15  
3.1  
1.55  
1.5  
3.05  
3
1.45  
2.95  
2.9  
1.4  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
Junction Temperature (°C)  
D007  
D008  
7. High-Side Source Current Limit 1 Threshold vs  
8. High-Side Source Current Limit 2 Threshold vs  
Junction Temperature  
Junction Temperature  
1.85  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
1.8  
1.75  
1.7  
1.65  
1.6  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
Junction Temperature (°C)  
D009  
D010  
9. Low-Side Source Current Limit Threshold vs Junction  
10. Low-Side Sink Current Limit Threshold vs Junction  
Temperature  
Temperature  
2.2  
4.2  
4.1  
Rising  
Falling  
2.15  
2.1  
2.05  
2
4
Rising  
Falling  
3.9  
3.8  
3.7  
3.6  
1.95  
1.9  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
Junction Temperature (°C)  
D011  
D012  
11. BOOT-SW UVLO Threshold vs Junction Temperature  
12. VIN UVLO Threshold vs Junction Temperature  
版权 © 2016–2018, Texas Instruments Incorporated  
9
TPS54200, TPS54201  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
VVIN = 12 V, unless otherwise specified  
2.1  
1.1  
1.05  
1
2.05  
2
0.95  
0.9  
Rising  
Falling  
Rising  
Falling  
1.95  
1.9  
0.85  
0.8  
1.85  
1.8  
0.75  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
Junction Temperature (°C)  
D013  
D014  
13. Analog Dimming Mode Threshold vs Junction  
14. PWM Dimming Mode Threshold vs Junction  
Temperature  
Temperature  
0.65  
0.6  
0.55  
0.5  
0.45  
0.4  
0.35  
0.3  
-50  
-25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
D015  
15. PWM Shutdown Threshold vs Junction Temperature  
10  
版权 © 2016–2018, Texas Instruments Incorporated  
TPS54200, TPS54201  
www.ti.com.cn  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
8 Detailed Description  
8.1 Overview  
The TPS5420x device is a 1.5-A synchronous buck LED driver up to 28-V input. Current-mode operation  
provides fast transient response. The optimized internal compensation network minimizes the external  
component count and simplifies the control loop design.  
The TPS5420x device has a fixed 600-kHz switching frequency for a good tradeoff between efficiency and size.  
The integrated 150-mΩ high-side MOSFET and 70-mΩ low-side MOSFET allow for a high-efficiency LED driver  
with continuous output current up to 1.5 A.  
The TPS5420x device supports deep dimming in both analog and PWM dimming modes. In analog dimming  
mode, the internal reference voltage is changed in proportion to the duty cycle of the PWM signal in the 1% to  
100% range. In the PWM dimming mode, the LED turns on and off periodically according to the PWM duty cycle.  
For higher efficiency, the internal reference is halved to 100 mV.  
Cycle-by-cycle current limit in the high-side MOSFET protects the converter in overload conditions and is  
enhanced by a low-side MOSFET freewheeling current limit which prevents current runaway. There is a low-side  
MOSFET sinking-current limit to prevent excessive reverse current.  
For safety and protection, the TPS5420x includes LED-open and -short protection, sense-resistor-open and -  
short protection, and device thermal protection. The TPS54200 device implements shutdown-and-latch mode  
protection, whereas the TPS54201 device implements auto-retry mode protection.  
版权 © 2016–2018, Texas Instruments Incorporated  
11  
TPS54200, TPS54201  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
8.2 Functional Block Diagram  
PWM  
VIN  
5
3
Enable  
Peak  
Detector  
Thermal  
Shutdown  
UVLO  
Delay  
+
VTH  
PWM  
Enable  
DIM Mode  
Selection  
Timer  
and Logic  
Shutdown  
Logic  
Boot  
Charge  
OVP Shutdown  
OCP Shutdown  
Open Loop Shutdown  
Mode  
Maximum  
Clamp  
6
BOOT  
VIN  
VBGP  
Boot  
Bandgap  
PWM  
UVLO  
HS MOSFET  
Current  
Comparator  
Mode  
Comp  
Power Stage  
and Deadtime  
Control Logic  
Dimming  
Control and  
Error Amp  
SS  
Slope  
2
SW  
Compensation  
Mode  
PWM  
Oscillator  
FB  
4
OVP  
Shutdown  
+
VIN  
Regulator  
1 V  
OCP  
Shutdown  
Current  
Sense  
LS MOSFET  
Current Limit  
+
VOCP  
1
GND  
Copyright © 2016, Texas Instruments Incorporated  
12  
版权 © 2016–2018, Texas Instruments Incorporated  
TPS54200, TPS54201  
www.ti.com.cn  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
8.3 Feature Description  
8.3.1 Fixed-Frequency PWM Control  
The device uses a fixed-frequency and peak-current-mode control. The LED current is sensed by a resistor in  
series with the LED string. The sensed voltage is fed to the FB pin through an RC filter, and then compared to an  
internal voltage reference by an error amplifier. An internal oscillator initiates the turnon of the high-side power  
switch. The error amplifier output is compared to the current of the high-side power switch. When the power-  
switch current reaches the error-amplifier output-voltage level, the high-side power switch is turned off and the  
low-side power switch is turned on. Thus, the error amplifier output voltage regulates inductor peak current, and  
in turn the LED current, to a target value. The device implements a current limit by clamping the error amplifier  
voltage to a maximum level and also implements a minimum clamp for improved transient-response  
performance.  
8.3.2 Error Amplifier  
The device has a transconductance amplifier as the error amplifier. The error amplifier compares the FB voltage  
to the lower of the internal soft-start voltage or the internal voltage reference. The transconductance of the error  
amplifier is 240 μA/V typically. The frequency compensation components are placed internally between the  
output of the error amplifier and ground.  
8.3.3 Slope Compensation and Output Current  
The device adds a compensating ramp to the signal of the switch current. This slope compensation prevents  
subharmonic oscillations as the duty cycle increases. The available peak inductor current remains constant over  
the full duty-cycle range.  
8.3.4 Input Undervoltage Lockout  
The device implements internal undervoltage-lockout (UVLO) circuitry on the VIN pin. The device is disabled  
when the VIN pin voltage falls below the internal VIN UVLO threshold, which is 3.7 V typical. The internal VIN  
UVLO threshold has a hysteresis of 470 mV.  
8.3.5 Voltage Reference  
The voltage reference system produces a precise ±2.5% voltage reference over temperature by scaling the  
output of a temperature-stable band-gap circuit when the PWM duty cycle is 100%. In PWM dimming mode, the  
voltage reference, VREF, is fixed at 100 mV. In analog dimming mode, VREF, is proportional to the duty cycle of  
PWM as shown in 16.  
VREF (mV)  
200  
PWM duty cycle (%)  
100  
16. VREF vs PWM Duty Cycle in Analog Dimming Mode  
版权 © 2016–2018, Texas Instruments Incorporated  
13  
 
TPS54200, TPS54201  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
Feature Description (接下页)  
8.3.6 Setting LED Current  
Once the voltage reference, VREF, is chosen, one can set the LED current by choosing the proper sensing  
resistor according to 公式 1:  
VREF  
RSENSE  
=
ILED  
(1)  
8.3.7 Internal Soft Start  
The TPS5420x device uses an internal soft-start function. The internal soft-start time is set to 0.6 ms typically.  
8.3.8 Bootstrap Voltage (BOOT)  
The TPS5420x has an integrated boot regulator and requires a 0.1-μF ceramic capacitor between the BOOT and  
SW pins to provide the gate drive voltage for the high-side MOSFET. A ceramic capacitor with an X7R or X5R  
grade dielectric is recommended because of the stable characteristics over temperature and voltage. This boot  
regulator has its own UVLO protection. This UVLO rising threshold is 2.1 V with a hysteresis of 100 mV. A 6-V  
bootstrap voltage is maintained between BOOT and SW when VVIN > 6 V.  
8.3.9 Overcurrent Protection  
The device is protected from overcurrent conditions by cycle-by-cycle current limiting on both the high-side  
MOSFET and the low-side MOSFET.  
8.3.9.1 High-Side MOSFET Overcurrent Protection  
The device implements current-mode control, which uses the internal COMP voltage to control the turnoff of the  
high-side MOSFET and the turnon of the low-side MOSFET on a cycle-by-cycle basis. During each cycle, the  
switch current and the current reference generated by the internal COMP voltage are compared. When the peak  
switch current intersects the current reference, the high-side switch turns off. During overcurrent conditions, such  
as when the sensing resistor is shorted, or an open circuit occurs in the feedback-filter RC network that drives FB  
low, the error amplifier responds by driving the COMP pin high, increasing the switch current. The error amplifier  
output is clamped internally. This clamp functions as a switch-current limit. This current limit is fixed at 3.1 A  
typical in PWM dimming mode. In analog dimming mode with the PWM duty cycle >25%, this limit is also 3.1 A.  
If the PWM duty cycle is below 25%, this limit is halved to 1.5 A typical. Furthermore, if an output overcurrent  
condition occurs for more than the shutdown delay time, tSHUTDOWN_DELAY, the device shuts down and latches off  
to protect the LED from overcurrent damage.  
8.3.9.2 Low-Side MOSFET Overcurrent Protection  
While the low-side MOSFET is turned on, the conduction current is monitored by the internal circuitry. During  
normal operation, the low-side MOSFET sources current to the load. At the end of every clock cycle, the low-side  
MOSFET sourcing current is compared to the internally set low-side sourcing current-limit. If the low-side  
sourcing-current limit is exceeded, the high-side MOSFET does not turn on and the low-side MOSFET stays on  
for the next cycle. The high-side MOSFET turns on again when the low-side current is below the low-side  
sourcing current-limit at the start of a cycle.  
8.3.9.3 Low-Side MOSFET Reverse Overcurrent Protection  
The TPS5420x device implements low-side reverse-current protection by detecting the voltage across the low-  
side MOSFET. When the converter sinks current through its low-side FET, the control circuit turns off the low-  
side MOSFET if the reverse current is more than 1.7 A typical. By implementing this additional protection  
scheme, the converter is able to protect itself from excessive sink current during fault conditions.  
14  
版权 © 2016–2018, Texas Instruments Incorporated  
 
TPS54200, TPS54201  
www.ti.com.cn  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
Feature Description (接下页)  
8.3.10 Fault Protection  
The device is protected from several kinds of fault conditions, such as LED open and short, sense-resistor open  
and short, and thermal shutdown. The only difference between the TPS54200 and TPS54201 devices is the  
different protection mode used. The TPS54200 device implements shutdown-and-latch mode protection, whereas  
the TPS54201 device implements auto-retry mode protection.  
8.3.10.1 LED-Open Protection  
When the LED load is open, the FB voltage is low, and the internal COMP voltage is driven high and clamped.  
This action triggers a shutdown delay counter (TPS54200) or auto-retry wait counter (TPS54201). For the  
TPS54200 device, once the shutdown delay time tSHUTDOWN_DELAY expires, the device shuts down and latches off.  
Both FETs are kept off. This is a latched shutdown. The device can be reset by recycling VIN. For TPS54201,  
once the auto-retry wait time tHIC_WAIT expires, the device shuts down and starts auto-retry timer tHIC_OC. During  
the shutdown period, both FETs are kept off. Once the auto-retry timer expires, the TPS54201 device restarts  
again. If the failure still exists, the TPS54201 device repeats the foregoing shutdown-and-restart process.  
8.3.10.2 LED Short Protection  
When the LED load is shorted, the FB voltage is higher than VREF, and the internal COMP voltage is driven low  
and clamped, and the high-side MOSFET is commanded on for a minimum on-time each cycle. In this condition,  
if the output voltage is too low, the inductor current may not be able to balance in a cycle, causing current  
runaway. Finally, the inductor current is clamped at the low-side MOSFET sourcing-current limit, which is much  
higher than target LED current. If the FB voltage is higher than the OCP threshold, which is 250 mV typical in  
analog dimming mode, or 120 mV typical in PWM dimming mode, the shutdown delay counter (TPS54200) or  
auto-retry wait counter (TPS54201) is triggered. For the TPS54200 device, once the shutdown delay time  
tSHUTDOWN_DELAY expires, the device shuts down and latches off. Both FETs are kept off. This is a latched  
shutdown. The device can be reset by recycling VIN. For the TPS54201 device, once the auto-retry wait time  
tHIC_WAIT expires, the device shuts down and starts auto-retry timer tHIC_OC. During the shutdown period, both  
FETs are kept off. Once the auto-retry timer expires, the TPS54201 device restarts again. If the failure still exists,  
the TPS54201 device repeats the foregoing shutdown-and-restart process.  
8.3.10.3 Sense-Resistor Short Protection  
When the sense resistor is shorted, the FB voltage is low, and the internal COMP voltage is driven high and  
clamped. This action triggers the shutdown delay counter (TPS54200) or auto-retry wait counter (TPS54201). For  
the TPS54200 device, once the shutdown delay time tSHUTDOWN_DELAY expires, the device shuts down and latches  
off. Both FETs are kept off. This is a latched shut-down. The device can be reset by recycling VIN. For the  
TPS54201 device, once the auto-retry wait time tHIC_WAIT expires, the device shuts down and starts auto-retry  
timer tHIC_OC. During the shutdown period, both FETs are kept off. Once the auto-retry timer expires, the  
TPS54201 device restarts again. If the failure still exists, the TPS54201 device repeats the foregoing shutdown-  
and-restart process.  
8.3.10.4 Sense-Resistor Open Protection  
When the sense resistor is open before the device powers on, the device charges the BOOT capacitor at the  
power-on moment. The charging current flows through the inductor, the output capacitor, and the RC filter at the  
FB pin to charge up the FB pin voltage. Once the device detects an FB voltage higher than the 1-V OVP  
threshold, the device shuts down immediately. For the TPS54200 device, this is a latched shutdown, and the  
device can be reset by cycling VIN. For the TPS54201 device, once the device shuts down, it starts the  
overvoltage auto-retry timer tHIC_OV. During the shutdown period, both FETs are kept off. Once the overvoltage  
auto-retry timer expires, the TPS54201 device restarts again. If the failure still exists, the TPS54201 device  
repeats the foregoing auto-retry shutdown-and-restart process.  
版权 © 2016–2018, Texas Instruments Incorporated  
15  
TPS54200, TPS54201  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
Feature Description (接下页)  
8.3.10.5 Overvoltage Protection  
When the FB pin, for some reason, has a voltage higher than 1 V applied, the device shuts down immediately.  
Both FETs are kept off. This is called overvoltage protection. For the TPS54200 device, this is a latched  
shutdown. Cycling VIN resets the device. For the TPS54201 device, a device shutdown starts the overvoltage  
auto-retry timer tHIC_OV. During the shutdown period, both FETs are kept off. Once the overvoltage auto-retry  
timer expires, the TPS54201 device restarts again. If the failure still exists, the TPS54201 device repeats the  
foregoing auto-retry shutdown-and-restart process.  
8.3.10.6 Thermal Shutdown  
The internal thermal-shutdown circuitry forces the device to stop switching if the junction temperature exceeds a  
typical value of 160°C. When the junction temperature drops below a typical value of 150°C, the internal thermal-  
auto-retry timer tHIC_THERMAL begins to count. The device reinitiates the power-up sequence once the thermal-  
auto-retry timer expires.  
16  
版权 © 2016–2018, Texas Instruments Incorporated  
TPS54200, TPS54201  
www.ti.com.cn  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
8.4 Device Functional Modes  
8.4.1 Enable and Disable Device  
The PWM pin performs not only the dimming function, but also the enable-and-disable function. When the VIN  
voltage is above the UVLO threshold, the TPS5420x device can be enabled by driving the PWM pin higher than  
the threshold voltage, 0.56 V typical. To disable the device, keep the PWM pin lower than the threshold voltage,  
0.55 V typical, for 40 ms or longer. The PWM pin has an internal pulldown resistor, so floating this pin disables  
the device.  
The suggested power-on sequence is applying VVIN first, followed by the PWM signal.  
8.4.2 Mode Detection  
The magnitude of the PWM signal is used to determine which dimming mode the device enters. The internal  
peak detector at the PWM pin holds the magnitude of the PWM signal. Once the device is enabled, after 300-µs  
delay, the output of the peak detector is compared with two voltage thresholds, VADIM and VPDIM, which are 1 V  
and 2.07 V, respectively. If the output of the peak detector is higher than 2.07 V, analog dimming mode is  
chosen and locked. If the output is between 1 V and 2.07 V, PWM dimming mode is chosen and locked. If the  
output is less than 1 V, the device waits another 300 µs and compares again, and this process repeats until at  
least one mode is chosen and locked. See 17 and 1 for reference. After the mode is detected and locked,  
soft start begins, the output voltage ramps up, and the LED current is regulated at the target value. The dimming  
mode cannot be changed unless VIN or PWM is cycled. section  
PWM  
+
EN  
VTH  
PWM  
Peak  
Detector  
+
+
A
B
VADIM  
VPDIM  
Internal  
PWM  
+
VPWM  
17. Mode Detection Circuit  
1. Mode Detection Condition  
A
H
L
B
MODE  
H
H
L
Enter analog dimming mode  
Enter PWM dimming mode  
L
Keep detecting until one dimming mode is locked  
版权 © 2016–2018, Texas Instruments Incorporated  
17  
 
 
TPS54200, TPS54201  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
8.4.3 Analog Dimming Mode Operation  
Once the analog dimming mode is chosen, the internal voltage reference for the FB pin is approximately 200 mV  
at full scale, and proportional to the PWM duty cycle as shown in 16. LED current is continuous in this mode,  
and the current magnitude can be adjusted by changing PWM duty cycle, see 18. Because the internal  
voltage reference is filtered from the PWM signal, a too-low PWM frequency may cause excessive ripple at the  
voltage reference. To minimize this ripple, the suggested PWM signal frequency is 10 kHz or higher, such as 50  
kHz.  
200 mV/RSENSE  
LED current  
100 mV/RSENSE  
t
50 kHz/50%  
PWM 3 V  
t
18. Analog Dimming Operation  
A comparator with 400-mV hysteresis is used to generate the internal PWM signal, see 17. This internal PWM  
duty cycle determines the voltage reference. To make sure the PWM pin signal is correctly identified, the high  
level of the PWM signal should be higher than 1 V, and the low level should be lower than 0.6 V. 19 shows  
the relationship between the external PWM and internal PWM signals.  
18  
版权 © 2016–2018, Texas Instruments Incorporated  
 
TPS54200, TPS54201  
www.ti.com.cn  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
8.4.4 PWM Dimming-Mode Operation  
Once the PWM dimming mode is chosen, the internal voltage reference for the FB pin is fixed at 100 mV. The  
LED current is on or off corresponding to the PWM state, see 19. Due to the limited control-loop response, to  
get a relatively linear dimming performance, the suggested PWM signal frequency should be less than 1 kHz.  
1 V  
0.6 V  
PWM Pin Signal  
Internal PWM  
100 mV/RSENSE  
0
LED Current  
19. PWM Dimming Operation  
In some application where dimming is not needed, one can just connect a resistor divider from VVIN to the PWM  
pin as 20 shows.  
LO  
CBOOT  
CO  
1
2
3
GND BOOT  
6
5
4
SW  
VIN  
PWM  
FB  
RF  
VIN  
CF  
CIN  
RTOP  
RSENSE  
RBOT  
20. Application Without Dimming  
RTOP and RBOT should be sized to make sure the PWM pin voltage is higher than 1 V when VVIN reaches its  
steady voltage. It is best to make sure the PWM pin voltage is less than 2 V, thus one can have 100 mV at the  
FB pin for better efficiency. Use 10 kΩ as a good starting point for RBOT, then choose RTOP according to 公式 2:  
«
V
IN  
RTOP  
=
-1 ìR  
÷
BOT  
VPWM  
(2)  
版权 © 2016–2018, Texas Instruments Incorporated  
19  
 
 
 
TPS54200, TPS54201  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS5420x device is typically used as a buck converter to drive one or more LEDs from a 4.5-V to 28-V  
input. The TPS5420x device supports both analog dimming mode and PWM dimming mode.  
9.2 Typical Application  
9.2.1 TPS5420x 12-V Input, 1.5-A, 3-Piece IR LED Driver With Analog Dimming  
D1  
SFH 4715A  
Infrared  
U1  
VIN  
L1  
VIN = 10.8V ~ 13.2V  
C1  
R1  
0
3
5
6
2
BOOT  
SW  
VIN  
10µH  
C2  
10µF  
C3  
0.1µF  
0.1µF  
PWM  
C4  
10µF  
D2  
SFH 4715A  
Infrared  
GND  
3.3V, 50kHz, 1% to 100% duty  
4
1
FB  
TP1  
GND  
PWM  
R2  
TPS54200DDCR  
910  
R3  
0.033  
GND  
D3  
SFH 4715A  
Infrared  
C5  
0.082µF  
R4  
0.1  
GND  
Copyright © 2016, Texas Instruments Incorporated  
GND  
21. 12-V VVIN, 1.5-A, 3-Piece IR LED, Analog Dimming Reference Design  
9.2.1.1 Design Requirements  
For this design example, use the parameters in 2.  
2. Design Parameters  
PARAMETER  
Input voltage range  
VALUE  
10.8 V to 13.2 V  
5.4-V stack  
LED string forward voltage  
Output voltage  
5.6 V  
LED current at 100% PWM duty cycle  
LED current ripple  
1.5 A  
30 mA or less  
400 mV or less  
1% to 100%, 3.3 V, 50 kHz  
Input voltage ripple  
PWM dimming range  
20  
版权 © 2016–2018, Texas Instruments Incorporated  
 
TPS54200, TPS54201  
www.ti.com.cn  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Inductor Selection  
Use 公式 3 to calculate the minimum value of the output inductor (LMIN).  
V
OUT ´(VVIN(max) - VOUT  
)
LMIN  
=
VVIN(max)´KIND´ILED´ fSW  
where  
KIND is a coefficient that represents the amount of inductor ripple current relative to the maximum LED current.  
ILED is the maximum LED current.  
VOUT is the sum of the voltage across LED load and the voltage across the sense resistor.  
(3)  
In general, the suggested value of KIND is between 0.2 and 0.4. For an application that can tolerate higher LED  
current ripple or use larger output capacitors, one can choose 0.4 for KIND. Otherwise, a smaller KIND like 0.2 can  
be chosen to get low-enough LED current ripple.  
With the chosen inductor value the user can calculate the actual inductor current ripple using 公式 4.  
V
OUT ´(VVIN(max) - VOUT)  
IL(ripple)  
=
VVIN(max)´L ´ fSW  
(4)  
The inductor rms-current and saturation-current ratings must be greater than the rms current and saturation  
current seen in the application. This ensures that the inductor does not overheat or saturate. During power up,  
transient conditions, or fault conditions, the inductor current can exceed its normal operating current. For this  
reason, the most conservative approach is to specify an inductor with a saturation current rating equal to or  
greater than the converter current limit. This is not always possible due to application size limitations. The peak-  
inductor-current and rms-current equations are shown in 公式 5 and 公式 6.  
IL(ripple)  
IL(peak) = ILED  
+
2
(5)  
2
IL(ripple)  
2
IL(rms)  
=
ILED  
+
12  
(6)  
In this design, choose KIND = 0.3. According to the LED manufacturer’s data sheet, the IR LED has 1.75-V  
forward voltage at 1.5-A current, so VOUT = 1.75 V × 3 + 0.2 V = 5.45 V and the calculated inductance is 11.9 µH.  
A 10-µH inductor (part number is 744066100 from Wurth) is chosen. With this inductor, the ripple, peak, and rms  
currents of the inductor are 0.53 A, 1.77 A, and 1.51 A, respectively. The chosen inductor has ample margin.  
9.2.1.2.2 Input Capacitor Selection  
The device requires an input capacitor to reduce the surge current drawn from the input supply and the switching  
noise from the device. Ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their  
low ESR and small temperature coefficients. For most applications, a 10-μF capacitor is enough. An additional  
0.1-μF capacitor from VIN to GND is optional to provide additional high-frequency filtering. The input capacitor  
must have a voltage rating greater than the maximum input voltage and have a ripple-current rating greater than  
the maximum input-current ripple of the converter. The rms input-ripple current is calculated in 公式 7, where D is  
the duty cycle (output voltage divided by input voltage).  
ICIN(rms) = ILED ì Dì 1-D  
(
)
(7)  
Use 公式 8 to calculate the input ripple voltage, where ESRCIN is the ESR of input capacitor. Ceramic  
capacitance tends to decrease as the applied dc voltage increases. This depreciation must be accounted for  
when calculating input ripple voltage.  
I
LED´D´(1- D)  
VVIN(ripple)  
=
+ ILED´ESRCIN  
CIN´ fSW  
(8)  
In this design, a 10-µF, 35-V X7R ceramic capacitor, part number GRM32ER7YA106KA12L from muRata, is  
chosen. This yields around 70-mV input ripple voltage. The calculated rms input ripple current is 0.75 A, well  
below the ripple-current rating of the capacitor.  
版权 © 2016–2018, Texas Instruments Incorporated  
21  
 
 
 
 
 
 
 
TPS54200, TPS54201  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
9.2.1.2.3 Output Capacitor Selection  
The output capacitor reduces the high-frequency ripple current through the LED string. Various guidelines  
disclose how much high-frequency ripple current is acceptable in the LED string. Excessive ripple current in the  
LED string increases the rms current in the LED string, and therefore the LED temperature increases.  
1. Look up the total dynamic resistance of the LED string (RLED) using the LED manufacturer’s data sheet.  
2. Calculate the required impedance of the output capacitor (ZOUT), given the acceptable peak-to-peak ripple  
current through the LED string, ILED(ripple). IL(ripple) is the peak-to-peak inductor ripple current as calculated  
previously in the Inductor Selection section.  
3. Calculate the minimum effective output capacitance required.  
4. Increase the output capacitance appropriately due to the derating effect of applied dc voltage.  
See 公式 9, 公式 10 and 公式 11.  
DVF  
RLED  
=
ì # of LEDs  
DIF  
(9)  
RLED ìILED(ripple)  
ZCOUT  
=
IL(ripple) -ILED(ripple)  
(10)  
(11)  
1
COUT  
=
2p´ fSW ´ ZCOUT  
Once the output capacitor is chosen, 公式 12 can be used to estimate the peak-to-peak ripple current through  
the LED string.  
ZCOUT ìIL(ripple)  
ILED(ripple)  
=
ZCOUT + RLED  
(12)  
An OSRAM IR LED, SFH4715A, is used here. The dynamic resistance of this LED is 0.25 Ω at 1.5-A forward  
current. In this design, 10-µF, 35-V X7R ceramic capacitor is chosen, the part number is  
a
GRM32ER7YA106KA12L, from muRata. The calculated ripple current of the LED is about 20 mA.  
9.2.1.2.4 FB Pin RC Filter Selection  
The RC filter comprising RF and CF and connected between the sense resistor and the FB pin is used to  
generate a pole for loop stability purposes. Moving this pole can adjust loop bandwidth. The suggested frequency  
of the pole is 2 kHz in analog dimming mode and 4 kHz in PWM dimming mode. Use 公式 13 to choose RF and  
CF. Due to the dc offset current of the internal amplifier, the suggested value of RF is less than 1 kΩ to minimize  
the effect on LED current-regulation accuracy.  
1
CF =  
2p ìRF ì fPOLE  
(13)  
Analog dimming mode is implemented in this design. Choose the pole at around 2 kHz, with 910 Ω as the filter  
resistor; then the calculated filter capacitance is 87 nF. An 82 nF capacitor is chosen for this filter.  
9.2.1.2.5 Sense Resistor Selection  
The maximum target LED current at 100% PWM duty is 1.5 A, and the corresponding VREF is 200 mV. Using 公  
1, calculate the needed sense resistance at 133 mΩ. Pay close attention to the power consumption of the  
sense resistor in this design at 300 mW, and make sure the chosen resistor has enough margin in its power  
rating.  
22  
版权 © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
 
TPS54200, TPS54201  
www.ti.com.cn  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
9.2.1.3 Application Curves  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
CH2  
CH3  
CH4  
Efficiency_LED  
Efficiency_Vout  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
PWM duty %  
D001  
CH2: SW  
CH3: LED current  
(AC-coupled)  
CH4: Inductor current  
22. Efficiency  
23. LED Current Ripple at 1% PWM Duty Cycle  
CH2  
CH1  
CH3  
CH4  
CH2  
CH4  
CH2: SW  
CH3: LED current  
(AC-coupled)  
CH4: Inductor  
current  
CH1: VVIN  
(AC-coupled)  
CH2: SW  
CH4: Inductor  
current  
24. LED Current Ripple at 100% PWM Duty Cycle  
25. Input Voltage Ripple at 100% PWM Duty Cycle  
CH1  
CH1  
CH3  
CH4  
CH3  
CH4  
CH1: PWM  
CH3: Inductor  
current  
CH4: LED current  
CH1: PWM  
CH3: Inductor  
current  
CH4: LED current  
26. LED Current Transient as PWM Duty Cycle  
27. LED Current Transient as PWM Duty Cycle  
Changes From 1% to 99%  
Changes From 50% to 99%  
版权 © 2016–2018, Texas Instruments Incorporated  
23  
TPS54200, TPS54201  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
CH1  
CH3  
CH4  
0
20%  
40%  
PWM duty %  
60%  
80%  
100%  
D002  
CH1: PWM  
CH3: Inductor  
current  
CH4: LED current  
29. LED Current vs PWM Duty Cycle  
28. LED Current Transient as PWM Duty Cycle  
Changes From 99% to 1%  
CH1  
CH2  
CH1  
CH2  
CH3  
CH4  
CH3  
CH4  
CH1: PWM  
CH2: SW  
CH3: VOUT  
CH4: LED  
current;  
CH1: PWM  
CH2: SW  
CH3: VOUT  
CH4: LED  
current;  
30. Start-Up at 1% PWM Duty Cycle and 50 kHz  
31. Shutdown at 1% PWM Duty Cycle and 50 kHz  
CH1  
CH2  
CH1  
CH2  
CH3  
CH4  
CH3  
CH4  
CH1: PWM  
CH2: SW  
CH3: VOUT  
CH4: LED  
current  
CH1: PWM  
CH2: SW  
CH3: VOUT  
CH4: LED  
current  
32. Start-Up at 100% PWM Duty Cycle  
33. Shutdown at 100% PWM Duty Cycle  
24  
版权 © 2016–2018, Texas Instruments Incorporated  
TPS54200, TPS54201  
www.ti.com.cn  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
CH1  
CH2  
CH3  
CH4  
CH1: VOUT  
CH2: SW  
CH3: FB CH4: Inductor  
current  
CH1: VOUT  
CH2: SW  
CH3: FB  
CH4: Inductor  
current  
34. LED Short Protection (100% PWM Duty Cycle) of  
35. LED Short Protection (100% PWM Duty Cycle) of  
TPS54200  
TPS54201  
CH1  
CH2  
CH3  
CH4  
CH1: VOUT  
CH2: SW  
CH3: FB CH4: Inductor  
current  
CH1: VOUT  
CH2: SW  
CH3: FB  
CH4: Inductor  
current  
36. LED Open Protection (100% PWM Duty Cycle) of  
37. LED Open Protection (100% PWM Duty Cycle) of  
TPS54200  
TPS54201  
CH1  
CH2  
CH3  
CH4  
CH1: VOUT  
CH2: SW  
CH3: FB  
CH4:Inductor  
current  
CH1: VOUT  
CH2: SW  
CH3: FB  
CH4: Inductor  
current  
38. Sense Resistor Short Protection (100% PWM Duty  
39. Sense-Resistor Short Protection (100% PWM Duty  
Cycle) of TPS54200  
Cycle) of TPS54201  
版权 © 2016–2018, Texas Instruments Incorporated  
25  
TPS54200, TPS54201  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
9.2.2 TPS5420x 24-V Input, 1-A, 4-Piece WLED Driver With PWM Dimming  
D1  
Cool White  
U1  
L1  
VIN = 21.6V ~ 26.4V  
C1  
R1  
0
3
5
6
2
VIN  
BOOT  
SW  
VIN  
GND  
10µH  
C2  
10µF  
C3  
0.1µF  
0.1µF  
PWM  
D2  
Cool White  
C4  
10µF  
GND  
1.5V, 250Hz, 1% to 100% duty  
4
1
FB  
GND  
TP1  
GND  
PWM  
R2  
D3  
Cool White  
TPS54200DDCR  
200  
GND  
C5  
0.082µF  
GND  
R3  
0.1  
D4  
Cool White  
GND  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
40. 24-V Input, 1-A, 4-Piece WLED Driver With PWM Dimming Reference Design  
9.2.2.1 Design Requirements  
For this design example, use the parameters in 3.  
3. Design Parameters  
PARAMETER  
Input voltage range  
VALUE  
21.6 V to 26.4 V  
11.6-V stack  
LED string forward voltage  
Output voltage  
11.7 V  
LED current at 100% PWM duty cycle  
LED current ripple  
1 A  
30 mA or less  
400 mV or less  
1% to 100%, 1.5 V, 250 Hz  
Input voltage ripple  
PWM dimming range  
26  
版权 © 2016–2018, Texas Instruments Incorporated  
 
TPS54200, TPS54201  
www.ti.com.cn  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
9.2.2.2 Detailed Design Procedure  
The detailed design process in this example is basically the same with that shown in the previous design  
example. Following are the design results.  
9.2.2.2.1 Inductor Selection  
A Cree white LED XLampXML is used. According to the LED manufacturer’s data sheet, this LED has 2.9-V  
forward voltage at 1-A current, so VOUT = 2.9 V × 4 + 0.1 V = 11.7 V. Choose KIND = 0.3, which gives a 36-µH  
inductance. With this inductance, the ripple current on the inductor is only 0.3-A peak-to-peak, which is too  
conservative and increases total system cost and size.  
For this application, with concerns about system cost and size taken into account, decide the inductance by  
choosing a larger peak-to-peak inductor ripple current. To choose a proper peak-to-peak inductor ripple, the low-  
side FET sink current limit should not be exceeded when the converter works in a no-load condition. To meet this  
requirement, half of the peak-to-peak inductor ripple must be lower than that limit. Another consideration with this  
larger peak-to-peak ripple current is the increased core loss and copper loss in the inductor, which is also  
acceptable. Once this peak-to-peak inductor ripple current is chosen, 公式 14 can be used to calculate the  
required inductance.  
V
OUT ´ (VIN(max) - VOUT)  
LMIN  
=
V
IN(max)´ IL(ripple)´ fSW  
where  
IL(RIPPLE) is the peak-to-peak inductor ripple current.  
(14)  
Choose 1-A peak-to-peak inductor ripple current, and half of the current is 0.5 A, much lower than the minimum  
low-side sink current limit of 1.25 A. The calculated inductance is 10.9 µH. Choose a 10-µH inductor with part  
number 744066100 from Wurth. The ripple, peak, and rms currents of the inductor are 1.09 A, 1.54 A, and 1.05  
A, respectively. The chosen inductor has ample margin in this design.  
9.2.2.2.2 Input Capacitor Selection  
In this design, a 10-µF, 35-V X7R ceramic capacitor, part number GRM32ER7YA106KA12L from muRata, is  
chosen. This yields around 70-mV input-ripple voltage. The calculated rms input ripple current is 0.5 A, well  
below the ripple-current rating of the capacitor.  
9.2.2.2.3 Output Capacitor Selection  
The dynamic resistance of this LED is 0.184 Ω at 1-A forward current. In this design, choose a 10-µF, 35-V X7R  
ceramic capacitor, part number GRM32ER7YA106KA12L from muRata. The calculated ripple current of the LED  
is about 40 mA.  
9.2.2.2.4 FB Pin RC Filter Selection  
PWM dimming mode is implemented in this design. Choose the pole at around 4 kHz, and choose 475 Ω as the  
filter resistor. With those values, an 82 nF capacitor should be chosen for this filter. To get a faster loop  
response, choose a smaller filter resistor. In this design, 200 Ω was chosen to get a pole at approximately 10  
kHz.  
9.2.2.2.5 Sense Resistor Selection  
The maximum target LED current at 100% PWM duty cycle is 1 A, and the corresponding VREF is 100 mV. By  
using 公式 1, one can calculate the needed sense resistance of 100 mΩ. Pay close attention to the power  
consumption of the sense resistor in this design at 100 mW. Make sure the chosen resistor has enough margin  
in the power rating.  
版权 © 2016–2018, Texas Instruments Incorporated  
27  
 
TPS54200, TPS54201  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
9.2.2.3 Application Curves  
CH1  
CH2  
CH1  
CH2  
CH3  
CH4  
CH3  
CH4  
CH1: PWM  
CH2: SW  
CH3: VOUT  
CH4: LED  
current  
CH1: PWM  
CH2: SW  
CH3: VOUT  
CH4: LED  
current  
41. Start-Up at 1% PWM Duty Cycle and 250 Hz  
42. Shutdown at 1% PWM Duty Cycle and 250 Hz  
CH1  
CH2  
CH1  
CH2  
CH3  
CH4  
CH3  
CH4  
CH1: PWM  
CH2: SW  
CH3: VOUT  
CH4: LED  
Current  
CH1: PWM  
CH2: SW  
CH3: VOUT  
CH4: LED  
current  
43. Start-Up at 100% PWM Duty Cycle  
44. Shutdown at 100% PWM Duty Cycle  
CH1  
CH4  
CH1  
CH4  
CH1 PWM  
CH4: LED  
current  
CH1: PWM  
CH4: LED  
current  
45. PWM Dimming With 2% Duty Cycle and 250 Hz  
46. PWM Dimming With 50% Duty Cycle and 250 Hz  
28  
版权 © 2016–2018, Texas Instruments Incorporated  
TPS54200, TPS54201  
www.ti.com.cn  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
CH2  
CH1  
CH4  
CH3  
CH4  
CH1: PWM  
CH4: LED  
current  
CH2: SW  
CH3: LED CH4: Inductor  
current  
current  
(AC-coupled)  
47. PWM Dimming With 99% Duty Cycle and 250 Hz  
48. LED Current Ripple at 100% PWM Duty Cycle  
CH1  
CH2  
CH4  
CH1: VVIN  
CH2: SW  
CH4: Inductor current  
(AC-coupled)  
49. Input Voltage Ripple at 100% PWM Duty Cycle  
版权 © 2016–2018, Texas Instruments Incorporated  
29  
TPS54200, TPS54201  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
10 Power Supply Recommendations  
The devices are designed to operate from an input voltage supply range between 4.5 V and 28 V. This input  
supply must be well regulated. If the input supply is located more than a few inches from the device or converter,  
additional bulk capacitance may be required in addition to the ceramic bypass capacitors.  
11 Layout  
The TPS5420x requires a proper layout for optimal performance. The following section gives some guidelines to  
help ensure a proper layout.  
11.1 Layout Guidelines  
An example of a proper layout for the TPS5420x is shown in 50.  
Creating a large GND plane for good electrical and thermal performance is important.  
The VIN and GND traces should be as wide as possible to reduce trace impedance. The added width also  
provides excellent heat dissipation.  
Thermal vias can be used to connect the topside GND plane to additional printed-circuit board (PCB) layers  
for heat dissipation and grounding.  
The input capacitors must be located as close as possible to the VIN pin and the GND pin.  
The SW trace must be kept as short as possible to minimize radiated noise and EMI.  
Do not allow switching current to flow under the device.  
The FB trace should be kept as short as possible and placed away from the high-voltage switching trace and  
the ground shield.  
In higher-current applications, routing the load current of the current-sense resistor to the junction of the input  
capacitor and GND node may be necessary.  
30  
版权 © 2016–2018, Texas Instruments Incorporated  
TPS54200, TPS54201  
www.ti.com.cn  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
11.2 Layout Example  
LED LOAD  
VSENSE  
SENSE RESISTOR  
GND  
OUTPUT  
CAPACITOR  
VOUT  
CONNECTED TO  
POWER GND ON  
INTERNAL OR  
BOOT  
CAPACITOR  
BOTTOM LAYER  
OUTPUT  
INDUCTOR  
GND  
SW  
BOOT  
PWM  
TO PWM  
CONTROL  
SW  
FB  
VIN  
RC FILTER  
GND  
INPUT  
CAPACITOR  
VIN  
CONNECTED TO  
POWER GND ON  
INTERNAL OR  
BOTTOM LAYER  
VIA to Ground Plane  
50. Layout Example  
版权 © 2016–2018, Texas Instruments Incorporated  
31  
TPS54200, TPS54201  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 文档支持  
12.2.1 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
4. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
TPS54200  
TPS54201  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
32  
版权 © 2016–2018, Texas Instruments Incorporated  
TPS54200, TPS54201  
www.ti.com.cn  
ZHCSFQ9B NOVEMBER 2016REVISED JUNE 2018  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查看左侧的导航面板。  
版权 © 2016–2018, Texas Instruments Incorporated  
33  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS54200DDCR  
TPS54200DDCT  
TPS54201DDCR  
TPS54201DDCT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 125  
-40 to 125  
4200  
4200  
4201  
4201  
Samples  
Samples  
Samples  
Samples  
SN  
SN  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Dec-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS54200DDCR  
TPS54200DDCT  
TPS54201DDCR  
TPS54201DDCT  
SOT-23-  
THIN  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
SOT-23-  
THIN  
SOT-23-  
THIN  
3000  
250  
SOT-23-  
THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS54200DDCR  
TPS54200DDCT  
TPS54201DDCR  
TPS54201DDCT  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
3000  
250  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS54201DDCR

4.5V 至 28V 输入电压、同步降压型 LED 驱动器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54201DDCT

4.5V 至 28V 输入电压、同步降压型 LED 驱动器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54202

4.5V 至 28V 输入、2A 输出、EMI 友好型同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54202DDCR

4.5V 至 28V 输入、2A 输出、EMI 友好型同步降压转换器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54202DDCT

4.5V 至 28V 输入、2A 输出、EMI 友好型同步降压转换器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54202H

4.5V 至 28V 输入、2A 输出、同步降压电压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54202HDDCR

4.5V 至 28V 输入、2A 输出、同步降压电压转换器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54202HDDCT

4.5V 至 28V 输入、2A 输出、同步降压电压转换器 | DDC | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5420D

2-A, WIDE INPUT RANGE, STEP-DOWN SWIFT CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5420DG4

2-A, WIDE INPUT RANGE, STEP-DOWN SWIFT CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5420DR

2-A, WIDE INPUT RANGE, STEP-DOWN SWIFT CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5420DRG4

2-A, WIDE INPUT RANGE, STEP-DOWN SWIFT CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI