TPS54334DRCT [TI]

具有 570kHz 固定频率的 4.2V 至 28V 输入电压、3A 输出电流同步降压转换器 | DRC | 10 | -40 to 85;
TPS54334DRCT
型号: TPS54334DRCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 570kHz 固定频率的 4.2V 至 28V 输入电压、3A 输出电流同步降压转换器 | DRC | 10 | -40 to 85

开关 光电二极管 输出元件 转换器
文件: 总37页 (文件大小:2480K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS54334  
ZHCSDR7 MAY 2015  
TPS54334 4.2V 28V 输入电压、3A 输出电流同步 SWIFT™  
降压控制器  
1 特性  
3 说明  
1
两个用于提供 3A 持续输出电流的 128mΩ/84mΩ  
金属氧化物半导体场效应晶体管 (MOSFET)  
TPS54334 是一款带有 MOSFET 28V3A、低静  
态电源电流 (IQ) 同步单片降压转换器。  
电源正常  
TPS54334 通过集成 MOSFET 并实施电流模式控制来  
减少外部元件数,从而实现小型设计。  
关断时静态电流低至 2µA  
0.8V 内部参考电压,整个温度范围内的精度为  
±1.5%  
该器件凭借集成的 128mΩ/84mΩ MOSFET、低静态电  
源电流以及轻负载条件下的脉冲跳跃实现了效率的最大  
化。 器件可利用使能引脚进入关断模式,关断电源电  
流可降至  
定频电流模式控制  
脉冲跳跃提升了轻负载时的效率  
对于严重故障条件,用断续模式来对两个 MOSFET  
进行过流保护  
2µA。  
过热和过压瞬态保护  
TPS54334 的参考电压在整个温度范围内保持 1.5% 的  
精度,可为各类负载提供精确稳压。  
采用易于使用的 8 引脚小外形尺寸集成电路  
(SOIC) PowerPAD™ 10 引脚小外形尺寸无引线  
(SON) 封装  
高侧场效应晶体管 (FET) 的逐周期电流限制可在过载  
情况下保护 TPS54334,并通过低侧电源限流防止电  
流失控,从而实现功能增强。 此外,还提供关闭低侧  
MOSFET 的低侧吸收电流限值,以防止过多的反向电  
流。 在过流情况持续时间超过预设时间时,将触发断  
续保护功能。 当裸片温度超过热关断温度时,过热断  
续保护功能将禁用该部件,而在内置热断续时间之后,  
则可重新启用该部件。  
针对预偏置输出的单调性启动  
2 应用  
消费类应用,例如数字电视 (DTV)、机顶盒  
STB、数字化视频光盘 (DVD)/蓝光播放器)、液  
晶显示器、客户端设备 (CPE)(电缆调制解调器、  
WiFi 路由器)、数字光处理 (DLP) 投影仪、智能  
电表  
电池充电器  
器件信息(1)  
工业用和车载音频电源  
5V12V 24V 分布式电源总线供电  
器件型号  
TPS54334  
封装  
封装尺寸(标称值)  
4.89mm x 3.90mm  
3.0mm × 3.0mm  
SO8 引脚)  
VSON10 引脚)  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 简化电路原理图  
U1  
R7 100 kΩ  
VDD  
TPS54334DRC  
VIN=4.2 V to 24 V  
VIN  
10  
1
VIN  
PGOOD  
L1 6.8 µH  
C3  
VOUT= 3.3 V  
R1  
9
2
BOOT  
SW  
VOUT  
C1  
C2  
221 kΩ  
0.1 µF  
R4  
8
7
C7  
10µF 0.1µF  
C6  
EN  
51.1 Ω  
22 µF  
22 µF  
R5  
C8  
6
31.6 kΩ  
COMP  
VSENSE  
200 pF  
R3  
R2  
3,4,5  
2.05kΩ  
GND  
84.5 kΩ  
C5  
150 pF  
C4  
R6  
0.015 µF  
10 kΩ  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSC26  
 
 
 
 
TPS54334  
ZHCSDR7 MAY 2015  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical Applications ................................................ 16  
1
2
3
4
5
6
7
特性.......................................................................... 1  
9
应用.......................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings ............................................................ 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information ................................................. 5  
7.5 Electrical Characteristics........................................... 5  
7.6 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram ....................................... 10  
8.3 Feature Description................................................. 10  
10 Power Supply Recommendations ..................... 24  
11 Layout................................................................... 24  
11.1 Layout Guidelines ................................................. 24  
11.2 Layout Example .................................................... 25  
12 器件和文档支持 ..................................................... 26  
12.1 器件支持................................................................ 26  
12.2 文档支持................................................................ 26  
12.3 社区资源................................................................ 26  
12.4 ....................................................................... 26  
12.5 静电放电警告......................................................... 26  
12.6 术语表 ................................................................... 26  
13 机械、封装和可订购信息....................................... 26  
8
5 修订历史记录  
日期  
修订版本  
注释  
2015 5 月  
*
首次发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS54334  
www.ti.com.cn  
ZHCSDR7 MAY 2015  
6 Pin Configuration and Functions  
DRC Package  
10 Pin VSON  
Top View  
DDA Package  
8 Pin SO  
Top View  
VIN  
SW  
1
2
3
4
5
10 PGOOD  
8
7
6
5
PGOOD  
EN  
BOOT  
VIN  
1
2
3
4
9
8
7
6
BOOT  
EN  
Thermal Pad  
GND  
GND  
GND  
PowerPAD  
COMP  
VSENSE  
SW  
COMP  
VSENSE  
GND  
Pin Functions  
NUMBER  
PIN  
NAME  
I/O  
DESCRIPTION  
DDA  
DRC  
A bootstrap capacitor is required between BOOT and SW. If the voltage on this capacitor is below the  
minimum required by the output device, the output is forced to switch off until the capacitor is  
refreshed.  
BOOT  
1
9
O
Error amplifier output, and input to the output switch current comparator. Connect frequency  
compensation components to this pin.  
COMP  
6
7
8
O
I
EN  
7
4
8
3
2
5
Enable pin. Float to enable.  
GND  
PGOOD  
SW  
3, 4, 5  
O
O
I
Ground.  
10  
2
PGOOD open drain output. Connect a pull-up resistor with a value of 100kΩ to this pin.  
The source of the internal high side power MOSFET.  
Input supply voltage, 4.2 V to 28 V.  
Vin  
1
VSENSE  
6
Inverting node of the gm error amplifier.  
PowerPad (SO only)  
GND pin should be connected to the exposed thermal pad for proper operation. This thermal pad  
should be connected to any internal PCB ground plane using multiple vias for good thermal  
performance.  
Thermal pad (VSON only)  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS54334  
ZHCSDR7 MAY 2015  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0
MAX  
30  
UNIT  
V
VIN  
EN  
6
V
BOOT  
Input Voltage  
(SW+7.5)  
V
V
VSENSE  
3
3
COMP  
V
PGOOD  
BOOT-SW  
6
V
7.5  
30  
30  
0.2  
100  
V
Output Voltage  
SW  
–1  
V
SW 10ns Transient  
–3.5  
–0.2  
V
Vdiff(GND to Exposed Thermal Pad)  
V
EN  
µA  
A
Source Current  
SW  
Current Limit  
Current Limit  
SW  
A
Sink Current  
COMP  
200  
200  
5
µA  
mA  
PGOOD  
–0.1  
–40  
–65  
Operating Junction Temperature  
Storage temperature, Tstg  
150  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The human body model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin. The machine model is a 200-pF  
capacitor discharged directly into each pin.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V
Electrostatic  
discharge  
V(ESD)  
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
±500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
28  
UNIT  
V
VSS Supply input voltage  
VOUT Output voltage  
IOUT Output current  
4.2  
0.8  
0
24  
V
3
A
TJ  
Operating junction temperature(1)  
–40  
150  
°C  
(1) The device must operate within 150°C to ensure continuous function and operation of the device.  
4
Copyright © 2015, Texas Instruments Incorporated  
TPS54334  
www.ti.com.cn  
ZHCSDR7 MAY 2015  
7.4 Thermal Information  
TPS54334  
DDA (8 PINS) DRC (10 Pins)  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
42.1  
50.9  
31.8  
5
43.9  
55.4  
18.9  
0.7  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
13.5  
7.1  
19.1  
5.3  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
7.5 Electrical Characteristics  
The Electrical Ratings specified in this section will apply to all specifications in this document unless otherwise noted. These  
specifications will be interpreted as conditions that will not degrade the device’s parametric or functional specifications for the  
life of the product containing it. TJ = –40°C to 150°C, VIN =4.2 to 28V, (unless otherwise noted)  
PARAMETER  
SUPPLY VOLTAGE AND UVLO (VIN PIN)  
Operating input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
4.2  
28  
4.2  
400  
10  
V
V
Input UVLO threshold  
Rising Vin  
EN = 0V  
3.9  
180  
2
Input UVLO hysteresis  
mV  
µA  
µA  
VIN Shutdown Supply Current  
VIN Operating– non switching supply current VSENSE=810mV  
310  
800  
ENABLE (EN PIN)  
Enable threshold  
Enable threshold  
Input current  
Rising  
1.21  
1.17  
1.15  
3.3  
1.28  
V
V
Falling  
1.1  
EN=1.1V  
EN=1.3V  
µA  
µA  
Hysteresis current  
VOLTAGE REFERENCE  
TJ = 25°C  
0.792  
0.788  
0.8  
0.8  
0.808  
0.812  
V
V
Reference  
MOSFET  
BOOT-SW = 3V  
BOOT-SW = 6V  
160  
128  
84  
290  
240  
170  
mΩ  
mΩ  
mΩ  
High side switch resistance(1)  
Low side switch resistance(1)  
ERROR AMPLIFIER  
Error amplifier transconductance (gm)  
Error amplifier source/sink  
Start switching peak current threshold  
COMP to Iswitch gm  
–2 µA < ICOMP < 2 µA V(COMP)=1V  
V(COMP)=1V, 100 mV Overdrive  
1300  
100  
0.5  
8
µmhos  
µA  
A
A/V  
CURRENT LIMIT  
High side switch current limit threshold  
Low side switch sourcing current limit  
Low side switch sinking current limit  
Hiccup wait time  
4
5.2  
4.7  
6.5  
6.1  
A
A
3.5  
0
A
512  
Cycles  
Cycles  
Hiccup time before re-start  
16384  
(1) Measured at pins.  
Copyright © 2015, Texas Instruments Incorporated  
5
TPS54334  
ZHCSDR7 MAY 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
The Electrical Ratings specified in this section will apply to all specifications in this document unless otherwise noted. These  
specifications will be interpreted as conditions that will not degrade the device’s parametric or functional specifications for the  
life of the product containing it. TJ = –40°C to 150°C, VIN =4.2 to 28V, (unless otherwise noted)  
PARAMETER  
THERMAL SHUTDOWN  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Thermal shutdown  
165  
10  
°C  
°C  
Thermal shutdown hysterisis  
Thermal shutdown hiccup time  
SW (SW PIN)  
32768  
Cycles  
Minimum on time  
Measured at 90% to 90% of VIN, ISW = 2A  
94  
145  
3
ns  
Minimum off time  
BOOT-SW 3V  
0%  
BOOT (BOOT PIN)  
BOOT-SW UVLO  
2.2  
2
V
SLOW START  
Internal slow start time  
SWITCHING FREQUENCY  
Internal switching frequency  
POWER GOOD (PGOOD PIN)  
VSENSE falling (Fault)  
VSENSE rising (Good)  
VSENSE rising (Fault)  
VSENSE falling (Good)  
Output high leakage  
Output low  
ms  
kHz  
456  
570  
684  
84  
90  
% Vref  
% Vref  
% Vref  
% Vref  
nA  
116  
110  
30  
VSENSE = Vref, V(PGOOD) = 5.5 V  
I(PGOOD) = 0.35 mA  
500  
0.3  
1
V
Minimum VIN for valid output(2)  
V(PGOOD) < 0.5V at 100 µA  
0.6  
V
MAXIMUM OUTPUT VOLTAGE UNDER MINIMUM VIN(2)  
VIN = 4.2V, Iout = 3A  
2.9  
3.2  
3.4  
3.5  
VIN = 4.2V, Iout = 2.5A  
VIN = 4.2V, Iout = 2A  
VIN = 4.2V, Iout = 1.5A  
Maximum output voltage  
V
(2) Not tested for mass production.  
6
Copyright © 2015, Texas Instruments Incorporated  
TPS54334  
www.ti.com.cn  
ZHCSDR7 MAY 2015  
7.6 Typical Characteristics  
VIN = 12 V, unless otherwise specified.  
140  
130  
120  
110  
100  
90  
210  
190  
170  
150  
130  
110  
90  
80  
70  
60  
50  
70  
±50  
±25  
0
25  
50  
75  
100  
125  
150  
±50  
±25  
0
25  
50  
75  
100  
125  
150  
C002  
Junction Temperature (ƒC)  
C001  
Junction Temperature (ƒC)  
Figure 2. Low-Side Resistance vs Junction Temperature  
Figure 1. High-Side Resistance vs Junction Temperature  
0.808  
575  
570  
565  
560  
555  
550  
545  
540  
535  
530  
525  
0.804  
0.800  
0.796  
0.792  
±50  
±25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
C003  
Junction Temperature (ƒC)  
Junction Temperature (qC)  
D004  
Figure 3. Reference Voltage vs Junction Temperature  
Figure 4. Switching Frequency vs Junction Temperature  
3.5  
2
3
2.5  
2
1.98  
1.96  
1.94  
1.92  
1.9  
1.5  
1
0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (qC)  
Junction Temperature (qC)  
D005  
D006  
Figure 5. Shutdown Current vs Junction Temperature  
Figure 6. Softstart Time vs Junction Temperature  
Copyright © 2015, Texas Instruments Incorporated  
7
TPS54334  
ZHCSDR7 MAY 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
VIN = 12 V, unless otherwise specified.  
380  
108  
106  
104  
102  
100  
98  
360  
340  
320  
300  
280  
96  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (qC)  
Junction Temperature (qC)  
D007  
D008  
Figure 7. Non-Switching Operating Quiescent Current vs  
Junction Temperature  
Figure 8. Minimum On Time vs Junction Temperature  
2.5  
5.4  
L o H  
H o L  
2.45  
2.4  
5.3  
5.2  
5.1  
5
2.35  
2.3  
2.25  
2.2  
4.9  
4.8  
4.7  
2.15  
2.1  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (qC)  
Junction Temperature (qC)  
D009  
D010  
Figure 9. BOOT-SW UVLO Threshold vs Junction  
Temperature  
Figure 10. High-Side Current Limit Threshold vs Junction  
Temperature  
1.3  
1.26  
1.22  
1.18  
1.14  
1.1  
4
3.95  
3.9  
L o H  
H o L  
3.85  
3.8  
3.75  
3.7  
L o H  
H o L  
3.65  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (qC)  
Junction Temperature (qC)  
D011  
D012  
Figure 11. EN Threshold vs Junction Temperature  
Figure 12. VIN UVLO Threshold vs Junction Temperature  
8
Copyright © 2015, Texas Instruments Incorporated  
TPS54334  
www.ti.com.cn  
ZHCSDR7 MAY 2015  
8 Detailed Description  
8.1 Overview  
The device is a 28-V, 3-A, synchronous step-down (buck) converter with two integrated n-channel MOSFETs. To  
improve performance during line and load transients the device implements a constant frequency, peak current  
mode control which reduces output capacitance and simplifies external frequency compensation design.  
The device is designed for safe monotonic startup into pre-biased loads. It has a typical default start up voltage  
of 3.9 V. The EN pin has an internal pull-up current source that can provide a default condition when the EN pin  
is floating for the device to operate. The total operating current for the device is typically 310µA when not  
switching and under no load. When the device is disabled, the supply current is less than 5μA.  
The integrated 128m/84mMOSFETs allow for high efficiency power supply designs with continuous output  
currents up to 3 amperes.  
The device reduces the external component count by integrating the boot recharge diode. The bias voltage for  
the integrated high-side MOSFET is supplied by a capacitor between the BOOT and SW pins. The boot capacitor  
voltage is monitored by an UVLO circuit and turns off the high-side MOSFET when the voltage falls below a  
preset threshold. The output voltage can be stepped down to as low as the 0.8 V reference.  
The device has a power good comparator (PGOOD) with hysteresis which monitors the output voltage through  
the VSENSE pin. The PGOOD pin is an open drain MOSFET which is pulled low when the VSENSE pin voltage  
is less than 84% or greater than 116% of the reference voltage Vref and asserts high when the VSENSE pin  
voltage is 90% to 110% of the Vref.  
The device minimizes excessive output over-voltage transients by taking advantage of the over-voltage power  
good comparator. When the regulated output voltage is greater than 116% of the nominal voltage, the over-  
voltage comparator is activated, and the high-side MOSFET is turned off and masked from turning on until the  
output voltage is lower than 110%.  
The TPS54334 operating frequency is fixed at 570 kHz and at 2 ms slow start time.  
Copyright © 2015, Texas Instruments Incorporated  
9
TPS54334  
ZHCSDR7 MAY 2015  
www.ti.com.cn  
8.2 Functional Block Diagram  
VIN  
PGOOD  
EN  
Thermal  
Hiccup  
UVLO  
Shutdown  
Enable  
Ip  
Ih  
Comparator  
Shutdown  
Logic  
UV  
Logic  
Hiccup  
Shutdown  
Enable  
Threshold  
OV  
Boot  
Charge  
Current  
Sense  
Minimum Clamp  
Pulse Skip  
ERROR  
AMPLIFIER  
VSENSE  
BOOT  
Boot  
UVLO  
HS MOSFET  
Voltage  
Current  
Power Stage  
Reference  
Comparator  
& Deadtime  
Control  
SW  
Logic  
Slope  
Compensation  
VIN  
Regulator  
Hiccup  
Shutdown  
LS MOSFET  
Current Limit  
Maximum  
Clamp  
Overload  
Recovery  
Oscillator  
Current  
Sense  
GND  
COMP  
EXPOSED THERMAL PAD  
8.3 Feature Description  
8.3.1 Fixed Frequency PWM Control  
The device uses a fixed frequency, peak current mode control. The output voltage is compared through external  
resistors on the VSENSE pin to an internal voltage reference by an error amplifier which drives the COMP pin.  
An internal oscillator initiates the turn on of the high side power switch. The error amplifier output is compared to  
the high side power switch current. When the power switch current reaches the COMP voltage level the high side  
power switch is turned off and the low side power switch is turned on. The COMP pin voltage increases and  
decreases as the output current increases and decreases. The device implements a current limit by clamping the  
COMP pin voltage to a maximum level and also implements a minimum clamp for improved transient response  
performance.  
8.3.2 Light Load Operation  
The device monitors the peak switch current of the high-side MOSFET. Once the peak switch current is lower  
than typically 0.5A, the device stops switching to boost the efficiency until the peak switch current is again higher  
than typically 0.5A.  
10  
Copyright © 2015, Texas Instruments Incorporated  
TPS54334  
www.ti.com.cn  
ZHCSDR7 MAY 2015  
Feature Description (continued)  
8.3.3 Slope Compensation and Output Current  
The device adds a compensating ramp to the switch current signal. This slope compensation prevents sub-  
harmonic oscillations as duty cycle increases. The available peak inductor current remains constant over the full  
duty cycle range.  
8.3.4 Bootstrap Voltage (BOOT) and Low Dropout Operation  
The device has an integrated boot regulator and requires a small ceramic capacitor between the BOOT and SW  
pin to provide the gate drive voltage for the high-side MOSFET. The value of the ceramic capacitor should be  
0.1μF. A ceramic capacitor with an X7R or X5R grade dielectric with a voltage rating of 10 V or higher is  
recommended because of the stable characteristics over temperature and voltage.  
When the voltage between BOOT and SW pins drops below the BOOT-SW UVLO threshold, which is 2.2 V  
(typical), the high-side MOSFET turns off and the low-side MOSFET turns on, allowing the boot capacitor to  
recharge.  
The device may work at 100% duty ratio as long as the BOOT-SW voltage is higher than the BOOT-SW UVLO  
threshold; but, do not operate the device at 100% duty ratio with no load.  
8.3.5 Error Amplifier  
The device has a transconductance amplifier. The error amplifier compares the VSENSE voltage to the lower of  
the internal slow start voltage or the internal 0.8 V voltage reference. The transconductance of the error amplifier  
is 1300μA/V typically. The frequency compensation components are placed between the COMP pin and ground.  
8.3.6 Voltage Reference  
The voltage reference system produces a precise ±1.5% voltage reference over temperature by scaling the  
output of a temperature stable bandgap circuit. The bandgap and scaling circuits produce 0.8 V at the non-  
inverting input of the error amplifier.  
8.3.7 Adjusting the Output Voltage  
The output voltage is set with a resistor divider from the output node to the VSENSE pin. It is recommended to  
use divider resistors with 1% tolerance or better. Start with a 10 kΩ for the R1 resistor and use the Equation 1 to  
calculate R2. To improve efficiency at light loads consider using larger value resistors. If the values are too high  
the regulator is more susceptible to noise and voltage errors from the VSENSE input current are noticeable.  
VREF  
R2 =  
´R1  
VOUT - VREF  
(1)  
8.3.8 Enable and Undervoltage Lockout  
The EN pin provides electrical on/off control of the device. Once the EN pin voltage exceeds the threshold  
voltage, the device starts operation. If the EN pin voltage is pulled below the threshold voltage, the regulator  
stops switching and enters the low-quiescent (IQ) state.  
The EN pin has an internal pull-up current source, allowing the user to float the EN pin for enabling the device. If  
an application requires controlling the EN pin, use open drain or open collector output logic to interface with the  
pin  
The device implements internal UVLO circuitry on the VIN pin. The device is disabled when the VIN pin voltage  
falls below the internal VIN UVLO threshold. The internal VIN UVLO threshold has a hysteresis of 180mV.  
If an application requires a higher UVLO threshold on the VIN pin, then the EN pin can be configured as shown  
in Figure 13. When using the external UVLO function it is recommended to set the hysteresis to be greater than  
500mV.  
The EN pin has a small pull-up current Ip which sets the default state of the pin to enable when no external  
components are connected. The pull-up current is also used to control the voltage hysteresis for the UVLO  
function since it increases by Ih once the EN pin crosses the enable threshold. The UVLO thresholds can be  
calculated using Equation 2, and Equation 3.  
Copyright © 2015, Texas Instruments Incorporated  
11  
 
TPS54334  
ZHCSDR7 MAY 2015  
www.ti.com.cn  
Feature Description (continued)  
TPS54334  
VIN  
EN  
Ip  
Ih  
R 1  
R 2  
Figure 13. Adjustable VIN Undervoltage Lockout  
æ
ö
VENfalling  
V
- V  
STOP  
ç
÷
START ç  
÷
V
è
ENrising ø  
R1=  
æ
ö
VENfalling  
I
1-  
+ I  
h
ç
÷
p ç  
÷
V
è
ENrising ø  
(2)  
space  
R2 =  
R1´ VENfalling  
VSTOP - VENfalling + R1(Ip + Ih )  
where  
IP = 1.15 μA  
IH = 3.3 μA  
VENfalling = 1.17 V  
VENrising = 1.21 V  
(3)  
8.3.9 Slow Start  
The internal 2-ms soft-start time is implemented to minimize inrush currents. If during normal operation, the VIN  
goes below the UVLO, EN pin pulled below 1.21 V, or a thermal shutdown event occurs, the device stops  
switching and the internal slow start voltage is discharged to 0 volts before reinitiating a powering up sequence.  
8.3.10 Safe Start-up into Pre-Biased Outputs  
The device is designed to prevent the low-side MOSFET from discharging a pre-biased output. During monotonic  
pre-biased startup, both high-side and low-side MOSFETs are not allowed to be turned on until the internal soft-  
start voltage is higher than VSENSE pin voltage.  
8.3.11 Power Good (PGOOD)  
The PGOOD pin is an open drain output. Once the VSENSE pin is between 90% and 110% of the internal  
voltage reference the PGOOD pin pull-down is de-asserted and the pin floats. It is recommended to use a pull up  
resistor between the values of 10kΩ and 100kΩ to a voltage source that is 5.5V or less. The PGOOD is in a  
defined state once the VIN input voltage is greater than 1V but with reduced current sinking capability. The  
PGOOD achieves full current sinking capability once the VIN input voltage is above 4.2V.  
The PGOOD pin is pulled low when VSENSE is lower than 84% or greater than 116% of the nominal internal  
reference voltage. Also, the PGOOD is pulled low, if the input UVLO or thermal shutdown is asserted, the EN pin  
is pulled low.  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS54334  
www.ti.com.cn  
ZHCSDR7 MAY 2015  
8.4 Device Functional Modes  
8.4.1 Overcurrent/Overvoltage/Thermal Protection  
The device is protected from output overvoltage, overload and thermal fault conditions. The device minimizes  
excessive output overvoltage transients by taking advantage of the overvoltage circuit power good comparator.  
When the overvoltage comparator is activated, the high-side MOSFET is turned off and prevented from turning  
on until the VSENSE pin voltage is lower than 106% of the Vref. The device implements both high-side MOSFET  
overload protection and bidirectional low-side MOSFET overload protections which help control the inductor  
current and avoid current runaway. If the overcurrent condition has lasted for more than the hiccup wait time, the  
device will shut down and re-start after the hiccup time. The device also shuts down if the junction temperature is  
higher than thermal shutdown trip point. When the junction temperature drops 10°C typically below the thermal  
shutdown trip point, the built-in thermal shutdown hiccup timer is triggered. The device will be restarted under  
control of the slow start circuit automatically after the thermal shutdown hiccup time is over.  
Furthermore, if the overcurrent condition has lasted for more than the hiccup wait time which is programmed for  
512 switching cycles, the device will shut down itself and re-start after the hiccup time which is set for 16384  
cycles. The hiccup mode helps to reduce the device power dissipation under severe overcurrent conditions.  
8.4.2 Thermal Shutdown  
The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
165°C typically. Once the junction temperature drops below 155°C typically, the internal thermal hiccup timer will  
start to count. The device reinitiates the power up sequence after the built-in thermal shutdown hiccup time  
(32768 cycles) is over.  
8.4.3 Small Signal Model for Loop Response  
Figure 14 shows an equivalent model for the device control loop which can be modeled in a circuit simulation  
program to check frequency response and transient responses. The error amplifier is a trans conductance  
amplifier with a gm of 1300μA/V. The error amplifier can be modeled using an ideal voltage controlled current  
source. The resistor Roea (3.07 MΩ) and capacitor Coea (20.7 pF) model the open loop gain and frequency  
response of the error amplifier. The 1-mV ac voltage source between the nodes a and b effectively breaks the  
control loop for the frequency response measurements. Plotting a/c and c/b show the small signal responses of  
the power stage and frequency compensation respectively. Plotting a/b shows the small signal response of the  
overall loop. The dynamic loop response can be checked by replacing the RL with a current source with the  
appropriate load step amplitude and step rate in a time domain analysis.  
SW  
VOUT  
Power Stage  
8 A/V  
a
b
RESR  
R1  
RL  
COMP  
c
CO  
VSENSE  
R2  
0.8V  
Coea  
Roea  
R3  
C1  
gm  
1300 mA/V  
C2  
Figure 14. Small Signal Model for Loop Response  
8.4.4 Small Signal Model for Peak Current Mode Control  
Figure 15 is a simple small signal model that can be used to understand how to design the frequency  
compensation. The device power stage can be approximated to a voltage controlled current source (duty cycle  
modulator) supplying current to the output capacitor and load resistor. The control to output transfer function is  
shown in Equation 4 and consists of a dc gain, one dominant pole and one ESR zero. The quotient of the  
change in switch current and the change in COMP pin voltage (node c in Figure 14) is the power stage trans  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
TPS54334  
ZHCSDR7 MAY 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
conductance (gmps) which is 8 A/V for the device. The DC gain of the power stage is the product of gmps and the  
load resistance, RL, as shown in Equation 6 with resistive loads. As the load current increases, the DC gain  
decreases. This variation with load may seem problematic at first glance, but fortunately the dominant pole  
moves with load current (see Equation 6). The combined effect is highlighted by the dashed line in Figure 16. As  
the load current decreases, the gain increases and the pole frequency lowers, keeping the 0-dB crossover  
frequency the same for the varying load conditions which makes it easier to design the frequency compensation.  
VOUT  
VC  
RESR  
RL  
gm  
ps  
CO  
Figure 15. Small Signal Model for Peak Current Mode Control  
VOUT  
Adc  
VC  
RESR  
fp  
RL  
gmps  
CO  
fz  
Figure 16. Simplified Frequency Response for Peak Current Mode Control  
æ
ç
è
æ
ç
ç
è
ö
÷
s
1+  
1+  
2p´ ¦z ø  
VOUT  
VC  
= Adc ´  
ö
÷
÷
ø
s
2p´ ¦p  
(4)  
(5)  
Adc = gmPS ´RL  
1
¦p =  
C ´RL ´ 2p  
o
(6)  
(7)  
1
¦z =  
Co´RESR ´ 2p  
Where  
gmea is the GM amplifier gain (1300µA/V)  
gmPS is the power stage gain (8A/V)  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS54334  
www.ti.com.cn  
ZHCSDR7 MAY 2015  
Device Functional Modes (continued)  
RL is the load resistance  
CO is the output capacitance  
RESR is the equivalent series resistance of the output capacitors  
8.4.5 Small Signal Model for Frequency Compensation  
The device uses a transconductance amplifier for the error amplifier and readily supports two of the commonly  
used Type II compensation circuits and a Type III frequency compensation circuit, as shown in Figure 17. In  
Type 2A, one additional high frequency pole, C6, is added to attenuate high frequency noise. In Type III, one  
additional capacitor, C11, is added to provide a phase boost at the crossover frequency. See Designing Type III  
Compensation for Current Mode Step-Down Converters (SLVA352) for a complete explanation of Type III  
compensation.  
The design guidelines below are provided for advanced users who prefer to compensate using the general  
method. The below equations only apply to designs whose ESR zero is above the bandwidth of the control loop.  
This is usually true with ceramic output capacitors.  
VOUT  
C11  
R8  
VSENSE  
Type 2A  
Type 2B  
COMP  
Type 3  
Vref  
R4  
C4  
gmea  
Roea  
C6  
R4  
C4  
R9  
Coea  
Figure 17. Types of Frequency Compensation  
The general design guidelines for device loop compensation are as follows:  
1. Determine the crossover frequency, fc. A good starting point is 1/10th of the switching frequency, fsw.  
2. R4 can be determined by:  
2p´ ¦ ´ VOUT ´ C  
R4 =  
c
o
gmea ´ V ´ gmPS  
ref  
where  
gmea is the GM amplifier gain (1300µA/V)  
gmPS is the power stage gain (8A/V)  
Vref is the reference voltage (0.8V)  
(8)  
3. Place a compensation zero at the dominant pole:  
1
¦p =  
C ´RL ´ 2p  
o
(9)  
(10)  
(11)  
4. C4 can be determined by:  
RL ´ CO  
C4 =  
R4  
5. C6 is optional. It can be used to cancel the zero from the ESR of the output capacitor Co  
RESR ´ CO  
C6 =  
R4  
6. Type III compensation can be implemented with the addition of one capacitor, C11. This allows for slightly  
higher loop bandwidths and higher phase margins. If used, C11 can be estimated from Equation 12.  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
TPS54334  
ZHCSDR7 MAY 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
1
C11=  
2p´R8´ ¦  
C
(12)  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The following design procedure can be used to select component values for the TPS54334. Alternately, the  
WEBENCH® software may be used to generate a complete design. The WEBENCH® software uses an iterative  
design procedure and accesses a comprehensive database of components when generating a design. This  
section presents a simplified discussion of the design process using the TPS54334.  
9.2 Typical Applications  
9.2.1 TPS54334 Application  
U1  
R7 100 kΩ  
TPS54334DRC  
VDD  
VIN=4.2 V to 24 V  
10  
1
VIN  
VIN  
PGOOD  
BOOT  
SW  
L1 6.8 µH  
C3  
VOUT= 3.3 V  
R1  
9
2
VOUT  
C1  
C2  
221 kΩ  
0.1 µF  
R4  
8
7
C7  
10µF 0.1µF  
C6  
EN  
51.1 Ω  
22 µF  
22 µF  
R5  
C8  
6
31.6 kΩ  
COMP  
VSENSE  
GND  
200 pF  
R3  
R2  
3,4,5  
2.05kΩ  
84.5 kΩ  
C5  
150 pF  
C4  
R6  
0.015 µF  
10 kΩ  
Figure 18. Typical Application Schematic, TPS54334  
9.2.1.1 Design Requirements  
For this design example, use the parameters listed in Table 1.  
Table 1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
4.2 to 24 V  
3.3 V  
Output voltage  
Transient response, 1.5-A load step  
Input ripple voltage  
ΔVO = ±5 %  
400 mV  
Output ripple voltage  
Output current rating  
Operating Frequency  
30 mV  
3 A  
570 kHz  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
TPS54334  
www.ti.com.cn  
ZHCSDR7 MAY 2015  
9.2.1.2 Detailed Design Procedure  
The following design procedure can be used to select component values for the TPS54334. Alternately, the  
WEBENCH® software may be used to generate a complete design. The WEBENCH software uses an iterative  
design procedure and accesses a comprehensive database of components when generating a design. This  
section presents a simplified discussion of the design process using the TPS54334 device.  
For this design example, use the input parameters listed in Table 1.  
9.2.1.2.1 Switching Frequency  
The switching frequency of the TPS54334 device is set at 570 kHz to match the internally set frequency of the  
TPS54334 device for this design.  
9.2.1.2.2 Output Voltage Set Point  
The output voltage of the TPS54334 device is externally adjustable using a resistor divider network. In the  
application circuit of Figure 18, this divider network is comprised of R5 and R6. Use Equation 13 and Equation 14  
to calculate the relationship of the output voltage to the resistor divider.  
R5 ´ V  
ref  
R6 =  
VOUT - V  
ref  
(13)  
R5  
é
ù
VOUT = V  
´
+1  
ref  
ê
ú
R6  
ë
û
(14)  
Select a value of R5 to be approximately 31.6 k. Slightly increasing or decreasing R5 can result in closer  
output-voltage matching when using standard value resistors. In this design, R5 = 31.6 kand R6 = 10 kwhich  
results in a 3.328-V output voltage. The 51.1-Ω resistor, R4, is provided as a convenient location to break the  
control loop for stability testing.  
9.2.1.2.3 Undervoltage Lockout Set Point  
The undervoltage lockout (UVLO) set point can be adjusted using the external-voltage divider network of R1 and  
R2. R1 is connected between the VIN and EN pins of the TPS54334 device. R2 is connected between the EN  
and GND pins. The UVLO has two thresholds, one for power up when the input voltage is rising and one for  
power down or brown outs when the input voltage is falling. For the example design, the minimum input voltage  
is 4.2V, so the start-voltage threshold is set to 4.1 V and the stop-voltage threshold is set to VIN UVLO (3.7V).  
Use Equation 2 and Equation 3 to calculate the values for the upper and lower resistor values of R1 and R2.  
9.2.1.2.4 Input Capacitors  
The TPS54334 device requires an input decoupling capacitor and, depending on the application, a bulk input  
capacitor. The typical recommended value for the decoupling capacitor is 10 μF. A high-quality ceramic type X5R  
or X7R is recommended. The voltage rating should be greater than the maximum input voltage. A smaller value  
can be used as long as all other requirements are met; however a 10-μF capacitor has been shown to work well  
in a wide variety of circuits. Additionally, some bulk capacitance may be needed, especially if the TPS54334  
circuit is not located within about 2 inches from the input voltage source. The value for this capacitor is not critical  
but should be rated to handle the maximum input voltage including ripple voltage, and should filter the output so  
that input ripple voltage is acceptable. For this design, a 10-μF, X7R dielectric capacitor rated for 35 V is used for  
the input decoupling capacitor. The ESR is approximately 2 m, and the current rating is 3 A. Additionally, a  
small 0.1-μF capacitor is included for high frequency filtering.  
Use Equation 15 to calculate the input ripple voltage (ΔVIN).  
IOUT(MAX) ´ 0.25  
DV  
=
+ IOUT(MAX) ´ ESRMAX  
(
)
IN  
CBULK ´ ƒSW  
where  
CBULK is the bulk capacitor value  
ƒSW is the switching frequency  
IOUT(MAX) is the maximum load current  
ESRMAX is the maximum series resistance of the bulk capacitor  
(15)  
17  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
TPS54334  
ZHCSDR7 MAY 2015  
www.ti.com.cn  
The maximum RMS (root mean square) ripple current must also be checked. For worst case conditions, use  
Equation 16 to calculate ICIN(RMS)  
IO(MAX)  
.
ICIN(RMS)  
=
2
(16)  
In this case, the input ripple voltage is 138 mV and the RMS ripple current is 1.5 A.  
NOTE  
The actual input-voltage ripple is greatly affected by parasitics associated with the layout  
and the output impedance of the voltage source.  
Design Requirements shows the actual input voltage ripple for this circuit which is larger than the calculated  
value. This measured value is still below the specified input limit of 400 mV. The maximum voltage across the  
input capacitors is VIN(MAX) + ΔVIN / 2. The selected bypass capacitor is rated for 35 V and the ripple current  
capacity is greater than 3 A. Both values provide ample margin. The maximum ratings for voltage and current  
must not be exceeded under any circumstance.  
9.2.1.2.5 Output Filter Components  
Two components must be selected for the output filter, the output inductor (LO) and CO. Because the TPS54334  
device is an externally compensated device, a wide range of filter component types and values can be  
supported.  
9.2.1.2.5.1 Inductor Selection  
Use Equation 17 to calculate the minimum value of the output inductor (LMIN).  
VOUT  
´
VIN(MAX) - VOUT  
(
)
´ KIND ´ IOUT ´ ƒSW  
LMIN  
=
V
IN(MAX)  
where  
KIND is a coefficient that represents the amount of inductor ripple current relative to the maximum output  
current  
(17)  
In general, the value of KIND is at the discretion of the designer; however, the following guidelines may be used.  
For designs using low-ESR output capacitors, such as ceramics, a value as high as KIND = 0.3 can be used.  
When using higher ESR output capacitors, KIND = 0.2 yields better results.  
For this design example, use KIND = 0.3. The minimum inductor value is calculated as 5.6 μH. For this design, a  
standard value of 6.8 µH was selected for LMIN  
.
For the output filter inductor, the RMS current and saturation current ratings must not be exceeded. Use  
Equation 18 to calculate the RMS inductor current (IL(RMS)).  
æ
ç
ö2  
÷
VOUT  
´
V
- VOUT  
(
)
IN(MAX)  
1
IL(RMS)  
=
IO2 UT(MAX)  
+
´
ç
÷
12  
V
´ LOUT ´ ƒSW ´ 0.8  
IN(MAX)  
è
ø
(18)  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
TPS54334  
www.ti.com.cn  
ZHCSDR7 MAY 2015  
Use Equation 19 to calculate the peak inductor current (IL(PK)).  
VOUT  
´
V
- VOUT  
)
´ LOUT ´ ƒSW  
(
IN(MAX)  
IN(MAX)  
IL(PK) = IOUT(MAX)  
+
1.6 ´ V  
(19)  
For this design, the RMS inductor current is 3.01 A and the peak inductor current is 3.459 A. The selected  
inductor is a Vishay 6.8 μH, IHLP-4040DZ-01. Smaller or larger inductor values can be used depending on the  
amount of ripple current the designer wants to allow so long as the other design requirements are met. Larger  
value inductors have lower AC current and result in lower output voltage ripple. Smaller inductor values increase  
AC current and output voltage ripple. In general, for the TPS54334 device, use inductors with values in the range  
of 0.68 μH to 100 μH.  
9.2.1.2.5.2 Capacitor Selection  
Consider three primary factors when selecting the value of the output capacitor. The output capacitor determines  
the modulator pole, the output voltage ripple, and how the regulator responds to a large change in load current.  
The output capacitance must be selected based on the more stringent of these three criteria.  
The desired response to a large change in the load current is the first criterion. The output capacitor must supply  
the load with current when the regulator cannot. This situation occurs if the desired hold-up times are present for  
the regulator. In this case, the output capacitor must hold the output voltage above a certain level for a specified  
amount of time after the input power is removed. The regulator is also temporarily unable to supply sufficient  
output current if a large, fast increase occurs affecting the current requirements of the load, such as a transition  
from no load to full load. The regulator usually requires two or more clock cycles for the control loop to notice the  
change in load current and output voltage and to adjust the duty cycle to react to the change. The output  
capacitor must be sized to supply the extra current to the load until the control loop responds to the load change.  
The output capacitance must be large enough to supply the difference in current for 2 clock cycles while only  
allowing a tolerable amount of drop in the output voltage. Use Equation 20 to calculate the minimum required  
output capacitance.  
2´DIOUT  
CO  
>
ƒ
SW ´DVOUT  
where  
ΔIOUT is the change in output current  
ƒSW is the switching frequency of the regulator  
ΔVOUT is the allowable change in the output voltage  
(20)  
For this example, the transient load response is specified as a 5% change in the output voltage, VOUT, for a load  
step of 1.5 A. For this example, ΔIOUT = 1.5 A and ΔVOUT = 0.05 × 3.3 = 0.165 V. Using these values results in a  
minimum capacitance of 31.9 μF. This value does not consider the ESR of the output capacitor in the output  
voltage change. For ceramic capacitors, the ESR is usually small enough to ignore in this calculation.  
Equation 21 calculates the minimum output capacitance required to meet the output voltage ripple specification.  
In this case, the maximum output voltage ripple is 30 mV. Under this requirement, Equation 21 yields 3.65 µF.  
1
1
CO  
>
´
VOUTripple  
8´ ƒSW  
Iripple  
where  
ƒSW is the switching frequency  
VOUTripple is the maximum allowable output voltage ripple  
Iripple is the inductor ripple current  
(21)  
Use Equation 22 to calculate the maximum ESR an output capacitor can have to meet the output-voltage ripple  
specification. Equation 22 indicates the ESR should be less than 40.9 mΩ. In this case, the ESR of the ceramic  
capacitor is much smaller than 40.9 mΩ.  
VOUTripple  
RESR  
<
Iripple  
(22)  
19  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
 
TPS54334  
ZHCSDR7 MAY 2015  
www.ti.com.cn  
Additional capacitance deratings for aging, temperature, and DC bias should be considered which increases this  
minimum value. For this example, two 22-μF 25-V X7R ceramic capacitors with 3 mΩ of ESR are used.  
Capacitors generally have limits to the amount of ripple current they can handle without failing or producing  
excess heat. An output capacitor that can support the inductor ripple current must be specified. Some capacitor  
data sheets specify the RMS value of the maximum ripple current. Use Equation 23 to calculate the RMS ripple  
current that the output capacitor must support. For this application, Equation 23 yields 106 mA for each  
capacitor.  
æ
ç
ç
è
ö
÷
÷
ø
VOUT  
´
V
- VOUT  
(
)
IN(MAX)  
1
ICOUT(RMS)  
=
´
V
´ LOUT ´ ƒSW ´ NC  
12  
IN(MAX)  
(23)  
9.2.1.2.6 Compensation Components  
Several possible methods exist to design closed loop compensation for DC-DC converters. For the ideal current-  
mode control, the design equations can be easily simplified. The power stage gain is constant at low frequencies,  
and rolls off at –20 dB/decade above the modulator pole frequency. The power stage phase is 0 degrees at low  
frequencies and begins to fall one decade below the modulator pole frequency reaching a minimum of –90  
degrees which is one decade above the modulator pole frequency. Use Equation 24 to calculate the simple  
modulator pole (ƒp_mod).  
IOUT max  
ƒp_mod  
=
2p´ VOUT ´ COUT  
(24)  
For the TPS54334 device, most circuits have relatively high amounts of slope compensation. As more slope  
compensation is applied, the power stage characteristics deviate from the ideal approximations. The phase loss  
of the power stage will now approach –180 degrees, making compensation more difficult. The power stage  
transfer function can be solved but it requires a tedious calculation. Use the PSpice model to accurately model  
the power-stage gain and phase so that a reliable compensation circuit can be designed. Alternately, a direct  
measurement of the power stage characteristics can be used which is the technique used in this design  
procedure. For this design, the calculated values are as follows:  
L1 = 6.8 µH  
C6 and C7 = 22 µF  
ESR = 3 mΩ  
Figure 19 shows the power stage characteristics.  
60  
180  
120  
60  
Gain = –2.088 dB  
@ ƒ = 54.26 kHz  
40  
20  
0
0
-20  
-40  
-60  
-60  
-120  
-180  
Gain  
Phase  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
D016  
Figure 19. Power Stage Gain and Phase Characteristics  
For this design, the intended crossover frequency is 54.26 kHz (an actual measured data point exists for that  
frequency). From the power stage gain and phase plots, the gain at 54.26 kHz is –2.088 dB and the phase is  
about –121 degrees. For 60 degrees of phase margin, additional phase boost from a feed-forward capacitor in  
parallel with the upper resistor of the voltage set point divider is needed. R3 sets the gain of the compensated  
error amplifier to be equal and opposite the power stage gain at crossover. Use Equation 25 to calculate the  
required value of R3.  
20  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
TPS54334  
www.ti.com.cn  
ZHCSDR7 MAY 2015  
-GPWRSTG  
20  
VOUT  
VREF  
10  
R3 =  
´
gmea  
(25)  
To maximize phase gain, the compensator zero is placed one decade below the crossover frequency of 54.26  
kHz. Use Equation 26 to calculate the required value for C4.  
1
C4 =  
ƒCO  
2´ p´R3´  
10  
(26)  
To maximize phase gain the high frequency pole is placed one decade above the crossover frequency of 54.26  
kHz. The pole can also be useful to offset the ESR of aluminum electrolytic output capacitors. Use Equation 27  
to calculate the value of C5.  
1
C5 =  
2´ p´R3´10´ ƒCO  
(27)  
To Maximize Phase margin, use Type-lll compensation to provide a zero around the desired crossover frequency  
co) with R5, VOUT and VREF  
.
VOUT  
VREF  
1
C8 =  
´
2p´R5´ ¦CO  
(28)  
For this design the calculated values for the compensation components are as follows:  
R3 = 2.05 kΩ  
C4 = 0.015 µF  
C5 = 150 pF  
C8 = 200 pF  
9.2.1.2.7 Bootstrap Capacitor  
Every TPS54334 design requires a bootstrap capacitor, C3. The bootstrap capacitor value must 0.1 μF. The  
bootstrap capacitor is located between the SW and BOOT pins. The bootstrap capacitor should be a high-quality  
ceramic type with X7R or X5R grade dielectric for temperature stability.  
9.2.1.2.8 Power Dissipation Estimate  
The following formulas show how to estimate the device power dissipation under continuous-conduction mode  
operations. These formulas should not be used if the device is working in the discontinuous conduction mode  
(DCM) or pulse-skipping Eco-mode™.  
The device power dissipation includes:  
1. Conduction loss:  
PCON = IOUT2 × rDS(on) × VOUT / VIN  
where  
IOUT is the output current (A)  
rDS(on) is the on-resistance of the high-side MOSFET ()  
VOUT is the output voltage (V)  
VIN is the input voltage (V)  
(29)  
2. Switching loss:  
E = 0.5 × 10–9 × VIN 2 × IOUT × ƒSW  
where  
ƒSW is the switching frequency (Hz)  
(30)  
(31)  
3. Gate charge loss:  
PG = 22.8 × 10–9 × ƒSW  
4. Quiescent current loss:  
PQ = 0.31 × 10-3 × VIN  
(32)  
21  
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS54334  
ZHCSDR7 MAY 2015  
www.ti.com.cn  
Therefore:  
Ptot = PCON + E + PG + PQ  
where  
Ptot is the total device power dissipation (W)  
(33)  
For given TA :  
TJ = TA + Rth × Ptot  
where  
TA is the ambient temperature (°C)  
TJ is the junction temperature (°C)  
Rth is the thermal resistance of the package (°C/W)  
(34)  
(35)  
For given TJmax = 150°C:  
TAmax = TJmax – Rth × Ptot  
where  
TAmax is the maximum ambient temperature (°C)  
TJmax is the maximum junction temperature (°C)  
9.2.1.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 12 V  
VIN = 24 V  
VIN = 12 V  
VIN = 24 V  
0
0.5  
1
1.5  
2
2.5  
3
1m  
10m  
100m  
1
3
Output Current (A)  
Output Current (A)  
D017  
D018  
Figure 20. TPS54334 Efficiency  
Figure 21. TPS54334 Low-Current Efficiency  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.1  
0.08  
0.06  
0.04  
0.02  
0
VIN = 12 V  
VIN = 24 V  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0
0.5  
1
1.5  
2
2.5  
3
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
Output Current (A)  
Input Voltage (V)  
D019  
D020  
Figure 22. TPS54334 Load Regulation  
Figure 23. TPS54334 Line Regulation  
22  
Copyright © 2015, Texas Instruments Incorporated  
TPS54334  
www.ti.com.cn  
ZHCSDR7 MAY 2015  
60  
40  
180  
120  
60  
VOUT = 200 mV/div(AC coupled)  
20  
0
0
-20  
-40  
-60  
-60  
-120  
IOUT = 1 A/div  
Gain  
Phase  
-180  
1M  
100  
1k  
10k  
100k  
Time = 200 µs/div  
0.75- to 2.25-A load step  
Frequency (Hz)  
D021  
Slew rate = 500 mA/µs  
Figure 25. TPS54334 Loop Response  
Figure 24. TPS54334 Transient Response  
VOUT = 20 mV/div (AC coupled)  
VOUT = 20 mV/div (AC coupled)  
SW = 5 V/div  
SW = 5 V/div  
Time = 1 µs/div  
Time = 2 µs/div  
Figure 26. TPS54334 Full-Load Output Ripple  
Figure 27. TPS54334 200-mA Output Ripple  
VIN = 200 mV/div (AC coupled)  
VOUT = 20 mV/div (AC coupled)  
SW = 5 V/div  
SW = 5 V/div  
Time = 1 µs/div  
Time = 2 ms/div  
Figure 29. TPS54334 Full-Load Input Ripple  
Figure 28. TPS54334 No-Load Output Ripple  
Copyright © 2015, Texas Instruments Incorporated  
23  
TPS54334  
ZHCSDR7 MAY 2015  
www.ti.com.cn  
VIN = 5 V/div  
VIN = 5 V/div  
EN = 2 V/div  
EN = 2 V/div  
PGOOD = 2 V/div  
PGOOD = 2 V/div  
VOUT = 2 V/div  
VOUT = 2 V/div  
Time = 2 ms/div  
Figure 31. TPS54334 Startup Relative To Enable  
Time = 2 ms/div  
Figure 30. TPS54334 Startup Relative To VIN  
VIN = 5 V/div  
VIN = 5 V/div  
EN = 2 V/div  
EN = 2 V/div  
PGOOD = 2 V/div  
PGOOD = 2 V/div  
VOUT = 2 V/div  
VOUT = 2 V/div  
Time = 2 ms/div  
Figure 32. TPS54334 Shutdown Relative To VIN  
Time = 2 ms/div  
Figure 33. TPS54334 Shutdown Relative To EN  
10 Power Supply Recommendations  
The devices are designed to operate from an input supply ranging from 4.2 V to 28 V. The input supply should  
be well regulated. If the input supply is located more than a few inches from the converter an additional bulk  
capacitance, typically 100 μF, may be required in addition to the ceramic bypass capacitors.  
11 Layout  
11.1 Layout Guidelines  
The VIN pin should be bypassed to ground with a low ESR ceramic bypass capacitor. Care should be taken to  
minimize the loop area formed by the bypass capacitor connection. the VIN pin, and the GND pin of the IC. The  
typical recommended bypass capacitance is 10-μF ceramic with a X5R or X7R dielectric and the optimum  
placement is closest to the VIN and GND pins of the device. See Figure 34 for a PCB layout example. The GND  
pin should be tied to the PCB ground plane at the pin of the IC. To facilitate close placement of the input bypass  
capacitors, The SW pin should be routed to a small copper area directly adjacent to the pin. Use vias to rout the  
SW signal to the bottom side or an inner layer. If necessary you can allow the top side copper area to extend  
slightly under the body of the closest input bypass capacitor. Make the copper trace on the bottom or internal  
layer short and wide as practical to reduce EMI issues. Connect the trace with vias back to the top side to  
connect with the output inductor as shown after the GND pin. In the same way use a bottom or internal layer  
trace to rout the SW signal across the VIN pin to connect to the BOOT capacitor as shown. Make the circulating  
loop from SW to the output inductor, output capacitors and back to GND as tight as possible while preserving  
adequate etch width to reduce conduction losses in the copper.  
24  
Copyright © 2015, Texas Instruments Incorporated  
TPS54334  
www.ti.com.cn  
ZHCSDR7 MAY 2015  
Layout Guidelines (continued)  
For operation at full rated load, the ground area near the IC must provide adequate heat dissipating area.  
Connect the exposed thermal pad to bottom or internal layer ground plane using vias as shown. Additional vias  
may be used adjacent to the IC to tie top side copper to the internal or bottom layer copper. The additional  
external components can be placed approximately as shown. Use a separate ground trace to connect the  
feedback, compensation, UVLO and RT returns. Connect this ground trace to the main power ground at a single  
point to minimize circulating currents. It may be possible to obtain acceptable performance with alternate layout  
schemes, however this layout has been shown to produce good results and is intended as a guideline.  
11.2 Layout Example  
VIA to Power Ground Plane  
VIA to SW Copper Pour on Bottom  
or Internal Layer  
Connect to VIN on  
internal or bottom  
layer  
ANALOG  
GROUND  
TRACE  
VIN  
VIN  
INPUT  
VIN  
HIGH FREQUENCY  
PGOOD  
PULLUP RESISTOR  
BOOT  
CAPACITOR  
BYPASS BYPASS  
CAPACITOR CAPACITOR  
VDD  
BOOT  
PGOOD  
EN  
UVLO  
RESISTORS  
VIN  
SW  
COMP  
VSENSE  
GND  
COMPENSATION  
NETWORK  
EXPOSED  
THERMAL PAD  
AREA  
POWER  
GROUND  
FEEDBACK  
RESISTORS  
OUTPUT  
INDUCTOR  
SW node copper pour  
area on internal or  
bottom layer  
POWER  
GROUND  
OUTPUT  
FILTER  
CAPACITOR  
VOUT  
Figure 34. TPS54334DDA Board Layout  
版权 © 2015, Texas Instruments Incorporated  
25  
TPS54334  
ZHCSDR7 MAY 2015  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
如需 WEBENCH 电路设计和选择仿真服务,请访问:www.ti.com/WEBENCH。  
12.2 文档支持  
12.2.1 相关文档ꢀ  
相关文档如下:  
《设计电流模式降压转换器的第 III 类补偿》(文献编号:SLVA352)  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
SWIFT, PowerPAD, Eco-mode, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Aug-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS54334DDA  
TPS54334DDAR  
TPS54334DRCR  
TPS54334DRCT  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
DDA  
DDA  
DRC  
DRC  
8
8
75  
RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
54334  
54334  
54334  
54334  
Samples  
Samples  
Samples  
Samples  
2500 RoHS & Green  
3000 RoHS & Green  
SN  
ACTIVE  
ACTIVE  
VSON  
VSON  
10  
10  
NIPDAU  
NIPDAU  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Aug-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DDA 8  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4202561/G  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS54335

4.5V to 28V Input, 3A Output, Synchronous SWIFT Step-Down Voltage Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54335-1A

采用 DRC 封装且具有 Eco-Mode 的 4.5V 至 28V 输入、3A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54335-1ADRCR

采用 DRC 封装且具有 Eco-Mode 的 4.5V 至 28V 输入、3A 同步降压转换器 | DRC | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54335-1ADRCT

采用 DRC 封装且具有 Eco-Mode 的 4.5V 至 28V 输入、3A 同步降压转换器 | DRC | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54335-2A

具有 Eco-mode 的 4.5V 至 28V 输入、3A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54335-2ADRCR

具有 Eco-mode 的 4.5V 至 28V 输入、3A 同步降压转换器 | DRC | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54335-2ADRCT

具有 Eco-mode 的 4.5V 至 28V 输入、3A 同步降压转换器 | DRC | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54335A

具有 Eco-Mode 的 4.5V 至 28V 输入、3A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54335ADDAR

具有 Eco-Mode 的 4.5V 至 28V 输入、3A 同步降压转换器 | DDA | 8 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54335ADRCR

具有 Eco-Mode 的 4.5V 至 28V 输入、3A 同步降压转换器 | DRC | 10 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54335ADRCT

具有 Eco-Mode 的 4.5V 至 28V 输入、3A 同步降压转换器 | DRC | 10 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54335DDA

4.5V to 28V Input, 3A Output, Synchronous SWIFT Step-Down Voltage Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI