TPS543820RPYR-ET [TI]

4V 至 18V、8A 同步降压转换器扩展温度范围 | RPY | 14 | -55 to 150;
TPS543820RPYR-ET
型号: TPS543820RPYR-ET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4V 至 18V、8A 同步降压转换器扩展温度范围 | RPY | 14 | -55 to 150

转换器
文件: 总46页 (文件大小:3479K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
TPS543820E 具有内部补偿高级电流模式控制功能TPS543820 4V 18V 输  
入、83668A SWIFT™ 降压转换器  
1 特性  
2 应用  
• 固定频率、内部补偿高级电流模(ACM) 控制  
• 集成25mΩ6.5mΩMOSFET  
• 输入电压范围4V 18V  
• 支持国防、航空航天医疗应用  
– 额定结温范围-55°C +150°C  
加固型通信  
铁路运输  
航电设备和飞机控制  
• 输出电压范围0.5V 7V  
• 三种可选PWM 斜坡选项可优化控制环路性能  
• 五种可选的开关频率500kHz750kHz1MHz、  
1.5MHz 2.2MHz  
3 说明  
TPS543820E 是一款高效的 18V8A 同步降压转换  
其中采用了内部补偿固定频率高级电流模式控制。  
该器件能够在以高2.2MHz 的开关频率运行时提供高  
效率。该器件采用 2.5mm × 3mm HotRod™  
VQFN 封装并且在高频率下具有很高的效率因此  
成为需要小解决方案尺寸的设计的理想选择。固定频率  
控制器可以在 500kHz 2.2MHz 范围内运行并且可  
以通过 SYNC 引脚与外部时钟同步。其他功能包括高  
精度电压基准、可选的软启动时间、单调启动至预偏置  
输出、可选的电流限制、可UVLOEN 引脚实  
以及全套故障保护。  
• 与一个外部时钟同步  
0.5V整个温度范围内的电压基准精度±0.5%  
• 可选的软启动时间0.5ms1ms2ms 4ms  
• 单调启动至预偏置输出  
• 可选的电流限制8A 6A 运行  
• 具有可调节输入欠压锁定功能的使能端  
• 电源正常输出监视器  
• 输出过压、输出欠压、输入欠压、过流和过热保护  
-55°C 150°C 的工作结温范围  
2.5mm × 3mm 14 VQFN-HR 封装间距为  
0.5mm  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPS543820E  
VQFN-HR (14)  
2.50mm x 3.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
100  
96  
92  
88  
84  
80  
76  
VIN  
VIN  
BP5  
EN  
BOOT  
SW  
SW  
VOUT  
TPS543820E  
PGOOD  
SYNC/FSEL  
MODE  
FB  
AGND  
72  
PGND  
12 V to 0.8 V, 1 MHz  
12 V to 1 V, 1 MHz  
68  
12 V to 1.2 V, 1 MHz  
12 V to 1.8 V, 1 MHz  
64  
60  
简化版原理图  
0
1
2
3
4
5
Output Current (A)  
6
7
8
效率  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSEE0  
 
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................16  
8 Application and Implementation..................................17  
8.1 Application Information............................................. 17  
8.2 Typical Applications.................................................. 17  
9 Power Supply Recommendations................................34  
10 Layout...........................................................................35  
10.1 Layout Guidelines................................................... 35  
10.2 Layout Example...................................................... 35  
11 Device and Documentation Support..........................37  
11.1 接收文档更新通知................................................... 37  
11.2 支持资源..................................................................37  
11.3 Trademarks............................................................. 37  
11.4 静电放电警告...........................................................37  
11.5 术语表..................................................................... 37  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................4  
6.5 Electrical Characteristics ............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description........................................................9  
7.1 Overview.....................................................................9  
7.2 Functional Block Diagram...........................................9  
7.3 Feature Description.....................................................9  
Information.................................................................... 38  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2020) to Revision A (June 2021)  
Page  
Changed 10-ns transient to 20-ns transient........................................................................................................4  
Changed VIN to SW, transient 20 ns min value to -6......................................................................................... 4  
Changed SW, transient 20 ns min value to -5.................................................................................................... 4  
Changed max VOUT to 7 V..................................................................................................................................4  
Added TOFF(min) max value................................................................................................................................. 5  
Added text for considering minimum off-time for fsw selection.........................................................................18  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS543820E  
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
4
3
2
SYNC/  
FSEL  
AGND  
BP5  
EN  
5
6
7
1
14 BOOT  
13 SW  
VIN  
8
9
12 VIN  
10  
PGND  
11 PGND  
SW  
5-1. 14-Pin VQFN-HR RPY Package (Top View)  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Frequency select and external clock synchronization. A resistor to ground sets the switching  
frequency of the device. An external clock can also be applied to this pin to synchronize the  
switching frequency.  
SYNC/FSEL  
1
I
MODE  
2
3
I
A resistor to ground selects the current limit, soft start rate, and PWM ramp amplitude.  
Open-drain power good indicator  
PGOOD  
O
Feedback pin for output voltage regulation. Connect this pin to the midpoint of a resistor  
divider to set the output voltage.  
FB  
4
I
AGND  
BP5  
5
6
-
Ground return for internal analog circuits  
O
Internal 4.5-V regulator output. Bypass this pin with a 2.2-μF capacitor to AGND.  
Enable pin. Float to enable, enable/disable with an external signal, or adjust the input  
undervoltage lockout with a resistor divider.  
EN  
7
I
I
Input power to the power stage. Low impedance bypassing of these pins to PGND is critical.  
A 10-nF to 100-nF capacitor from each VIN to PGND close to IC is required.  
VIN  
8, 12  
Ground return for the power stage. This pin is internally connected to the source of the low-  
side MOSFET.  
PGND  
SW  
9, 11  
10  
-
O
O
Switch node of the converter. Connect this pin to the output inductor.  
Return path for the internal high-side MOSFET gate driver bootstrap capacitor. Connect a  
capacitor from BOOT to this pin. The SW pins are connected internally.  
SW  
13  
Supply for the internal high-side MOSFET gate driver. Connect a capacitor from this pin to  
SW.  
BOOT  
14  
I
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS543820E  
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
-0.3  
-0.3  
-6  
MAX  
20  
20  
25  
25  
6
UNIT  
V
Input voltage  
Input voltage  
Input voltage  
Input voltage  
Input voltage  
Input voltage  
Output voltage  
Output voltage  
VIN  
VIN to SW, DC  
V
VIN to SW, transient 20 ns  
BOOT  
V
-0.3  
-0.3  
-0.3  
-0.3  
-5  
V
BOOT to SW  
V
EN, PGOOD, MODE, SYNC/FSEL, FB  
SW, DC  
6
V
20  
22  
V
SW, transient 20 ns  
V
Operating junction  
temperature, TJ  
Operating junction temperature, TJ  
-55  
150  
150  
°C  
°C  
Storage temperature, Tstg  
55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC  
JS-001(1)  
V(ESD)  
V(ESD)  
Electrostatic discharge  
Electrostatic discharge  
±2000  
V
Charged-device model (CDM), per JEDEC specification  
JESD22-C101(2)  
±500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4
NOM  
MAX  
18  
UNIT  
Input voltage  
Output voltage  
Output current  
TJ  
VIN  
V
V
VOUT  
0.5  
7
IOUT  
8
A
Operating junction temperature  
External clock frequency  
-55  
150  
2600  
°C  
kHz  
fSYNC  
400  
6.4 Thermal Information  
TPS543820E  
THERMAL METRIC(1)  
RPY (QFN, JEDEC)  
RPY (QFN, TI EVM)  
14 PINS  
UNIT  
14 PINS  
58.9  
37.8  
7.3  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
29.1  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Not applicable (2)  
Not applicable (2)  
1.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.9  
7.2  
13.4  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Not applicable to an EVM layout.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS543820E  
 
 
 
 
 
 
 
 
 
 
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
6.5 Electrical Characteristics  
TJ = 55°C to +150°C, VVIN = 4 V - 18 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE  
IQ(VIN)  
VEN = 1.3 V, VFB = 550 mV, VVIN = 12 V, 1  
MHz  
VIN operating non-switching supply current  
1200  
1600  
µA  
ISD(VIN)  
VIN shutdown supply current  
VIN UVLO rising threshold  
VIN UVLO hysteresis  
VEN = 0 V, VVIN = 12 V  
VIN rising  
15  
4
25  
µA  
V
3.9  
4.1  
150  
mV  
ENABLE AND UVLO  
VEN(rise)  
EN voltage rising threshold  
EN voltage falling threshold  
EN voltage hysteresis  
EN rising, enable switching  
EN falling, disable switching  
1.2  
1.1  
1.25  
V
V
VEN(fall)  
1.05  
0.4  
VEN(hyst)  
100  
1.5  
mV  
µA  
µA  
EN pin sourcing current  
EN pin sourcing current  
VEN = 1.1 V  
VEN = 1.3 V  
11.6  
INTERNAL LDO BP5  
VBP5  
Internal LDO BP5 output voltage  
BP5 dropout voltage  
VVIN = 12 V  
4.5  
75  
V
350  
mV  
mA  
V
VIN VBP5, VVIN = 3.8 V  
BP5 short-circuit current limit  
VVIN = 12 V  
REFERENCE VOLTAGE  
VFB  
Feedback Voltage  
Input leakage current into FB pin  
497.5  
500  
1
502.5  
mV  
nA  
TJ = 55°C to 150°C  
VFB = 500 mV, non-switching, VVIN = 12 V,  
VEN = 0 V  
IFB(LKG)  
SWITCHING FREQUENCY AND OSCILLATOR  
fSW  
Switching frequency  
Switching frequency  
Switching frequency  
Switching frequency  
Switching frequency  
450  
675  
500  
750  
550  
825  
kHz  
kHz  
kHz  
kHz  
kHz  
RMODE = 24.3 kΩ  
RMODE = 17.4 kΩ  
RMODE = 11.8 kΩ  
RMODE = 8.06 kΩ  
RMODE = 4.99 kΩ  
fSW  
fSW  
900  
1000  
1500  
2200  
1100  
1650  
2420  
fSW  
1350  
1980  
fSW  
SYNCHRONIZATION  
VIH(sync)  
VIL(sync)  
High-level input voltage  
Low-level input voltage  
1.8  
V
V
0.8  
SOFT-START  
tSS1  
Soft-start time  
Soft-start time  
Soft-start time  
Soft-start time  
0.5  
1
ms  
ms  
ms  
ms  
RMODE = 1.78 kΩ  
RMODE = 2.21 kΩ  
RMODE = 2.74 kΩ  
RMODE = 3.32 kΩ  
tSS2  
tSS3  
2
tSS4  
4
POWER STAGE  
RDS(on)HS  
RDS(on)LS  
VBOOT-SW(UV_r)  
VBOOT-SW(UV_f)  
TON(min)  
TOFF(min)  
High-side MOSFET on-resistance  
Low-side MOSFET on-resistance  
BOOT-SW UVLO rising threshold  
BOOT-SW UVLO falling threshold  
Minimum ON pulse width  
TJ = 25°C, VVIN = 12 V, VBOOT-SW = 4.5 V  
TJ = 25°C, VBP5 = 4.5 V  
VBOOT-SW rising  
25  
6.5  
3.2  
2.8  
30  
mΩ  
mΩ  
V
VBOOT-SW falling  
V
IOUT > ½ IL_PK-PK  
37  
ns  
Minimum OFF pulse width (1)  
115  
140  
ns  
CURRENT SENSE AND OVERCURRENT PROTECTION  
IOC_HS_pk1  
IOC_HS_pk2  
IOC_LS_src1  
IOC_LS_src2  
IOC_LS_snk  
High-side peak current limit  
High-side peak current limit  
Low-side sourcing current limit  
Low-side sourcing current limit  
Low-side sinking current limit  
11.7  
8.6  
12.2  
9
12.7  
9.6  
A
A
A
A
A
RMODE = 1.78 kΩ  
RMODE = 22.1 kΩ  
RMODE = 1.78 kΩ  
RMODE = 22.1 kΩ  
Current into SW pin  
9.4  
10.4  
7.4  
11.3  
8.5  
6.2  
2.95  
OUTPUT OVERVOLTAGE AND UNDERVOLTAGE PROTECTIONS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS543820E  
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
TJ = 55°C to +150°C, VVIN = 4 V - 18 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Overvoltage-protection (OVP) threshold  
voltage  
VOVP  
VFB rising  
VFB falling  
120  
% VREF  
Undervoltage-protection (UVP) threshold  
voltage  
VUVP  
80  
% VREF  
POWER GOOD  
PGOOD threshold  
PGOOD threshold  
PGOOD threshold  
PGOOD threshold  
VFB rising (Fault)  
VFB falling (Good)  
VFB rising (Good)  
VFB falling (Fault)  
113  
105  
89  
116  
108  
92  
119 % VREF  
111 % VREF  
95 % VREF  
87 % VREF  
81  
84  
Leakage current into PGOOD pin when  
open drain output is high  
IPGOOD(LKG)  
VPG(low)  
VPGOOD = 4.7 V  
5
µA  
PGOOD low-level output voltage  
Min VIN for valid PGOOD output  
IPGOOD = 2 mA, VIN = 12 V  
0.5  
1
V
V
0.9  
HICCUP  
Hiccup time before re-start  
Output discharge resistance  
7*tSS  
ms  
OUTPUT DISCHARGE  
VVIN = 12 V, VSW = 0.5 V, power conversion  
disabled.  
RDischg  
100  
THERMAL SHUTDOWN  
TSDN  
Thermal shutdown threshold (1)  
Thermal shutdown hysteresis (1)  
Temperature rising  
165  
12  
175  
°C  
°C  
THYST  
(1) Specified by design. Not production tested.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS543820E  
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
6.6 Typical Characteristics  
TA = 25°C  
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
1.8  
1.6  
1.4  
1.2  
1
12 V to 1 V, 750 kHz  
12 V to 1 V, 1 MHz  
12 V to 1 V, 1.5 MHz  
12 V to 1 V, 2.2 MHz  
0.8  
0.6  
0.4  
0.2  
0
12 V to 1 V, 750 kHz  
12 V to 1 V, 1 MHz  
12 V to 1 V, 1.5 MHz  
12 V to 1 V, 2.2 MHz  
0
1
2
3
Output Current (A)  
4
5
6
7
8
8
8
0
1
2
3
Output Current (A)  
4
5
6
7
8
8
8
L = 470 nH, 2.5 mΩtypical  
L = 470 nH, 2.5 mΩtypical  
6-1. Efficiency vs Output Current  
6-2. Power Loss vs Output Current  
100  
1.6  
12 V to 0.8 V, 1 MHz  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
12 V to 1 V, 1 MHz  
12 V to 1.2 V, 1 MHz  
12 V to 1.8 V, 1 MHz  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
12 V to 0.8 V, 1 MHz  
12 V to 1 V, 1 MHz  
12 V to 1.2 V, 1 MHz  
12 V to 1.8 V, 1 MHz  
0
1
2
3
Output Current (A)  
4
5
6
7
0
1
2
3
Output Current (A)  
4
5
6
7
L = 470 nH, 2.5 mΩtypical  
L = 470 nH, 2.5 mΩtypical  
6-3. Efficiency vs Output Current  
6-4. Power Loss vs Output Current  
100  
2.4  
VOUT = 1.8 V, L = XGL5030-901  
VOUT = 2.5 V, L = XGL5030-901  
VOUT = 3.3 V, L = XGL5050-122  
VOUT = 5 V, L = XGL5050-122  
2.2  
95  
90  
85  
80  
75  
70  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
VOUT = 1.8 V, L = XGL5030-901  
VOUT = 2.5 V, L = XGL5030-901  
VOUT = 3.3 V, L = XGL5050-122  
VOUT = 5 V, L = XGL5050-122  
0
1
2
3
Output Current (A)  
4
5
6
7
0
1
2
3
Output Current (A)  
4
5
6
7
VIN = 12 V  
fSW = 1.0 MHz  
VIN = 12 V  
fSW = 1.0 MHz  
6-5. Efficiency vs Output Current 1.8-V to 5.0- 6-6. Power Loss vs Output Current 1.8-V to  
V Output  
5.0-V Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS543820E  
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
60  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
Nat conv  
100 LFM  
Nat conv  
100 LFM  
200 LFM  
400 LFM  
55  
200 LFM  
400 LFM  
50  
45  
40  
35  
30  
25  
2
2.5  
3
3.5  
4
4.5  
Output Current (A)  
5
5.5  
6
6.5  
7
7.5  
8
2
2.5  
3
3.5  
4
4.5  
Output Current (A)  
5
5.5  
6
6.5  
7
7.5  
8
VIN = 12 V  
fSW = 1.0 MHz  
TA = 25 °C  
VIN = 12 V  
fSW = 1.0 MHz  
TA = 25 °C  
6-7. Junction Temperature vs Output Current 6-8. Junction Temperature vs Output Current –  
1-V Output 3.3-V Output  
0.505  
0.504  
0.503  
0.502  
0.501  
0.5  
3
2.5  
2
VIN = 4 V  
VIN = 12 V  
VIN = 18 V  
1.5  
1
0.499  
0.498  
0.497  
0.496  
0.495  
0.5  
0
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Junction Temperature (èC)  
Junction Temperature (èC)  
VEN = 1.1 V  
6-9. Regulated FB Voltage vs Junction  
6-10. EN Pin Current vs Junction Temperature  
Temperature  
12.5  
12  
11.5  
11  
10.5  
10  
VIN = 4 V  
VIN = 12 V  
VIN = 18 V  
9.5  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Junction Temperature (èC)  
VEN = 1.3 V  
6-11. EN Pin Current vs Junction Temperature  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS543820E  
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS543820E device is a 8-A, high-performance, synchronous buck converter with two integrated N-channel  
MOSFETs. The TPS543820E has a maximum operating junction temperature of 150°C, making it suitable for  
high-ambient temperature applications such as wireless infrastructure. The input voltage range is 4 V to 18 V  
and the output voltage range is 0.5 V to 7 V. The device features a fixed-frequency Advanced Current Mode  
control with a switching frequency of 500 kHz to 2.2 MHz, allowing for efficiency and size optimization when  
selecting output filter components. The switching frequency of the device can be synchronized to an external  
clock applied to the SYNC pin.  
Advanced Current Mode (ACM) is an emulated peak current control topology. It supports stable static and  
transient operation without complex external compensation design. This control architecture includes an internal  
ramp generation network that emulates inductor current information, enabling the use of low-ESR output  
capacitors such as multi-layered ceramic capacitors (MLCC). The internal ramp also creates a high signal-to-  
noise ratio for good noise immunity. The TPS543820E has three ramp options (see 7.3.6 for details) to  
optimize the internal loop for various inductor and output capacitor combinations with only a single resistor to  
AGND. The TPS543820E is easy-to-use and allows low external component count with fast load transient  
response. Fixed-frequency operation also provides ease-of-filter design to overcome EMI noise.  
7.2 Functional Block Diagram  
BP5  
VIN  
BP5_UVLO  
CLK  
UVLO  
VIN_UVLO  
UVLO  
SYNC/  
FSEL  
Linear Regulator  
EN_UVLO  
Oscillator  
Cramp  
ILIM  
Pinstrap  
Detect  
Boot  
Charge  
BOOT  
MODE  
VREF  
Soft-Start  
Control  
EN_UVLO  
EN  
FB  
UVLO  
ACM  
Controller  
Control  
Logic  
SW  
BP5  
OV/UV  
Comparators  
PGND  
Thermal  
Shutdown  
Fault Logic  
BOOT  
SW  
UVLO  
HS and LS  
Current Sense  
OC_FLT  
OC_FLT  
ILIM  
VIN_UVLO  
BP5_UVLO  
AGND  
PGOOD  
7.3 Feature Description  
7.3.1 VIN Pins and VIN UVLO  
The VIN pin voltage supplies the internal control circuits of the device and provides the input voltage to the  
power stage. The input voltage for VIN can range from 4 V to 18 V. The device implements internal UVLO  
circuitry on the VIN pin. The device is disabled when the VIN pin voltage falls below the internal VIN UVLO  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS543820E  
 
 
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
threshold. The internal VIN UVLO threshold has a hysteresis of 150 mV. A voltage divider connected to the EN  
pin can adjust the input voltage UVLO as appropriate. See 7.3.2 for more details.  
7.3.2 Enable and Adjustable UVLO  
The EN pin provides on/off control of the device. Once the EN pin voltage exceeds its threshold voltage, the  
device begins its start-up sequence. If the EN pin voltage is pulled below the threshold voltage, the regulator  
stops switching and enters a low operating current state. The EN pin has an internal pullup current source, Ip,  
allowing it to be floated to enable the device by default. It is important to ensure that leakage currents of anything  
connected to the EN pin do not exceed the minimum EN pullup current or the device may not be able to start. If  
an application requires controlling the EN pin, an open drain or open collector output logic can be interfaced with  
the pin.  
When the EN pin voltage exceeds its threshold voltage and the VIN pin voltage exceeds its VIN UVLO threshold,  
the device begins its start-up sequence. First, the BP5 LDO is enabled and charges the external BP5 capacitor.  
Once the voltage on the BP5 pin exceeds its UVLO threshold, the device enters a power-on delay. During the  
power-on delay, the values of the pinstrap resistors on the MODE pin (see 7.3.8) and SYNC/FSEL pin (see 节  
7.3.4) are determined and the control loop is initialized. The power-on delay is typically 600 μs. After the power-  
on delay, soft start begins.  
4.0V  
VIN  
1.2V  
EN  
3.6V  
BP5 LDO  
Power-on  
delay  
BP5 LDO  
Startup  
SW pulses are omitted to  
simplify the illustration  
……  
SW  
VOUT  
7-1. Start-up Sequence  
An external resistor divider can be added from VIN to the EN pin for adjustable UVLO and hysteresis as shown  
in 7-2. The EN pin has a small pullup current, Ip, which sets the default state of the pin to enable when no  
external components are connected. The pullup current is also used to control the voltage hysteresis for the  
UVLO function since it increases by Ih once the EN pin crosses the enable threshold. The UVLO thresholds can  
be calculated using 方程式 1 and 方程式 2. When using the adjustable UVLO function, 500 mV or greater  
hysteresis is recommended. For applications with very slow input voltage slew rate, a capacitor can be placed  
from the EN pin to ground to filter any glitches on the input voltage.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS543820E  
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
VIN  
EN  
Ip  
Ih  
RENT  
+
œ
RENB  
7-2. Adjustable UVLO Using EN  
«
÷
VENFALLING  
VSTART  
ì
- V  
STOP  
VENRISING ◊  
RENT  
=
VENFALLING  
I ì 1-  
+ I  
h
÷
p
VENRISING ◊  
«
(1)  
(2)  
RENT ì VENFALLING  
RENB  
=
VSTOP - VENFALLING + RENT ì I +I  
(
)
p
h
7.3.3 Adjusting the Output Voltage  
The output voltage is programmed with a resistor divider from the output (VOUT) to the FB pin shown in 7-3. It  
is recommended to use 1% tolerance or better divider resistors. Starting with a fixed value for the bottom  
resistor, typically 10 kΩ, use 方程3 to calculate the top resistor in the divider.  
VOUT  
RFBT  
FB  
œ
0.5 V  
+
RFBB  
7-3. FB Resistor Divider  
«
VOUT  
VREF  
RFBT = RFBB  
ì
-1  
÷
(3)  
7.3.4 Switching Frequency Selection  
The switching frequency of the device can be selected by connecting a resistor (RFSEL) between the SYNC/  
FSEL pin and AGND. The frequency options and their corresponding programming resistors are listed in 7-1.  
It is required to use a 1% tolerance resistor or better.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS543820E  
 
 
 
 
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
7-1. Switching Frequency Selection  
RFSEL ALLOWED NOMINAL  
RECOMMENDED E96  
STANDARD VALUE (1%) (kΩ)  
RECOMMENDED E12  
STANDARD VALUE (1%) (kΩ)  
Fsw (kHz)  
RANGE (1%) (kΩ)  
24.3  
17.4  
11.8  
8.06  
4.99  
27  
18  
500  
750  
24.0  
17.4-18.0  
11.8-12.1  
8.06-8.25  
5.11  
12  
1000  
1500  
2200  
8.2  
4.7  
7.3.5 Switching Frequency Synchronization to an External Clock  
The device can be synchronized to an external clock by applying a square wave clock signal to the SYNC/FSEL  
pin with a duty cycle from 20% to 80%. The clock can either be applied before the device starts up or during  
operation. If the clock is to be applied before the device starts, a resistor between SYNC/FSEL and AGND is not  
needed. If the clock is to be applied after the device starts, then the clock frequency should be within ±20% of  
the frequency set by the SYNC/FSEL resistor. When the clock is applied after the device starts, the device will  
begin synchronizing to this clock after counting four consectutive switching cycles with a clock pulse present.  
This is shown in 7-4.  
7.3.5.1 Internal PWM Oscillator Frequency  
When the external clock is present, the device synchronizes the switching frequency to the clock. Any time the  
external clock is not present, the device will default to the internal PWM oscillator frequency.  
If the device starts up before an external clock signal is applied, then the internal PWM oscillator frequency is set  
by the RFSEL resistor according to 7-1. The device switches at this frequency until the external clock is applied  
or anytime the external clock is not present.  
If the external clock is applied before the device starts up, then the RFSEL resistor is not needed. The device will  
determine the internal clock frequency by decoding the external clock frequency. 7-2 shows the decoding of  
the internal PWM oscillator frequency based on the external clock frequency.  
7-2. Internal Oscillator Frequency Decode  
EXTERNAL SYNC CLOCK FREQUENCY (kHz)  
DECODED INTERNAL PWM OSCILLATOR FREQUENCY (kHz)  
400 - 600  
600 - 857  
500  
750  
857 - 1200  
1200 - 1810  
1810 - 2640  
1000  
1500  
2200  
The thresholds for the external SYNC clock frequency ranges have approximately a ±5% tolerance. If the  
external clock frequency is to be within that tolerance range, it is possible for the internal PWM oscillator  
frequency to be decoded as either the frequency above or below that threshold. Since the internal frequency is  
what is used in case of the loss of the synchronization clock, it is recommended that the output LC filter and  
ramp selection are chosen to be stable for either frequency. 7-3 shows the tolerance range of the decode  
thresholds. If the external clock is to be within any of these ranges, it is recommended to ensure converter  
stability for both possible internal PWM oscillator frequencies.  
7-3. Frequency Decode Thresholds  
MINIMUM (kHz)  
TYPICAL (kHz)  
MAXIMUM (kHz)  
570  
814  
600  
857  
630  
900  
1140  
1736  
1200  
1810  
1260  
1884  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS543820E  
 
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
7.3.5.2 Loss of Synchronization  
If at any time during operation, there is a loss of synchronization, the device will default to the internal PWM  
oscillator frequency until the synchronization clock returns. Once the clock is no longer present, the device will  
switch at 70% of the internal clock frequency for four consecutive cycles. After four consecutive cycles without  
clock pulses, the device will operate at the normal internal PWM oscillator frequency. This is demonstrated in 图  
7-4.  
SW (5 V/div)  
VOUT AC (10 mV/div)  
SYNC (5 V/div)  
Time (4 µs/div)  
7-4. Clock Synchronization Transitions  
7.3.5.3 Interfacing the SYNC/FSEL Pin  
If an application requires synchronizing to a SYNC clock but the clock is unavailable before the device is  
enabled, a high impedance buffer is recommended to ensure proper detection of the RFSEL value. 7-5 shows  
the recommended implementation. The leakage current into the buffer output must be less than 5 µA to ensure  
proper detection of the RFSEL value. Power the buffer from the BP5 output of the device to ensure its VCC  
voltage is available and the buffers output is high impedance before the device tries to detect the RFSEL value.  
When powering the buffer from the BP5 pin, the external load on the BP5 pin must be less than 2 mA.  
BP5  
OE  
VCC  
SYNC/FSEL  
RFSEL  
7-5. Interfacing the SYNC/FSEL Pin with a Buffer  
7.3.6 Ramp Amplitude Selection  
The TPS543820E uses VIN, duty cycle, and low-side FET current information to generate an internal ramp. The  
ramp amplitude is determined by an internal ramp generation capacitor, CRAMP. Three different values for CRAMP  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS543820E  
 
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
can be selected with a resistor to AGND on the MODE pin (see 7.3.8). The capacitor options are 1 pF, 2 pF,  
and 4 pF. A larger ramp capacitor results in a smaller ramp amplitude, which results in a higher control loop  
bandwidth. 7-6 and 7-7 show how the loop changes with each ramp setting for the schematic in 8.2.3.  
60  
40  
20  
0
180  
150  
120  
90  
60  
30  
0
-30  
-60  
-90  
-120  
-20  
-40  
Ramp = 4 pF  
Ramp = 2 pF  
Ramp = 1 pF  
Ramp = 4 pF  
Ramp = 2 pF  
Ramp = 1 pF  
100 200 5001000  
10000  
Frequency (Hz)  
100000  
1000000  
100 200 5001000  
10000  
Frequency (Hz)  
100000  
1000000  
7-7. Loop Phase vs Ramp Settings  
7-6. Loop Gain vs Ramp Settings  
7.3.7 Soft Start and Prebiased Output Start-up  
During start-up, the device softly ramps the reference voltage to reduce inrush currents. There are four options  
for the soft-start time, which is the time it takes for the reference to ramp to 0.5 V: 0.5 ms, 1 ms, 2 ms, and 4 ms.  
The soft-start time is selected with a resistor to AGND on the MODE pin (see 7.3.8).  
The device prevents current from being discharged from the output during start-up when a prebiased output  
condition exists. It does this by operating in discontinuous conduction mode (DCM) during the first 16 cycles to  
prevent the device from sinking current. This ensures the output voltage will be smooth and monotonic during  
soft start.  
7.3.8 Mode Pin  
The ramp amplitude, soft-start time, and current limit settings are programmed with a single resistor, RMODE  
,
between MODE and AGND. 7-4 lists the resistor values for the available options. It is required to use a 1%  
tolerance resistor or better. See 7.3.10 for the corresponding current limit thresholds for the "High" and "Low"  
settings.  
7-4. MODE Pin Selection  
CURRENT LIMITS  
CRAMP (pF)  
SOFT-START TIME (ms)  
RMODE (kΩ)  
1.78  
2.21  
2.74  
3.32  
4.02  
4.87  
5.9  
High  
1
1
1
1
2
2
2
2
4
4
4
4
1
1
1
0.5  
1
High  
High  
2
High  
4
High  
0.5  
1
High  
High  
2
7.32  
9.09  
11.3  
High  
4
High  
0.5  
1
High  
14.3  
18.2  
22.1  
26.7  
33.2  
High  
2
High  
4
Low  
0.5  
1
Low  
Low  
2
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS543820E  
 
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
7-4. MODE Pin Selection (continued)  
CURRENT LIMITS  
CRAMP (pF)  
SOFT-START TIME (ms)  
RMODE (kΩ)  
40.2  
49.9  
60.4  
76.8  
102  
137  
174  
243  
412  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
1
2
2
2
2
4
4
4
4
4
0.5  
1
2
4
0.5  
1
2
4
7.3.9 Power Good (PGOOD)  
The PGOOD pin is an open-drain output requiring an external pullup resistor to output a high signal. Once the  
FB pin is between 92% and 108% of the internal voltage reference, soft start is complete, and after a 256-µs  
deglitch time, the PGOOD pin is de-asserted and the pin floats. A pullup resistor between the values of 10 kΩ  
and 100 kto a voltage source that is 5.5 V or less is recommended. PGOOD is in a defined state once the VIN  
input voltage is greater than 1 V but with reduced current sinking capability. When the FB is lower than 84% or  
greater than 116% of the nominal internal reference voltage, after a 8-µs deglitch time, the PGOOD pin is pulled  
low. PGOOD is immediately pulled low if VIN falls below its UVLO, the EN pin is pulled low or the device enters  
thermal shutdown.  
7.3.10 Current Protection  
The protects against overcurrent events by cycle-by-cycle current limiting both the high-side MOSFET and low-  
side MOSFET. In an extended overcurrent condition, the device will enter hiccup. Different protections are active  
during positive inductor current and negative inductor current conditions.  
7.3.10.1 Positive Inductor Current Protection  
The current is sensed in the high-side MOSFET while it is conducting after a short blanking time to allow noise to  
settle. Whenever the high-side overcurrent threshold is exceeded, the high-side MOSFET is immediately turned  
off and the low-side MOSFET is turned on. The high-side MOSFET does not turn back on until the current falls  
below the low-side MOSFET overcurrent threshold. This effectively limits the peak current in the case of a short  
circuit condition. If a high-side overcurrent is detected for 15 consecutive cycles, the device enters hiccup.  
The current is also sensed in the low-side MOSFET while it is conducting after a short blanking time to allow  
noise to settle. If the low-side overcurrent threshold is exceeded when the next incoming PWM signal is received  
from the controller, the device skips processing that PWM pulse. The device does not turn the high-side  
MOSFET on again until the low-side overcurrent threshold is no longer exceeded. If the low-side overcurrent  
threshold remains exceeded for 15 consecutive cycles, the device enters hiccup. There are two separate  
counters for the high-side and low-side overcurrent events. If the off-time is too short, the low-side overcurrent  
may not trip. The low-side overcurrent will, however, begin tripping after the high-side peak overcurrent limit is hit  
as hitting the peak current limit shortens the on-time and lengthens the off-time.  
Both the high-side and low-side positive overcurrent thresholds are programmable using the MODE pin. Two  
sets of thresholds are available ("High" and "Low"), which are summarized in 7-5. The values for these  
thresholds are obtained using open-loop measurements with a DC current in order to accurately specify the  
values. In real applications, the inductor current will ramp and the ramp rate will be a function of the voltage  
across the inductor (VIN - VOUT) as well as the inductance value. This ramp rate combined with delays in the  
current sense circuitry can result in slightly different values than specified. The current at which the high-side  
overcurrent limit takes effect can be slightly higher than specified, and the current at which the low-side  
overcurrent limit takes effect can be slightly lower than specified.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS543820E  
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
7-5. Overcurrent Thresholds  
HIGH-SIDE OVERCURRENT TYPICAL  
VALUE (A)  
LOW-SIDE OVERCURRENT TYPICAL VALUE  
(A)  
MODE PIN CURRENT LIMIT SETTING  
High  
Low  
12.2  
9.0  
10.4  
7.4  
7.3.10.2 Negative Inductor Current Protection  
Negative current is sensed in the low-side MOSFET while it is conducting after a short blanking time to allow  
noise to settle. Whenever the low-side negative overcurrent threshold is exceeded, the low-side MOSFET is  
immediately turned off. The next high-side MOSFET turnon is determined by the clock and PWM comparator.  
The negative overcurrent threshold minimum value is 2.95 A. Similar to the positive inductor current protections,  
the actual value of the inductor current when the current sense comparators trip will be a function of the current  
ramp rate. As a result the current at which the negative inductor current limit takes effect can be slightly more  
negative than specified.  
7.3.11 Output Overvoltage and Undervoltage Protection  
The device incorporates both output overvoltage and undervoltage protection. If an overvoltage is detected, the  
device tries to discharge the output voltage to a safe level before attempting to restart. When the overvoltage  
threshold is exceeded, the low-side MOSFET is turned on until the low-side negative overcurrent threshold is  
reached. At this point, the high-side MOSFET is turned on until the inductor current reaches zero. Then, the low-  
side MOSFET is turned back on until the low-side negative overcurrent threshold is reached. This process  
repeats until the output voltage falls back into the PGOOD window. Once this happens, the device restarts and  
goes through a soft start cycle. The device does not wait the hiccup time before restarting.  
When an undervoltage condition is detected, the device will enter hiccup where it waits seven soft-start cycles  
before restarting. Undervoltage protection is enabled after soft start is complete.  
7.3.12 Overtemperature Protection  
When the die temperature exceeds 165°C, the device turns off. Once the die temperatures falls below the  
hysteresis level, typically 12°C, the device restarts. While waiting for the temperature to fall below the hysteresis  
level, the device does not switch or attempt to hiccup to restart. Once the temperature falls below this level, the  
device restarts without going through hiccup.  
7.3.13 Output Voltage Discharge  
When the device is enabled, but the high-side FET and low-side FET are disabled due to a fault condition, the  
output voltage discharge mode is enabled. This mode turns on the discharge FET from SW to PGND to  
discharge the output voltage. The discharge FET is turned off when the converter is ready to resume switching,  
either after the fault clears or after the wait time before hiccup is over.  
The output voltage discharge mode is activated by any of below fault events:  
1. High-side or low-side positive overcurrent  
2. Thermal shutdown  
3. Output voltage undervoltage  
4. VIN UVLO  
7.4 Device Functional Modes  
7.4.1 Forced Continuous-Conduction Mode  
The TPS543820E operates in forced continuous-conduction mode (FCCM) throughout normal operation.  
7.4.2 Discontinuous Conduction Mode during Soft Start  
During soft start, the converter operates in discontinuous conduction mode (DCM) during the first 16 PWM  
cycles. During this time, a zero-cross detect comparator is used to turn off the low-side MOSFET when the  
current reaches zero amps. This prevents the discharge of any pre-biased conditions on the output. After 16  
cycles of DCM, the converter enters FCCM mode.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS543820E  
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TPS543820E is a synchronous buck regulator designed for 4-V to 18-V input and 8-A load. This procedure  
illustrates the design of a high-frequency switching regulator using ceramic output capacitors.  
8.2 Typical Applications  
8.2.1 1.0-V Output, 1-MHz Application  
VIN  
VIN  
CI1  
CI2  
CHF1  
0402  
50V  
CHF2  
0402  
50V  
CBULK  
35V  
100uF  
0805  
25V  
10uF  
0805  
25V  
10uF  
LO  
U2  
VIN  
XEL5030-601MEC  
600nH  
0.1uF  
0.1uF  
VOUT  
8
12  
10  
13  
SW  
FB  
SW  
SW  
VIN  
CBT  
RBT  
2.2  
CO1  
0805  
10V  
CO2  
0805  
10V  
CO3  
1210  
6.3V  
47µF  
CO4  
1210  
6.3V  
47µF  
7
1
2
3
6
14  
4
EN  
EN  
BOOT  
FB  
PGND  
VIN  
Net-Tie  
0402  
50V  
0.1uF  
FSEL  
MODE  
PGOOD  
BP5  
SYNC/FSEL  
MODE  
PGOOD  
22uF  
22uF  
VO_SNS  
RENT  
16.9k  
5
AGND  
VO_SNS  
BODE  
RBODE  
10.0  
9
11  
CFF  
PGND  
PGND  
PGND  
BP5  
Net-Tie  
RPG  
10k  
180pF  
TPS543820RPYR-ET  
RENB  
6.04k  
RFSEL RMODE  
11.8k 4.87k  
RFBT  
4.99k  
CBP5  
0603  
2.2µF  
10V  
PGND  
AGND  
FB  
Note: RBODE for measurement purposes only  
RFBB  
4.99k  
AGND  
AGND  
8-1. 12-V Input, 1.0-V Output, 1-MHz Schematic  
8.2.1.1 Design Requirements  
For this design example, use the parameters shown in 8-1.  
8-1. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
Input voltage range (VIN)  
4.5 to 13.2 V, 12 V nominal  
Output voltage (VOUT  
Output current rating (IOUT  
Switching frequency (fSW  
)
1.0 V  
8 A  
)
)
1000 kHz  
10 mV  
Steady state output ripple voltage  
Output current load step  
Transient response  
3 A  
± 30 mV (± 3%)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS543820E  
 
 
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Switching Frequency  
The first step is to decide on a switching frequency. The TPS543820E can operate at five different frequencies  
from 500 kHz to 2.2 MHz. The fSW is set by the resistor value from the FSEL pin to ground. Typically the highest  
switching frequency possible is desired because it produces the smallest solution size. A high switching  
frequency allows for smaller inductors and output capacitors compared to a power supply that switches at a  
lower frequency. The main tradeoff made with selecting a higher switching frequency is extra switching power  
loss, which hurts the efficiency of the regulator.  
The maximum switching frequency for a given application can be limited by the minimum on-time of the  
regulator. The maximum fSW can be estimated with 方程4. Using the maximum minimum on-time of 40 ns and  
13.2-V maximum input voltage for this application, the maximum switching frequency is 1890 kHz. The selected  
switching frequency must also consider the tolerance of the switching frequency. A switching frequency of 1000  
kHz was selected for a good balance of solution size and efficiency. To set the frequency to 1000 kHz, the  
selected FSEL resistor is 11.8 kΩper 7-1.  
VOUT  
V max  
IN  
1
fSW max =  
ì
(
)
tonmin  
(
)
(4)  
8-2 shows the maximum recommended input voltage versus output voltage for each FSEL frequency. This  
graph uses a minimum on-time of 45 ns and includes the 10% tolerance of the switching frequency. A minimum  
on-time of 45 ns is used in this graph to provide margin to the minimum controllable on-time to ensure pulses are  
not skipped at no load. At light loads, the dead-time between the low-side MOSFET turning off and high-side  
MOSFET turning on contributes to the minimum SW node pulse-width.  
8-2. Maximum Input Voltage vs Output Voltage  
In high output voltage applications, the minimum off-time must also be considered when selecting the switching  
frequency. When hitting the minimum off-time limits, the operating duty cycle will max out and the output voltage  
will begin to drop with the input voltage. 方程式 5 calculates the maximum switching frequency to avoid this limit.  
This equation requires the DC resistance of the inductor, RDCR, selected in the following step. A preliminary  
estimate of 10 mΩ can be used but this should be recalculated based on the specifications of the inductor  
selected. If operating near the maximum fSW limited by the minimum off-time, the increase in resistance at higher  
temperature must be considered.  
: ; : ;  
min F VOUT F IOUT max × kRDCR + RDS ON _HS o  
: ;  
V
IN  
:
;
fSW max =  
:
;
:
;
tOFF _MIN max × @V min F IOUT max × kRDS ON _HS F RDS ON _LS oA  
:
;
:
;
:
;
IN  
(5)  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS543820E  
 
 
 
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
8.2.1.2.2 Output Inductor Selection  
To calculate the value of the output inductor, use 方程式 6. KIND is a ratio that represents the amount of inductor  
ripple current relative to the maximum output current. The inductor ripple current is filtered by the output  
capacitor. Therefore, choosing high inductor ripple currents impacts the selection of the output capacitor since  
the output capacitor must have a ripple current rating equal to or greater than the inductor ripple current.  
Choosing small inductor ripple currents can degrade the transient response performance. The inductor ripple,  
KIND, is normally from 0.1 to 0.4 for the majority of applications giving a peak to peak ripple current range of 0.8  
A to 3.2 A. The recommended minimum target Iripple is 0.6 A or larger.  
For this design example, KIND = 0.2 is used and the inductor value is calculated to be 0.58 µH. An inductor with  
an inductance of 0.6 µH is selected. It is important that the RMS (Root Mean Square) current and saturation  
current ratings of the inductor not be exceeded. The RMS and peak inductor current can be found from 方程式 8  
and 方程式 9. For this design, the RMS inductor current is 8 A, and the peak inductor current is 8.8 A. The  
chosen inductor is a XEL5030-601. It has a saturation current rating of 22 A, an RMS current rating of 21.4 A,  
and a typical DC series resistance of 4.44 mΩ.  
The peak current through the inductor is the inductor ripple current plus the output current. During power up,  
faults, or transient load conditions, the inductor current can increase above the calculated peak inductor current  
level calculated in 方程式 9. In transient conditions, the inductor current can increase up to the switch current  
limit of the device. For this reason, the most conservative approach is to specify the current ratings of the  
inductor based on the switch current limit rather than the steady-state peak inductor current.  
Vinmax - Vout  
Io ´ Kind  
Vout  
L1 =  
´
Vinmax ´ ¦sw  
(6)  
(7)  
vertical spacer  
Vinmax - Vout  
Vout  
Iripple =  
´
L1  
Vinmax ´ ¦sw  
vertical spacer  
ILrms = Io2  
æ
ç
è
ö2  
÷
1
Vo ´ (Vinmax - Vo)  
Vinmax ´ L1 ´ ¦sw  
+
´
12  
ø
(8)  
(9)  
vertical spacer  
Iripple  
2
ILpeak = Iout +  
8-2 shows recommended E6 standard inductor values for other common output voltages with a 1-MHz fSW  
.
Using an inductance outside this recommended range typically works but the performance can be affected and  
should be evaluated. The recommended value is calculated for a nominal input voltage of 12 V. The minimum  
values are calculated with the maximum input voltage of 18 V. The maximum values are calculated with with an  
input voltage of 5-V for all but the 5-V output. For the 5-V output, an 8-V input is used.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS543820E  
 
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
MAXIMUM  
8-2. Recommended Inductor Values  
OUTPUT  
SWITCHING  
MINIMUM  
RECOMMENDED  
RECOMMENDED  
VOLTAGE (V) FREQUENCY (kHz) INDUCTANCE (µH) INDUCTANCE FOR 8 A INDUCTANCE FOR 6 A INDUCTANCE (µH)  
(µH)  
0.47  
0.68  
1
(µH)  
0.47  
1
1
0.33  
0.47  
0.68  
1
1
1.8  
3.3  
5
1.5  
1.5  
2.2  
1000  
1.5  
1.5  
1.5  
8.2.1.2.3 Output Capacitor  
There are two primary considerations for selecting the value of the output capacitor: the output voltage ripple  
and how the regulator responds to a large change in load current. The output capacitance needs to be selected  
based on the more stringent of these criteria.  
The desired response to a large change in the load current is the first criteria and is typically the most stringent.  
A regulator does not respond immediately to a large, fast increase or decrease in load current. The output  
capacitor supplies or absorbs charge until the regulator responds to the load step. The control loop needs to  
sense the change in the output voltage then adjust the peak switch current in response to the change in load.  
The minimum output capacitance is selected based on an estimate of the loop bandwidth. Typically the loop  
bandwidth is near fSW / 10. 方程式 10 estimates the minimum output capacitance necessary, where ΔIOUT is the  
change in output current and ΔVOUT is the allowable change in the output voltage.  
For this example, the transient load response is specified as a 3% change in VOUT for a load step of 3 A.  
Therefore, ΔIOUT is 3 A and ΔVOUT is 30 mV. Using this target gives a minimum capacitance of 159 μF. This  
value does not take the ESR of the output capacitor into account in the output voltage change. For ceramic  
capacitors, the effect of the ESR can be small enough to be ignored. Aluminum electrolytic and tantalum  
capacitors have higher ESR that must be considered for load step response.  
DIOUT  
DVOUT  
1
COUT  
>
ì
fSW  
10  
2pì  
(10)  
In addition to the loop bandwidth, it is possible for the inductor current slew rate to limit how quickly the regulator  
responds to the load step. For low duty cycle applications, the time it takes for the inductor current to ramp down  
after a load step down can be the limiting factor. 方程11 estimates the minimum output capacitance necessary  
to limit the change in the output voltage after a load step down. Using the 0.6-µH inductance selected gives a  
minimum capacitance of 90 µF.  
2
LOUT ì DIOUT  
COUT  
>
2ì DVOUT ì VOUT  
(11)  
方程式 12 calculates the minimum output capacitance needed to meet the output voltage ripple specification. In  
this case, the target maximum steady state output voltage ripple is 10 mV. Under this requirement, 方程式 12  
yields 19 µF.  
1
1
Co >  
´
Voripple  
8 ´ ¦sw  
Iripple  
(12)  
where  
• ΔIOUT is the change in output current  
• ΔVOUT is the allowable change in the output voltage  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS543820E  
 
 
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
fsw is the regulators switching frequency  
Voripple is the maximum allowable steady state output voltage ripple  
Iripple is the inductor ripple current  
Lastly, if an application does not have a strict load transient response or output ripple requirement, a minimum  
amount of capacitance is still required to ensure the control loop is stable with the lowest gain ramp setting on  
the MODE pin. 方程式 13 estimates the minimum capacitance needed for loop stability. This equation sets the  
minimum amount of capacitance by keeping the LC frequency relative to the switching frequency at a minimum  
value. See 8-3 for the limit versus output voltage with the lowest gain ramp setting of 1 pF. With a 1-V output,  
the minimum ratio is 35 and with this ratio, 方程13 gives a minimum capacitance of 52 µF.  
2
«
÷
Ratio  
1
COUT  
>
ì
2pì fSW LOUT  
(13)  
方程式 14 calculates the maximum combined ESR the output capacitors can have to meet the output voltage  
ripple specification and this shows the ESR should be less than 6 m. In this case, ceramic capacitors are used  
and the combined ESR of the ceramic capacitors in parallel is much less than is needed to meet the ripple.  
Capacitors also have limits to the amount of ripple current they can handle without producing excess heat and  
failing. An output capacitor that can support the inductor ripple current must be specified. The capacitor data  
sheet specifies the RMS value of the maximum ripple current. 方程15 can be used to calculate the RMS ripple  
current the output capacitor needs to support. For this application, 方程式 15 yields 445 mA and ceramic  
capacitors typically have a ripple current rating much higher than this.  
Voripple  
Resr <  
Iripple  
(14)  
vertical spacer  
Vout ´ (Vinmax - Vout)  
Icorms =  
12 ´ Vinmax ´ L1 ´ ¦sw  
(15)  
Select X5R and X7R ceramic dielectrics or equivalent for power regulator capacitors since they have a high  
capacitance-to-volume ratio and are fairly stable over temperature. The output capacitor must also be selected  
with the DC bias and AC voltage derating taken into account. The derated capacitance value of a ceramic  
capacitor due to DC voltage bias and AC RMS voltage is usually found on the capacitor manufacturer's website.  
For this application example, two 22-µF, 10-V, X7S, 0805 and two 47-µF, 6.3-V, X7R, 1210 ceramic capacitors  
each with 2 mof ESR are used. The two 22-µF capacitors are used since they have a higher resonance  
frequency and can help reduce the output ripple caused by parasitic inductance. With the four parallel  
capacitors, the estimated effective output capacitance after derating using the capacitor manufacturer's website  
is 142 µF. There is almost no DC bias derating at 1 V. This design was able to use less than the calculated  
minimum because the loop crossover frequency was above the fSW / 10 estimate as shown in the Load  
Transient graph in the Application Curves.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS543820E  
 
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
8.2.1.2.4 Input Capacitor  
Input decoupling ceramic capacitors type X5R, X7R, or similar from VIN to PGND that are placed as close as  
possible to the IC are required. A total of at least 10 µF of capacitance is required and some applications can  
require a bulk capacitance. At least 1 µF of bypass capacitance is recommended as close as possible to each  
VIN pin to minimize the input voltage ripple. A 0.1-µF to 1-µF capacitor must be placed as close as possible to  
both VIN pins 8 and 12 on the same side of the board of the device to provide high frequency bypass to reduce  
the high frequency overshoot and undershoot on VIN and SW pins. The voltage rating of the input capacitor  
must be greater than the maximum input voltage. The capacitor must also have a ripple current rating greater  
than the maximum RMS input current. The RMS input current can be calculated using 方程16.  
For this example design, a ceramic capacitor with at least a 16-V voltage rating is required to support the  
maximum input voltage. Two 10-µF, 0805, X7S, 25-V and two 0.1-μF, 0402, X7R 50-V capacitors in parallel  
have been selected to be placed on both sides of the IC near both VIN pins to PGND pins. Based on the  
capacitor manufacturer's website, the total ceramic input capacitance derates to 5.4 µF at the nominal input  
voltage of 12 V. A 100-µF bulk capacitance is also used to bypass long leads when connected a lab bench top  
power supply.  
The input capacitance value determines the input ripple voltage of the regulator. The input voltage ripple can be  
calculated using 方程式 17. The maximum input ripple occurs when operating nearest to 50% duty cycle. Using  
the nominal design example values of Ioutmax = 8 A, CIN = 5.4 μF, and fSW = 1000 kHz, the input voltage ripple  
with the 12 V nominal input is 113 mV and the RMS input ripple current with the 4.5 V minimum input is 3.3 A.  
Vinmin - Vout  
(
)
Vout  
Icirms = Iout ´  
´
Vinmin  
Vinmin  
(16)  
vertical spacer  
Vout  
Vin  
Vout  
«
Ioutmaxì 1-  
ì
÷
Vin  
DVin =  
Cinì fSW  
(17)  
8.2.1.2.5 Adjustable Undervoltage Lockout  
The undervoltage lockout (UVLO) is adjusted using the external voltage divider network of RENT and RENB. The  
UVLO has two thresholds: one for power up when the input voltage is rising and one for power down or  
brownouts when the input voltage is falling. For the example design, the supply is set to turn on and start  
switching once the input voltage increases above 4.5 V (UVLO start or enable). After the regulator starts  
switching, it continues to do so until the input voltage falls below 3.95 V (UVLO stop or disable). In this example,  
these start and stop voltages set by the EN resistor divider were selected to have more hysteresis than the  
internally fixed VIN UVLO.  
方程式 1 and 方程式 2 can be used to calculate the values for the upper and lower resistor values. For these  
equations to work, VSTART must be 1.1 × VSTOP due to the EN pin's voltage hysteresis. For the voltages  
specified, the standard resistor value used for RENT is 16.9 kand for RENB is 6.04 k.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS543820E  
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
8.2.1.2.6 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider created by RFBT and RFBB from the output node to the FB pin. It  
is recommended to use 1% tolerance or better resistors. For this example design, 4.99 kΩ was selected for  
RFBB. Using 方程18, RFBT is calculated as 4.99 kΩ. This is a standard 1% resistor.  
«
VOUT  
VREF  
RFBT = RFBB  
ì
-1  
÷
(18)  
If the PCB layout does not use the recommended AGND to PGND connection in 10.1, noise on the feedback  
pin can degrade the output voltage regulation at max load. Use a smaller RFBB of 1.00 kΩ minimizes the impact  
of this noise.  
8.2.1.2.7 Bootstrap Capacitor Selection  
A 0.1-µF ceramic capacitor must be connected between the BOOT and SW pins for proper operation. The  
capacitor must be rated for at least 10-V to minimize DC bias derating.  
A resistor must be added in series with the BOOT capacitor to slow down the turnon of the high-side MOSFET  
and rising edge overshoot on the SW pin for applications with input voltage greater than 13.5 V. This comes with  
the trade off of more power loss and lower efficiency. As a best prectice, include a 0-Ω placeholder in all  
prototype designs in case parasitic inductance in the PCB layout results in more voltage overshoot at the SW pin  
than is normal. This helps keep the voltage within the ratings of the device and reduces the high frequency noise  
on the SW node. The recommended BOOT resistor value to decrease the SW pin overshoot is 2.2 Ω.  
8.2.1.2.8 BP5 Capacitor Selection  
A 2.2-µF ceramic capacitor must be connected between the BP5 pin and AGND for proper operation. The  
capacitor must be rated for at least 10 V to minimize DC bias derating.  
8.2.1.2.9 PGOOD Pullup Resistor  
A 10-kΩ resistor is used to pull up the power good signal when FB conditions are met. The pullup voltage  
source must be less than the 6-V absolute maximum of the PGOOD pin.  
8.2.1.2.10 Current Limit Selection  
The MODE pin is used to select between two current limit settings. Select the current limit setting whose  
minimum is greater than at least 1.1 times the maximum steady state peak current. This is to provide margin for  
component tolerance and load transients. For this design, the minimum current limit should be greater than 9.64  
A so the high current limit setting is selected.  
8.2.1.2.11 Soft-Start Time Selection  
The MODE pin is used to select between four different soft-start times. This is useful if a load has specific timing  
requirements for the output voltage of the regulator. A longer soft-start time is also useful if the output  
capacitance is very large and would require large amounts of current to quickly charge the output capacitors to  
the output voltage level. The large currents necessary to charge the capacitor can reach the current limit or  
cause the input voltage rail to sag due excessive current draw from the input power supply. Limiting the output  
voltage slew rate solves both of these problems. The example design has the soft-start time set to 1.0 ms. With  
this soft-start time the current required to charge the output capacitors to the nominal output voltage is only 0.14  
A.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS543820E  
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
8.2.1.2.12 Ramp Selection and Control Loop Stability  
The MODE pin is used to select between three different ramp settings. The most optimal ramp setting depends  
on VOUT, fSW, LOUT, and COUT. To get started, calculate LC double pole frequency using 方程式 19. The ratio  
between fSW and fLC should then be calculated. Based on this ratio and the output voltage, the recommended  
ramp setting should be selected using 8-3. With a 1-V output, the 1-pF ramp is recommended for ratios  
between approximately 35 and 58, the 2-pF ramp is recommended for ratios between approximately 58 and 86,  
and the 4-pF ramp is recommended for ratios greater than approximately 86. In general, it is best to use the  
largest ramp capacitor the design will support. Increasing the ramp capacitor improves transient response but  
can reduce stability margin or increase on-time jitter.  
For this design, fLC is 17.5 kHz and the ratio is 57 which is on the border of the 1-pF and 2-pF ramp settings.  
Through bench evaluation, it was found that the design had sufficient stability margin with the 2-pF ramp so this  
setting was selected for the best transient response. The recommended ramp settings given by 8-3 include  
margin to account for potential component tolerances and variations across operating conditions so it is possible  
to use a higher ramp setting as shown in this example.  
1
fLC  
=
2ì pì LOUT ìCOUT  
(19)  
5.5  
5
4.5  
4
4 pF  
3.5  
3
2 pF  
2.5  
2
1 pF  
1.5  
1
0.5  
20  
30  
40  
50  
60  
fSW/fLC  
70  
80  
90  
100  
8-3. Recommended Ramp Settings  
Use a feedforward capacitor (CFF) in parallel with the upper feedback resistor (RFBT) to add a zero into the  
control loop to provide phase boost. Include a placeholder for this capacitor as the zero it provides can be  
required to meet phase margin requirements. This capacitor also adds a pole at a higher frequency than the  
zero. The pole and zero frequency are not independent so as a result, once the zero location is chosen, the pole  
is fixed as well. The zero is placed at 1/4 the fSW by calculating the value of CFF with 方程式 20. The calculated  
value is 128 pF round this down to the closest standard value of 120 pF.  
Using bench measurements of the AC response, the feedforward capacitor for this example design was  
increased to 180 pF to improve the transient response.  
1
CFF  
=
fSW  
RFBT  
ì
2
(20)  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS543820E  
 
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
It is possible to use larger feedforward capacitors to further improve the transient response but take care to  
ensure there is a minimum of -9-dB gain margin in all operating conditions. The feedforward capacitor injects  
noise on the output into the FB pin. This added noise can result in increased on-time jitter at the switching node.  
Too little gain margin can cause a repeated wide and narrow pulse behavior. Adding a 100-Ω resistor in series  
with the feedforward capacitor can help reduce the impact of noise on the FB pin in case of non-ideal PCB  
layout. The value of this resistor must be kept small as larger values bring the feedforward pole and zero closer  
together degrading the phase boost the feedforward capacitor provides.  
When using higher ESR output capacitors, such as polymer or tantalum, their ESR zero (fESR) should be  
accounted for. The ESR zero can be calculated using 方程式 21. If the ESR zero frequency is less than the  
estimated bandwidth of 1/10th the fSW, it can affect the gain margin and phase margin. A series R-C from the FB  
pin to ground can be used to add a pole into the control loop if necessary. All ceramic capacitors are used in this  
design so the effect of the ESR zero is ignored.  
1
fESR  
=
2ì pìCOUT ìRESR  
(21)  
8.2.1.2.13 MODE Pin  
The MODE resistor is set to 4.87 kΩ to select the high current limit setting, 1.0-ms soft-start and the 2 pF ramp.  
See 7-4 for the full list of the MODE pin settings.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS543820E  
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
8.2.1.3 Application Curves  
8-4. Efficiency  
8-5. Load Regulation  
60  
40  
20  
0
180  
120  
60  
0
-20  
-60  
Gain  
Phase  
-40  
-120  
1000000  
100 200 5001000  
10000  
Frequency (Hz)  
100000  
VIN = 12 V  
ROUT = 0.3 Ω  
8-6. Line Regulation  
8-7. Bode Plot  
EN (2 V/div)  
VOUT AC (20 mV/div)  
BP5 (5 V/div)  
VOUT (500 mV/div)  
IOUT (1 A/div)  
PGOOD (5 V/div)  
Time (400 µs/div)  
Time (100 µs/div)  
VIN = 12 V  
IOUT(DC) = 1.5 A  
ISTEP = 3 A at 1A/µs  
VIN = 12 V  
IOUT = 0 A  
8-8. Load Transient  
8-9. EN Start-up Measuring BP5  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS543820E  
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
EN (2 V/div)  
EN (2 V/div)  
SW (10 V/div)  
SW (10 V/div)  
VOUT (500 mV/div)  
VOUT (500 mV/div)  
PGOOD (5 V/div)  
Time (400 µs/div)  
PGOOD (5 V/div)  
Time (400 µs/div)  
VIN = 12 V  
IOUT = 0 A  
VIN = 12 V  
IOUT = 0 A  
8-10. EN Startup Measuring SW  
8-11. EN Shutdown  
EN (2 V/div)  
EN (2 V/div)  
SW (10 V/div)  
IOUT (5 A/div)  
VOUT (500 mV/div)  
VOUT (500 mV/div)  
PGOOD (5 V/div)  
PGOOD (5 V/div)  
Time (400 µs/div)  
Time (400 µs/div)  
VIN = 12 V  
VIN = 12 V  
IOUT = 0 A  
ROUT = 0.2 Ω  
8-13. EN Start-up 0.5-V Prebias  
8-12. EN Start-up With Load  
VIN (10 V/div)  
VIN (10 V/div)  
EN (2 V/div)  
EN (2 V/div)  
VOUT (500 mV/div)  
VOUT (500 mV/div)  
PGOOD (5 V/div)  
PGOOD (5 V/div)  
Time (400 µs/div)  
Time (1 ms/div)  
ROUT = 0.3 Ω  
ROUT = 0.3 Ω  
8-14. VIN Start-up  
8-15. VIN Shutdown  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS543820E  
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
VOUT AC (10 mV/div)  
VOUT AC (10 mV/div)  
SW (5 V/div)  
SW (5 V/div)  
Time (1 µs/div)  
Time (1 µs/div)  
VIN = 12 V  
IOUT = 0 A  
VIN = 12 V  
IOUT = 6 A  
8-16. Output Ripple No Load  
8-17. Output Ripple 6-A Load  
VIN AC (10 mV/div)  
VIN AC (50 mV/div)  
SW (5 V/div)  
SW (5 V/div)  
Time (1 µs/div)  
Time (1 µs/div)  
VIN = 12 V  
IOUT = 0 A  
VIN = 12 V  
IOUT = 6 A  
8-18. Input Ripple No Load  
8-19. Input Ripple 6-A Load  
VIN = 12 V  
VIN = 12 V  
8-20. Overcurrent Protection Overload  
8-21. Overcurrent Protection Short  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS543820E  
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
VIN = 12 V  
8-22. Overcurrent Protection Hiccup and Recover  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS543820E  
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
8.2.2 1.0-V Output, 1.5-MHz Application  
VIN  
VIN  
CI1  
CI2  
CHF1  
0402  
50V  
CHF2  
0402  
50V  
LO  
CBULK  
35V  
100uF  
0805  
25V  
10uF  
0805  
25V  
10uF  
XEL4030-471MEB  
470nH  
U2  
VIN  
0.1uF  
0.1uF  
VOUT  
8
12  
10  
13  
SW  
FB  
SW  
SW  
VIN  
CBT  
RBT  
0
CO1  
0805  
10V  
CO2  
0805  
10V  
7
1
2
3
6
14  
4
EN  
EN  
BOOT  
FB  
PGND  
Net-Tie  
0402  
50V  
0.1uF  
FSEL  
MODE  
PGOOD  
BP5  
SYNC/FSEL  
MODE  
PGOOD  
47µF  
47µF  
VO_SNS  
5
AGND  
VO_SNS  
RBODE  
10.0  
9
11  
CFF  
PGND  
PGND  
PGND  
BP5  
Net-Tie  
RPG  
10k  
470pF  
TPS543820RPYR-ET  
RFSEL RMODE  
8.06k 4.87k  
BODE  
RFBT  
1.00k  
CBP5  
0603  
2.2µF  
10V  
PGND  
AGND  
FB  
Note: RBODE for measurement purposes only  
RFBB  
1.00k  
AGND  
AGND  
8-23. 12-V Input, 1.0-V Output, 1.5-MHz Schematic  
8.2.2.1 Design Requirements  
8-3. Design Parameters  
PARAMETER  
Input voltage range (VIN)  
Output voltage (VOUT  
Output current rating (IOUT  
Switching frequency (fSW  
EXAMPLE VALUE  
4 to 13.2 V, 12 V nominal  
)
1.0 V  
8 A  
)
)
1500 kHz  
10 mV  
Steady state output ripple voltage  
Output current load step  
Transient response  
3 A  
± 30 mV (± 3%)  
8.2.2.2 Detailed Design Procedure  
Follow the design procedure in 8.2.1.2 for selecting the external components in this example application.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS543820E  
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
8.2.2.3 Application Curves  
VOUT AC (20 mV/div)  
IOUT (1 A/div)  
Time (40 µs/div)  
VIN = 12 V  
IOUT(DC) = 1.5 A  
ISTEP = 3 A at 1A/µs  
8-25. Load Transient  
8-24. Efficiency  
60  
40  
20  
0
180  
120  
60  
0
-20  
-60  
Gain  
Phase  
-40  
-120  
1000000  
100 200 5001000  
10000  
Frequency (Hz)  
100000  
VIN = 12 V  
ROUT = 0.3 Ω  
8-26. Load Regulation  
8-27. Bode Plot  
VOUT AC (10 mV/div)  
VOUT AC (10 mV/div)  
SW (5 V/div)  
SW (5 V/div)  
Time (1 µs/div)  
Time (1 µs/div)  
VIN = 12 V  
IOUT = 0 A  
VIN = 12 V  
IOUT = 6 A  
8-28. Output Ripple No Load  
8-29. Output Ripple 6-A Load  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS543820E  
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
8.2.3 3.3-V Output, 1.0-MHz Application  
VIN  
VIN  
CI1  
CI2  
CHF1  
0402  
50V  
CHF2  
0402  
50V  
CBULK  
35V  
100uF  
0805  
25V  
10uF  
0805  
25V  
10uF  
LO  
U2  
VIN  
XEL5050-182MEC  
1.8µH  
0.1uF  
0.1uF  
VOUT  
8
10  
13  
SW  
FB  
SW  
SW  
12  
VIN  
CBT  
RBT  
0
CO1  
0805  
10V  
CO2  
0805  
10V  
7
1
2
3
6
14  
4
EN  
EN  
BOOT  
FB  
PGND  
VIN  
Net-Tie  
0402  
50V  
0.1uF  
FSEL  
MODE  
PGOOD  
BP5  
SYNC/FSEL  
MODE  
PGOOD  
47µF  
47µF  
VO_SNS  
RENT  
16.9k  
5
AGND  
VO_SNS  
RBODE  
10.0  
9
11  
CFF  
PGND  
PGND  
PGND  
BP5  
Net-Tie  
RPG  
10k  
33pF  
TPS543820RPYR-ET  
RENB  
6.04k  
RFSEL RMODE  
11.8k 174k  
BODE  
RFBT  
28.0k  
CBP5  
0603  
2.2µF  
10V  
PGND  
AGND  
FB  
Note: RBODE for measurement purposes only  
RFBB  
4.99k  
AGND  
AGND  
8-30. 12-V Input, 3.3-V Output, 1.0-MHz Schematic  
8.2.3.1 Design Requirements  
For this design example, use the parameters shown in 8-4.  
8-4. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
Input voltage range (VIN)  
4 to 13.2 V, 12 V nominal  
Output voltage (VOUT  
Output current rating (IOUT  
Switching frequency (fSW  
)
3.3 V  
6 A  
)
)
1000 kHz  
10 mV  
Steady state output ripple voltage  
Output current load step  
Transient response  
3 A  
± 99 mV (± 3%)  
8.2.3.2 Detailed Design Procedure  
Follow the design procedure in 8.2.1.2 for selecting the external components in this example application.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS543820E  
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
8.2.3.3 Application Curves  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VOUT AC (100 mV/div)  
IOUT (1 A/div)  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 18 V  
Time (100 µs/div)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Output Current (A)  
4
4.5  
5
5.5  
6
VIN = 12 V  
IOUT(DC) = 1.5 A ISTEP = 3 A at 1A/µs  
8-32. Load Transient  
8-31. Efficiency  
60  
40  
20  
0
180  
120  
60  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-20  
-60  
Gain  
Phase  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 18 V  
-40  
-120  
1000000  
100 200 5001000  
10000  
Frequency (Hz)  
100000  
VIN = 12 V  
ROUT = 1.1 Ω  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Output Current (A)  
4
4.5  
5
5.5  
6
8-34. Bode Plot  
8-33. Load Regulation  
VOUT AC (10 mV/div)  
VOUT AC (10 mV/div)  
SW (5 V/div)  
SW (5 V/div)  
Time (1 µs/div)  
Time (1 µs/div)  
VIN = 12 V  
IOUT = 0 A  
VIN = 12 V  
IOUT = 6 A  
8-35. Output Ripple No Load  
8-36. Output Ripple 6-A Load  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS543820E  
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPS543820E is designed to operate from an input voltage supply range between 4 V and 18 V. This supply  
voltage must be well regulated. Proper bypassing of the input supply is critical for proper electrical performance,  
as is the PCB layout and the grounding scheme. A minimum of 4 μF (after derating) ceramic capacitance, type  
X5R or better, must be placed near the device. TI recommends splitting the ceramic input capacitance equally  
between the VIN and PGND pins on each side of the device resulting in at least 2 µF of ceramic capacitance on  
each side of the device.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS543820E  
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Layout is a critical portion of good power supply design. See 10-1 for a PCB layout example. Key guidelines  
to follow for the layout are:  
VIN, PGND, and SW traces must be as wide as possible to reduce trace impedance and improve heat  
dissipation.  
Place a 10-nF to 100-nF capacitor from each VIN to PGND pin and place them as close as possible to the  
device on the same side of the PCB. Place the remaining ceramic input capacitance next to these high  
frequency bypass capacitors. The remaining input capacitance can be placed on the other side of the board  
but use as many vias as possible to minimize impedance between the capacitors and the pins of the IC.  
Use multiple vias near the PGND pins and use the layer directly below the device to connect them together.  
This helps to minimize noise and can help heat dissipation.  
Use vias near both VIN pins and provide a low impedance connection between them through an internal  
layer.  
Place the inductor as close as possible to the device to minimize the length of the SW node routing.  
Place the BOOT-SW capacitor as close as possible to the BOOT and SW pins.  
Place the BP5 capacitor as close as possible to the BP5 and AGND pins.  
Place the bottom resistor in the FB divider as close as possible to the FB and AGND pins of the IC. Also keep  
the upper feedback resistor and the feedforward capacitor near the IC. Connect the FB divider to the output  
voltage at the desired point of regulation.  
Use multiple vias in the AGND island to connect it back to internal PGND layers. Do not place these vias  
between the BP5 capacitor and the AGND pin. These vias will conduct switching currents between the BP5  
capacitor and PGND. Placing the vias near the AGND pin can add noise to the FB divider.  
Return the FSEL and MODE resistors to a quiet AGND island.  
10.2 Layout Example  
VIN  
PGND  
0805  
0402  
0402  
0402  
0402  
0402  
MODE  
PGOOD  
FB  
4mm x 4mm  
VOUT  
AGND  
Avoid vias  
here  
0402  
0402  
0402  
0402  
0805  
Connect AGND to PGND  
near the BP5 cap  
VIN  
PGND  
10-1. Example PCB Layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS543820E  
 
 
 
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
10.2.1 Thermal Performance  
Test Conditions: fSW = 1 MHz, Vin = 12 V, Vout = 1 V, Iout = 8 A, Inductor = 600 nH (4.44 mΩ typ), Ambient  
temperature = 25°C  
10-2. Thermal Image at 25°C Ambient  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS543820E  
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS543820E  
 
 
 
 
 
 
TPS543820E  
ZHCSM41A MAY 2020 REVISED JUNE 2021  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS543820E  
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS543820RPYR-ET  
ACTIVE  
VQFN-HR  
RPY  
14  
3000 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
-55 to 150  
3820ET  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Mar-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS543820RPYR-ET  
VQFN-  
HR  
RPY  
14  
3000  
180.0  
12.4  
2.8  
3.3  
1.1  
4.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Mar-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN-HR RPY 14  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
TPS543820RPYR-ET  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
RPY0014A  
3.1  
2.9  
A
B
PIN 1 IDENTIFICATION  
2.6  
2.4  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.475  
1.275  
0.825  
2X  
0.325  
0.625  
2X  
0.225  
(0.1) TYP  
2X (0.325)  
2X SQ(0.15)  
6
8
5
0.9875  
9
0.8  
0.275  
2X  
0.175  
2X (0.225)  
(0.25)  
0.5  
PKG  
0.425  
7X  
0.325  
(0.15)  
11  
0.75  
0.65  
0.475  
2X  
0.275  
0.75  
4X  
0.55  
1
14  
0.525  
12  
2X (0.25)  
0.45  
PIN 1 ID  
C0.15  
2X  
0.325  
4X  
0.35  
0.1  
0.3  
0.2  
C
A B  
7X  
A
0.4  
0.3  
0.05  
C
2X  
0.1  
C
B
0.05  
C
0.1  
0.05  
C A B  
C
4225171/D 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
RPY0014A  
(1.575)  
2X (0.35)  
2X (0.925)  
2X  
2X (0.625)  
2X (0.275)  
7X  
(0.25)  
2X (0.575)  
(0.4)  
14  
12  
2X (0.85)  
2X (0.4)  
1
11  
2X (0.225)  
(0.7)  
(0.35)  
PKG  
(0.2375)  
(0.25)  
(0.5)  
2X (0.225)  
9
(0.8)  
(0.9875)  
(1.025)  
(1.1624)  
5
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
6
8
2X (0.851)  
7X (0.575)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
METAL UNDER  
SOLDER MASK  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
PADS 1-9 & 11-14  
PAD 10  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225171/D 08/2022  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
RPY0014A  
(1.537)  
2X (0.35)  
2X (0.925)  
7X (0.25)  
2X  
2X (0.625)  
2X  
(0.35)  
(0.225)  
2X (0.575)  
12  
14  
2X (0.85)  
1
11  
2X (0.225)  
(0.7)  
(0.388)  
2X (0.35)  
PKG  
(0.5)  
(0.2375)  
(0.25)  
2X (0.225)  
9
(0.7756)  
(0.9875)  
(1.025)  
(1.1624)  
5
EXPOSED METAL  
TYP  
6
8
2X (0.85)  
(R0.05) TYP  
7X (0.575)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SOLDER PASTE COVERAGE:  
PIN 1 & 5: 93%; PIN 9 &11: 91%; PIN 10: 96%  
SCALE: 20X  
4225171/D 08/2022  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS54383

3-A DUAL NON-SYNCHRONOUS CONVERTER WITH INTEGRATED HIGH-SIDE MOSFET
TI

TPS54383PWP

3-A DUAL NON-SYNCHRONOUS CONVERTER WITH INTEGRATED HIGH-SIDE MOSFET
TI

TPS54383PWPG4

3-A DUAL NON-SYNCHRONOUS CONVERTER WITH INTEGRATED HIGH-SIDE MOSFET
TI

TPS54383PWPR

3-A DUAL NON-SYNCHRONOUS CONVERTER WITH INTEGRATED HIGH-SIDE MOSFET
TI

TPS54383PWPRG4

3-A DUAL NON-SYNCHRONOUS CONVERTER WITH INTEGRATED HIGH-SIDE MOSFET
TI

TPS54386

SWIFT Converter Product Portfolio
TI

TPS54386-Q1

3-A DUAL NON-SYNCHRONOUS CONVERTER WITH INTEGRATED HIGH-SIDE MOSFET
TI

TPS54386PWP

3-A DUAL NON-SYNCHRONOUS CONVERTER WITH INTEGRATED HIGH-SIDE MOSFET
TI

TPS54386PWPG4

3-A DUAL NON-SYNCHRONOUS CONVERTER WITH INTEGRATED HIGH-SIDE MOSFET
TI

TPS54386PWPR

3-A DUAL NON-SYNCHRONOUS CONVERTER WITH INTEGRATED HIGH-SIDE MOSFET
TI

TPS54386PWPRG4

3-A DUAL NON-SYNCHRONOUS CONVERTER WITH INTEGRATED HIGH-SIDE MOSFET
TI

TPS54386TPWPRQ1

3-A DUAL NON-SYNCHRONOUS CONVERTER WITH INTEGRATED HIGH-SIDE MOSFET
TI