TPS544C26 [TI]

4V 至 16V、35A SVID 和 I²C 同步降压转换器;
TPS544C26
型号: TPS544C26
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4V 至 16V、35A SVID 和 I²C 同步降压转换器

转换器
文件: 总135页 (文件大小:5392K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
TPS544C26 SVID I2C 接口4V 16V 输入、35A 同步降压转换器  
1 特性  
2 应用  
• 提供适用SVID 电源轨的单芯片电源  
• 符Intel® VR13 SVID 标准  
服务器和云计POL  
硬件加速器  
网络接口卡  
• 提供具NVM I2C 接口用于配置、遥测  
(V/I/T) 和故障报告  
3 说明  
• 可实现输入功率监控DDR5 存储RAPL  
• 集4.0m1.0mMOSFET可实35A 持续  
电流运行  
• 输入电压4V 16V (绝对最大值18V)  
• 支5V 外部偏置可提高效率并实2.7V 最小输  
入电压  
TPS544C26 器件是一款高度集成的降压转换器采用  
D-CAP+控制拓扑可实现快速瞬态响应。所有可编程  
参数均可通I2C 接口进行配置而且可作为新的默认  
值存储在 NVM 以尽可能减少外部组件数量。这些  
特性使得该器件非常适合空间受限型应用。  
• 可编程输出电压范围0.25V 3.04V  
• 可编程输出电压压摆率1.25mV/µs 10mV/µs  
• 提供精密电压基准和差分遥感可实现高输出精度  
TPS544C26 器件专为 Intel 服务器和 SoC 平台中的中  
低电流 SVID 电源轨而设计。TPS544C26 器件具有  
SVID I2C 接口功能可配置为单CPU 电源轨。  
0°C 85°C 结温范围内Vout 容差±0.5%  
– –40°C 125°C 结温范围内Vout 容差为  
±1%  
该器件具有过流、过压、欠压和过热保护功能。  
TPS544C26 器件提供全套包括输出电压、输出电流  
IC 温度遥测功能。此外TPS544C26 器件还通  
过外部感应电阻器提供输入功率监控。  
• 具D-CAP+控制拓扑可实现快速瞬态响应  
• 支持所有陶瓷输出电容器  
• 提供可编程内部环路补偿包括压降补偿  
• 提供可选逐周期谷值电流限制  
TPS544C26 是一款无铅器件RoHS 标准无需  
豁免。  
DCM FCCM 运行模式下可选工作频率为  
0.6MHz 1.2MHz  
• 提供安全启动至预偏置输出  
• 可编程软启动时间1ms 16ms  
• 可编程软停止时间0.5ms 4ms  
• 提供开漏电源正常状态输(VRRDY) 和灾难性故  
障指示(CAT_FAULT#)  
• 提供可编程过流、过压、欠压、过热保护  
• 采5mm × 6mm 37 WQFN-FCRLF 封装,  
引脚间距0.5mm  
封装信息  
封装尺寸标称  
)  
封装(1)  
器件型号  
RXXWQFN-FCRLF,  
37)  
TPS544C26  
5.00mm × 6.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
95  
90  
85  
80  
75  
70  
65  
60  
Vin  
PVIN  
BOOT  
PHASE  
SW  
VCC/VDRV  
Vout  
Load  
PGND  
VOSNS  
EN  
EN  
GOSNS  
VR Ready  
VRRDY  
CAT_FAULT#  
CAT_FAULT#  
6
DNC  
NC  
SV_ALERT#  
SV_DIO  
SV_CLK  
37  
SVID  
Interface  
I2C_ADDR  
I2  
Interface  
C
I2C_SCL  
I2C_SDA  
55  
PVIN=12V  
AGND  
VOUT=1.1V  
fSW=800kHz  
Use the internal LDO  
Use an external 5V bias  
50  
45  
VINSENP  
VINSNSM  
P12V  
P12V_DDR_XXXX  
IIN sensing resistor  
0
5
10  
15  
20  
25  
30  
Iout (A)  
简化原理图  
典型效率  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFW7  
 
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.5 Programming............................................................ 37  
7.6 Register Maps...........................................................42  
8 Application and Implementation................................ 116  
8.1 Application Information............................................116  
8.2 Typical Application.................................................. 116  
8.3 Power Supply Recommendations...........................120  
8.4 Layout..................................................................... 121  
9 Device and Documentation Support..........................124  
9.1 Documentation Support.......................................... 124  
9.2 接收文档更新通知................................................... 124  
9.3 支持资源..................................................................124  
9.4 Trademarks.............................................................124  
9.5 Electrostatic Discharge Caution..............................124  
9.6 术语表..................................................................... 124  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................6  
6.6 Typical Characteristics..............................................15  
7 Detailed Description......................................................17  
7.1 Overview...................................................................17  
7.2 Functional Block Diagram.........................................17  
7.3 Feature Description...................................................17  
7.4 Device Functional Modes..........................................36  
Information.................................................................. 125  
10.1 Tape and Reel Information....................................125  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
September 2022  
*
Advance Information release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
29  
30  
31  
32  
33  
34  
35  
36  
36  
35  
34  
33  
32  
31  
30  
29  
I2C_SDA  
VRRDY  
CAT_FAULT#  
EN  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
1
2
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
CAT_FAULT#  
EN  
I2C_SDA  
VRRDY  
VINSENP  
VINSENM  
VCC/VDRV  
DNC  
3
3
BOOT  
PHASE  
PVIN  
VINSENP  
VINSENM  
VCC/VDRV  
DNC  
BOOT  
PHASE  
PVIN  
4
4
5
5
NC  
37  
NC  
37  
6
6
PVIN  
PVIN  
7
PVIN  
PGND  
7
PGND  
PVIN  
8
PVIN  
PGND  
8
PGND  
PVIN  
9
PVIN  
PGND  
9
PGND  
PVIN  
10  
PGND  
PGND  
10  
PGND  
PGND  
18  
17  
16  
15  
14  
13  
12  
11  
11  
12  
13  
14  
15  
16  
17  
18  
5-2. RXX 37-pin WQFN-FCRLF Package (Bottom  
5-1. RXX 37-pin WQFN-FCRLF Package (Top  
View)  
View)  
5-1. Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
AGND  
BOOT  
32  
G
Ground pin, reference point for internal control circuitry.  
Supply rail for the high-side gate driver (boost terminal). Connect the bootstrap capacitor  
from this pin to PHASE pin. A high temperature (X7R) 0.1 μF or greater value ceramic  
capacitor is recommended.  
26  
28  
6
P
O
Catastrophic Fault indicator, open-drain. The CAT_FAULT# indicator asserts low when any  
catastrophic fault event (over-voltage, under-voltage and over-temperature) happens.  
During nominal operation, the CAT_FAULT# indicator holds high.  
CAT_FAULT#  
DNC  
Do Not Connect (DNC) pin. This pin is the output of internal circuitry and must be floating.  
Pin 6 and pin 37 can be shorted together but NO any other PCB connection is allowed on  
pin 6.  
Enable pin, an active-high input pin that, when asserted high, causes the converter to  
begin its soft-start sequence for its output voltage rail. When de-asserted low, the  
converter must de-assert VRRDY and begin the shutdown sequence of the output voltage  
rail and continue to completion.  
EN  
27  
I
Negative input of the differential remote sense circuit, connect to the ground sense point  
on the load side.  
GOSNS  
31  
29  
I
I
The I2C address of the device is set by tying an external resistor between this pin and  
AGND.  
I2C_ADDR  
I2C_SCL  
I2C_SDA  
NC  
36  
I
I2C serial clock pin, open drain.  
1
37  
I/O  
I2C bi-directional serial data pin, open drain.  
Not connected. This pin is floating internally. Pin 37 and pin 6 can be shorted together.  
Power ground for the internal power stage.  
PGND  
G
710, 19  
Return for high-side MOSFET driver. Shorted to SW internally. Connect the bootstrap  
capacitor from BOOT pin to this pin.  
PHASE  
PVIN  
25  
P
Power input for both the power stage. PVIN is the input of the internal VCC LDO as well.  
2024  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
SVID active low ALERT# signal, open drain. This output is asserted to indicate the status  
of the converter has changed.  
SV_ALERT#  
35  
O
SV_CLK  
SV_DIO  
34  
33  
I
SVID clock pin, open drain.  
I/O  
SVID bi-directional data pin, open drain.  
Output switching terminal of the power converter. Connect these pins to the output  
inductor.  
SW  
O
1118  
Internal VCC LDO output and also the input for gate driver circuit. An external 5-V bias can  
be connected to this pin to save the power losses on the internal LDO. The voltage source  
on this pin powers both the internal control circuitry and the gate driver. A 2.2 μF (or 4.7  
μF), at least 6.3 V rating ceramic capacitor is required to be placed from VCC/VDRV pin  
to PGND pins to decouple the noise generated by driver circuitry. Check layout guidelines  
for more details.  
VCC/VDRV  
5
P
Negative input for the input power telemetry. Connect to the negative side of the input  
power sense resistor. Input voltage is also sensed at this pin. To minimize the impact from  
switching noise, a ceramic decoupling capacitor with at least 100 pF capacitance is  
required from this pin to PGND. Check layout guidelines for more details.  
VINSENM  
4
I
Positive input for the input power telemetry. Connect to the positive side of the input power  
sense resistor. To minimize the impact from switching noise, a ceramic decoupling  
capacitor with at least 100-pF capacitance is required from this pin to PGND. Check layout  
guidelines for more details.  
VINSENP  
VOSNS  
VRRDY  
3
30  
2
I
I
Positive input of the differential remote sense circuit, connect to the Vout sense point on  
the load side.  
Voltage regulator Readyoutput signal. The VRRDY indicator is asserted when the  
controller is ready to accept SVID commands after the EN is asserted. VRRDYalso de-  
asserts low when a shutdown fault occurs. This open-drain output requires an external  
pullup resistor.  
O
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating junction temperature range (unless otherwise noted) (1)  
MIN  
0.3  
0.3  
1.5  
0.3  
3.0  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0
MAX  
18  
UNIT  
V
Pin voltage  
Pin voltage  
Pin voltage  
Pin voltage  
Pin voltage  
Pin voltage  
Pin voltage  
Pin voltage  
Pin voltage  
Pin voltage  
Pin voltage  
Pin voltage  
Pin voltage  
Pin voltage  
Sink current  
TJ  
PVIN  
18  
V
PVIN SW, DC  
26  
V
PVIN SW, transient < 10 ns  
SW PGND, DC  
18  
V
SW, transient < 10 ns  
BOOT PGND  
21.5  
23.5  
5.5  
5.5  
18  
V
V
V
BOOT SW  
VCC/VDRV  
V
PHASE  
V
VINSENP, VINSENM  
EN, VOSNS, SM_ADDR, VRRDY, CAT_FAULT#  
SV_CLK, SV_DIO, SV_ALERT#, SM_CLK, SM_DIO  
GOSNS AGND  
20  
V
5.5  
5.5  
0.3  
1.9  
10  
V
V
V
DNC, NC  
V
VRRDY  
mA  
°C  
°C  
Operating junction temperature  
Storage temperature  
150  
150  
40  
55  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC  
JS-001 (1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per ANSI/ESDA/JEDEC  
JS-002 (2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating junction temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VOUT  
Output voltage range (programmed through SVID interface)  
PVIN when VCC/VDRV is powered by the  
0.5  
3.04  
V
4.0  
16  
16  
V
V
internal LDO  
VIN  
Input voltage  
PVIN when VCC/VDRV is powered by a  
valid external bias  
2.7  
VBIAS  
IOUT  
Input voltage  
VCC/VDRV external bias  
4.75  
5.3  
35  
V
A
Output current range  
Pin voltage  
VINSENP, VINSENM  
8
0.1  
0.1  
0.1  
16  
V
Pin voltage  
EN, VRRDY, CAT_FAULT#  
SV_CLK, SV_DIO, SV_ALERT#  
SM_CLK, SM_DIO  
5.3  
1.5  
5.3  
10  
V
Pin voltage  
V
Pin voltage  
V
IVRRDY  
VRRDY input current capability  
mA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS544C26  
 
 
 
 
 
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
Over operating junction temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
125  
UNIT  
TJ  
Operating junction temperature  
°C  
40  
6.4 Thermal Information  
DEVICE  
THERMAL METRIC(1)  
RXX (QFN, JEDEC)  
RXX (QFN, TI EVM)  
37 PINS  
UNIT  
37 PINS  
26.0  
7.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
15.7  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Not applicable(2)  
Not applicable(2)  
0.2  
3.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJT  
3.6  
5.6  
ψJB  
RθJC(bot)  
3.3  
Not applicable(2)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The thermal test or simulation setup is not applicable to a TI EVM layout.  
6.5 Electrical Characteristics  
TJ = 40°C to +125°C; -40°C, 0°C, 25°C, 85°C, 125°C. PVIN = 4 V to 16 V, VVCC = 4.5 V to 5.0 V (unless otherwise noted).  
Typical values are at TJ = 25°C, PVIN = 12 V and VVCC = 4.5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
PVIN operating input range  
PVIN quiescent current  
4
18  
9
V
Non-switching, PVIN = 12 V, VEN = 0 V, no  
bias on VCC/VDRV pin  
IQ(PVIN)  
7.5  
30  
mA  
5 V external bias on VCC/VDRV pin, regular  
IVCC  
VCC/VDRV external bias current  
VCC/VDRV quiescent current  
switching. TJ = 25°C, PVIN = 12 V, VOUT  
1.1 V, VEN = 2 V, fSW = 1 MHz  
=
mA  
mA  
5V external bias on VCC/VDRV pin, non-  
IQ(VCC)  
switching. PVIN = 12V, VEN = 2 V, VFB  
VREF + 50 mV  
=
5
UVLO  
PVIN rising, VIN_OV_FAULT_LIMIT register  
(55h) = 0b  
PVINOV  
PVIN overvoltage rising threshold  
PVIN overvoltage rising threshold  
16.5  
18.5  
V
V
PVIN rising, VIN_OV_FAULT_LIMIT register  
(55h) = 1b  
PVINOV  
PVINOV  
PVIN falling. PVIN_OVF status bit, once it is  
set, cannot be cleared unless PVIN falls  
below the PVIN overvoltage falling threshold  
PVIN overvoltage falling threshold  
13.5  
V
VIN_ON  
VIN_ON  
VIN_ON  
PVIN turn-on voltage  
PVIN turn-on voltage  
PVIN turn-on voltage  
PVIN rising, VIN_ON register (35h) = 00b  
PVIN rising, VIN_ON register (35h) = 01b  
PVIN rising, VIN_ON register (35h) = 10b  
10  
9
V
V
V
8
PVIN rising, VIN_ON register (35h) = 11b.  
Ignore VIN_ON setting, and use VCC UVLO  
rising threshold to enable the device.  
VIN_ON  
PVIN turn-on voltage  
Disabled  
V
VIN_OFF  
VIN_OFF  
VIN_OFF  
VIN_OFF  
VIN_OFF  
VIN_OFF  
VIN_OFF  
VIN_OFF  
PVIN turn-off voltage  
PVIN turn-off voltage  
PVIN turn-off voltage  
PVIN turn-off voltage  
PVIN turn-off voltage  
PVIN turn-off voltage  
PVIN turn-off voltage  
PVIN turn-off voltage  
PVIN falling, VIN_OFF register (36h) = 000b  
PVIN falling, VIN_OFF register (36h) = 000b  
PVIN falling, VIN_OFF register (36h) = 001b  
PVIN falling, VIN_OFF register (36h) = 010b  
PVIN falling, VIN_OFF register (36h) = 011b  
PVIN falling, VIN_OFF register (36h) = 100b  
PVIN falling, VIN_OFF register (36h) = 101b  
PVIN falling, VIN_OFF register (36h) = 110b  
reserved  
4.2  
V
V
V
V
V
V
V
V
9.5  
8.5  
7.5  
6.5  
5.5  
4.2  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
 
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to +125°C; -40°C, 0°C, 25°C, 85°C, 125°C. PVIN = 4 V to 16 V, VVCC = 4.5 V to 5.0 V (unless otherwise noted).  
Typical values are at TJ = 25°C, PVIN = 12 V and VVCC = 4.5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PVIN falling, VIN_OFF register (36h) =  
111b. Ignore VIN_OFF setting, and use  
VCC UVLO falling threshold to disable the  
device.  
VIN_OFF  
PVIN turn-off voltage  
Disabled  
V
PVIN rising, 5V external bias on VCC/VDRV  
pin  
PVINUVLO(R)  
PVINUVLO(F)  
PVIN UVLO rising threshold  
2.0  
1.8  
2.55  
3.0  
2.8  
V
PVIN falling, 5V external bias on VCC/  
VDRV pin  
PVIN UVLO falling threshold  
PVIN UVLO hysteresis  
2.3  
V
V
PVINUVLO(H)  
ENABLE  
VEN(R)  
0.25  
EN voltage rising threshold  
EN voltage falling threshold  
EN voltage hysteresis  
EN rising, enable switching  
EN falling, disable switching  
1.14  
0.94  
1.19  
0.98  
0.21  
1.24  
1.02  
V
V
VEN(F)  
VEN(H)  
V
tEN(DIG)  
EN Deglitch Time  
0.2  
87  
µs  
kΩ  
EN internal pulldown resistor  
EN to AGND  
103  
119  
INTERNAL VCC LDO  
Delay from VCC UVLO to I2C ready to  
communicate  
tdelay(uvlo_I2C)  
VCC/VDRV >= 3 V  
TBD  
ms  
Internal VCC LDO output voltage  
Internal VCC LDO output voltage  
VCC UVLO rising threshold  
VCC UVLO falling threshold  
VCC UVLO hysteresis  
PVIN= 4 V, IVCC(load) = 5 mA  
PVIN= 5 V to 16 V, IVCC(load) = 5 mA  
VCC rising  
3.925  
4.28  
3.69  
3.49  
3.97  
4.44  
3.75  
3.55  
0.2  
4.0  
4.55  
3.81  
3.61  
V
V
V
V
V
VCC falling  
PVIN VVCC, PVIN = 4 V, IVCC(load) = 45  
mA  
VCC LDO dropout voltage  
90  
144  
200  
226  
mV  
mA  
VCC LDO short-circuit current limit  
PVIN = 5 V  
150  
VOUT VOLTAGE  
Output Voltage controlled through  
SVID interface  
Output voltage range by SetVID & SetWP  
commands  
0.5  
3.04  
V
Output Voltage controlled through  
SVID interface  
Output voltage resolution by SetVID &  
SetWP commands  
5
2.78  
5.5  
mV  
Output Voltage controlled through  
SVID interface  
SVID fast slew rate, register (AFh)  
DVS_CFG = 010b  
2.5  
5
3.06 mV/µs  
6.1 mV/µs  
12.2 mV/µs  
Output Voltage controlled through  
SVID interface  
SVID fast slew rate, register (AFh)  
DVS_CFG = 100b  
Output Voltage controlled through  
SVID interface  
SVID fast slew rate, register (AFh)  
DVS_CFG = 110b  
10  
11.1  
Output Voltage controlled through  
SVID interface  
SVID OFFSET range  
127  
Step  
Step  
V
127  
Output Voltage controlled through  
SVID interface  
SVID OFFSET resolution  
1
5
Output Voltage controlled through I2C  
interface  
Output voltage range by register (A6h)  
VOUT_CMD  
0.5  
3.04  
Output Voltage controlled through I2C  
interface  
Output voltage resolution by register (A6h)  
VOUT_CMD  
mV  
Output voltage transition slew rate by  
register (A6h) VOUT_CMD, register (AFh)  
DVS_CFG = 010b  
Output Voltage controlled through I2C  
interface  
0.625  
1.25  
2.5  
mV/µs  
mV/µs  
mV/µs  
Output voltage transition slew rate by  
register (A6h) VOUT_CMD, register (AFh)  
DVS_CFG = 100b  
Output Voltage controlled through I2C  
interface  
Output voltage transition slew rate by  
register (A6h) VOUT_CMD, register (AFh)  
DVS_CFG = 110b  
Output Voltage controlled through I2C  
interface  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to +125°C; -40°C, 0°C, 25°C, 85°C, 125°C. PVIN = 4 V to 16 V, VVCC = 4.5 V to 5.0 V (unless otherwise noted).  
Typical values are at TJ = 25°C, PVIN = 12 V and VVCC = 4.5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output Voltage controlled through I2C  
interface  
I2C offset (register (A8h) VID_OFFSET)  
range, 5mV VID step  
63  
mV  
63  
Output Voltage controlled through I2C  
interface  
I2C offset (register (A8h) VID_OFFSET)  
resolution, 5mV VID step  
0.5  
mV  
mV  
mV  
V
Output Voltage controlled through I2C  
interface  
I2C offset (register (A8h) VID_OFFSET)  
range, 10mV VID step  
127  
127  
Output Voltage controlled through I2C  
interface  
I2C offset (register (A8h) VID_OFFSET)  
resolution, 10mV VID step  
1.0  
0.75  
1.1  
TJ = 0°C to 85°C, VOUT = 0.75 V, VVOSNS  
VGOSNS  
VOUT(ACC)  
VOUT(ACC)  
VOUT(ACC)  
VOUT(ACC)  
VOUT(ACC)  
Output voltage accuracy  
Output voltage accuracy  
Output voltage accuracy  
Output voltage accuracy  
Output voltage accuracy  
0.744  
1.0945  
1.791  
0.756  
1.1055  
1.809  
TJ = 0°C to 85°C, VOUT = 1.1 V, VVOSNS  
V
VGOSNS  
TJ = 0°C to 85°C, VOUT = 1.8 V, VVOSNS  
1.8  
V
VGOSNS  
TJ = 40°C to 125°C, VOUT = 0.75 V,  
0.7425  
1.089  
0.75  
0.7575  
1.111  
V
V
V
VOSNSVGOSNS  
TJ = 40°C to 125°C, VOUT = 1.1 V,  
VOSNSVGOSNS  
TJ = 40°C to 125°C, VOUT = 1.8 V,  
VOSNSVGOSNS  
VVOSNS = 1.8 V  
1.1  
V
VOUT(ACC)  
IVOS  
Output voltage accuracy  
VOSNS input current  
1.782  
1.8  
111  
1.818  
130  
V
V
µA  
SWITCHING FREQUENCY  
TJ = 40°C to 125°C, PVIN = 12 V, VOUT  
1.1 V, no load, FREQUENCY_SWITCH  
register (33h) = 00b  
=
=
=
=
fSW(FCCM)  
fSW(FCCM)  
fSW(FCCM)  
fSW(FCCM)  
Switching frequency, FCCM operation  
540  
720  
600  
800  
660  
880  
kHz  
kHz  
kHz  
kHz  
TJ = 40°C to 125°C, PVIN = 12 V, VOUT  
1.1 V, no load, FREQUENCY_SWITCH  
register (33h) = 01b  
Switching frequency, FCCM operation  
Switching frequency, FCCM operation  
Switching frequency, FCCM operation  
TJ = 40°C to 125°C, PVIN = 12 V, VOUT  
1.1 V, no load, FREQUENCY_SWITCH  
register (33h) = 10b  
900  
1000  
1200  
1100  
1320  
TJ = 40°C to 125°C, PVIN = 12 V, VOUT  
1.1 V, no load, FREQUENCY_SWITCH  
register (33h) = 11b  
1080  
STARTUP  
VVCC = 4.5 V, register (60h) TON_DELAY =  
00b  
tON(DLY)  
Power on sequence delay  
Power on sequence delay  
Power on sequence delay  
Power on sequence delay  
Power off sequence delay  
Power off sequence delay  
Power off sequence delay  
Power off sequence delay  
Soft-start time  
0.5  
1.0  
1.5  
2.0  
0
0.55  
1.1  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
VVCC = 4.5 V, register (60h) TON_DELAY =  
01b  
tON(DLY)  
tON(DLY)  
tON(DLY)  
tOFF(DLY)  
tOFF(DLY)  
tOFF(DLY)  
tOFF(DLY)  
tON(Rise)  
tON(Rise)  
tON(Rise)  
VVCC = 4.5 V, register (60h) TON_DELAY =  
10b  
1.65  
2.2  
VVCC = 4.5 V, register (60h) TON_DELAY =  
11b  
VVCC = 4.5 V, register (64h) TOFF_DELAY =  
00b  
0.05  
1.1  
VVCC = 4.5 V, register (64h) TOFF_DELAY =  
01b  
1.0  
1.5  
2.0  
1.0  
2.0  
4.0  
VVCC = 4.5 V, register (64h) TOFF_DELAY =  
10b  
1.65  
2.2  
VVCC = 4.5 V, register (64h) TOFF_DELAY =  
11b  
VVCC = 4.5 V, register (61h) TON_RISE =  
000b  
1.1  
VVCC = 4.5 V, register (61h) TON_RISE =  
001b  
Soft-start time  
2.2  
VVCC = 4.5 V, register (61h) TON_RISE =  
010b  
Soft-start time  
4.4  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to +125°C; -40°C, 0°C, 25°C, 85°C, 125°C. PVIN = 4 V to 16 V, VVCC = 4.5 V to 5.0 V (unless otherwise noted).  
Typical values are at TJ = 25°C, PVIN = 12 V and VVCC = 4.5 V.  
PARAMETER  
Soft-start time  
Soft-start time  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VVCC = 4.5 V, register (61h) TON_RISE =  
011b  
tON(Rise)  
tON(Rise)  
8.0  
8.8  
ms  
VVCC = 4.5 V, register (61h) TON_RISE =  
1xxb  
16.0  
2.2  
17.6  
2.44  
ms  
VVCC = 4.5 V, register (65h) TOFF_FALL =  
tOFF(Fall)  
tOFF(Fall)  
tOFF(Fall)  
tOFF(Fall)  
tOFF(Fall)  
tOFF(Fall)  
tOFF(Fall)  
tOFF(Fall)  
Soft-stop slew rate, VOUT controlled by SVID 00b, Vboot = 1.1V, PROTOCOL ID = 07h,  
5mV VID step  
2.00  
1.00  
0.50  
0.25  
3.27  
1.64  
0.82  
0.41  
V/ms  
VVCC = 4.5 V, register (65h) TOFF_FALL =  
Soft-stop slew rate, VOUT controlled by SVID 01b, Vboot = 1.1V, PROTOCOL ID = 07h,  
5mV VID step  
1.1  
0.55  
0.275  
3.6  
1.22  
0.61  
0.31  
4.00  
2.00  
1.00  
0.50  
V/ms  
V/ms  
V/ms  
V/ms  
V/ms  
V/ms  
V/ms  
VVCC = 4.5 V, register (65h) TOFF_FALL =  
Soft-stop slew rate, VOUT controlled by SVID 10b, Vboot = 1.1V, PROTOCOL ID = 07h,  
5mV VID step  
VVCC = 4.5 V, register (65h) TOFF_FALL =  
Soft-stop slew rate, VOUT controlled by SVID 11b, Vboot = 1.1V, PROTOCOL ID = 07h,  
5mV VID step  
VVCC = 4.5 V, register (65h) TOFF_FALL =  
Soft-stop slew rate, VOUT controlled by SVID 00b, Vboot = 1.8V, PROTOCOL ID = 04h,  
10mV VID step  
VVCC = 4.5 V, register (65h) TOFF_FALL =  
Soft-stop slew rate, VOUT controlled by SVID 01b, Vboot = 1.8V, PROTOCOL ID = 04h,  
10mV VID step  
1.8  
VVCC = 4.5 V, register (65h) TOFF_FALL =  
Soft-stop slew rate, VOUT controlled by SVID 10b, Vboot = 1.8V, PROTOCOL ID = 04h,  
10mV VID step  
0.9  
VVCC = 4.5 V, register (65h) TOFF_FALL =  
Soft-stop slew rate, VOUT controlled by SVID 11b, Vboot = 1.8V, PROTOCOL ID = 04h,  
10mV VID step  
0.45  
VVCC = 4.5 V, register (65h) TOFF_FALL =  
Soft-stop slew rate, VOUT controlled by I2C  
tOFF(Fall)  
tOFF(Fall)  
tOFF(Fall)  
tOFF(Fall)  
tOFF(Fall)  
tOFF(Fall)  
tOFF(Fall)  
tOFF(Fall)  
2.00  
1.00  
0.50  
0.25  
3.27  
1.64  
0.82  
0.41  
2.2  
1.1  
2.44  
1.22  
0.61  
0.31  
4.00  
2.00  
1.00  
0.50  
V/ms  
V/ms  
V/ms  
V/ms  
V/ms  
V/ms  
V/ms  
V/ms  
00b, PROTOCOL ID = 07h, 5mV VID step  
VVCC = 4.5 V, register (65h) TOFF_FALL =  
Soft-stop slew rate, VOUT controlled by I2C  
01b, PROTOCOL ID = 07h, 5mV VID step  
VVCC = 4.5 V, register (65h) TOFF_FALL =  
Soft-stop slew rate, VOUT controlled by I2C  
0.55  
0.275  
3.6  
10b, PROTOCOL ID = 07h, 5mV VID step  
VVCC = 4.5 V, register (65h) TOFF_FALL =  
Soft-stop slew rate, VOUT controlled by I2C  
11b, PROTOCOL ID = 07h, 5mV VID step  
VVCC = 4.5 V, register (65h) TOFF_FALL =  
Soft-stop slew rate, VOUT controlled by I2C  
00b, PROTOCOL ID = 04h, 10mV VID step  
VVCC = 4.5 V, register (65h) TOFF_FALL =  
Soft-stop slew rate, VOUT controlled by I2C  
1.8  
01b, PROTOCOL ID = 04h, 10mV VID step  
VVCC = 4.5 V, register (65h) TOFF_FALL =  
Soft-stop slew rate, VOUT controlled by I2C  
0.9  
10b, PROTOCOL ID = 04h, 10mV VID step  
VVCC = 4.5 V, register (65h) TOFF_FALL =  
Soft-stop slew rate, VOUT controlled by I2C  
0.45  
11b, PROTOCOL ID = 04h, 10mV VID step  
POWER STAGE  
RDSON(HS)  
RDSON(HS)  
RDSON(LS)  
RDSON(LS)  
tON(min)  
High-side MOSFET on-resistance  
High-side MOSFET on-resistance  
Low-side MOSFET on-resistance  
Low-side MOSFET on-resistance  
Minimum ON pulse width  
TJ = 25°C, PVIN = 12 V, VBOOT-SW = 4.5 V  
TJ = 25°C, PVIN = 12 V, VBOOT-SW = 5.0 V  
TJ = 25°C, PVIN = 12 V, VVCC = 4.5 V  
TJ = 25°C, PVIN = 12 V, VVCC = 5 V  
VVCC = 4.5 V  
4
3.91  
1
mΩ  
mΩ  
mΩ  
mΩ  
ns  
0.98  
50  
VVCC = 4.5 V, IO=1.5A, VOUT = VOUT(set)  
20 mV, SW falling edge to rising edge  
tOFF(min)  
Minimum OFF pulse width  
180  
ns  
BOOT CIRCUIT  
IBOOT(LKG)  
BOOT leakage current  
VEN = 2 V, VBOOT-SW = 5 V  
150  
µA  
V
VBOOT-SW(UV_F)  
BOOT-SW UVLO falling threshold  
2.60  
2.76  
OVERCURRENT PROTECTION  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to +125°C; -40°C, 0°C, 25°C, 85°C, 125°C. PVIN = 4 V to 16 V, VVCC = 4.5 V to 5.0 V (unless otherwise noted).  
Typical values are at TJ = 25°C, PVIN = 12 V and VVCC = 4.5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Low-side valley overcurrent limit  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_FAULT_LIMIT (46h) = 0000b  
ILS(OC)  
8.5  
10  
11.5  
A
Low-side valley overcurrent limit  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_FAULT_LIMIT (46h) = 0001b  
ILS(OC)  
10.2  
13.5  
17.1  
18  
12  
15  
19  
20  
25  
26  
30  
33  
35  
39  
40  
40  
10  
15  
20  
25  
30  
35  
40  
13.8  
16.5  
20.9  
22  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Low-side valley overcurrent limit  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_FAULT_LIMIT (46h) = 0010b  
ILS(OC)  
Low-side valley overcurrent limit  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_FAULT_LIMIT (46h) = 0011b  
ILS(OC)  
Low-side valley overcurrent limit  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_FAULT_LIMIT (46h) = 0100b  
ILS(OC)  
Low-side valley overcurrent limit  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_FAULT_LIMIT (46h) = 0101b  
ILS(OCL)  
ILS(OCL)  
ILS(OCL)  
ILS(OCL)  
ILS(OCL)  
ILS(OCL)  
ILS(OCL)  
ILS(OCL)  
ILS(OCW)  
ILS(OCW)  
ILS(OCW)  
ILS(OCW)  
ILS(OCW)  
ILS(OCW)  
ILS(OCW)  
22.5  
23.4  
27  
27.5  
28.6  
33  
Low-side valley overcurrent limit  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_FAULT_LIMIT (46h) = 0110b  
Low-side valley overcurrent limit  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_FAULT_LIMIT (46h) = 0111b  
Low-side valley overcurrent limit  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_FAULT_LIMIT (46h) = 1000b  
29.7  
31.5  
35.1  
36  
36.3  
38.5  
42.9  
44  
Low-side valley overcurrent limit  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_FAULT_LIMIT (46h) = 1001b  
Low-side valley overcurrent limit  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_FAULT_LIMIT (46h) = 1010b  
Low-side valley overcurrent limit  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_FAULT_LIMIT (46h) = 1011b  
Low-side valley overcurrent limit  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_FAULT_LIMIT (46h) = 11xxb  
36  
44  
Low-side valley overcurrent warning  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_WARN_LIMIT (4Ah) = 000b  
8.5  
11.5  
16.5  
22  
Low-side valley overcurrent warning  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_WARN_LIMIT (4Ah) = 001b  
13.5  
18  
Low-side valley overcurrent warning  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_WARN_LIMIT (4Ah) = 010b  
Low-side valley overcurrent warning  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_WARN_LIMIT (4Ah) = 011b  
22.5  
27  
27.5  
33  
Low-side valley overcurrent warning  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_WARN_LIMIT (4Ah) = 100b  
Low-side valley overcurrent warning  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_WARN_LIMIT (4Ah) = 101b  
31.5  
36  
38.5  
44  
Low-side valley overcurrent warning  
(TPS544C26)  
Valley current limit on LS FET,  
IOUT_OC_WARN_LIMIT (4Ah) = 11xb  
Sinking current limit on LS FET,  
ILS(NOC)  
ILS(NOC)  
ILS(NOC)  
ILS(NOC)  
ILS(NOC)  
ILS(NOC)  
Low-side negative overcurrent limit  
Low-side negative overcurrent limit  
Low-side negative overcurrent limit  
Low-side negative overcurrent limit  
Low-side negative overcurrent limit  
Low-side negative overcurrent limit  
A
A
A
A
A
A
IOUT_NOC_LIMIT (B4h) = 00b, ICCMAX  
15A  
18  
8.5  
20  
10  
15  
7.5  
12  
6  
22  
11.5  
16.5  
8.63  
13.8  
6.9  
Sinking current limit on LS FET,  
IOUT_NOC_LIMIT (B4h) = 00b, ICCMAX  
10 A  
Sinking current limit on LS FET,  
IOUT_NOC_LIMIT (B4h) = 01b, ICCMAX  
15A  
13.5  
6.37  
10.2  
5.1  
Sinking current limit on LS FET,  
IOUT_NOC_LIMIT (B4h) = 01b, ICCMAX  
10 A  
Sinking current limit on LS FET,  
IOUT_NOC_LIMIT (B4h) = 10b, ICCMAX  
15A  
Sinking current limit on LS FET,  
IOUT_NOC_LIMIT (B4h) = 10b, ICCMAX  
10 A  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to +125°C; -40°C, 0°C, 25°C, 85°C, 125°C. PVIN = 4 V to 16 V, VVCC = 4.5 V to 5.0 V (unless otherwise noted).  
Typical values are at TJ = 25°C, PVIN = 12 V and VVCC = 4.5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Sinking current limit on LS FET,  
IOUT_NOC_LIMIT (B4h) = 11b, ICCMAX  
15A  
ILS(NOC)  
Low-side negative overcurrent limit  
A
8.5  
10  
11.5  
Sinking current limit on LS FET,  
IOUT_NOC_LIMIT (B4h) = 11b, ICCMAX  
10 A  
ILS(NOC)  
Low-side negative overcurrent limit  
A
4.25  
5  
5.75  
VIN = 12 V, VVCC = 4.5 V, SEL_ZC = 00b,  
enter DCM  
IZC  
IZC  
IZC  
IZC  
IZC  
IZC  
IZC  
IZC  
Zero-cross detection current threshold  
Zero-cross detection current threshold  
Zero-cross detection current threshold  
Zero-cross detection current threshold  
Zero-cross detection current threshold  
Zero-cross detection current threshold  
Zero-cross detection current threshold  
Zero-cross detection current threshold  
1200  
1500  
900  
1200  
0
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VIN = 12 V, VVCC = 4.5 V, SEL_ZC = 00b,  
exit DCM  
VIN = 12 V, VVCC = 4.5 V, SEL_ZC = 01b,  
enter DCM  
VIN = 12 V, VVCC = 4.5 V, SEL_ZC = 01b,  
exit DCM  
VIN = 12 V, VVCC = 4.5 V, SEL_ZC = 10b,  
enter DCM  
VIN = 12 V, VVCC = 4.5 V, SEL_ZC = 10b,  
exit DCM  
300  
300  
0
VIN = 12 V, VVCC = 4.5 V, SEL_ZC = 11b,  
enter DCM  
VIN = 12 V, VVCC = 4.5 V, SEL_ZC = 11b,  
exit DCM  
Response delay before entering Hiccup  
Response delay before entering Hiccup  
Response delay before entering Hiccup  
Response delay before entering Hiccup  
Hiccup sleep time before a restart  
UV RESPONSE_DELAY = 00b  
UV RESPONSE_DELAY = 01b  
UV RESPONSE_DELAY = 10b  
UV RESPONSE_DELAY = 11b  
2
16  
µs  
µs  
µs  
µs  
ms  
64  
256  
56  
OUTPUT OVP AND UVP  
Vout tracking overvoltage protection (OVP)  
threshold, offset above Vout  
(VOSNS GOSNS) rising. (40h)  
VOUT_OV_FAULT_LIMIT = 00b  
VOVP  
VOVP  
VOVP  
VOVP  
80  
120  
160  
240  
100  
150  
200  
120  
180  
240  
360  
mV  
mV  
mV  
Vout tracking overvoltage protection (OVP)  
threshold, offset above Vout  
(VOSNS GOSNS) rising. (40h)  
VOUT_OV_FAULT_LIMIT = 01b  
Vout tracking overvoltage protection (OVP)  
threshold, offset above Vout  
(VOSNS GOSNS) rising. (40h)  
VOUT_OV_FAULT_LIMIT = 10b  
Vout tracking overvoltage protection (OVP)  
threshold, offset above Vout  
(VOSNS GOSNS) rising. (40h)  
VOUT_OV_FAULT_LIMIT = 11b  
300  
2
mV  
µs  
Vout tracking OVP de-glitch time  
(VOSNS GOSNS) rising. (CFh)  
FAULT_CTRL2, SEL_FIX_OVF = 0b, and  
(CCh) PROTOCOL_ID_SVID,  
PROTOCOL_ID<7:6> = 01b or 10b (5mV  
step)  
VFixOV  
VFixOV  
VFixOV  
VFixOV  
Vout fixed OVP threshold, 5mV step  
1.425  
1.71  
2.33  
2.93  
1.5  
1.8  
2.4  
1.575  
1.89  
2.47  
3.07  
V
V
V
(VOSNS GOSNS) rising. (CFh)  
FAULT_CTRL2, SEL_FIX_OVF = 1b, and  
(CCh) PROTOCOL_ID_SVID,  
PROTOCOL_ID<7:6> = 01b or 10b (5mV  
step)  
Vout fixed OVP threshold, 5mV step  
Vout fixed OVP threshold, 10mV step  
(VOSNS GOSNS) rising. (CFh)  
FAULT_CTRL2, SEL_FIX_OVF = 0b, and  
(CCh) PROTOCOL_ID_SVID,  
PROTOCOL_ID<7:6> = 00b or 11b (10mV  
step)  
(VOSNS GOSNS) rising. (CFh)  
FAULT_CTRL2, SEL_FIX_OVF = 1b, and  
(CCh) PROTOCOL_ID_SVID,  
PROTOCOL_ID<7:6> = 00b or 11b (10mV  
step)  
Vout fixed OVP threshold, 10mV step  
Vout fixed OVP de-glitch time  
3.0  
2
V
µs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to +125°C; -40°C, 0°C, 25°C, 85°C, 125°C. PVIN = 4 V to 16 V, VVCC = 4.5 V to 5.0 V (unless otherwise noted).  
Typical values are at TJ = 25°C, PVIN = 12 V and VVCC = 4.5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Vout tracking undervoltage protection (UVP)  
threshold, offset below Vout  
(VOSNS GOSNS) falling. (44h)  
VOUT_UV_FAULT_LIMIT = 00b  
VUVP  
VUVP  
VUVP  
VUVP  
mV  
120  
150  
180  
Vout tracking undervoltage protection (UVP)  
threshold, offset below Vout  
(VOSNS GOSNS) falling. (44h)  
VOUT_UV_FAULT_LIMIT = 01b  
mV  
mV  
mV  
160  
160  
240  
200  
200  
300  
240  
240  
360  
Vout tracking undervoltage protection (UVP)  
threshold, offset below Vout  
(VOSNS GOSNS) falling. (44h)  
VOUT_UV_FAULT_LIMIT = 10b  
Vout tracking undervoltage protection (UVP)  
threshold, offset below Vout  
(VOSNS GOSNS) falling. (44h)  
VOUT_UV_FAULT_LIMIT = 11b  
(45h) VOUT_UV_FAULT_RESPONSE,  
RESPONSE_DELAY<1:0> = 00b. From UV  
detection to tri-state of the power FETs  
Vout tracking UVP response delay time  
Vout tracking UVP response delay time  
Vout tracking UVP response delay time  
Vout tracking UVP response delay time  
2
16  
4
17.6  
µs  
µs  
µs  
µs  
(45h) VOUT_UV_FAULT_RESPONSE,  
RESPONSE_DELAY<1:0> = 01b. From UV  
detection to tri-state of the power FETs  
14.4  
57.6  
(45h) VOUT_UV_FAULT_RESPONSE,  
RESPONSE_DELAY<1:0> = 10b. From UV  
detection to tri-state of the power FETs  
64  
70.4  
(45h) VOUT_UV_FAULT_RESPONSE,  
RESPONSE_DELAY<1:0> = 11b. From UV  
detection to tri-state of the power FETs  
230.4  
256  
281.6  
VR READY AND CATASTROPHIC FAULT  
VOL(VRRDY) VRRDY pin output low-level voltage  
IVRRDY = 10 mA, VIN = 12 V, VVCC = 4.5 V  
Rpullup = 10 k, VVRRDY = 5 V  
300  
5
mV  
µA  
VRRDY pin Leakage current when open  
drain output is high  
ILKG(VRRDY)  
PVIN = 0 V, VEN = 0 V, Rpullup = 10 k,  
Min VCC for valid VRRDY pin output  
1.2  
300  
5
V
V
VRRDY 0.3 V  
CAT_FAULT# pin output low-level voltage  
210  
40  
mV  
µA  
Rpullup = 4.99 k, Vpullup = 3.3 V  
Rpullup = 4.99 k, Vpullup = 3.3 V  
CAT_FAULT# pin Leakage current when  
open drain output is high  
OUTPUT DISCHARGE  
VIN = 12 V, VVCC = Internal LDO, VVOSNS  
0.5 V, EN=0V  
=
Output discharge on VOSNS pin  
THERMAL SHUTDOWN  
TJ(SD)  
Thermal shutdown threshold (1)  
Thermal shutdown hysteresis (1)  
Junction temperature rising  
(C0h) ICC_MAX = 40 A  
153  
166  
30  
°C  
°C  
TJ(HYS)  
MEASUREMENT SYSTEM (I2C)  
MIOUT(rng) Output current measurement range  
0
40  
A
A
(C0h) ICC_MAX = 40 A, 0 IOUT 4 A, –  
40°C TJ 125°C  
MIOUT(acc)  
Output current measurement accuracy  
Output current measurement accuracy  
Output current measurement accuracy  
0.625  
0.625  
(C0h) ICC_MAX = 40 A, IOUT = 12 A, –  
40°C TJ 125°C  
MIOUT(acc)  
8%  
6%  
8%  
6%  
(C0h) ICC_MAX = 40 A, 24 A IOUT < 40  
A, 40°C TJ 125°C  
MIOUT(acc)  
MIOUT(lsb)  
Output current measurement bit resolution  
Output voltage measurement range  
(C0h) ICC_MAX = 40 A  
0.1563  
A
V
MVOUT(rng)  
0
3.04  
19  
0.75 V VOUT 1.5 V, PROTOCOL ID =  
07h, 5mV VID step  
MVOUT(acc)  
Output voltage measurement accuracy  
Output voltage measurement accuracy  
mV  
mV  
19  
1.5 V < VOUT 3.0 V, PROTOCOL ID =  
04h, 10mV VID step  
MVOUT(acc)  
37.5  
37.5  
MVOUT(lsb)  
MVOUT(lsb)  
Output voltage measurement bit resolution  
Output voltage measurement bit resolution  
PROTOCOL ID = 07h, 5mV VID step  
PROTOCOL ID = 04h, 10mV VID step  
6.25  
12.5  
mV  
mV  
(6Bh) PIN_OP_WARN_LIMIT = 000b (360  
W)  
MPIN(rng)  
MPIN(acc)  
Input power measurement range  
0
360  
W
W
Input power measurement accuracy  
datapoint  
Room Temp, 12V, 15A, 180W  
180  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to +125°C; -40°C, 0°C, 25°C, 85°C, 125°C. PVIN = 4 V to 16 V, VVCC = 4.5 V to 5.0 V (unless otherwise noted).  
Typical values are at TJ = 25°C, PVIN = 12 V and VVCC = 4.5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input power measurement accuracy  
datapoint  
MPIN(acc)  
Room Temp, 12V, 25A, 300W  
300  
W
MPIN(acc)  
MPIN(lsb)  
MVIN(rng)  
Input power measurement accuracy  
Input power measurement bit resolution  
Input voltage measurement range  
%
8
%
W
V
16  
VINSNSM AGND  
Input voltage measurement accuracy  
datapoint  
MVIN(acc)  
MVIN(acc)  
MVIN(acc)  
8
12  
16  
V
V
V
VINSNSM AGND. TJ = 0to 85℃  
Input voltage measurement accuracy  
datapoint  
VINSNSM AGND. TJ = 0to 85℃  
VINSNSM AGND. TJ = 0to 85℃  
Input voltage measurement accuracy  
datapoint  
MVIN(acc)  
MVIN(lsb)  
Input voltage measurement accuracy  
%
0
%
8 VVINSNSM 16 V  
VINSNSM AGND  
Input voltage measurement bit resolution  
V
A
(B3h) PIN_SENSE_RES = 100b (1.0 m),  
101b (0.5 m)  
MIIN(rng)  
MIIN(acc)  
MIIN(acc)  
Input current measurement range  
32  
Input current measurement accuracy  
datapoint  
Room temp, PIN_SENSE_RES set  
accordingly  
15  
25  
A
A
Input current measurement accuracy  
datapoint  
Room temp, PIN_SENSE_RES set  
accordingly  
MIIN(acc)  
MIIN(lsb)  
Input current measurement accuracy  
Input current measurement bit resolution  
Internal temperature sense range  
%
%
A
MTSNS(rng)  
125  
°C  
40  
Internal temperature sense accuracy  
datapoint  
MTSNS(acc)  
MTSNS(acc)  
MTSNS(acc)  
MTSNS(acc)  
MTSNS(acc)  
-40  
0
°C  
°C  
°C  
°C  
°C  
Internal temperature sense accuracy  
datapoint  
Internal temperature sense accuracy  
datapoint  
25  
85  
125  
Internal temperature sense accuracy  
datapoint  
Internal temperature sense accuracy  
datapoint  
MTSNS(acc)  
MTSNS(lsb)  
Internal temperature sense accuracy  
%
%
40°C TJ 125°C  
Internal temperature sense bit resolution  
°C  
SVID Timing and Physical Characteristics  
CPAD_SVID  
CPIN_SVID  
SVID pin pad capacitance(1)  
SVID pin capacitance(1)  
0
0
4
5
pF  
pF  
VDS max open drain buffer to accommodate  
ringing on bus  
VMAX_SVID  
3.3  
V
1  
VIL_SVID  
SV_CLK, SV_DIO input low voltage  
SV_CLK, SV_DIO input high voltage  
SV_CLK, SV_DIO input voltage hysteresis  
0.45  
0.54  
0.05  
0.5  
0.55  
0.64  
V
V
V
VIH_SVID  
VHYS_SVID  
0.59  
SV_DIO, SV_ALERT# pins pulldown  
resistance  
RRSVIDL  
Open Drain Pulldown resistance  
Input leakage current  
4
8
13  
20  
ILKG_SVID  
Pullup source = 5.5 V, off state  
µA  
SVID clock duty ratios (Period and duty  
cycle are measured with respect to 0.5 x  
VccIO)  
DCLK_SVID  
0.4  
0.6  
12  
VR Clock to Data delay without board  
parasitic  
tCO_VR_SVID  
ns  
tSU_VR_SVID  
tH_VR_SVID  
Setup time of data at VR side  
Hold time of data at VR side  
CPU Clock to Data delay  
7
14  
ns  
ns  
ns  
tCO_CPU_SVID  
Measured at bump  
0.65  
3.6  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to +125°C; -40°C, 0°C, 25°C, 85°C, 125°C. PVIN = 4 V to 16 V, VVCC = 4.5 V to 5.0 V (unless otherwise noted).  
Typical values are at TJ = 25°C, PVIN = 12 V and VVCC = 4.5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1
MAX  
UNIT  
ns  
tSU_CPU_SVID  
tH_CPU_SVID  
SRF_DATA  
Setup time of data at CPU side  
Hold time of data at CPU side  
Falling slew rate of SV_DIO(1)  
Rising slew rate of SV_DIO(1)  
3
ns  
1.2  
1.1  
4
V/ns  
V/ns  
SV_DIO from 0.735V to 0.315V, Rpu=64.9Ω  
SV_DIO from 0.315V to 0.735V, Rpu=64.9Ω  
SRR_DATA  
3.6  
SV_ALERT# from 0.735V to 0.315V,  
Rpu=75Ω  
SRF_ALERT  
Falling slew rate of SV_ALERT#(1)  
1.25  
4.2  
3.3  
V/ns  
SV_ALERT# from 0.315V to 0.735V,  
Rpu=75Ω  
SRR_ALERT  
FREQSVID  
Rising slew rate of SV_ALERT#(1)  
Max SVID Clock frequency Support  
1.15  
43  
V/ns  
MHz  
I2C Timing and Physical Characteristics  
FREQI2C  
VIH_I2C  
VIL_I2C  
VHYS_I2C  
NWRNVM  
CBUS_I2C  
CPIN_I2C  
tH_STA  
I2C operating frequency range  
50  
0.535  
0.465  
0.05  
1000  
0
1000  
0.635  
0.565  
kHz  
V
SM_CLK, SM_DIO High-level input voltage  
SM_CLK, SM_DIO Low-level input voltage  
SM_CLK, SM_DIO Input voltage hysteresis  
Number of NVM writeable cycles (1)  
I2C bus capacitance on each bus line(1)  
I2C pin capacitance(1)  
0.585  
0.515  
V
V
Cycles  
pF  
pF  
µs  
µs  
µs  
µs  
µs  
ns  
40°C TJ 125°C  
400  
10  
0
Hold time for a (repeated) START condition  
Low period of SM_CLK  
0.26  
0.5  
tLOW  
tHIGH  
High period of SM_CLK  
0.26  
0.26  
0
tSU_STA  
tH_I2C  
Setup time for a repeated START condition  
I2C DATA hold time  
tSU_I2C  
I2C DATA setup time  
50  
100 kHz class  
400 kHz class  
1000 kHz class  
100 kHz class  
400 kHz class  
1000 kHz class  
1000  
300  
ns  
tR_I2C  
SM_CLK and SM_DIO rise time(1)  
ns  
120  
ns  
1000  
300  
ns  
tF_I2C  
SM_CLK and SM_DIO fall time(1)  
Setup time for a STOP condition  
ns  
120  
ns  
tSU_STO  
tBUF  
0.26  
0.5  
µs  
Bus free time between a STOP and START  
condition  
µs  
(1) These parameters are provided for reference only, and do not constitute part of TI's published device specifications for purpose of TI's  
product warranty.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
6.6 Typical Characteristics  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
9
8
7
6
5
4
3
2
1
0
600 kHz  
800 kHz  
1.0 MHz  
1.2 MHz  
600 kHz  
800 kHz  
1.0 MHz  
1.2 MHz  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
Load Current (A)  
Load Current (A)  
PVIN = 12 V  
VCC = Internal LDO VOUT = 1.1 V  
PVIN = 12 V  
VCC = Internal LDO  
VOUT = 1.1 V  
MODE = FCCM  
MODE = FCCM  
6-1. Efficiency vs Output Current  
6-2. Power Dissipation vs Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
7
6
5
4
3
2
600 kHz  
800 kHz  
1.0 MHz  
1.2 MHz  
600 kHz  
800 kHz  
1.0 MHz  
1.2 MHz  
1
0
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
Load Current (A)  
Load Current (A)  
PVIN = 12 V  
VCC = External 5-V  
Bias  
VOUT = 1.1 V  
PVIN = 12 V  
VCC = External 5-V  
Bias  
VOUT = 1.1 V  
MODE = FCCM  
MODE = FCCM  
6-3. Efficiency vs Output Current  
6-4. Power Dissipation vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
7
6
5
4
3
2
1
0
600 kHz  
800 kHz  
1.0 MHz  
1.2 MHz  
600 kHz  
800 kHz  
1.0 MHz  
1.2 MHz  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
Load Current (A)  
Load Current (A)  
PVIN = 12 V  
VCC = External 5-V  
Bias  
VOUT = 1.1 V  
PVIN = 12 V  
VCC = External 5-V  
Bias  
VOUT = 1.1 V  
MODE = DCM  
MODE = DCM  
6-5. Efficiency vs Output Current  
6-6. Power Dissipation vs Output Current  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS544C26 device is highly integrated buck converter with D-CAP+ control topology for fast transient  
response and reduced output capacitance. All programmable parameters can be configured by the I2C interface  
and stored in NVM as the new default values to minimize the external component count. These features make  
the device well-suited for space-constrained applications. The TPS544C26 device is designed for low-to-mid  
current SVID rails in Intels server and SoC CPUs. The TPS544C26 device with SVID and I2C interface feature  
can be configured for single phase CPU power rail.  
Over-current, Over-voltage, and Under-voltage, Overtemperature protections are provided internally in the  
device. The TPS544C26 device offers a full set of telemetry features, including output voltage, output current, IC  
temperature, and input power monitoring through an external sensing resistor. TPS544C26 is a lead-free device  
and is RoHS compliant without exemption.  
7.2 Functional Block Diagram  
VDRV  
To ADC  
On-die  
Boot switch  
DNC  
NC  
Temperature sense  
OT Fault  
BOOT  
PVIN  
VOUT OV/UV  
Detection  
VDIFF  
VCC  
EN_PWM  
R1  
R2  
+
VOSNS  
GOSNS  
Integration  
Loop Compensation  
Driver Logic,  
Anti-cross-  
conduction,  
VCOMP  
Vramp  
PWM  
Ramp  
Generator  
SW  
+
+
PWM  
Control logic  
VDRV  
BOOT-SW  
UVLO  
VIsns  
Current Sense  
gain  
VINSENP  
VINSENM  
Isense  
Isense  
VIN & IIN Sense  
Valley current limit  
Negative OC  
Low-side current sense  
PGND  
Zero-cross detection  
VDIFF  
Adaptive  
On-time  
VDAC  
Temp  
Isns  
Generator  
PVIN  
VCC/  
VDRV  
AFE and ADC  
4.5V LDO  
1.8V LDO  
EN_PWM  
SV_CLK  
SV_DIO  
AGND  
Digital Core  
&
SV_ALERT#  
AGND  
NVM  
I2C_SCL  
I2C_SDA  
I2C_ADDR  
EN  
VRRDY  
CAT_FAULT#  
7.3 Feature Description  
7.3.1 Internal VCC LDO and Using an External Bias on VCC/VDRV Pin  
TPS544C26 device has an internal 4.5-V LDO featuring input from PVIN and output to VCC/VDRV pin. When  
the PVIN voltage rises, the internal LDO is enabled automatically and starts regulating LDO output voltage on  
the VCC/VDRV pin. The VCC voltage provides the bias voltage for the internal analog circuitry in controller side  
and the VDRV voltage provides the supply voltage for the power stage side.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS544C26  
 
 
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
A 2.2-μF or 4.7-μF, at least 6.3-V rating ceramic capacitor must be closely placed from VCC/VDRV pin to  
PGND pin to decouple the noise generated by driver circuitry. Referring this decoupling capacitor to AGND  
introduces extra noise to the analog circuitry in controller, which likely causes more noise on digital interface  
pins.  
An external bias ranging 4.75-V to 5.30-V can be connect to VCC/VDRV pin and power the IC. This enhances  
the efficiency of the solution because the VCC and VDRV power supply current now runs off this external bias  
instead of the internal linear regulator.  
A VCC UVLO circuit monitors the VCC/VDRV pin voltage and disables the switching when VCC falls below the  
VCC UVLO falling threshold. Maintaining a stable and clean VCC/VDRV voltage is required for a smooth  
operation of the device.  
Considerations when using an external bias on the VDRV and VCC pin are shown below:  
Connect the external bias to VCC/VDRV pin.  
When the external bias is applied on the VCC/VDRV pin earlier than PVIN rail, the internal LDO is be always  
forced off and the internal analog circuits have a stable power supply rail at their power enable.  
(Not recommended) When the external bias is applied on the VCC/VDRV pin late (for example, after PVIN  
rail ramp-up), any power-up and power-down sequencing can be applied as long as there is no excess  
current pulled out of the VCC/VDRV pin. Understand that an external discharge path on the VCC/VDRV pin,  
which can pull a current higher than the current limit of the internal LDO, can potentially turn off VCC LDO  
thereby shutting off the converter output.  
A good power-up sequence is: the external 5-V bias is applied first, then the 12 V bus is applied on PVIN,  
and then EN signal goes high.  
7.3.2 Input Undervoltage Lockout (UVLO)  
The TPS544C26 device provides four independent UVLO functions for the broadest range of flexibility in start-up  
control. While only the fixed VCC UVLO is required to enable I2C connectivity as well as PIN/IOUT/VOUT/  
TEMPERATURE monitoring, all four UVLO functions must be met before switching can be enabled.  
7.3.2.1 Fixed VCC UVLO  
The TPS544C26 device has an internally fixed UVLO of 3.2 V (typical) on VCC to enable the digital core and  
initiate power-on reset, including pin strap detection. The off-threshold on VCC is 3.1 V (typical). Once VCC level  
rises above 3.2 V (typical) and stays above 3.1 V (typical), the I2C communication is enabled.  
7.3.2.2 Fixed VDRV UVLO  
The TPS544C26 device has an internally fixed UVLO of 3.6 V (typical) on VDRV to enable drivers for power  
FETs and output voltage conversion. The off-threshold on VDRV is 3.4 V (typical).  
7.3.2.3 Programmable PVIN UVLO  
Two I2C commands ((35h) VIN_ON and (36h) VIN_OFF) allow the user to set PVIN voltage turn-on and turn-off  
thresholds independently.  
The highest register data value on each command (VIN_ON = 11b or VIN_OFF = 111b) utilizes multiple UVLO  
circuitries (VCC, VDRV and PVIN UVLO) to enable or disable the power conversion. When VIN_ON = 11b is  
selected, both PVIN > 2.55 V and VCC > 3.8 V conditions have to be satisfied to enable the power conversion.  
When VIN_OFF = 111b is selected, either PVIN 2.3 V or VDRV 3.4 V disables the power conversion. This  
particular configuration together with an external 5 V bias on VCC/VDRV pin allows power conversion under low  
PVIN condition down to 2.7 V, as long as the external bias maintains at 5 V level to satify both the VCC rising  
threshold (3.8 V typical) and the VDRV falling threshold (3.4 V typical).  
7-1. PVIN_ON Thresholds  
PVIN_ON[1:0]  
PVIN_ON Threshold (V)  
00  
01  
10  
10  
9
8
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-1. PVIN_ON Thresholds (continued)  
PVIN_ON[1:0]  
PVIN_ON Threshold (V)  
11  
ON threshold by both PVIN and VCC conditions. See (35h) VIN_ON  
7-2. PVIN_OFF Thresholds  
PVIN_OFF[2:0]  
PVIN_OFF Threshold (V)  
000  
001  
010  
011  
100  
101  
110  
4.2  
9.5  
8.5  
7.5  
6.5  
5.5  
4.2  
ON threshold by both PVIN and VDRV conditions. See (36h)  
VIN_OFF  
111  
备注  
If VIN_OFF is programmed higher than VIN_ON, the TPS544C26 device rapidly switches between  
enabled and disabled while PVIN remains below VIN_OFF. Please set (35h) VIN_ON threshold  
always greater than (36h) VIN_OFF threshold.  
7.3.2.4 Enable  
The TPS544C26 device offers precise enable, disable threshold on EN pin. The power stage switching is held  
off until EN pin voltage rises above the logic high threshold (typically 1.2 V). The power stage switching is turned  
off after EN pin voltage drops below the logic low threshold (typically 1 V).  
EN pin has an internal filter to avoid unexpected ON or OFF due to short glitches. The deglitch time is set to 0.2  
µs.  
The recommended operating condition for EN pin is up to 5.3 V and the absolute maximum rating is 5.5 V. DO  
NOT connect the EN pin to PVIN pin directly.  
The TPS544C26 device remains disabled state when EN pin floats. EN pin is internally pulled down to AGND  
through a 121-kresistor.  
7.3.3 Differential Remote Sense and Internal Feedback Divider  
The TPS544C26 includes a fully integrated, internal, precision feedback divider and remote sense. Using both  
the selectable feedback divider and precision adjustable reference, output voltages up to 3.04 V can be  
obtained. The feedback divider can be programmed to divider ratios of 1:2 or 1:4 using the PROTOCOL_ID in  
register (C2h) PROTOCOL_ID_SVID.  
The recommended operating VOUT range is dependent upon the feedback divider ratio configured by  
PROTOCOL_ID as follows:  
7-3. VOUT Step and Recommended VOUT Range  
VOUT Control  
Method  
Internal FB Divider  
Ratio  
Recommended VOUT Range  
(V)  
VOUT_CTRL  
VOUT Step  
00b  
01b  
SVID only  
SVID + I2C  
I2C only  
5 mV (PROTOCOL_ID = 01b or  
10b)  
1:2  
1:4  
0.25 to 1.52  
0.5 to 3.04  
10b or 11b  
00b  
SVID only  
SVID + I2C  
I2C only  
10 mV (PROTOCOL_ID = 00b or  
11b)  
01b  
10b or 11b  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
Setting VOUT lower than the recommended range can negatively affect VOUT regulation accuracy. Setting  
VOUT above the recommended range is not achievable due to internal hardware limitation.  
备注  
Do not to use extra external divider to set VOUT higher than the recommended range. Using external  
divider leads to higher switching frequency than the desired value set in register (33h)  
FREQUENCY_SWITCH. The switching frequency shift varies depending on the delta between internal  
VOUT setting and the actual VOUT setting determined by the external divider. The more delta on  
internal vs external VOUT, the higher switching frequency shift.  
The TPS544C26 device offers true differential remote sense function which is implemented between VOSNS pin  
and GOSNS pin. The output of the differential remote sense amplifier is internally fed into the control loop and  
doesnt come out to a package pin.  
Differential remote sense function compensates a potential voltage drop on the PCB traces thus helps maintain  
VOUT accuracy under steady state operation and load transient event. Connecting the VOSNS pin and GOSNS  
pin to the remote location allows sensing the output voltage at a remote location. The connections from VOSNS  
pin and GOSNS pin to the remote location must be a pair of PCB traces with at least 12 mil trace width, and  
must implement Kelvin sensing across a high bypass capacitor of 0.1 μF or higher. The ground connection of  
the remote sensing signal must be connected to GOSNS pin. The VOUT connection of the remote sensing  
signal must be connected to VOSNS pin. To maintain stable output voltage and minimize the ripple, the pair of  
remote sensing lines must stay away from any noise sources such as inductor and SW node, or high frequency  
clock lines. It is recommended to shield the pair of remote sensing lines with ground planes above and below.  
The recommended GOSNS operating range (refer to AGND pin) is 100 mV to +100 mV. In case of local sense  
(no remote sensing), short GOSNS pin to AGND.  
7.3.4 Set the Output Voltage and VID Table  
The TPS544C26 device offers VOUT adjustment through either SVID interface (for example, VID related SVID  
commands) or I2C interface (for example, (A6h) VOUT_CMD register). To allow flexibility and also avoid conflict,  
the device utilizes VOUT_CTRL[1:0] bits in register (A0h) SYS_CFG_USER1 to select which interface or method  
controls the VOUT level during the soft-start and nominal operation target. 7-4 describes more details.  
The VOUT_CTRL value is latched after the power conversion is enabled (EN=high). While the device is enabled,  
a write to VOUT_CTRL bits are acknowledged but the VOUT control method does not change until an EN toggle  
happens.  
7-4. VOUT Control Method  
VOUT  
Control  
Method  
Start-up  
Nominal Operation  
VOUT_  
CTRL  
Maximum VOUT  
Limit  
Further Restrictions  
VOUT  
VOUT Offset  
VOUT  
VOUT Offset  
I2C register (A6h)  
VOUT_CMD is always  
ignored (ACK response for  
a write but does nothing).  
I2C register (A8h)  
I2C_OFFSET is de-  
activated (NACK response  
for a write)  
Set by SVID  
register (33h)  
OFFSET. This commands (such  
offset is always  
zero before  
EN=high  
Set by Vboot in  
I2C register  
(C2h)  
PROTOCOL_ID_  
SVID  
Set by SVID  
Set by SVID  
register (33h)  
OFFSET  
SVID register  
09h-0Ah  
VIDoMAX  
SVID  
only  
00b  
as SetVID,  
SetWP)  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-4. VOUT Control Method (continued)  
VOUT  
Control  
Method  
Start-up  
Nominal Operation  
VOUT_  
CTRL  
Maximum VOUT  
Further Restrictions  
Limit  
VOUT  
VOUT Offset  
VOUT  
VOUT Offset  
Set by I2C  
register (A8h)  
I2C_OFFSET. A  
new  
I2C register (A6h)  
VOUT_CMD is always  
ignored (ACK response for  
a write but does nothing).  
SVID register (33h)  
OFFSET is ignored (ACK  
response for a write but  
does nothing)  
Set by Vboot in  
I2C register  
(C2h)  
Set by SVID  
I2C_OFFSET  
Set by I2C  
register (A8h)  
SVID register  
09h-0Ah  
VIDoMAX  
SVID +  
I2C  
commands (such value does not  
01b  
as SetVID,  
SetWP)  
take effect  
immediately.  
Instead, the new  
value takes effect  
on the next start-  
up  
PROTOCOL_ID_ I2C_OFFSET  
SVID  
Set by I2C  
register (A8h)  
I2C_OFFSET. A  
new  
Set by I2C  
register (A6h)  
VOUT_CMD. A  
new VOUT_CMD  
value takes effect  
immediately.  
SVID SetVID/SetWP  
command and SVID  
register (33h) OFFSET are  
always ignored (ACK  
response for a write but  
does nothing)  
Set by I2C  
Set by I2C  
register (A8h)  
I2C_OFFSET  
10b or  
11b  
I2C only register (A6h)  
VOUT_CMD  
17E in hex  
I2C_OFFSET  
value takes effect  
immediately.  
With VOUT_CTRL[1:0] = 00b or 01b (VOUT controlled by SVID), the initial output voltage can be set by the  
Vboot during initial power up, with the range from 0.75 V to 1.8 V (see 7-5). Vboot value can be adjusted  
through a write into the Vboot filed in I2C register (C2h) PROTOCOL_ID_SVID. Upon the acknowledge of the I2C  
write, the new Vboot value is automatically copied into SVID (26h) Vboot register. With a successful I2C (15h)  
STORE_USER_ALL command, this new value is saved into NVM. During next power-on sequence, TPS544C26  
loads the saved Vboot value from NVM into both I2C Vboot field and SVID (26h) Vboot register. Once the soft-  
start ramp finishes, the output voltage can be changed by sending SetVID or SetWP command to the device, or  
sending a new SVID OFFSET value to the device.  
With VOUT_CTRL[1:0] = 10b or 11b (VOUT controlled by I2C), the initial output voltage can be set by the  
register (A6h) VOUT_CMD during initial power up. The available VOUT_CMD range is 0.25 V to 1.52 V for  
PROTOCOL_ID = 01b or 10b (VOUT step = 5 mV), and 0.50 V to 3.04 V for PROTOCOL_ID = 00b or 11b  
(VOUT step = 10 mV). Once the soft-start ramp finishes, the output voltage can be changed by sending new  
value to I2C register (A6h) VOUT_CMD, or sending a new (A8h) I2C_OFFSET value to the device. Upon the  
acknowledge of a I2C write into I2C register (A6h) VOUT_CMD or (A8h) I2C_OFFSET, the new value takes effect  
immediately. With a successful I2C (15h) STORE_USER_ALL command, this new value is saved into NVM.  
During next power-on sequence, TPS544C26 loads the saved value from NVM and use that value for the soft-  
start.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-5. Vboot Settings  
Vboot in (C2h)  
PROTOCOL_ID_SVID  
PROTOCOL_ID in (C2h)  
PROTOCOL_ID_SVID  
VID code1 (Hex)  
Vboot (V)  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
1111b  
00h  
65h  
6Fh  
79h  
83h  
8Dh  
97h  
A1h  
ABh  
AFh  
C9h  
DDh  
FBh  
6Fh  
79h  
83h  
0
0.75  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.20  
1.25  
1.35  
1.50  
1.60  
1.70  
1.80  
Must set PROTOCOL_ID = 01b  
or 10b (VOUT step = 5 mV)  
Must set PROTOCOL_ID = 00b  
or 11b (VOUT step = 10 mV)  
1. VID code is not directly visiable to customer but shows up in I2C register (A7h) VID_SETTING and SVID  
register (31h) VID_SETTING.  
TPS544C26 always follows below VID table when setting output voltage, no matter through SVID interface or  
I2C interface. When setting output voltage, aligning the VOUT value with PROTOCOL_ID (5 mV or 10 mV)  
accordantly is important. An incorrect selection on the VOUT and PROTOCOL_ID value can result in a NACK  
response for the write into (C2h) PROTOCOL_ID_SVID register. For example, a configuration of Vboot = 1.8 V  
and PROTOCOL_ID = 01b (VOUT step 5 mV) results in a NACK response. Another example with  
VOUT_CTRL[1:0] = 10b or 11b (VOUT controlled by I2C), setting VOUT_CMD to 2.5 V requires PROTOCOL_ID  
= 00b or 11b (VOUT step 10 mV) and thus requires Vboot to be one of the 3 options of 1.6 V, 1.7 V and 1.8 V.  
Even the Vboot value does not affect VOUT level for VOUT_CTRL[1:0] = 10b or 11b selection, a suitable Vboot  
value is needed to pass the error check on Vboot and PROTOCOL_ID fields.  
7-6. VID Table for Output Voltage  
VOUT (V) VOUT (V)  
VOUT (V) VOUT (V)  
VOUT (V) VOUT (V)  
VOUT (V) VOUT (V)  
VID code  
(Hex)  
VID Code  
(Hex)  
VID Code  
(Hex)  
VID Code  
(Hex)  
5-mV  
Step  
10-mV  
Step  
5-mV  
Step  
10-mV  
Step  
5-mV  
Step  
10-mV  
Step  
5-mV  
Step  
10-mV  
Step  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0.000  
0.250  
0.255  
0.260  
0.265  
0.270  
0.275  
0.280  
0.285  
0.290  
0.295  
0.300  
0.305  
0.310  
0.00  
0.50  
0.51  
0.52  
0.53  
0.54  
0.55  
0.56  
0.57  
0.58  
0.59  
0.60  
0.61  
0.62  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
0.565  
0.570  
0.575  
0.580  
0.585  
0.590  
0.595  
0.600  
0.605  
0.610  
0.615  
0.620  
0.625  
0.630  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.20  
1.21  
1.22  
1.23  
1.24  
1.25  
1.26  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
0.885  
0.890  
0.895  
0.900  
0.905  
0.910  
0.915  
0.920  
0.925  
0.930  
0.935  
0.940  
0.945  
0.950  
1.77  
1.78  
1.79  
1.80  
1.81  
1.82  
1.83  
1.84  
1.85  
1.86  
1.87  
1.88  
1.89  
1.90  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
1.205  
1.210  
1.215  
1.220  
1.225  
1.230  
1.235  
1.240  
1.245  
1.250  
1.255  
1.260  
1.265  
1.270  
2.41  
2.42  
2.43  
2.44  
2.45  
2.46  
2.47  
2.48  
2.49  
2.50  
2.51  
2.52  
2.53  
2.54  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-6. VID Table for Output Voltage (continued)  
VOUT (V) VOUT (V)  
VOUT (V) VOUT (V)  
VOUT (V) VOUT (V)  
VOUT (V) VOUT (V)  
VID code  
(Hex)  
VID Code  
(Hex)  
VID Code  
(Hex)  
VID Code  
(Hex)  
5-mV  
Step  
10-mV  
Step  
5-mV  
Step  
10-mV  
Step  
5-mV  
Step  
10-mV  
Step  
5-mV  
Step  
10-mV  
Step  
0E  
0F  
10  
11  
0.315  
0.320  
0.325  
0.330  
0.335  
0.340  
0.345  
0.350  
0.355  
0.360  
0.365  
0.370  
0.375  
0.380  
0.385  
0.390  
0.395  
0.400  
0.405  
0.410  
0.415  
0.420  
0.425  
0.430  
0.435  
0.440  
0.445  
0.450  
0.455  
0.460  
0.465  
0.470  
0.475  
0.480  
0.485  
0.490  
0.495  
0.500  
0.505  
0.510  
0.515  
0.520  
0.525  
0.63  
0.64  
0.65  
0.66  
0.67  
0.68  
0.69  
0.70  
0.71  
0.72  
0.73  
0.74  
0.75  
0.76  
0.77  
0.78  
0.79  
0.80  
0.81  
0.82  
0.83  
0.84  
0.85  
0.86  
0.87  
0.88  
0.89  
0.90  
0.91  
0.92  
0.93  
0.94  
0.95  
0.96  
0.97  
0.98  
0.99  
1.00  
1.01  
1.02  
1.03  
1.04  
1.05  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
0.635  
0.640  
0.645  
0.650  
0.655  
0.660  
0.665  
0.670  
0.675  
0.680  
0.685  
0.690  
0.695  
0.700  
0.705  
0.710  
0.715  
0.720  
0.725  
0.730  
0.735  
0.740  
0.745  
0.750  
0.755  
0.760  
0.765  
0.770  
0.775  
0.780  
0.785  
0.790  
0.795  
0.800  
0.805  
0.810  
0.815  
0.820  
0.825  
0.830  
0.835  
0.840  
0.845  
1.27  
1.28  
1.29  
1.30  
1.31  
1.32  
1.33  
1.34  
1.35  
1.36  
1.37  
1.38  
1.39  
1.40  
1.41  
1.42  
1.43  
1.44  
1.45  
1.46  
1.47  
1.48  
1.49  
1.50  
1.51  
1.52  
1.53  
1.54  
1.55  
1.56  
1.57  
1.58  
1.59  
1.60  
1.61  
1.62  
1.63  
1.64  
1.65  
1.66  
1.67  
1.68  
1.69  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
0.955  
0.960  
0.965  
0.970  
0.975  
0.980  
0.985  
0.990  
0.995  
1.000  
1.005  
1.010  
1.015  
1.020  
1.025  
1.030  
1.035  
1.040  
1.045  
1.050  
1.055  
1.060  
1.065  
1.070  
1.075  
1.080  
1.085  
1.090  
1.095  
1.100  
1.105  
1.110  
1.115  
1.120  
1.125  
1.130  
1.135  
1.140  
1.145  
1.150  
1.155  
1.160  
1.165  
1.91  
1.92  
1.93  
1.94  
1.95  
1.96  
1.97  
1.98  
1.99  
2.00  
2.01  
2.02  
2.03  
2.04  
2.05  
2.06  
2.07  
2.08  
2.09  
2.10  
2.11  
2.12  
2.13  
2.14  
2.15  
2.16  
2.17  
2.18  
2.19  
2.20  
2.21  
2.22  
2.23  
2.24  
2.25  
2.26  
2.27  
2.28  
2.29  
2.30  
2.31  
2.32  
2.33  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
1.275  
1.280  
1.285  
1.290  
1.295  
1.300  
1.305  
1.310  
1.315  
1.320  
1.325  
1.330  
1.335  
1.340  
1.345  
1.350  
1.355  
1.360  
1.365  
1.370  
1.375  
1.380  
1.385  
1.390  
1.395  
1.400  
1.405  
1.410  
1.415  
1.420  
1.425  
1.430  
1.435  
1.440  
1.445  
1.450  
1.455  
1.460  
1.465  
1.470  
1.475  
1.480  
1.485  
2.55  
2.56  
2.57  
2.58  
2.59  
2.60  
2.61  
2.62  
2.63  
2.64  
2.65  
2.66  
2.67  
2.68  
2.69  
2.70  
2.71  
2.72  
2.73  
2.74  
2.75  
2.76  
2.77  
2.78  
2.79  
2.80  
2.81  
2.82  
2.83  
2.84  
2.85  
2.86  
2.87  
2.88  
2.89  
2.90  
2.91  
2.92  
2.93  
2.94  
2.95  
2.96  
2.97  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-6. VID Table for Output Voltage (continued)  
VOUT (V) VOUT (V)  
VID code  
(Hex)  
VOUT (V) VOUT (V)  
VOUT (V) VOUT (V)  
VOUT (V) VOUT (V)  
VID Code  
(Hex)  
VID Code  
(Hex)  
VID Code  
(Hex)  
5-mV  
Step  
10-mV  
Step  
5-mV  
Step  
10-mV  
Step  
5-mV  
Step  
10-mV  
Step  
5-mV  
Step  
10-mV  
Step  
39  
3A  
3B  
3C  
3D  
3E  
3F  
0.530  
0.535  
0.540  
0.545  
0.550  
0.555  
0.560  
1.06  
1.07  
1.08  
1.09  
1.10  
1.11  
1.12  
79  
7A  
7B  
7C  
7D  
7E  
7F  
0.850  
0.855  
0.860  
0.865  
0.870  
0.875  
0.880  
1.70  
1.71  
1.72  
1.73  
1.74  
1.75  
1.76  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
1.170  
1.175  
1.180  
1.185  
1.190  
1.195  
1.200  
2.34  
2.35  
2.36  
2.37  
2.38  
2.39  
2.40  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
1.490  
1.495  
1.500  
1.505  
1.510  
1.515  
1.520  
2.98  
2.99  
3.00  
3.01  
3.02  
3.03  
3.04  
7.3.5 Startup and Shutdown  
Startup  
The startup sequence includes three sequential periods. During the first period, the device does initialization  
which includes building up internal LDOs and references, register value initialization, pin strap detection,  
enabling digital interface, and so forth. The initialization, which is not gated by EN pin voltage, starts as long as  
VCC/VDRV pin voltage is above the VCC UVLO rising threshold (3.2-V typical). The length of this period is  
about 200 μs for TPS544C26 device. The I2C communication including both read and write operations is  
allowed after finishing the initialization.  
Once the EN pin voltage crosses above EN high threshold (typically 1.2 V) the device moves to the second  
period, power-on delay. The power-on delay is programmable in TPS544C26 through register (60h)  
TON_DELAY with minimum 0.5 ms delay and maximum 2 ms delay.  
The VOUT soft-start is the third period. A soft-start ramp, which is an internal signal, starts when the chosen  
power-on delay finishes. The soft-start time can be selected in register (61h) TON_RISE with options of 1 ms, 2  
ms, 4 ms, 8 ms, and 16 ms. When starting up without pre-bias on the output, the VOUT ramps up from 0 V to  
either the selected Vboot value or the programmabled VOUT_CMD value (depending on the VOUT_CTRL  
setting) to avoid the inrush current by the output capacitor charging, and also minimize VOUT overshoot. The  
VOUT ramping up slew rate is determined by VOUT step (set by PROTOCOL_ID in register (C2h)  
PROTOCOL_ID_SVID, Vboot and TON_RISE values, and the actual soft-start time can vary from the selected  
TON_RISE value. 7-7 shows more details.  
For the startup with a pre-biased output the device limits current from being discharged from the prebiased  
output voltage by preventing the low-side FET from forcing the SW node low until after the first PWM pulse turns  
on the high-side FET. Once the increasing reference voltage exceeds the feedback voltage which is internally  
divided down from (VOSNSGOSNS) level, the high-side SW pulses start. This enables a smooth startup with a  
pre-biased output.  
Once VOUT reaches the regulation value and VRRDY delay expires, the converter asserts VRRDY pin and  
becomes ready for SVID commands. The VRRDY delay can be programmed in (A0h) SYS_CFG_USER1  
register and the default value is set to 0 ms to meet SVID communication requirement.  
7-7. Soft-start Slew Rate and the Actual Soft-start Time  
VOUT  
Control  
Method  
VOUT_CTR  
L
Soft-start Slew Rate  
(V/ms)  
VOUT Step  
Actual Soft-start Time (ms)  
00b  
SVID only  
SVID + I2C  
I2C only  
5 mV or 10 mV  
5 mV or 10 mV  
5 mV  
Vboot / TON_RISE  
Vboot / TON_RISE  
1.1 V / TON_RISE  
1.8 V / TON_RISE  
TON_RISE  
01b  
(1 + I2C_OFFSET / Vboot) × TON_RISE  
(VOUT_CMD + I2C_OFFSET) / 1.1 V × TON_RISE  
(VOUT_CMD + I2C_OFFSET) / 1.1 V × TON_RISE  
10b or 11b  
10b or 11b  
I2C only  
10 mV  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
Shutdown  
The TPS544C26 device also offers programmable soft-stop feature through I2C register (65h) TOFF_FALL with  
0.5 ms, 1 ms, 2 ms, and 4 ms options. The soft-stop feature force a controlled decrease of the output voltage  
from regulation to 200 mV. Once Vout is discharged to 200 mV level the power stage stops switching and goes  
to tri-state. There can be negative inductor current forced during the TOFF_FALL time to discharge the output  
voltage. This feature can be enabled or disabled through I2C. Configuring EN_SOFT_STOP bit in register (A0h)  
SYS_CFG_USER1 to value 0disables the soft-stop feature and automatically sets TOFF_DELAY to 0 ms.  
In the case of Soft-stop is enabled, after a stop condition is received and the selected TOFF_DELAY delay  
expires, the TPS544C26 device enters the soft-stop operation during which the control loop actively controls the  
discharge slew rate of the output voltage. The power stage continues switching while the internal reference  
ramps down linearly. The discharge slew rate during this phase is determined by the selected boot up voltage  
(not the current output voltage) and the selected TOFF_FALL time. Once Vout is discharged to 200 mV level the  
power stage stops switching and goes to tri-state. The Vout discharge continues but the discharge slew rate is  
controlled by the load current. With this discharge operation, the TPS544C26 device controls the soft-stop slew  
rate rather the total soft-stop time, thus the total VOUT discharge time (a.k.a soft-stop time) can vary from the  
register (65h) TOFF_FALL value. Another word, The TOFF_FALL time is utilized to set the internal reference  
DAC ramp-down time from the regulation level to 0 mV. For example, under heavy load condition, the total soft-  
stop time from VOUT regulation level to zero volt is likely shorter than the programmed TOFF_FALL value.  
Under light load, the total soft-stop time likely becomes longer than the programmed TOFF_FALL value. Table  
Soft-stop Slew Rate and the Actual Soft-stop Time shows more details.  
In the case of soft-stop feature is disabled through the EN_SOFT_STOP bit in (A0h) SYS_CFG_USER1 register,  
both high-side and low-side FET drivers are turned off immediately at the time when a stop condition is received  
(as programmed by the (02h) ON_OFF_CONFIG command), and the output voltage discharge slew rate is  
controlled by the external load.  
7-8. Soft-stop Slew Rate and the Actual Soft-stop Time  
VOUT  
Control  
Method  
VOUT_CTR  
L
Soft-stop Slew Rate  
(V/ms)  
VOUT Step  
Actual Soft-stop Time (ms)  
(Current VOUT 0.2 V) / Vboot × TOFF_FALL +  
00b  
SVID only  
SVID + I2C  
I2C only  
5 mV or 10 mV  
5 mV or 10 mV  
5 mV  
Vboot / TOFF_FALL  
Vboot / TOFF_FALL  
1.1 V / TOFF_FALL  
1.8 V / TOFF_FALL  
(1)  
tDELAY  
(Current VOUT 0.2 V) / Vboot × TOFF_FALL +  
01b  
(1)  
tDELAY  
(Current VOUT 0.2 V) / 1.1 V × TOFF_FALL + tDELAY  
10b or 11b  
10b or 11b  
(1)  
(Current VOUT 0.2 V) / 1.8 V × TOFF_FALL + tDELAY  
I2C only  
10 mV  
(1)  
(1) Power stage switching ends at VOUT = 200 mV. tDELAY is determined by output capacitance and the load current.  
space  
7.3.6 Dynamic Voltage Slew Rate  
TPS544C26 device offers (AFh) DVS_CFG register to set SetVID-Fast slew rate during dynamic voltage scaling.  
SetVID command sets the new target voltage. During the output voltage transition, due to the quick charge or  
discharge to output capacitors, the power stage sees extra inrush current. This inrush current plus load current  
can trigger overcurrent protection when there is no sufficient room from OCL or NOC setting. For example, the  
positive inductor current during VOUT step-up transition goes higher than nominal operation. If the LS valley  
OCL threshold is set relatively low and doesnt allow the extra inrush current, the inductor current is potentially  
limited by the cycle-by-cycle overcurrent limit feature, thus the actual step-up slew rate is lower than the desired  
value. Similar situation can happen to VOUT step-down transition with no load condition. The negative inductor  
current during VOUT step-down transition goes more negative than nominal operation. However, the inductor  
current is not allowed to go more negative than the Negative OC threshold. Thus, triggering NOC operation  
during VOUT step-down transition results that the actual step-down slew rate is lower than the desired value.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS544C26  
 
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.3.7 Adaptive Voltage Positioning (Droop) and DC Load Line (DCLL)  
TPS544C26 device supports adaptive voltage positioning (AVP) through DC Load Line (DCLL) setting in the  
(ADh) COMP3 register. Use a non-zero DC load line reduces output voltage set-point as a function of the load  
current, with a controlled slope. This feature is optional and the DCLL setting usually matches what the  
processor suggests. If a processor doesnt utilize Droop, setting DCLL to 0 mis recommended to avoid  
violating the VOUT tolerance band spec of the processor.  
The DC load line provides two main benefits:  
Reducing the output voltage set-point, reduces the power consumption of the system, when the load current  
is high.  
Adaptive voltage positioning increases the allowable undershoot and overshoot during load transient events.  
Below figure compares example output voltage specifications for systems with zero load line and non-zero  
load line. The nominal setting for the output voltage is chosen to be higher, to allow the entire transient  
window as margin for transient overshoot and undershoot.  
7.3.8 Loop Compensation  
The TPS544C26 device provides several options for tuning the output voltage feedback and response to  
transients. Register (A9h) COMP1_MAIN, (AAh) COMP2_MAIN and (ADh) COMP3 configure the control loop  
compensation through these fields:  
DC Load Line: Selects the DC shift in output voltage corresponding to increased output current. See (ADh)  
COMP3 for available options.  
AC Gain: The gain of the integration and AC paths can be selected independently. The AC and integration  
gains both affect the small-signal bandwidth of the converter. The higher AC Gain, the faster the control loop  
responds to an output voltage error or a change on the current sense signal. Too high AC Gain results in less  
noise immunity (a.k.a higher jitter). See (A9h) COMP1_MAIN for available options.  
AC Load Line (ACLL): Selects the AC response to an output voltage error. Lower ACLL configuration directly  
improves the load transient performance (less VOUT deviation). However, the control loop becomes noise  
sensitive too low ACLL configuration. The ACLL also affects the settling and response time following a load  
transient event. See (A9h) COMP1_MAIN for available options.  
Integration Gain: To maintain a good VOUT regulation over load, the control loop includes an integration  
stage. Integration Gain selects the gain of the integration stage which affects the loop response to an output  
voltage error. Given the integration time constant is several times of switching cycle time, the Integration Gain  
affects the loop gain in middle frequency range. The gain of the integration and AC paths can be selected  
independently. The integration and AC gains both affect the small-signal bandwidth of the converter. See  
(AAh) COMP2_MAIN for available options.  
Integration Time Constant: The Integration Time Constant affects the settling and response time following an  
output voltage error. See (AAh) COMP2_MAIN for available options.  
Ramp Amplitude: A ramp based on PVIN/VOUT/fSW information is generated inside the IC to improve jitter  
performance. Smaller ramp settings result in faster response to load transient event, but also lead to  
increased off-time jitter. Likewise, large ramp settings result in lower frequency jitter, but becomes slightly  
slower to respond to an output voltage deviation. The ramp setting also affects the small-signal bandwidth of  
the converter. See (AAh) COMP2_MAIN for available options.  
7.3.9 Set Switching Frequency  
TPS544C26 device provides programmable operation mode including the forced CCM operation for tight output  
voltage ripple and auto-skipping Eco-mode for high light-load efficiency. The TPS544C26 device allows users to  
select the switching frequency through (33h) FREQUENCY_SWITCH register and operation mode through  
FCCM bit in (A0h) SYS_CFG_USER1. The available switching frequency options are 600 kHz, 800 kHz, 1 MHz  
and 1.2 MHz.  
The FCCM bit is set during initial power-on and latched after the power conversion is enabled (EN=high). While  
the device is enabled, a write to FCCM bit ia acknowledged but the operation mode does not change until an EN  
toggle happens.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-9. Switching Frequency Options  
(33h) FREQUENCY_SWITCH (Hex)  
fSW (kHz)  
00  
01  
02  
03  
600  
800  
1000  
1200  
7.3.10 Switching Node (SW)  
The SW pins connect to the switching node of the power conversion stage. The SW pins act as the return path  
for the high-side gate driver. During nominal operation, the voltage swing on SW normally traverses from below  
ground to above the input voltage. Parasitic inductance in the PVIN to PGND loop (including the component  
from the PCB layout and also the component inside the package) and the output capacitance (COSS) of both  
power FETs form a resonant circuit that can produce high frequency (> 100 MHz) ringing on this node. The  
voltage peak of this ringing, if not controlled, can be significantly higher than the input voltage. TPS544C26 high-  
side gate driver is fine tuned to minimize the peak ringing amplitude so that a RC snubber on SW node is usually  
not needed. However, it is highly recommended for the user to measure the voltage stress across either the  
high-side or low-side FET and ensure that the peak ringing amplitude does not exceed the absolute maximum  
rating limit listed in the Absolute Maximum Ratings table.  
7.3.11 Overcurrent Limit and Low-side Current Sense  
For a synchronous buck converter, the inductor current increases at a linear rate determined by the input  
voltage, the output voltage, and the output inductor value during the high-side MOSFET on-time (ON time).  
During the low-side MOSFET on-time (OFF time), this inductor current decreases linearly per slew rate  
determined by the output voltage and the output inductor value. The inductor during the OFF time, even with a  
negative slew rate, usually flows from the device SW node to the load the device which is said to be sourcing  
current and the output current is declared to be positive. This section describes the overcurrent limit feature  
based on the positive low-side current. The next section describes the overcurrent limit feature based on the  
negative low-side current.  
The positive overcurrent limit (OCL) feature in the TPS544C26 device is implemented to clamp low-side valley  
current on a cycle-by-cycle basis. The inductor current is monitored during the OFF time by sensing the current  
flowing through the low-side MOSFET. When the sensed low-side MOSFET current remains above the selected  
OCL threshold, the low-side MOSFET stays ON until the sensed current level becomes lower than the selected  
OCL threshold. This operation extends the OFF time and pushes the next ON time (where the high-side  
MOSFET turns on) out. As a result, the OCL bit in (7Bh) STATUS_IOUT is set, also the average output current  
sourced by the device is reduced. As long as the load pulls a heavy load where the sensed low-side valley  
current exceeds the selected OCL threshold, the device continuously operates in this clamping mode which  
extends the current OFF time and pushes the next ON time out. The device does not implement a fault response  
circuit directly tied to the overcurrent limit circuit, instead, the VOUT Tracking UVF function is utilized to shuts the  
device down under an overcurrent fault. During an overcurrent event, the current sunk by the load (IOUT  
)
exceeds the current sourced by the device to the output capacitors, thus, the output voltage tends to decrease.  
Eventually, when the output voltage falls below the selected undervoltage fault threshold, the VOUT Tracking  
UVF comparator detects and shuts down the device after the UVF Response Delay (programmable in (45h)  
VOUT_UV_FAULT_RESPONSE register). The device then responds to the Tracking UVF trigger per bit[3]  
RESTART selection in (45h) VOUT_UV_FAULT_RESPONSE register. With the RESTART bit unset (value "0"),  
the device latches OFF both high-side and low-side drivers. The latch is cleared with a reset of VCC or by  
toggling the EN pin. With the RESTART bit set (value "1"), the device enters hiccup mode and re-starts  
automatically after a hiccup sleep time of 56 ms, without limitation on the number of restart attempts. In other  
words, the response to an overcurrent fault is set by the programmed UVF response.  
If an OCL condition happens during a soft-start ramp the device still operates with the cycle-by-cycle current limit  
based on the sensed low-side valley current. This operation can limit the energy charged into the output  
capacitors thus the output voltage likely ramps up slower than the desired soft-start slew rate. During the soft-  
start, the VOUT Tracking UVF comparator is disabled thus the device does not respond to a UVF event. Upon  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
the completion of the soft-start, the VOUT Tracking UVF comparator is enabled, then the device starts  
responding to the UVF event.  
The OCL feature in the device is implemented by detecting the low-side valley current through analog circuitries  
and has no relationship with the integrated Analog-to-Digital converter (ADC). The telemetry analog-front-end  
gets an input from the low-side current sense circuit and average low-side MOSFET current from the start to the  
end of each low-side MOSFET on time. By this method, the telemetry sub-system reports the load current  
(IOUT) which is the average value of the inductor current but not peak or valley values.  
7.3.12 Negative Overcurrent Limit  
The TPS544C26 device is a synchronous Buck converter, thus the current can flow from the device to the load  
or from the load into the device through SW node. When current is flowing from the device SW node to the load  
the device is said to be sourcing current and the output current declared to be positive. When current is flowing  
into the device SW node from the load, the device is said to be sinking current and the current is declared to be  
negative.  
The device offers a programmable, cycle-by-cycle negative overcurrent (NOC) limit through (B4h)  
IOUT_NOC_LIMIT register. The available NOC thresholds which scale with ICC_MAX setting (see ICC_MAX)  
are shown in 7-10. Similar with the positive overcurrent limit, the inductor current is monitored during the low-  
side MOSFET ON period. To prevent too large negative current and a damage of low-side MOSFET, the device  
turns off the low-side MOSFET after the detected on the low-side MOSFET exceeds the selected NOC limit. And  
then the high-side FET is turned on for an on-time determined by PVIN, SEL_NOC_TON bit (see (ADh) COMP3)  
and fSW setting).  
The NOC operation usually happens after an overvoltage event but can also happen during VOUT step-down  
transition with fast slew rate.  
7-10. Negative Overcurrent Limits  
Negative Overcurrent Limits (A)  
SEL_NOC[1:0]  
ICC_MAX 15 A  
ICC_MAX 10 A  
00  
01  
10  
11  
20  
15  
12  
10  
10  
7.5  
6  
5  
7.3.13 Zero-Crossing Detection  
TPS544C26 device implements an internal circuit for the zero inductor-current detection during skip-mode  
operation. The fixed Z-C detection threshold is set to a slightly positive value such as 300 mA to compensate the  
delay time of the Z-C detection circuit and avoid too-late detection. Depending on the inductor value, frequency,  
VIN and Vout conditions, this can result diode conduction for a short period.  
7.3.14 Input Overvoltage Protection  
The TPS544C26 device actively monitors the PVIN input voltage. When the PVIN voltage level is above the  
over-voltage threshold, TPS544C26 device stops switching and pulls VRRDY signal low. Two options are  
provided for PVIN OV rising threshold in (55h) VIN_OV_FAULT_LIMIT register while the PVIN OV falling  
threshold is always 13.5V.  
Once the PVIN over-voltage fault is triggered, the device latches off until EN pin is toggled or PVIN is reset.  
7.3.15 Output Overvoltage and Undervoltage Protection  
The TPS544C26 device monitors the output voltage (VOSNS GOSNS) to provide overvoltage (OV) and  
undervoltage (UV) protection. The Tracking OVF and Tracking UVF thresholds both track to the VOUT setting  
(commanded by either SVID SetVID command or I2C (A6h) VOUT_CMD) but can be selected independently.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
VOUT Tracking UVF  
The 7-11 shows the available tracking UVF thresholds. When the output voltage (VOSNS GOSNS) drops  
below the VOUT setting by the value configured in (44h) VOUT_UV_FAULT_LIMIT register, the tracking UVF  
comparator detects and an internal UVF Response Delay counter selected in (45h)  
VOUT_UV_FAULT_RESPONSE register begins. At the same time, the UVF bit in (7Ah) STATUS_VOUT register  
is set. When the UVF Response Delay expires, the device responds to the UV fault per bit[3] RESTART  
selection in (45h) VOUT_UV_FAULT_RESPONSE register. With the RESTART bit unset (value "0"), the device  
latches OFF both high-side and low-side drivers. The latch is cleared with a reset of VCC or by re-toggling the  
EN pin. With the RESTART bit set (value "1"), the device enters hiccup mode and re-starts automatically after a  
hiccup sleep time of 56 ms, without limitation on the number of restart attempts.  
The tracking UVF function is enabled only after the soft-start period completes.  
During the UVF Response Delay, if the output voltage (VOSNS GOSNS) rises above the UVF threshold, thus  
not qualified for a UVF event, the UVF response delay timer resets to zero. When the VOUT drops below the  
UVF threshold again, the UVF response delay timer re-starts from zero.  
The TPS544C26 device also offers tracking UV Warning (UVW) function. The 7-12 shows the available  
tracking UVW thresholds. When the output voltage (VOSNS GOSNS) drops lower than the VOUT setting by  
the value configured in (43h) VOUT_UV_WARN_LIMIT register, the tracking UVW comparator detects and the  
UVW bit in (7Ah) STATUS_VOUT register is set. There is no purpose delay for UVW event.  
7-11. VOUT Tracking UV Fault Thresholds  
SEL_UVF[1:0]  
VOUT Tracking UVF Threshold (mV)  
00  
01  
10  
11  
150  
200  
200  
300  
7-12. VOUT Tracking UV Warning Thresholds  
SEL_UVW[1:0]  
VOUT Tracking UVW Threshold (mV)  
00  
01  
10  
11  
100  
150  
200  
300  
VOUT Tracking OVF  
The 7-13 shows the available tracking OVF thresholds. When the output voltage (VOSNS GOSNS) rises  
higher than the VOUT setting by the value configured in (40h) VOUT_OV_FAULT_LIMIT register, the tracking  
OVF comparator detects and the device responds to the OV fault immediately per bit[3] RESTART selection in  
(41h) VOUT_OV_FAULT_RESPONSE register. At the same time, the OVF bit in (7Ah) STATUS_VOUT register  
is set. With the RESTART bit unset (value "0"), the device latches OFF the high-side MOSFET driver and turns  
on the low-side MOSFET. The low-side MOSFET is kept ON until the sensed low-side negative current reaches  
the selected negative overcurrent (NOC) limit (see (B4h) IOUT_NOC_LIMIT register). Upon reaching the NOC  
limit, the low-side MOSFET is turned off, and the high-side MOSFET is turned on, for an on-time determined by  
PVIN, SEL_NOC_TON bit (see (ADh) COMP3) and fSW setting. After the high-side MOSFET turns off the low-  
side MOSFET turns on again and the negative current on low-side MOSFET is monitored to compare with the  
selected NOC limit. The device operates in this cycle until the output voltage is fully discharged. Then the device  
has high-side MOSFET latched OFF and low-side MOSFET latched ON. The latch is cleared with a reset of  
VCC or by toggling the EN pin. With the RESTART bit set (value "1"), the device still discharge output voltage by  
the NOC operation. However, the device activates hiccup mode and re-starts automatically after a hiccup sleep  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS544C26  
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
time of 56 ms, without limitation on the number of restart attempts. The hiccup sleep time counter starts right  
after the OVF trigger.  
The tracking OVF function is enabled only after the soft-start period completes.  
The TPS544C26 device also offers tracking OV Warning (OVW) function. The 7-14 shows the available  
tracking OVW thresholds. When the output voltage (VOSNS GOSNS) rises higher than the VOUT setting by  
the value configured in (42h) VOUT_OV_WARN_LIMIT register, the tracking OVW comparator detects and the  
OVW bit in (7Ah) STATUS_VOUT register is set. There is no purpose delay for OVW event.  
7-13. VOUT Tracking OV Fault Thresholds  
SEL_OVF[1:0]  
VOUT Tracking OVF Threshold (mV)  
00  
01  
10  
11  
+100  
+150  
+200  
+300  
7-14. VOUT Tracking OV Warning Thresholds  
SEL_OVW[1:0]  
VOUT Tracking OVW Threshold (mV)  
00  
01  
10  
11  
+100  
+150  
+200  
+300  
VOUT Fixed OVF  
In parallel with VOUT tracking OVF the TPS544C26 device offers Fixed OVF feature. The Fixed OVF  
comparator implments a constant reference which is configured in (B4h) IOUT_NOC_LIMIT register and the  
reference level does not track with the VOUT setting. The Fixed OVF comparator is activated to monitor the  
output voltage (VOSNS GOSNS) all the time including power conversion off period (EN = low) and soft-start  
period. Once the VOUT Fixed OVF is triggered, the OVF bit in (7Ah) STATUS_VOUT register is set, and the  
device enters NOC operation immediately no matter the power conversion is enabled or not. The device  
operates in NOC operation to fully discharge the output voltage. Then the device has high-side MOSFET latched  
OFF and low-side MOSFET latched ON. The latch is cleared with a reset of VCC or by toggling the EN pin. A  
Fixed OVF event always leads to latch-off response and the selected OVF response in (41h)  
VOUT_OV_FAULT_RESPONSE register does not affect the response for a Fixed OVF event.  
Given the Fixed OVF comparator is always activated the device provides alternate protection to high-side  
MOSFET damage cases. When the high-side MOSFET is damaged and short PVIN to the SW node, the output  
voltage (VOSNS GOSNS) rises quickly. The TPS544C26 device can detect this kind of event and turn on low-  
side MOSFET to discharge the excess energy, thus protecting the load from damage.  
In a case that the commanded VOUT is higher than the Fixed OVF threshold, the device triggers Fixed OV fault  
and enters the NOC operation immediately. If this scenario happens before soft-start, the device never initiate  
the soft-start ramp and enters latch-off directly. To avoid this situation, the Fixed OVF feature can be disabled  
through the bit[2] EN_FIX_OVF in (B4h) IOUT_NOC_LIMIT register.  
7-15. VOUT Fixed OV Fault Thresholds  
PROTOCOL_ID in (C2h)  
PROTOCOL_ID_SVID  
SEL_FIX_OVF[1] in (B4h)  
VOUT Fixed OVF Threshold (V)  
IOUT_NOC_LIMIT  
PROTOCOL_ID = 01b or 10b (VOUT step =  
5 mV)  
0
1
1.5  
1.8  
PROTOCOL_ID = 01b or 10b (VOUT step =  
5 mV)  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-15. VOUT Fixed OV Fault Thresholds (continued)  
PROTOCOL_ID in (C2h)  
PROTOCOL_ID_SVID  
SEL_FIX_OVF[1] in (B4h)  
VOUT Fixed OVF Threshold (V)  
IOUT_NOC_LIMIT  
PROTOCOL_ID = 00b or 11b (VOUT step =  
10 mV)  
0
1
2.4  
3.0  
PROTOCOL_ID = 00b or 11b (VOUT step =  
10 mV)  
7.3.16 Overtemperature Protection  
To have full coverage for a potential overtemperature event, the TPS544C26 device implements three  
overtemperature protection circuitries - two on the Controller die and one on the Power Stage (PS) die.  
Programmable OTP by Monitoring the Controller Die Temperature  
The on-die temperature sense circuit senses the controller die temperature. The sensed signal is fed into an  
internal ADC and converted to the Controller die temperature which is reported as (8Dh)  
READ_TEMPERATURE_1 through the Telemetry sub-system. This feature utilizes a digital comparator that  
compares the output of the IC TEMPERATURE telemetry to the fault threshold selected in (4Fh)  
OT_FAULT_LIMIT register. The device stops the SW switching when the sensed IC temperature goes beyond  
the selected threshold. The device response to a Programmable OTP event is described in (50h)  
OT_FAULT_RESPONSE.  
Analog OTP by Monitoring the Controller Die Temperature  
The sensed temperature signal is fed into an analog OTP circuit on the Controller die as well. An analog  
comparator is utilized to compare the output of the Controller die temperature sensing circuit to a fixed threshold  
(rising 166 °C typical). The device stops the SW switching when the sensed IC temperature goes beyond the  
fixed threshold. The device response to an Analog OTP event is always the same as the Programmable OTP.  
Given the fixed threshold (166 °C typical) for the Analog OTP is higher than the highest setting (150 °C typical)  
in Programmable OTP, the Analog OTP is unlikely to trigger during the nominal operation.  
Analog OTP by Monitoring the Power Stage Die Temperature  
A temperature sensing circuit is implemented in the Power Stage (PS) die. This sensed is fed into an analog  
OTP circuit on the PS die. An analog comparator is utilized to compare the output of the PS die temperature  
sensing circuit to a fixed threshold (rising 166 °C typical). The device stops the SW switching when the sensed  
IC temperature goes beyond the fixed threshold. Once the PS die temperature falls 30 °C below the rising  
threshold, the device automatically restarts with an initiated soft-start. This Analog OTP is a non-latch protection.  
7.3.17 VR Ready  
The TPS544C26 device offers VRRDY output that asserts high when the converter output is within the target.  
The VRRDY output stays low when the switching is disabled either by EN pin or through I2C (01h) OPERATION  
command. The VRRDY function is activated after the soft-start ramp is completed. The VRRDY output is an  
open-drain output and must be pulled up externally through a pull-up resistor (usually 10 kΩ). The  
recommended VRRDY pull-up resistor value is 1 kΩto 100 kΩ.  
7.3.18 Catastrophic Fault Alert: CAT_FAULT#  
The device has CAT_FAULT# output on pin 28 which alerts the system to potentially catastrophic power supply  
faults. The CAT_FAULT# output is an open-drain output and must be pulled up externally through a pullup  
resistor. The recommended CAT_FAULT# pull-up resistor value is 3.3 kΩ to 10 kΩ while pulling up to 3.3 V  
voltage source through a 4.99 kΩ resistor is commonly used. The CAT_FAULT# function is activated after VCC/  
VDRV pin voltage rises above VCC UVLO rising threshold (3.2V typical) regardless of by EN pin logic level.  
Fault conditions which assert the CAT_FAULT# pin include:  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
Over-voltage fault detected by fixed VOUT OVP  
Over-voltage fault detected by tracking VOUT OVP  
Under-voltage fault detected by tracking VOUT UVP, including the an UV fault caused by overcurrent event  
Over-temperature fault (based on the threshold set through I2C in (4Fh) OT_FAULT_LIMIT register)  
Powerstage OT or VDRV_UV faults (Either fault asserts PS_FLT status bit in (80h) STATUS_MFR register)  
Once asserted low by a fault event CAT_FAULT# pin latches low until a reset of PVIN or an EN toggle.  
7.3.19 Telemetry  
The telemetry sub-system in the controller core supports the following measurements:  
Input voltage (direct measurement)  
Input current (direct measurement)  
Output voltage (direct measurement)  
Output current (direct measurement)  
Controller die temperature (direct measurement)  
Input Power (Calculation, the product of the input voltage and the input current)  
The ADC output is a single conversion of each measurement without rolling window averaging for fast refresh  
rate of these key system parameter. All above parameters are measured sequentially while the Input current and  
Output current are measured more often than the others. This sequence design allows each IIN or IOUT  
telemetry value to be updated within 95 µs, while each of the rest of telemetry value to be updated within 190 µs.  
Input Power Telemetry (VIN/IIN/PIN)  
The input voltage sense telemetry senses the voltage level on pin 4 VINSENM. The device offers internal divider  
to minimize the external component count and save solution size. The VIN reporting range is limited from 8 V to  
16 V to improve the reporting resolution. For any VIN value less than 8 V, the VIN reports 8 V. For any VIN value  
higher than 16 V, the VIN reports 16 V. For example, the READ_VIN reports 8 V for a VIN = 6 V condition. The  
VIN conversion equation is:  
VIN = READ_VIN × 0.03125 + 8  
(1)  
Where  
VIN is the voltage level seen on pin 4 VINSENM  
READ_VIN is the I2C (88h) READ_VIN register value in decimal  
The input current sense telemetry senses the differntial voltage level across pin 3 VINSENP and pin 4  
VINSENM. A high accuracy sensing resistor in series with the input bus is commonly used for this feature.  
Together with the setting in (B3h) PIN_SENSE_RES register, the ADC converts the sensed differential voltage to  
input current in amp. The device offers internal gain stage to minimize the external component count and save  
solution size. Given the sensed differential voltage is in millivolts range and to avoid impact from the switching  
noise on the input bus, a ceramic bypass capacitor is required on each pin (pin 3 VINSENP and pin 4 VINSENM)  
referring to PGND and the recommended value is at least 100 pF with X7R temperature characterisitic. The IIN  
conversion equation is:  
IIN_MAX  
256  
IIN = READ_IIN ×  
(2)  
Where  
IIN is the input current level flowing through the choosen IIN sensing resistor  
READ_IIN is the I2C (89h) READ_IIN register value in decimal  
IIN_MAX is a maximum input current value selected in I2C (B3h) PIN_SENSE_RES register  
The input power reported in (97h) READ_PIN register is a simple calculation, which is the product of the  
measured raw input voltage and the measured raw input current. The calculation does not use the register value  
in (88h) READ_VIN and (89h) READ_IIN. The PIN conversion equation is:  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
PIN_MAX  
255  
PIN = READ_PIN ×  
(3)  
Where  
PIN is the calculated input power value  
READ_PIN is the I2C (97h) READ_PIN register value in decimal  
PIN_MAX is a maximum input power value selected in I2C (6Bh) PIN_OP_WARN_LIMIT register  
When input power feature is not used, follow below connection for pin 3 VINSENP and pin 4 VINSENM so that  
the device can report the input voltage level on PVIN node:  
1. Short pin 3 VINSENP to pin 4 VINSENM,  
2. Place a 0.1 µF ceramic bypass capacitor on pin 4 VINSENM referring to AGND,  
3. Connect pin 4 VINSENM to PVIN node of TPS544C26 device.  
VOUT and IOUT Telemetry  
The output voltage sense telemetry senses the differential voltage across VOSNS to GOSNS pin. The  
conversion equation for VOUT is related with VOUT step (5 mV or 10 mV) which is defined by PROTOCOL_ID  
bits in I2C (C2h) PROTOCOL_ID_SVID register.  
The VOUT conversion equation for 5 mV step is:  
VOUT = READ_VOUT × 0.00625 + 0.125  
(4)  
(5)  
The VOUT conversion equation for 10 mV step is:  
VOUT = READ_VOUT × 0.0125 + 0.250  
Where  
VOUT is the sensed output voltage (VOSNSGOSNS)  
READ_VOUT is the I2C (8Bh) READ_VOUT register value in decimal  
The output current sense telemetry senses the average of low-side FET current from the start to the end of each  
low-side FET on time which provides the average inductor current. To achieve high accuracy and wide report  
range, the device automatically sets the current sense gain based on ICC_MAX setting in (C0h) ICC_MAX  
register. When the ICC_MAX is equal or greater than 15 A, the current sense gain is set to a smaller value to  
achieve wide report range. When the ICC_MAX is equal or less than 10 A, the current sense circuit uses a  
higher gain to get a significant amplitude and achieve good accuracy. The change of gain setting does not affect  
the positive overcurrent limit (OCL) threshold but affect the negative overcurrent (NOC) threshold. The IOUT  
conversion equation is:  
ICC_MAX  
255  
IOUT = READ_IOUT ×  
(6)  
Where  
IOUT is the DC output current flowing from the output capacitors to the load  
READ_IOUT is the I2C (8Ch) READ_IOUT register value in decimal  
ICC_MAX is a full-scale value selected in I2C (C0h) ICC_MAX register  
IC Temperature Telemetry  
The die temperature sense telemetry senses the controller die temperature. The power stage die implementes  
its own over-temperature protection and power stage die temperature is not reported through temetry sub-  
system. The IC Temperature conversion equation is:  
TEMP = READ_TEMPERATURE_1 40  
(7)  
Where  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
TEMP is the controller die temperature  
READ_TEMPERATURE_1 is the I2C (8Dh) READ_TEMPERATURE_1 register value in decimal  
7.3.20 I2C Interface General Description  
The TPS544C26 device offers both I2C interface and SVID interface for programming and telemetry report. The  
device supports a group of I2C registers which is listed in . The device also supports a subset of the SVID  
registers listed in .  
For I2C interface, the TPS544C26 device supports minimum 50 kHz and maximum 1 MHz operating frequency  
range, with the support of the Standard-mode, Fast-mode, and Fast-mode Plus bus timing requirements.  
The high threshold of I2C SCL and SDA pin is 0.585 V typical, and the low threshold of I2C SCL and SDA pin is  
0.515 V typical.  
The TPS544C26 device contains nonvolatile memory that is used to store user-accessible configurations. The  
settings programmed into the device are not automatically saved into this nonvolatile memory. The (15h)  
STORE_USER_ALL command must be used to commit the current I2C settings to nonvolatile memory as device  
defaults. For example, after importing a group of settings from a user specific configuration file the (15h)  
STORE_USER_ALL command must be used to save the settings into the nonvolatile memory. The settings that  
are capable of being stored in nonvolatile memory are noted in their detailed descriptions.  
备注  
Per I2C Standard, the packet error checking (PEC) feature is not supported by TPS544C26. A  
command with PEC can result in unexpected communication error.  
7.3.20.1 Setting the I2C Address  
The TPS544C26 device offers selectable 7-bit I2C address either through a resistor from the I2C_ADDR pin (pin  
29) to AGND, or programmable by writing an 7-bit address value into the (A2h) I2C_ADDR register.  
As the default configuration, a resistor from the I2C_ADDR pin (pin 29) to AGND sets the pre-configured 7-bit I2C  
address (0x70 to 0x7F) in the memory map. Up to 16 different addresses can be set, allowing 16 devices with  
unique addresses in a single system. TI recommends ±1% tolerance resistors with a typical temperature  
coefficient of ±100 ppm/°C  
As an alternative method, the I2C address of a TPS544C26 device can be programmed by writing an address  
value into (A2h) I2C_ADDR register. This register supports the full range from 00h to 7Fh (7-bit, 0000000to  
1111111). And, an override bit has to be set to 1so that TPS544C26 device ignores the pin 29 detection  
and straightly go to (A2h) I2C_ADDR register for I2C address. This method allows much more flexibility on the  
address selections. This override bit locates in (A0h) SYS_CFG_USER1 register bit[0].  
For the programmed address to take effect, below actions have to be taken:  
1. Write the desired I2C address value to bit[6:0] in the (A2h) I2C_ADDR register.  
2. Set the OVRD_I2C_ADDR bit in the (A0h) SYS_CFG_USER1 register.  
3. Store the new values to EEPROM by writing "1" to bit[0] in (15h) STORE_USER_ALL register. The whole  
store process takes 150 ms to finish.  
4. Wait sufficient time for the store action to finish. Power cycle the device. During the power-on, the address  
programmed to the (A2h) I2C_ADDR register takes effect.  
I2C_ADDR  
AGND  
7-1. I2C Address Pin-strapping  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-16. I2C_ADDR pin resistor selected values  
(A2h) I2C_ADDR (Bin)  
(A2h) I2C_ADDR (Hex)  
RADDR (k)  
SHORT  
5.62  
9.53  
14  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
21  
30.1  
36.5  
43.2  
51.1  
61.9  
75  
88.7  
105  
127  
150  
FLOAT  
For example, using 9.53 kΩ selects 1110010b (72h) as the 7-bit I2C address. Then the 8-bit I2C address is  
11100100b (E4h), which is the 7-bit address followed by the write bit 0b.  
7-17. I2C 8-bit Address  
Bit 7  
1
Bit 6  
1
Bit 5  
1
Bit 4  
Bit 3  
Bit 2  
1
Bit 1  
0
Bit 0  
0
0
0
7 bits set by address pin resistor  
Write bit  
7.3.20.2 I2C Write Protection  
The TPS544C26 device offers write protection feature through (B1h) REG_LOCK register. After power-on, the  
user accessible registers with write access are by default under "write protected" state, meaning the response to  
a write is NACK. The device always acknowledges a read command and responds the data byte accordantly.  
Only after writing the correct passcodes (multiple writes in the right order) into this REG_LOCK register, the user  
accessible registers are "unlocked" and the device acknowledges the next write commands. (B1h) REG_LOCK  
shows more details.  
7.3.20.3 I2C Registers With Special Handling  
In most cases the effect of an I2C write to a register is immediate: Once the write is performed, the value  
becomes available for use in the system. There are a few exceptions with special handling for preserving the  
integrity of the system.  
Prevent write when the SW switching is enabled  
A write to the following list of registers is prevented and the system response is to NACK writes to these  
registers when the SW switching is enabled. For example, before importing the user specific configuration,  
disabling the SW switching is required to successfully import a new value to these registers.  
(16h) RESTORE_USER_ALL  
(60h) TON_DELAY  
(61h) TON_RISE  
(64h) TOFF_DELAY  
(65h) TOFF_FALL  
(BDh) EXT_CAPABILITY_VIDOMAX_H  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
(BEh) VIDO_MAX_L  
When ON_OFF_CONFIG is set to Always On, the values from the NVM restore for these registers will be  
NACKed and will never become effective. Even the NVM restore during power-on initialization is affected by this  
kind of configuration.  
Register update waits until the SW switching is disabled  
When a write to one of these registers is accepted (ACKed), one or more bit-fields in this register are allowed to  
take effect immediately only if the SW switching is disabled. If the SW switching is enabled, the previous value  
for those bit-fields continues to be used by the system, and the new value for those bit-fields is kept ready inside  
the IC but only become effective the next time when the SW switching is disabled. A readback attempt will be  
accepted (ACKed) and return the most recent ACKed value.  
(A0h) SYS_CFG_USER1 register, FCCM bit  
(A0h) SYS_CFG_USER1 register, VOUT_CTRL field  
(A0h) SYS_CFG_USER1 register, EN_SOFT_STOP bit  
(A0h) SYS_CFG_USER1 register, VRRDY_DELAY field  
(A1h) SVID_ADDR  
(C2h) PROTOCOL_ID_SVID register, ALL_CALL_SEL field  
(A8h) I2C_OFFSET, but only when VOUT_CTRL field is set to 01b”  
When ON_OFF_CONFIG is set to Always On, the values from the NVM restore can be kept in the staging area  
and never become effective. Even the NVM restore during power-on initialization is affected by this kind of  
configuration.  
Register update waits for a power cycling or a manual restore  
When a write to one of these register is accepted (ACKed), one or more bit-fields in the register are not allowed  
to take effect at all. The new value takes effect only if the value is stored into NVM first and then retrieved from  
NVM after the device is powered on.  
(A0h) SYS_CFG_USER1 register, OVRD_SVID_ADDR bit  
(A0h) SYS_CFG_USER1 register, OVRD_I2C_ADDR bit  
(A2h) I2C_ADDR register, I2C_ADDR filed  
The sequence of events, for the contents of those fields to take effect is as follows:  
1. The user writes the desired value to the register,  
2. The user executes an NVM store command ((15h) STORE_USER_ALL),  
3. The part is power-cycled.  
7.4 Device Functional Modes  
7.4.1 Forced Continuous-Conduction Mode  
When the operation mode is set to FCCM, the controller operates in continuous conduction mode (CCM) during  
light-load conditions. During CCM, the switching frequency maintained to an almost constant level over the entire  
load range which is suitable for applications requiring tight control of the switching frequency at the cost of lower  
efficiency.  
When FCCM is selected, the TPS544C26 device operates at CCM during the whole soft-start period as well as  
the nominal operation.  
7.4.2 Auto-Skip Eco-modeLight Load Operation  
When the operation mode is set to DCM, the device automatically reduces the switching frequency at light-load  
conditions to maintain high efficiency. This section describes the operation in detail.  
As the output current decreases from heavy load condition, the inductor current also decreases until the rippled  
valley of the inductor current touches zero level. Zero level is the boundary between the continuous-conduction  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
and discontinuous-conduction modes. The synchronous MOSFET turns off when this zero inductor current is  
detected. As the load current decreases further, the converter runs into discontinuous-conduction mode (DCM).  
The on-time is maintained to a level approximately the same as during continuous-conduction mode operation  
so that discharging the output capacitor with a smaller load current to the level of the reference voltage requires  
more time. The transition point to the light-load operation IOUT(LL) (for example: the threshold between  
continuous- and discontinuous-conduction mode) is calculated as shown in below equation.  
V
- V  
´ V  
(
)
OUT OUT  
V
IN  
1
IN  
I
=
´
OUT LL  
( )  
2´L ´ f  
SW  
(8)  
Where  
fSW is the switching frequency  
TI recommends sing low ESR capacitors (such as ceramic capacitor) for skip-mode.  
7.5 Programming  
7.5.1 Supported I2C Registers  
The Supported I2C and Default Values Table lists the implemented registers and also the default for the bit  
behavior and register values.  
7-18. Supported I2C and Default Values  
Register  
address  
Default Value  
(Hex)  
Register Name  
OPERATION  
R/W  
NVM  
Default Behavior  
01h  
02h  
03h  
15h  
16h  
33h  
R/W  
R/W  
W
NO  
YES  
NO  
00h  
40h  
N/A  
N/A  
N/A  
01h  
OPERATION OFF  
ON_OFF_CONFIG  
CLEAR_FAULTS  
Turn ON/OFF by EN pin only  
Clear all faults  
STORE_USER_ALL  
RESTORE_USER_ALL  
FREQUENCY_SWITCH  
VIN_ON  
W
NO  
Stores all current storable register settings into NVM  
Restores all storable register settings from NVM  
Switching frequency is set to 800 kHz  
W
NO  
R/W  
YES  
ON threshold is determined by both PVIN and VCC  
conditions. Both PVIN > 2.55 V and VCC > 3.8 V conditions  
have to be satisfied to enable the power conversion.  
35h  
36h  
R/W  
R/W  
YES  
YES  
03h  
07h  
VIN_OFF  
OFF threshold is determined by both PVIN and VCC  
conditions. Either PVIN 2.3 V or VDRV 3.4 V disables  
the power conversion.  
40h  
41h  
42h  
43h  
44h  
VOUT_OV_FAULT_LIMIT  
VOUT_OV_FAULT_RESPONSE  
VOUT_OV_WARN_LIMIT  
VOUT_UV_WARN_LIMIT  
VOUT_UV_FAULT_LIMIT  
VOUT_UV_FAULT_RESPONSE  
R/W  
R/W  
R/W  
R/W  
R/W  
YES  
YES  
YES  
YES  
YES  
02h  
00h  
01h  
01h  
02h  
VOUT Tracking OV Fault threshold = +200 mV  
Latch-off after a fault  
VOUT Tracking OV Warning threshold = +150 mV  
VOUT Tracking UV Warning threshold = 150 mV  
VOUT Tracking UV Fault threshold = 200 mV  
Latch-off after a fault, and the response delay before  
disabling the power conversion is 64 µs  
45h  
R/W  
YES  
02h  
46h  
4Fh  
50h  
51h  
55h  
IOUT_OC_FAULT_LIMIT  
OT_FAULT_LIMIT  
R/W  
R/W  
R/W  
R/W  
R/W  
YES  
YES  
YES  
YES  
YES  
09h  
07h  
00h  
06h  
01h  
Low-side valley current limiting threshold = 35 A  
Programmable OT Fault threshold = 150 °C  
Latch-off after a fault  
OT_FAULT_RESPONSE  
OT_WARN_LIMIT  
Programmable OT Warning threshold = 125 °C  
PVIN OV Fault threshold = 18.5 V  
VIN_OV_FAULT_LIMIT  
TON_DELAY  
0.5 ms delay when a start condition is received (as  
programmed by the ON_OFF_CONFIG register) until the  
output voltage starts to rise  
60h  
61h  
64h  
R/W  
R/W  
R/W  
YES  
YES  
YES  
00h  
00h  
00h  
TON_RISE  
1 ms from when the output starts to rise until the output  
voltage has entered the regulation band  
TOFF_DELAY  
0 ms from when a stop condition is received (as  
programmed by the ON_OFF_CONFIG register) until the  
unit starts the soft-stop operation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS544C26  
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-18. Supported I2C and Default Values (continued)  
Register  
address  
Default Value  
Register Name  
R/W  
NVM  
Default Behavior  
(Hex)  
TOFF_FALL  
0.5 ms from the end of the turn-off delay time until the  
internal reference DAC is commanded to 0 mV  
65h  
R/W  
YES  
00h  
6Bh  
7Ah  
7Bh  
7Ch  
7Dh  
80h  
88h  
89h  
8Bh  
8Ch  
8Dh  
PIN_OP_WARN_LIMIT  
STATUS_VOUT  
STATUS_IOUT  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
YES  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
NO  
03h  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Maximum PIN (input power) threshold = 360 W  
Current status  
Current status  
STATUS_INPUT  
STATUS_TEMPERATURE  
STATUS_MFR_SPECIFIC  
READ_VIN  
Current status  
Current status  
Current status  
Measured input voltage on pin 4 VINSENM  
Measured input current over the external sensing resistor  
Measured output voltage  
READ_IIN  
R
READ_VOUT  
R
READ_IOUT  
R
Measured output current  
READ_TEMPERATURE_1  
READ_PIN  
R
Measured Controller die temperature  
Calculated input power, the product of the measured input  
voltage and input current  
97h  
R
NO  
N/A  
SYS_CFG_USER1  
Operation mode under light load condition is DCM  
VOUT is controlled by SVID bus only  
Soft-stop feature is enabled  
A0h  
R/W  
YES  
10h  
VR Ready delay = 0 ms  
I2C address is set by pin 29 pin strap detection  
I2C_ADDR  
Bit[7] = 0b, reserved for TI usage  
I2C address saved in NVM is 77h. However, after initial  
power-on, the effective I2C address shown in this field is  
determined by the resistor on pin 29  
A2h  
R/W  
YES  
N/A  
A3h  
A4h  
SVID_ADDR  
IMON_CAL  
R/W  
R/W  
YES  
YES  
00h  
78h  
Device address for SVID communication is set to 00h  
IMON gain calibration = 0%  
IMON offset calibration = 0 A  
IIN_CAL  
IIN gain calibration = 0%  
IIN offset calibration = 0 A  
A5h  
A6h  
R/W  
R/W  
YES  
YES  
78h  
VOUT_CMD  
Default VOUT setting saved in VOUT_CMD is 1.1V. The  
VOUT_CMD does not control VOUT unless VOUT_CTRL =  
10b or 11b  
ABh  
VID_SETTING  
After initial power-on, this register shows a value reflecting  
the last commanded VOUT either from SVID bus or I2C bus  
A7h  
A8h  
R
NO  
N/A  
00h  
I2C_OFFSET  
R/W  
YES  
I2C OFFSET = 0 mV  
COMP1_MAIN  
AC Gain = 2  
A9h  
R/W  
YES  
4Ah  
AC Load Line = 7  
COMP2_MAIN  
Integration gain = 2  
AAh  
R/W  
YES  
19h  
Integration time constant = 4.25 µs  
Ramp Amplitude = 60 mV  
COMP1_ALT  
COMP2_ALT  
This register is not activated in the TPS544C26 device and  
affects nothing.  
ABh  
ACh  
R/W  
R/W  
YES  
YES  
23h  
A2h  
This register is not activated in the TPS544C26 device and  
affects nothing.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-18. Supported I2C and Default Values (continued)  
Register  
address  
Default Value  
Register Name  
R/W  
NVM  
Default Behavior  
(Hex)  
COMP3  
Bit[7] = 0b, reserverd for TI usage  
Force DCM during soft-start enable/disable bit = disabled  
On-time during NOC (Negative OC) operation = longer  
tON_NOC  
ADh  
R/W  
YES  
02h  
LOUT (output inductor value) for current sensing circuit = 100  
nH  
DC Load Line = 0.75 mΩ  
DVS_CFG  
Dynamic voltage change fast slew rate configuration = 10  
mV/µs  
AFh  
B0h  
R/W  
R/W  
YES  
YES  
06h  
00h  
DVID_OFFSET  
REG_LOCK  
DVID Up positive DAC offset = 0 mV  
DVID Down positive DAC offset = 0 mV  
The user-accessible registers (not including B1h) are write  
protectedand by default. User can still read back from  
registers  
B1h  
B3h  
W
YES  
YES  
N/A  
05h  
PIN_SENSE_RES  
IOUT_NOC_LIMIT  
Input power sense resistor is 0.5 m. This also sets the  
Maximum IIN to 40 A with IIN_LSB = 0.15625 A  
R/W  
VOUT Fixed OV Fault threshold = 1.5 V  
VOUT Fixed OV Fault enable/disable bit = enabled  
Negative OC limit = 15 A when ICC_MAX 15 A or 7.5 A  
when ICC_MAX < 10 A  
B4h  
R/W  
YES  
05h  
B5h  
B6h  
BAh  
BBh  
BCh  
USER_DATA_01  
R/W  
R/W  
R/W  
R/W  
R
YES  
YES  
YES  
YES  
NO  
00h  
00h  
N/A  
N/A  
FBh  
Bit[7:4]: For user to store manufacturer specific information  
Bit[7:5]: For user to store manufacturer specific information  
A direct copy of the bits of SVID STATUS_1 register  
A direct copy of the bits of SVID STATUS_2 register  
A direct copy of the bits of SVID CAPABILITY register  
USER_DATA_02  
STATUS1_SVID  
STATUS2_SVID  
CAPABILITY  
EXT_CAPABILITY_VIDOMAX_H  
A direct copy of the bits of SVID VIDOMAX_H_CAPA  
register  
BDh  
R/W  
YES  
04h  
BEh  
C0h  
C1h  
VIDOMAX_L  
R/W  
R/W  
R/W  
YES  
YES  
YES  
B6h  
05h  
06h  
9-bit VIDoMAX = 1.155 V  
ICC_MAX  
ICC_MAX = 30 A  
TEMP_MAX  
TEMP_MAX = 125 °C while controls SVID "ThermAlert" bit  
PROTOCOL_ID_SVID  
PROTOCOL_ID_SVID = 07h (VR13, VOUT step 5 mV)  
Vboot = 1.1 V  
C2h  
R/W  
YES  
63h  
Respond to SVID All-call address both 0Eh and 0Fh  
VENDOR_ID  
SVID VENDOR_ID = 22h. This vendor ID is assigned to  
Texas Instruments by Intel, to identify the VR vendor.  
C6h  
R
NO  
22h  
C8h  
C9h  
PRODUCT_ID  
R
R
NO  
NO  
13h  
02h  
TPS544C26 Product ID = 13h  
PRODUCT_REV_ID  
TPS544C26 current device revision = PG2.1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.5.2 Support of Intel SVID Interface  
The TPS544C26 device supports Intel SVID interface (VR13 Mode). Details are described in this section.  
The SVID address for a TPS544C26 device can be programmabled in (A3h) SVID_ADDR register, allowing  
address value from 00h to 0Dh.  
The TPS544C26 device supports VR13 Mode SVID registers and also VIDoMAX register. The table below  
summarizes the SVID register initialization performed by TPS544C26 at each power-on. Any writeable register  
can be changed by the SVID host after initialization. Refer to the Intel documentation for more detailed  
description of the individual register functionality.  
7-19. SVID Register Support (VR13 Mode)  
Register Address  
00h  
Register Name  
R/W  
Source or Behavior  
VENDOR_ID  
PROD_ID  
R
R
R
R
R
R
R
R
R
R
R
22h  
01h  
Per I2C register (C8h) PRODUCT_ID  
02h  
PROD_REV  
Per I2C register (C9h) PROD_REV_ID  
05h  
PROTOCOL_ID  
CAPABILITY  
VIDOMAX_H_CAPA  
VIDOMAX_L  
VIN_FULLSCALE_H  
VIN_FULLSCALE_L  
VOUT_FULLSCALE_H  
VOUT_FULLSCALE_L  
ALLCALL_ACT  
STATUS1  
Per I2C register (C2h) PROTOCOL_ID_SVID[7:6]  
06h  
FBh  
09h  
Per I2C register (BDh) EXT_CAPABILITY_VIDOMAX_H[7:0]  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
Per I2C register (BEh) VIDO_MAX_L[7:0]  
06h  
40h  
0Ch  
80h  
R/W  
R
Per I2C register (C2h) PROTOCOL_ID_SVID[1:0]  
Current status  
11h  
STATUS2  
R
Current status  
12h  
TEMPERATURE  
IOUT_H  
R
Current status  
15h  
R
Current status  
16h  
VOUT_H  
R
Current status  
17h  
VR_TEMP  
R
Current status  
19h  
IIN_H  
R
Current status  
1Ah  
1Bh  
1Ch  
20h  
VIN_H  
R
Current status  
PIN_H  
R
Current status  
STATUS2_LASTREAD  
ICC_IN_MAX  
ICC_MAX  
R
Current status  
R
FFh  
21h  
R
Per I2C register (C0h) ICC_MAX[2:0]  
22h  
TEMP_MAX  
SR_FAST  
R
Per I2C register (C1h) TEMP_MAX[2:0]  
24h  
R
Per I2C register (AFh) DVS_CFG[2:0]  
25h  
SR_SLOW  
R
Programmed by SVID register (2Ah) SLOW_SR_SEL_HC  
26h  
VBOOT  
R
Per I2C register (C2h) PROTOCOL_ID_SVID[5:2]  
2Ah  
2Bh  
2Eh  
30h  
SLOW_SR_SEL_HC  
PS4_EXIT_LAT  
PIN_MAX  
R/W  
R
02h  
85h  
R
Per I2C register (6Bh) PIN_OP_WARN_LIMIT  
VID_MAX  
R/W  
R
FFh  
31h  
VID_SETTING  
PWR_STATE  
OFFSET  
Current status  
32h  
R
00h  
00h  
01h  
00h  
00h  
00h  
00h  
33h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
34h  
MULTI_VR_CONFIG  
WP0  
3Ah  
3Bh  
3Ch  
3Dh  
WP1  
WP2  
WP3  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-19. SVID Register Support (VR13 Mode) (continued)  
Register Address  
Register Name  
R/W  
Source or Behavior  
56h  
DIGOUT_STATUS  
R
Current status  
The table below summarizes the SVID commands supported by TPS544C26.Refer to the Intel documentation  
for more detailed description of the individual command functionality.  
7-20. Supported SVID Command  
Command Code  
Command  
Supported by TPS544C26  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
09h  
SetVID_Fast  
SetVID_Slow  
SetVID_Decay  
SetPS  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
SetRegAddr  
SetRegData  
GetReg  
SetWP  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6 Register Maps  
7.6.1 (01h) OPERATION  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
01h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
No  
NVM Back-up:  
Updates:  
On-the-fly  
The OPERATION command is used to enable or disable power conversion.  
Return to Supported I2C and Default Values.  
7-2. (01h) OPERATION Register Map  
7
6
5
4
3
2
1
0
R/W  
R
R
R
R
R
R
R
ON_OFF  
Reserved  
LEGEND: R/W = Read/Write; R = Read only  
7-21. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
ON_OFF  
R/W  
0b  
Enable/disable power conversion. Note that there can be several other  
requirements that must be satisfied before the power conversion can begin (for  
example, input voltages above UVLO thresholds).  
0b: Disable power conversion.  
1b: Enable power conversion.  
6:0  
Reserved  
R
0000000b Not used and always set to 0.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.2 (02h) ON_OFF_CONFIG  
Register Address  
Write Transaction:  
Read Transaction:  
Format:  
02h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Back-up:  
Updates:  
On-the-fly  
The ON_OFF_CONFIG command configures the combination of enable pin input and serial bus commands  
needed to enable/disable power conversion. This includes how the unit responds when power is applied to  
PVIN.  
Return to Supported I2C and Default Values.  
7-3. (02h) ON_OFF_CONFIG Register Map  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R
R
R
R
R
ON_OFF_CONFIG  
Reserved  
LEGEND: R/W = Read/Write; R = Read only  
7-22. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:5 ON_OFF_CONFIG  
R/W  
NVM  
These bits determine the on-off mechanism as follow:  
000b: Power conversion is always ON  
001b: Turn power conversion ON/OFF by I2C Operation Command only  
010b: Turn power conversion ON/OFF by EN pin only  
011b: The power conversion is not turned ON until commanded by the EN pin and  
OPERATION command. The power conversion can be turned OFF either  
commanded by the EN pin or OPERATION command  
100b to 111b: Reserved. The device always acknowledges a write with this value  
but does not change the operation state.  
4:0  
Reserved  
R
00000b  
Not used and always set to 0.  
Attempts to write ON_OFF_CONFIG to any value other than those explicitly listed above will be considered  
invalid/unsupported data and cause the TPS544C26 to respond by flagging the appropriate status bits, and  
notifying the host according to the PMBus 1.3.1 Part II specification, section 10.9.3.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.3 (03h) CLEAR_FAULTS  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
03h  
Send Byte  
N/A  
Data-less  
No  
NVM Back-up:  
Updates:  
On-the-fly  
CLEAR_FAULTS is a command used to clear any fault bits that have been set. CLEAR_FAULTS is a write-only  
command with no data. Writing a "1" into bit[0] of this command clears all bits in all status registers. The bit  
clears itself after the write.  
The CLEAR_FAULTS command does not cause a unit that has latched off for a fault condition to restart. If the  
fault is still present when the bit is cleared, the fault bit is immediately set again.  
Return to Supported I2C and Default Values.  
7-4. (03h) CLEAR_FAULTS Register Map  
7
6
5
4
3
2
1
0
W
W
W
W
W
W
W
W
CLEAR_FAULT  
S
Reserved  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.4 (15h) STORE_USER_ALL  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
15h  
Send Byte  
N/A  
Data-less  
NVM Back-up:  
Updates:  
No  
Not recommended for on-the-fly-use, but not explicitly blocked  
The STORE_USER_ALL command instructs the TPS544C26 device to copy the entire contents of the Operating  
Memory to the matching locations in the non-volatile User Store Memory. Any items in Operating Memory that do  
not have matching locations in the User Store Memory are ignored. Writing a "1" into bit[0] of this command  
executes the store operation. The bit clears itself after the write.  
User must wait for at least 150 msec from executing this command before power can be turned off to make sure  
a successful write to NVM is executed. NVM store operation is not recommended while the output is enabled,  
although the user is not explicitly prevented from doing so, as interruption can result in a corrupted NVM. I2C  
commands issued during this time will be ignored. Following issuance of NVM store operations, TI recommends  
disabling regulation and waiting a minimum of 125 ms before continuing.  
Return to Supported I2C and Default Values.  
7-5. (15h) STORE_USER_ALL Register Map  
7
6
5
4
3
2
1
0
W
W
W
W
W
W
W
W
Reserved  
STORE  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS544C26  
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.5 (16h) RESTORE_USER_ALL  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
16h  
Send Byte  
N/A  
Data-less  
NVM Back-up:  
Updates:  
No  
Conversion Disable: on-the-fly. Conversion Enable: hardware update blocked  
The RESTORE_USER_ALL command instructs the the TPS544C26 device to copy the entire contents of the  
non-volatile User Store Memory to the matching locations in the Operating Memory. Any items in Operating  
Memory that do not have matching locations in the User Store Memory are ignored (for example the STATUS  
registers). This operation overwrite any value set through a pin detection after the last power-cycle, such as the  
I2C address set through the I2C_ADDR pin.  
Writing a "1" into bit[0] of this command executes the restore operation. When acknowledged, the I2C serial  
interface is disabled while the restore takes place and all frames will be NACKed during that time. The bit clears  
itself after the write.  
备注  
Using the RESTORE_USER_ALL command while the SW switching is enabled is not allowed,  
meaning a NACK response is provided by the device. RESTORE_USER_ALL command can be  
executed after the SW switching is disabled.  
Return to Supported I2C and Default Values.  
7-6. (16h) RESTORE_USER_ALL Register Map  
7
6
5
4
3
2
1
0
W
W
W
W
W
W
W
W
Reserved  
RESTORE  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.6 (33h) FREQUENCY_SWITCH  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
33h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
FREQUENCY_SWITCH sets the switching frequency of the active device.  
Return to Supported I2C and Default Values.  
7-7. (33h) FREQUENCY_SWITCH Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R/W  
R/W  
Reserved  
SEL_FSW  
LEGEND: R/W = Read/Write; R = Read only  
7-23. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:2  
Reserved  
R
000000b Not used and always set to 0.  
00b: switching frequency is set to 0.6 MHz  
01b: switching frequency is set to 0.8 MHz  
10b: switching frequency is set to 1.0 MHz  
11b: switching frequency is set to 1.2 MHz  
1:0  
SEL_FSW  
R/W  
NVM  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.7 (35h) VIN_ON  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
35h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The VIN_ON command sets the value of the PVIN input voltage, in Volts, at which the unit starts power  
conversion.  
Return to Supported I2C and Default Values.  
7-8. (35h) VIN_ON Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R/W  
R/W  
Reserved  
PVIN_ON  
LEGEND: R/W = Read/Write; R = Read only  
7-24. Register Field Descriptions  
Bit  
7:2  
1:0  
Field  
Access  
R
Reset  
Description  
Reserved  
PVIN_ON  
000000b Not used and always set to 0.  
R/W  
NVM  
00b: ON threshold is PVIN = 10 V.  
01b: ON threshold is PVIN = 9 V  
10b: ON threshold is PVIN = 8 V  
11b: ON threshold is determined by both PVIN and VCC conditions. When this  
option is selected, both PVIN > 2.55 V and VCC > 3.8 V conditions have to be  
satisfied to enable the power conversion.  
Note that the PVIN_UVF condition in (7Ch) STATUS_INPUT register is masked until the sensed input voltage  
exceeds the VIN_ON threshold for the first time following a power-on reset. The EN pin toggles and NVM store  
or restore operations do not reset this masking.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.8 (36h) VIN_OFF  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
36h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The VIN_OFF command sets the value of the PVIN input voltage, in Volts, at which the unit must stop power  
conversion. If the power conversion enable conditions as defined by (02h) ON_OFF_CONFIG are met and PVIN  
is less than the selected VIN_OFF threshold, the power conversion turns off and the PVIN_UVF bit in (7Ch)  
STATUS_INPUT is set.  
Return to Supported I2C and Default Values.  
7-9. (36h) VIN_OFF Register Map  
7
6
5
R
4
3
2
1
0
R
R
R
R
R/W  
R/W  
R/W  
Reserved  
PVIN_OFF  
LEGEND: R/W = Read/Write; R = Read only  
7-25. Register Field Descriptions  
Bit  
7:3  
2:0  
Field  
Access  
R
Reset  
00000b  
NVM  
Description  
Reserved  
PVIN_OFF  
Not used and always set to 0.  
R/W  
000b: OFF threshold is PVIN = 4.2 V  
001b: OFF threshold is PVIN = 9.5 V  
010b: OFF threshold is PVIN = 8.5 V  
011b: OFF threshold is PVIN = 7.5 V  
100b: OFF threshold is PVIN = 6.5 V  
101b: OFF threshold is PVIN = 5.5 V  
110b: OFF threshold is PVIN = 4.2 V  
111b: OFF threshold is determined by both PVIN and VDRV conditions. When this  
option is selected, either PVIN 2.3 V or VDRV 3.4 V disables the power  
conversion.  
While it is possible to set (36h) VIN_OFF threshold greater than (35h) VIN_ON threshold, it is not advisable and  
can produce rapid enabling and disabling of conversion and undesirable operation. Please set (35h) VIN_ON  
threshold always greater than (36h) VIN_OFF threshold.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.9 (40h) VOUT_OV_FAULT_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
40h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The VOUT_OV_FAULT_LIMIT command sets the value of the output voltage sensed at the (VOSNS GOSNS)  
pins that causes an output overvoltage fault. SEL_OVF bits set an overvoltage fault threshold relative to the  
current VOUT setting that is commanded by either SVID SetVID command or I2C (A6h) VOUT_CMD. The VOUT  
Tracking OVF function is activated after the soft-start ramp completes.  
Following an overvoltage fault condition, the device responds according to (41h) VOUT_OV_FAULT_RESP. Due  
to the lack of an I2C alert pin, the TPS544C26 device does not have a way to notify the host.  
Return to Supported I2C and Default Values.  
7-10. (40h) VOUT_OV_FAULT_LIMIT Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R/W  
R/W  
Reserved  
SEL_OVF  
LEGEND: R/W = Read/Write; R = Read only  
7-26. Register Field Descriptions  
Bit  
7:2  
1:0  
Field  
Access  
R
Reset  
000000b Not used and always set to 0.  
NVM Sets the overvoltage fault threshold.  
Description  
Reserved  
SEL_OVF  
R/W  
00b: VOUT Tracking OVF threshold = +100 mV  
01b: VOUT Tracking OVF threshold = +150 mV  
10b: VOUT Tracking OVF threshold = +200 mV  
11b: VOUT Tracking OVF threshold = +300 mV  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.10 (41h) VOUT_OV_FAULT_RESPONSE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
41h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The VOUT_OV_FAULT_RESPONSE command instructs the device on what action to take in response to an  
output overvoltage fault. Upon triggering the tracking overvoltage fault (a.k.a VOUT Tracking OVF), the  
TPS544C26 device responds according to the RESTART bit in this register, and the following actions are taken:  
Set the OVF bit in the (7Ah) STATUS_VOUT register.  
Enter continuous Negative Overcurrent (NOC) operation immediately, and the delay from the VOUT Tracking  
OVF detection circuit is minimized (less than 1 µs).  
Due to the lack of an I2C alert pin, the TPS544C26 device does not have a way to notify the host.  
The selected Tracking OVF response in this VOUT_OV_FAULT_RESP register does not affect the response for  
a Fixed OVF event.  
Return to Supported I2C and Default Values.  
7-11. (41h) VOUT_OV_FAULT_RESPONSE Register Map  
7
6
5
4
3
2
1
R
0
R
R
R
R
R/W  
R
R
Reserved  
RESTART  
Reserved  
LEGEND: R/W = Read/Write; R = Read only  
7-27. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:4  
Reserved  
R
0000b  
Not used and always set to 0.  
VOUT Tracking OVF response selection  
0b: Latch-off after the fault. A VCC power cycle or EN toggle can restart the power  
conversion.  
3
RESTART  
Reserved  
R/W  
R
NVM  
000b  
1b: Automatically restart after a delay of 56 ms, without limitation on the number of  
restart attempts.  
2:0  
Not used and always set to 0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.11 (42h) VOUT_OV_WARN_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
42h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The VOUT_OV_WARN_LIMIT command sets the value of the output voltage sensed at the (VOSNS GOSNS)  
pins that causes an output voltage high warning. This value is typically less than the output overvoltage fault  
threshold. The SEL_OVW bits set an overvoltage warning threshold relative to the current VOUT setting that is  
commanded by either SVID SetVID command or I2C (A6h) VOUT_CMD.  
When the sensed output voltage exceeds the VOUT Tracking OVW threshold, the OVW bit in the (7Ah)  
STATUS_VOUT register is set. Due to the lack of an I2C alert pin, the TPS544C26 device does not have a way  
to notify the host.  
Return to Supported I2C and Default Values.  
7-12. (42h) VOUT_OV_WARN_LIMIT Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R/W  
R/W  
Reserved  
SEL_OVW  
LEGEND: R/W = Read/Write; R = Read only  
7-28. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
000000b Not used and always set to 0.  
Sets the overvoltage warning threshold.  
Description  
7:2  
Reserved  
R
00b: VOUT Tracking OVW threshold = +100 mV  
01b: VOUT Tracking OVW threshold = +150 mV  
10b: VOUT Tracking OVW threshold = +200 mV  
11b: VOUT Tracking OVW threshold = +300 mV  
1:0  
SEL_OVW  
R/W  
NVM  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.12 (43h) VOUT_UV_WARN_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
43h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The VOUT_UV_WARN_LIMIT command sets the value of the output voltage sensed at the (VOSNS GOSNS)  
pins that causes an output voltage low warning. This value is typically less negative than the output undervoltage  
fault threshold. The SEL_UVW bits set an undervoltage warning threshold relative to the current VOUT setting  
that is commanded by either SVID SetVID command or I2C (A6h) VOUT_CMD.  
When the sensed output voltage falls below the VOUT Tracking UVW threshold, the UVW bit in the (7Ah)  
STATUS_VOUT register is set. Due to the lack of an I2C alert pin, the TPS544C26 device does not have a way  
to notify the host.  
Return to Supported I2C and Default Values.  
7-13. (43h) VOUT_UV_WARN_LIMIT Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R/W  
R/W  
Reserved  
SEL_UVW  
LEGEND: R/W = Read/Write; R = Read only  
7-29. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:2  
Reserved  
R
000000b Not used and always set to 0.  
Sets the undervoltage warning threshold.  
00b: VOUT Tracking UVW threshold = 100 mV  
01b: VOUT Tracking UVW threshold = 150 mV  
10b: VOUT Tracking UVW threshold = 200 mV  
11b: VOUT Tracking UVW threshold = 300 mV  
1:0  
SEL_UVW  
R/W  
NVM  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.13 (44h) VOUT_UV_FAULT_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
44h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The VOUT_UV_FAULT_LIMIT command sets the value of the output voltage sensed at the (VOSNS GOSNS)  
pins that causes an output undervoltage fault. The SEL_UVF bits set an undervoltage fault threshold relative to  
the current VOUT setting that is commanded by either SVID SetVID command or I2C (A6h) VOUT_CMD. The  
VOUT Tracking UVF function is activated after the soft-start ramp completes.  
When the undervoltage fault condition is triggered, the device responds according to (45h)  
VOUT_UV_FAULT_RESPONSE. Due to the lack of an I2C alert pin, the TPS544C26 device does not have a  
way to notify the host.  
Return to Supported I2C and Default Values.  
7-14. (44h) VOUT_UV_FAULT_LIMIT Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R/W  
R/W  
Reserved  
SEL_UVF  
LEGEND: R/W = Read/Write; R = Read only  
7-30. Register Field Descriptions  
Bit  
7:2  
1:0  
Field  
Access  
R
Reset  
000000b Not used and always set to 0.  
NVM Sets the undervoltage fault threshold.  
Description  
Reserved  
SEL_UVF  
R/W  
00b: VOUT Tracking UVF threshold = 150 mV  
01b: VOUT Tracking UVF threshold = 200 mV  
10b: VOUT Tracking UVF threshold = 200 mV  
11b: VOUT Tracking UVF threshold = 300 mV  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.14 (45h) VOUT_UV_FAULT_RESPONSE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
45h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The VOUT_UV_FAULT_RESPONSE command instructs the device on what action to take in response to an  
output undervoltage fault. Upon triggering the tracking undervoltage fault (a.k.a VOUT Tracking UVF), the  
TPS544C26 device responds according to the RESTART bit in this register, and the following actions are taken:  
Set the UVF bit in the (7Ah) STATUS_VOUT register.  
Start the UVF Response Delay selected in this register. During the UVF Response Delay, if the output voltage  
(VOSNS GOSNS) rises above the UVF threshold, thus not qualified for a UVF event, the UVF response  
delay timer resets to zero. When the VOUT drops below the UVF threshold again, the UVF response delay  
timer re-starts from zero.  
Due to the lack of an I2C alert pin, the TPS544C26 device does not have a way to notify the host.  
Return to Supported I2C and Default Values.  
7-15. (45h) VOUT_UV_FAULT_RESPONSE Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R/W  
R
R/W  
R/W  
Reserved  
RESTART  
Reserved  
RESPONSE_DELAY  
LEGEND: R/W = Read/Write; R = Read only  
7-31. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:4  
Reserved  
R
0000b  
Not used and always set to 0.  
VOUT Tracking UVF response selection  
0b: Latch-off after the fault. A VCC power cycle or EN toggle can restart the power  
conversion.  
3
2
RESTART  
Reserved  
R/W  
R
NVM  
0b  
1b: Automatically restart after a delay of 56 ms, without limitation on the number of  
restart attempts.  
Not used and always set to 0.  
VOUT Tracking UVF Response Delay selection  
00b: UVF Response Delay = 2 µs  
RESPONSE  
_DELAY  
00b: UVF Response Delay = 16 µs  
00b: UVF Response Delay = 64 µs  
00b: UVF Response Delay = 256 µs  
1:0  
R/W  
NVM  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.15 (46h) IOUT_OC_FAULT_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
46h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM or Pin Detection  
On-the-fly  
NVM Backup:  
Updates:  
The IOUT_OC_FAULT_LIMIT command sets the value of the output current that causes the overcurrent detector  
to indicate an overcurrent fault condition. The thresholds selected here are compared to the sensed low-side  
valley current. See Overcurrent Limit and Low-side Current Sense for more details.  
Return to Supported I2C and Default Values.  
7-16. (46h) IOUT_OC_FAULT_LIMIT Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only  
7-32. Register Field Descriptions  
Bit  
7:4  
3:0  
Field  
Access  
R
Reset  
0000b  
NVM  
Description  
Reserved  
SEL_OCL  
Not used and always set to 0.  
R/W  
These bits select the IOUT valley current limiting threshold.  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.16 (4Fh) OT_FAULT_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
4Fh  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The OT_FAULT_LIMIT command sets the temperature of the unit, at which, it indicates an overtemperature fault  
condition. The unit of this command is degrees Celsius. This feature utilizes a digital comparator that compares  
the output of the IC TEMPERATURE telemetry to the fault threshold selected in this register.  
The device response to an overtemperature event is described in (50h) OT_FAULT_RESPONSE.  
Return to Supported I2C and Default Values.  
7-17. (4Fh) OT_FAULT_LIMIT Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R/W  
R/W  
R/W  
Reserved  
SEL_OTF  
LEGEND: R/W = Read/Write; R = Read only  
7-33. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:3  
Reserved  
R
00000b  
Not used and always set to 0.  
These bits select the OT fault threshold which is compared with the output of the IC  
TEMP telemetry.  
000b: OTF threshold = 115 °C  
001b: OTF threshold = 120 °C  
010b: OTF threshold = 125 °C  
011b: OTF threshold = 130 °C  
100b: OTF threshold = 135 °C  
101b: OTF threshold = 140 °C  
110b: OTF threshold = 145 °C  
111b: OTF threshold = 150 °C  
2:0  
SEL_OTF  
R/W  
NVM  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.17 (50h) OT_FAULT_RESPONSE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
50h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The (50) OT_FAULT_RESPONSE command instructs the device on what action to take in response to an  
overtemperature fault. Upon triggering the overtemperature fault, the device responds per the RESTART bit in  
this register, and sets the OTF_PROG bit in the (7Dh) STATUS_TEMPERATURE register. Due to the lack of an  
I2C alert pin, the device does not have a way to notify the host.  
Return to Supported I2C and Default Values.  
7-18. (50h) OT_FAULT_RESPONSE Register Map  
7
6
5
4
3
2
1
R
0
R
R
R
R
R/W  
R
R
Reserved  
RESTART  
Reserved  
LEGEND: R/W = Read/Write; R = Read only  
7-34. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:4  
Reserved  
R
0000b  
Not used and always set to 0.  
This bit selects the response to a programmable OT fault condition  
0b: Latch-off after the fault. A VCC power cycle or EN toggle can restart the power  
conversion.  
3
RESTART  
Reserved  
R/W  
R
NVM  
000b  
1b: Automatically restart after a delay of 56 ms, without limitation on the number of  
restart attempts.  
2:0  
Not used and always set to 0.  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.18 (51h) OT_WARN_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
51h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The OT_WARN_LIMIT command sets the temperature of the unit, at which, it indicates an overtemperature  
warning alarm. The unit of this command is degrees Celsius. This feature utilizes a digital comparator that  
compares the output of the IC TEMPERATURE telemetry to the warning threshold selected in this register.  
Upon triggering the overtemperature fault, the device sets the OTW_PROG bit in the (7Dh)  
STATUS_TEMPERATURE register. Due to the lack of an I2C alert pin, the TPS544C26 device does not have a  
way to notify the host.  
Return to Supported I2C and Default Values.  
7-19. (51h) OT_WARN_LIMIT Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R/W  
R/W  
R/W  
Reserved  
SEL_OTW  
LEGEND: R/W = Read/Write; R = Read only  
7-35. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:3  
Reserved  
R
00000b  
Not used and always set to 0.  
These bits select the OT warning threshold which is compared with the output of  
the IC TEMP telemetry.  
000b: OTW threshold = 85 °C  
001b: OTW threshold = 95 °C  
010b: OTW threshold = 100 °C  
011b: OTW threshold = 105 °C  
100b: OTW threshold = 110 °C  
101b: OTW threshold = 115 °C  
110b: OTW threshold = 125 °C  
111b: OTW threshold = 135 °C  
2:0  
SEL_OTW  
R/W  
NVM  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.19 (55h) VIN_OV_FAULT_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
55h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The VIN_OV_FAULT_LIMIT command sets the PVIN voltage, in volts, when a VIN_OV_FAULT is declared. The  
response to a detected VIN_OV_FAULT is latch-off always. (55h) VIN_OV_FAULT_LIMIT is typically used to  
stop switching in the event of excessive input voltage, which can result in over-stress damage to the power FETs  
due to ringing on the SW node. Upon triggering the PVIN overvoltage fault, the device sets the PVIN_OVF bit in  
the (7C) STATUS_INPUT register.  
Due to the lack of an I2C alert pin, the device does not have a way to notify the host.  
Return to Supported I2C and Default Values.  
7-20. (55h) VIN_OV_FAULT_LIMIT Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R/W  
PVIN_OVF  
LEGEND: R/W = Read/Write; R = Read only  
7-36. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:1  
Reserved  
R
0000000b Not used and always set to 0.  
This bit selects the PVIN_OVF rising threshold. The falling threshold is always 13.5  
V.  
0
PVIN_OVF  
R/W  
NVM  
0b: PVIN_OVF rising threshold = 16.5 V  
1b: PVIN_OVF rising threshold = 18.5 V  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.20 (60h) TON_DELAY  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
60h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The TON_DELAY command sets the time, in milliseconds, from when a start condition is received (as  
programmed by the (02h) ON_OFF_CONFIG command) until the output voltage starts to rise.  
Return to Supported I2C and Default Values.  
7-21. (60h) TON_DELAY Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R/W  
R/W  
Reserved  
TON_DELAY  
LEGEND: R/W = Read/Write; R = Read only  
7-37. Register Field Descriptions  
Bit  
7:2  
1:0  
Field  
Access  
R
Reset  
Description  
Reserved  
000000b Not used and always set to 0.  
These bits select the turn-on delay options before enabling the SW switching.  
00b: TON_DELAY time = 0.5 ms  
TON_DELA  
Y
R/W  
NVM  
01b: TON_DELAY time = 1 ms  
10b: TON_DELAY time = 1.5 ms  
11b: TON_DELAY time = 2 ms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.21 (61h) TON_RISE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
61h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM or Pin Detection  
On-the-fly  
NVM Backup:  
Updates:  
The TON_RISE command sets the time, in milliseconds, from when the output starts to rise until the voltage has  
entered the regulation band, which effectively sets the slew rate of the reference DAC during the soft-start  
period. Note that the soft-start time is equal to TON_RISE selection only when the output voltage is controlled by  
SVID bus. The soft-start time varies from the TON_RISE selection when I2C_OFFSET is involved or (A6h)  
VOUT_CMD is used for boot up. See section Startup and 7-7 for more details.  
Return to Supported I2C and Default Values.  
7-22. (61h) TON_RISE Register Map  
7
6
5
R
4
3
2
1
0
R
R
R
R
R/W  
R/W  
R/W  
Reserved  
TON_RISE  
LEGEND: R/W = Read/Write; R = Read only  
7-38. Register Field Descriptions  
Bit  
7:3  
2:0  
Field  
Access  
R
Reset  
00000b  
NVM  
Description  
Reserved  
TON_RISE  
Not used and always set to 0.  
R/W  
These bits select the soft-start time options.  
000b: TON_RISE time = 1 ms  
001b: TON_RISE time = 2 ms  
010b: TON_RISE time = 4 ms  
011b: TON_RISE time = 8 ms  
100b to 111b: TON_RISE time = 16 ms  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.22 (64h) TOFF_DELAY  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
64h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The TOFF_DELAY command sets the time, in milliseconds, from when a stop condition is received (as  
programmed by the (02h) ON_OFF_CONFIG command) until the device starts the soft-stop operation. When the  
soft-stop feature is disabled through the EN_SOFT_STOP bit in (A0h) SYS_CFG_USER1 register, the  
TOFF_DELAY time is automatically set to 0 ms, thus the device stops switching (tri-state power FETs)  
immediately when a stop condition is received.  
Return to Supported I2C and Default Values.  
7-23. (64h) TOFF_DELAY Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R/W  
R/W  
Reserved  
TOFF_DELAY  
LEGEND: R/W = Read/Write; R = Read only  
7-39. Register Field Descriptions  
Bit  
7:2  
1:0  
Field  
Access  
R
Reset  
Description  
Reserved  
000000b Not used and always set to 0.  
These bits select the turn-off delay options before starting soft-stop operation.  
When soft-stop feature is disabled the TOFF_DELAY is automatically set to 0 ms.  
00b: TOFF_DELAY time = 0 ms  
TOFF_DEL  
AY  
R/W  
NVM  
01b: TOFF_DELAY time = 1 ms  
10b: TOFF_DELAY time = 1.5 ms  
11b: TOFF_DELAY time = 2 ms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.23 (65h) TOFF_FALL  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
65h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The TOFF_FALL command sets the time, in milliseconds, from the end of the turn-off delay time until the  
reference DAC is commanded to 0 mV. This command is used with the TPS544C26 device whose output can  
sink enough current to cause the output voltage to decrease at a controlled rate, which effectively sets the slew  
rate of the reference DAC during the soft-off period. The VOUT fall time is actually not equal to TOFF_FALL  
value since the device stops SW switching once the output voltage is discharged to 200 mV, and the fall time is  
more for setting the reference DAC slew rate. See Shutdown and 7-8 for more details.  
Return to Supported I2C and Default Values.  
7-24. (65h) TOFF_FALL Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R/W  
R/W  
Reserved  
TOFF_FALL  
LEGEND: R/W = Read/Write; R = Read only  
7-40. Register Field Descriptions  
Bit  
7:2  
1:0  
Field  
Access  
R
Reset  
Description  
Reserved  
TOFF_FALL  
000000b Not used and always set to 0.  
These bits select the soft-stop time option before disabling the SW switching and  
tri-state the power FETs.  
R/W  
NVM  
00b: TOFF_FALL time = 0.5 ms  
01b: TOFF_FALL time = 1 ms  
10b: TOFF_FALL time = 2 ms  
11b: TOFF_FALL time = 4 ms  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.24 (6Bh) PIN_OP_WARN_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
6Bh  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The PIN_OP_WARN_LIMIT command sets the value of the input power, in watts, that causes a warning that the  
input power is high. The PIN_MAX value which is the maximum input power threshold is always the same as  
PIN_OP_WARN_LIMIT value. This feature utilizes a digital comparator that compares the output of the PIN  
telemetry to the fault threshold selected in this register.  
In response to the PIN_OP_WARN_LIMIT being exceeded, the device sets the PIN_OPW bit in the (7Ch)  
STATUS_INPUT register.  
Return to Supported I2C and Default Values.  
7-25. (6Bh) PIN_OP_WARN_LIMIT Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R/W  
R/W  
R/W  
Reserved  
PIN_OPW  
LEGEND: R/W = Read/Write; R = Read only  
7-41. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:3  
Reserved  
R
00000b  
Not used and always set to 0.  
These bits select the PIN_OPW and PIN_MAX thresholds.  
000b: PIN_OPW = PIN_MAX = 510 W  
001b: PIN_OPW = PIN_MAX = 480 W  
010b: PIN_OPW = PIN_MAX = 420 W  
011b: PIN_OPW = PIN_MAX = 360 W  
100b: PIN_OPW = PIN_MAX = 300 W  
101b: PIN_OPW = PIN_MAX = 240 W  
110b: PIN_OPW = PIN_MAX = 180 W  
111b: PIN_OPW = PIN_MAX = 120 W  
2:0  
PIN_OPW  
R/W  
NVM  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.25 (7Ah) STATUS_VOUT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
7Ah  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
No  
NVM Backup:  
Updates:  
On-the-fly  
The STATUS_VOUT command returns one data byte with contents as follows. All supported bits can be cleared  
either by CLEAR_FAULTS, or individually by writing a "1" to the (7Ah) STATUS_VOUT register in their position. If  
a fault condition is still present when the corresponding bit is cleared, the fault bit is immediately set again.  
Return to Supported I2C and Default Values.  
7-26. (7Ah) STATUS_VOUT Register Map  
7
6
5
4
3
R
0
2
R
0
1
R
0
0
R
0
R/W  
R/W  
R/W  
R/W  
VOUT_OVF  
VOUT_OVW  
VOUT_UVW  
VOUT_UVF  
LEGEND: R/W = Read/Write; R = Read only  
7-42. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
0b: Latched flag indicating a VOUT OV fault has not occurred.  
7
VOUT_ OVF  
R/W  
0b  
1b: Latched flag indicating either a VOUT Fixed OV fault or a VOUT Tracking OV  
fault has occurred.  
0b: Latched flag indicating a VOUT Tracking OV warn has not occurred.  
VOUT_  
OVW  
6
5
R/W  
R/W  
0b  
0b  
1b: Latched flag indicating a VOUT Tracking OV warn has occurred.  
0b: Latched flag indicating a VOUT Tracking UV warn has not occurred.  
VOUT_  
UVW  
1b: Latched flag indicating a VOUT Tracking UV warn has occurred.  
0b: Latched flag indicating a VOUT Tracking UV fault has not occurred.  
4
VOUT_ UVF  
R/W  
R
0b  
1b: Latched flag indicating a VOUT Tracking UV fault has occurred.  
3:0  
Not  
0000b  
Not supported and always set to 0.  
supported  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.26 (7Bh) STATUS_IOUT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
7Bh  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
No  
NVM Backup:  
Updates:  
On-the-fly  
The STATUS_IOUT command returns one data byte with contents as follows. All supported bits can be cleared  
either by CLEAR_FAULTS, or individually by writing a "1" to the (7Bh) STATUS_IOUT register in their position. If  
a fault condition is still present when the corresponding bit is cleared, the fault bit is immediately set again.  
Return to Supported I2C and Default Values.  
7-27. (7Bh) STATUS_IOUT Register Map  
7
6
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
R
0
R/W  
R/W  
IOUT_OCL  
IOUT_OCUV  
LEGEND: R/W = Read/Write; R = Read only  
7-43. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
0b: Latched flag indicating low-side valley OC limit has not occurred.  
7
IOUT_ OCL  
R
0b  
1b: Latched flag indicating low-side valley OC limit has occurred.  
0b: Latched flag indicating both low-side valley OC limit and VOUT Tracking UV  
fault have not occurred.  
IOUT_OCU  
V
6
R/W  
R
0b  
1b: Latched flag indicating both low-side valley OC limit and VOUT Tracking UV  
fault have occurred.  
5:0  
Not  
000000b Not supported and always set to 0.  
supported  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.27 (7Ch) STATUS_INPUT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
7Ch  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
No  
NVM Backup:  
Updates:  
On-the-fly  
The STATUS_INPUT command returns one data byte with contents as follows. All supported bits can be cleared  
either by CLEAR_FAULTS, or individually by writing a "1" to the (7Ch) STATUS_INPUT register in their position.  
If a fault condition is still present when the corresponding bit is cleared, the fault bit is immediately set again.  
Return to Supported I2C and Default Values.  
7-28. (7Ch) STATUS_INPUT Register Map  
7
6
R
0
5
R
0
4
3
R
0
2
R
0
1
R
0
0
R/W  
R/W  
R/W  
PVIN_OVF  
PVIN_UVF  
PIN_OPW  
LEGEND: R/W = Read/Write; R = Read only  
7-44. Register Field Descriptions  
Bit  
7
Field  
Access  
R/W  
R
Reset  
Description  
0b: Latched flag indicating a PVIN OV fault has not occurred.  
PVIN_OVF  
0b  
1b: Latched flag indicating a PVIN OV fault has occurred.  
6:5  
Not  
00b  
Not supported and always set to 0.  
supported  
0b: Latched flag indicating a PVIN UV fault has not occurred.  
4
PVIN_UVF  
R/W  
R
0b  
1b: Latched flag indicating a PVIN UV fault has occurred.  
3:1  
Not  
000b  
Not supported and always set to 0.  
supported  
0b: Latched flag indicating a PIN OP event has not occurred.  
0
PIN_ OPW  
R/W  
0b  
1b: Latched flag indicating a PIN OP event has occurred.  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.28 (7Dh) STATUS_TEMPERATURE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
7Dh  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
No  
NVM Backup:  
Updates:  
On-the-fly  
The STATUS_TEMPERATURE command returns one data byte with contents as follows. All supported bits can  
be cleared either by CLEAR_FAULTS, or individually by writing a "1" to the (7Dh) STATUS_TEMPERATURE  
register in their position. If a fault condition is still present when the corresponding bit is cleared, the fault bit is  
immediately set again.  
Return to Supported I2C and Default Values.  
7-29. (7Dh) STATUS_TEMPERATURE Register Map  
7
6
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
R
0
R/W  
R/W  
OTF_PROG  
OTW_PROG  
LEGEND: R/W = Read/Write; R = Read only  
7-45. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
0b: Latched flag indicating an OT fault has not occurred.  
1b: Latched flag indicating an OT fault has occurred on the Controller die.  
7
OTF_PROG  
R/W  
0b  
Note: A digital comparator on the Controller die is utilized to compare the output of  
the IC TEMP telemetry to the fault threshold selected in (4Fh) OT_FAULT_LIMIT  
register. This bit has no relationship with the overtemperature detection  
implemented on the Power Stage (PS) die.  
6
OTW_PRO  
G
R/W  
0b  
0b: Latched flag indicating an OT warn has not occurred.  
1b: Latched flag indicating an OT warn has occurred on the Controller die.  
Note: A digital comparator on the Controller die is utilized to compare the output of  
the IC TEMP telemetry to the warning threshold selected in (51h)  
OT_WARN_LIMIT register. This bit has no relationship with the overtemperature  
detection implemented on the Power Stage (PS) die.  
5:0  
Not  
R
000000b Not supported and always set to 0.  
supported  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.29 (80h) STATUS_MFR_SPECIFIC  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
80h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
No  
NVM Backup:  
Updates:  
On-the-fly  
The STATUS_MFR_SPECIFIC command returns one data byte with contents as follows. All supported bits,  
except DCM bit, can be cleared either by CLEAR_FAULTS, or individually by writing a "1" to the (80h)  
STATUS_MFR_SPECIFIC register in their position. If a fault condition is still present when the corresponding bit  
is cleared, the fault bit is immediately set again.  
Bit[7] DCM is a LIVE bit updated by the analog detection circuit, which continuously monitors the output of the  
zero-cross comparator. During CCM operation, this bit shows a value of "0". Once the device enters DCM  
operation this bit is set showing a value of "1".  
Return to Supported I2C and Default Values.  
7-30. (80h) STATUS_MFR_SPECIFIC Register Map  
7
6
5
4
3
2
1
0
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PS_COMM_W RESTORE_ER  
RN  
PS_OTF_ANAL  
OG  
DCM  
OTF_ANALOG  
PS_FAULT  
NOC  
VDRV_UVF  
R
LEGEND: R/W = Read/Write; R = Read only  
7-46. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
DCM  
R/W  
0b  
A LIVE bit updated by the analog detection circuit, which continuously monitors the  
output of the zero-cross comparator.  
0b: Un-latched flag indicating the the device is under CCM operation.  
1b: Un-latched flag indicating the the device is under DCM operation.  
6
OTF_ANAL  
OG  
R/W  
0b  
0b: Latched flag indicating an OT fault has not occurred.  
1b: Latched flag indicating an OT fault has occurred on the Controller die.  
Note: An analog comparator on the Controller die is utilized to compare the output  
of the IC temperature sensing circuit to a fixed threshold (166 °C typical). This bit  
has no relationship with the overtemperature detection implemented on the Power  
Stage (PS) die.  
5
4
PS_FAULT  
R/W  
R/W  
0b  
0b  
0b: Latched flag indicating no fault has occurred on Power Stage (PS) die.  
1b: Latched flag indicating at least one fault has occurred on the PS die.  
PS_COMM_  
WRN  
0b: Latched flag indicating no error has occurred for the communications between  
the Controller and PS die.  
1b: Latched flag indicating a communications error has occurred between the  
Controller and PS die.  
Note: A VCC reset (power cycle) is recommended when this bit is set.  
3
RESTORE_  
ERR  
R/W  
0b:  
0b: Latched flag indicating no error has occurred during the initial restore from  
NVM operation (copy the entire contents of the non-volatile User Store Memory to  
the matching locations in the Operating Memory).  
1b: Latched flag indicating an error has occurred during the initial restore from  
NVM operation.  
Note: The restore operation mentioned here refers to the one-time restore  
operation during the initial power-on. This bit doesn't validate the  
RESTORE_USER_ALL operation. A VCC reset (power cycle) is recommended  
when this bit is set.  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-46. Register Field Descriptions (continued)  
Bit  
Field  
Access  
Reset  
Description  
2
NOC  
R/W  
0b  
0b: Latched flag indicating no NOC operation has occurred.  
1b: Latched flag indicating at least one cycle of NOC operation has occurred.  
1
0
PS_OTF_A  
NALOG  
R/W  
0b  
0b: Un-latched flag indicating an OT fault has not occurred.  
1b: Un-latched flag indicating an OT fault has occurred on the Power Stage (PS)  
die.  
Note: An analog comparator on the Power Stage die is utilized to compare the  
output of the IC temperature sensing circuit to a fixed threshold (166 °C typical).  
This bit has no relationship with the overtemperature detection implemented on the  
Controller die.  
VDRV_UVF  
R/W  
0b  
0b: Latched flag indicating a VDRV UV fault has not occurred.  
1b: Latched flag indicating a VDRV UV fault has occurred.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.30 (88h) READ_VIN  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
88h  
N/A  
Read Byte  
Unsigned Binary (1 byte)  
NVM Backup:  
Update Rate:  
No  
190 µs  
8 V 16 V  
Supported Range:  
The READ_VIN command returns input voltage in Volts. See Telemetry for more details.  
Return to Supported I2C and Default Values.  
7-31. (88h) READ_VIN Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_VIN  
LEGEND: R/W = Read/Write; R = Read only  
7-47. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:0  
READ_  
VIN_  
R
Input  
voltage  
Input voltage (on pin 4 VINSENM) reading. See Telemetry for more details.  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.31 (89h) READ_IIN  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
89h  
N/A  
Read Byte  
Unsigned Binary (1 byte)  
NVM Backup:  
Update Rate:  
No  
95 µs  
Supported Range:  
0 A to 40 A (if PIN_SENSE_RES = 05h)  
The READ_IIN command returns the measured input current in Amperes. See Telemetry for more details.  
Return to Supported I2C and Default Values.  
7-32. (89h) READ_IIN Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_IIN  
LEGEND: R/W = Read/Write; R = Read only  
7-48. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:0  
READ_IIN  
R
Current  
Status  
Input current (over the external sensing resistor) reading. See Telemetry for more  
details.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.32 (8Bh) READ_VOUT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
8Bh  
N/A  
Read Byte  
Unsigned Binary (1 byte)  
NVM Backup:  
Update Rate:  
No  
190 µs  
VOUT 5 mV step: up to 1.6 V  
VOUT 10 mV step: up to 3.2 V  
Supported Range  
The READ_VOUT command returns the actual, measured output voltage (VOSNSGOSNS) in Volts. See  
Telemetry for more details.  
Return to Supported I2C and Default Values.  
7-33. (8Bh) READ_VOUT Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_VOUT  
LEGEND: R/W = Read/Write; R = Read only  
7-49. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:0  
READ_  
VOUT  
R
Current  
Status  
Output voltage reading. See Telemetry for more details.  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.33 (8Ch) READ_IOUT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
8Ch  
N/A  
Read Byte  
Unsigned Binary (1 byte)  
NVM Backup:  
Update Rate:  
No  
95 µs  
Supported Range:  
0 A to 40 A (if ICC_MAX = 40 A)  
The READ_IOUT command returns the measured output current in Amperes. See Telemetry for more details.  
Return to Supported I2C and Default Values.  
7-34. (8Ch) READ_IOUT Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_IOUT  
LEGEND: R/W = Read/Write; R = Read only  
7-50. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:0  
READ_  
IOUT  
R
Current  
Status  
Output current reading. See Telemetry for more details.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.34 (8Dh) READ_TEMPERATURE_1  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
8Dh  
N/A  
Read Byte  
Unsigned Binary (1 byte)  
No  
NVM Backup:  
Update Rate:  
190 µs  
Supported Range:  
40°C to 150°C  
The READ_TEMPERATURE_1 command returns the Controller die temperature in degrees Celsius. See  
Telemetry for more details.  
Return to Supported I2C and Default Values.  
7-35. (8Dh) READ_TEMPERATURE_1 Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_TEMPERATURE_1  
LEGEND: R/W = Read/Write; R = Read only  
7-51. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:0  
READ_TEM  
PERATURE  
_1  
R
Current  
Status  
Controller die temperture reading. See Telemetry for more details.  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.35 (97h) READ_PIN  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
97h  
N/A  
Read Byte  
Unsigned Binary (1 byte)  
NVM Backup:  
Update Rate:  
No  
95 µs  
Supported Range:  
0 W to 510 W (if PIN_OPW = 510 W)  
The READ_PIN command returns the measured input power, in watts. See Telemetry for more details.  
Return to Supported I2C and Default Values.  
7-36. (97h) READ_PIN Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_PIN  
LEGEND: R/W = Read/Write; R = Read only  
7-52. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:0  
READ_PIN  
R
Current  
Status  
Input power reading. See Telemetry for more details.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.36 (A0h) SYS_CFG_USER1  
Register Address  
Write Transaction:  
Read Transaction:  
Format:  
A0h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Back-up:  
On-the-fly. Note that many of the fields in this register either require the output to be disabled to  
take effect or require (15h) STORE_USER_ALL then VCC reset.  
Updates:  
The SYS_CFG_USER1 command contains miscellaneous bits for the device configuration.  
Return to Supported I2C and Default Values.  
7-37. (A0h) SYS_CFG_USER1 Register Map  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
EN_SOFT_STO  
P
OVRD_SVID_A OVRD_I2C_AD  
DDR DR  
FCCM  
VOUT_CTRL  
VRRDY_DELAY  
LEGEND: R/W = Read/Write; R = Read only  
7-53. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
FCCM(1)  
R/W  
NVM  
0b: Discontinuous conduction mode (DCM) operation at light loads.  
1b: Forced continuous conduction mode (FCCM) operation at light loads.  
6:5  
VOUT_CTRL(1)  
R/W  
NVM  
00b: Output voltage and offset are programmed through the SVID interface. Writes  
to I2C register (A6h) VOUT_CMD are always accepted but do not change the  
output voltage. Writes to (A8h) I2C_OFFST are always NACKed.  
01b: Output voltage is programmed through the SVID interface and offset is  
programmed through the I2C interface (A8h) I2C_OFFST. Writes to SVID (33h)  
OFFSET register are always accepted but do not change the output voltage.  
10b: Output voltage and offset are controlled via I2C register (A6h) VOUT_CMD  
and (A8h) I2C_OFFST, respectively. Writes to SVID (33h) OFFSET register or  
SetVID commands are always accepted but do not change the output voltage.  
11b: Same as 10b.  
4
EN_SOFT_STOP(1)  
R/W  
R/W  
NVM  
NVM  
0b: The SW switching is turned off immediately (ignores TOFF_FALL (soft-stop)  
and TOFF_DELAY is automatically set to 0 ms).  
1b: The SW switching is turned off after going through TOFF_DELAY and  
TOFF_FALL (soft-stop).  
3:2 VRRDY_DELAY(1)  
Program the rising edge delay time from soft start complete to VRRDY pin going  
high:  
00b: 0 ms  
01b: 0.5 ms  
10b: 1.0 ms  
11b: 2.0 ms  
1
0
OVRD_SVID_ADD  
R(2)  
R/W  
R/W  
NVM  
NVM  
This bit is reserved for future usage.  
0b: I2C address is determined by pin-strapping on the I2C_ADDR pin.  
1b: I2C address is determined by NVM backup.  
OVRD_I2C_ADDR  
(2)  
(1) Writes are always accepted and the data is updated; however, in order for this bit to take effect, the device's swtiching must be  
disabled, including the (02h) ON_OFF_CONFIG register cannot be set to "Always on" behavior.  
(2) Writes are always accepted and the data is updated; however, in order for this bit to take effect, send a (15h) STORE_USER_ALL to  
store the new value to NVM then reset the VCC.  
Copyright © 2022 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.37 (A2h) I2C_ADDR  
Register Address  
Write Transaction:  
Read Transaction:  
Format:  
A2h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Back-up:  
Update the I2C_ADDR value, set the OVRD_I2C_ADDR bit, 7.6.4 then VCC reset are all  
Updates:  
required for the device to respond to a new I2C address.  
The I2C_ADDR command reads the I2C device address when the address is determined by pin-strapping. When  
the OVRD_I2C_ADDR bit is set the device address is set by the value written into this register. Update the  
I2C_ADDR value, set the OVRD_I2C_ADDR bit, execute (15h) STORE_USER_ALL then VCC reset are all  
required for the device to respond to a new I2C address  
Return to Supported I2C and Default Values.  
7-38. (A2h) I2C_ADDR Register Map  
7
R
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reserved  
I2C_ADDR  
LEGEND: R/W = Read/Write; R = Read only  
7-54. Register Field Descriptions  
Bit  
7
Field  
Access  
R
Reset  
Description  
Reserved  
I2C_ADDR  
0b  
Reserved for TI usage.  
6:0  
R/W  
NVM  
These bits set the I2C address. By default, the address is set through the resistor  
on the I2C_ADDR pin as described in Setting the I2C Address. The I2C address  
can be changed through these bits together using the OVRD_I2C_ADDR bit. The  
OVRD_I2C_ADDR bit must be set to "1", stored to NVM and the VCC resets  
before the TPS544C26 will respond to the programmed new address.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.38 (A3h) SVID_ADDR  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
A3h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The SVID_ADDR command sets the SVID address for the device.  
Return to Supported I2C and Default Values.  
7-39. (A3h) SVID_ADDR Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R/W  
R/W  
R/W  
R/W  
Reserved  
SVID_ADDR  
LEGEND: R/W = Read/Write; R = Read only  
7-55. Register Field Descriptions  
Bit  
7:4  
3:0  
Field  
Access  
R
Reset  
0000b  
NVM  
Description  
Reserved  
Not used and always set to 0.  
SVID_ADD  
R
R/W  
0000b: SVID address = 00h  
0001b: SVID address = 01h  
0010b: SVID address = 02h  
0011b: SVID address = 03h  
0100b: SVID address = 04h  
0101b: SVID address = 05h  
0110b: SVID address = 06h  
0111b: SVID address = 07h  
1000b: SVID address = 08h  
1001b: SVID address = 09h  
1010b: SVID address = 0Ah  
1011b: SVID address = 0Bh  
1100b: SVID address = 0Ch  
1101b: SVID address = 0Dh  
1110b: Reserved  
1111b: Reserved  
Copyright © 2022 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.39 (A4h) IMON_CAL  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
A4h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Back-up:  
Updates:  
On-the-fly  
The IMON_CAL command contains 2 fields (Gain and Offset) for READ_IOUT (IMON) calibration.  
Return to Supported I2C and Default Values.  
7-40. (A4h) IMON_CAL Register Map  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
IMON_GAIN_CAL  
IMON_OFS_CAL  
LEGEND: R/W = Read/Write; R = Read only  
7-56. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
These bits contains the READ_IOUT (IMON) gain calibration. This field gives  
flexibility to change the gain of nominal reporting by 3.5% to +4%.  
0000b: IMON Gain Adjustment = 3.5%  
0001b: IMON Gain Adjustment = 3.0%  
0010b: IMON Gain Adjustment = 2.5%  
0011b: IMON Gain Adjustment = 2.0%  
0100b: IMON Gain Adjustment = 1.5%  
0101b: IMON Gain Adjustment = 1.0%  
0110b: IMON Gain Adjustment = 0.5%  
0111b: IMON Gain Adjustment = 0%  
1000b: IMON Gain Adjustment = +0.5%  
1001b: IMON Gain Adjustment = +1.0%  
1010b: IMON Gain Adjustment = +1.5%  
1011b: IMON Gain Adjustment = +2.0%  
1100b: IMON Gain Adjustment = +2.5%  
1101b: IMON Gain Adjustment = +3.0%  
1110b: IMON Gain Adjustment = +3.5%  
1111b: IMON Gain Adjustment = +4.0%  
7:4 IMON_GAIN_CAL  
R/W  
NVM  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-56. Register Field Descriptions (continued)  
Bit  
Field  
Access  
Reset  
Description  
These bits contains the READ_IOUT (IMON) offset calibration. This field gives  
flexibility to change the nominal reporting by 2.0 A to 1.75 A. However, special  
attention is needed when setting the offset adjustment to a negative value. The  
calculation from the combination of ADC conversion and calibration register input is  
not clamped at zero. When the calculated value of (ADC conversion result +  
calibration offset value) goes negative, the final reporting value rolls over to a large  
positive value (decreased from the maximum limit). For example, for a case of real  
IOUT = 0.5 A, IMON offset adjutment = 1.0 A, ICC_MAX = 30 A, the final reporting  
value is not clamped at 0 A, instread, the reporting value shows +29.5 A. TI  
suggests using the calibration offset in a way that the calculated value from (ADC  
conversion result + calibration offset value) never goes negative, especially at  
minimum load case.  
0000b - 0111b: Negative offset adjustment but NOT recommended to use if the  
minimum load (IOUT) is 0 A. Contact TI for details in case of negative offset  
adjustment needed.  
3:0  
IMON_OFS_CAL  
R/W  
NVM  
1000b: IMON Offset Adjustment = 0 A  
1001b: IMON Offset Adjustment = +0.25 A  
1010b: IMON Offset Adjustment = +0.50 A  
1011b: IMON Offset Adjustment = +0.75 A  
1100b: IMON Offset Adjustment = +1.00 A  
1101b: IMON Offset Adjustment = +1.25 A  
1110b: IMON Offset Adjustment = +1.50 A  
1111b: IMON Offset Adjustment = +1.75 A  
Copyright © 2022 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.40 (A5h) IIN_CAL  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
A5h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Back-up:  
Updates:  
On-the-fly  
The IIN_CAL command contains 2 fields (Gain and Offset) for READ_IIN calibration.  
Return to Supported I2C and Default Values.  
7-41. (A5h) IIN_CAL Register Map  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
IIN_GAIN_CAL  
IIN_OFS_CAL  
LEGEND: R/W = Read/Write; R = Read only  
7-57. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
These bits contains the READ_IIN gain calibration. This field gives flexibility to  
change the gain of nominal reporting by 3.5% to +4%.  
0000b: IIN Gain Adjustment = 3.5%  
0001b: IIN Gain Adjustment = 3.0%  
0010b: IIN Gain Adjustment = 2.5%  
0011b: IIN Gain Adjustment = 2.0%  
0100b: IIN Gain Adjustment = 1.5%  
0101b: IIN Gain Adjustment = 1.0%  
0110b: IIN Gain Adjustment = 0.5%  
0111b: IIN Gain Adjustment = 0%  
1000b: IIN Gain Adjustment = +0.5%  
1001b: IIN Gain Adjustment = +1.0%  
1010b: IIN Gain Adjustment = +1.5%  
1011b: IIN Gain Adjustment = +2.0%  
1100b: IIN Gain Adjustment = +2.5%  
1101b: IIN Gain Adjustment = +3.0%  
1110b: IIN Gain Adjustment = +3.5%  
1111b: IIN Gain Adjustment = +4.0%  
7:4  
IIN_GAIN_CAL  
R/W  
NVM  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-57. Register Field Descriptions (continued)  
Bit  
Field  
Access  
Reset  
Description  
These bits contains the READ_IIN offset calibration. This field gives flexibility to  
change the nominal reporting by 2.0 A to 1.75 A. However, special attention is  
needed when setting the offset adjustment to a negative value. The calculation  
from the combination of ADC conversion and calibration register input is not  
clamped at zero. When the calculated value of (ADC conversion result + calibration  
offset value) goes negative, the final reporting value rolls over to a large positive  
value (decreased from the maximum limit). For example, for a case of real IIN = 0.5  
A, IIN offset adjutment = 1.0 A, IIN_MAX = 32 A, the final reporting value is not  
clamped at 0 A, instread, the reporting value shows +31.5 A. TI suggests using the  
calibration offset in a way that the calculated value from (ADC conversion result +  
calibration offset value) never goes negative, especially at minimum IIN case.  
0000b - 0111b: Negative offset adjustment but NOT recommended to use if the  
minimum IIN is 0 A. Contact TI for details in case of negative offset adjustment  
needed.  
3:0  
IIN_OFS_CAL  
R/W  
NVM  
1000b: IIN Offset Adjustment = 0 A  
1001b: IIN Offset Adjustment = +0.25 A  
1010b: IIN Offset Adjustment = +0.50 A  
1011b: IIN Offset Adjustment = +0.75 A  
1100b: IIN Offset Adjustment = +1.00 A  
1101b: IIN Offset Adjustment = +1.25 A  
1110b: IIN Offset Adjustment = +1.50 A  
1111b: IIN Offset Adjustment = +1.75 A  
Copyright © 2022 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.41 (A6h) VOUT_CMD  
Register Address  
Write Transaction:  
Read Transaction:  
Format:  
A6h  
Write Byte  
Read Byte  
VID, either 5 mV/LSB or 10 mV/LSB  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
If the VOUT_CTRL bits in (A0h) SYS_CFG_USER1 are set to 10b, VOUT_CMD causes the device to set its  
output voltage to the commanded value. Output voltage changes due to VOUT_CMD occur at ¼ of the fast slew  
rate which is selected in (AFh) DVS_CFG register.  
The VOUT step (LSB) is either 5 mV/LSB or 10 mV/LSB which is determined by PROCOTOL_ID bits in (C2h)  
PROTOCOL_ID_SVID register.  
The device will NACK writes to VOUT_CMD during soft-start and soft-stop. The device will ACK writes to  
VOUT_COMMAND after soft-start has completed. After soft-start has completed, writes to VOUT_CMD are also  
allowed even if the output voltage is still transitioning to a previously programmed VOUT_CMD. The output  
voltage will immediately begin transitioning to the newly programmed VOUT_CMD at the ¼ of the fast slew rate  
which is selected in (AFh) DVS_CFG register. The device does not wait for the prior transition to completed.  
Return to Supported I2C and Default Values.  
7-42. (A6h) VOUT_CMD Register Map  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
VOUT_CMD  
LEGEND: R/W = Read/Write; R = Read only  
7-58. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
Sets the output voltage target via the I2C interface. See 7-6 for the available  
7:0  
VOUT_CMD  
R/W  
NVM  
values.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.42 (A7h) VID_SETTING  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
A7h  
N/A  
Read Byte  
VID, either 5 mV/LSB or 10 mV/LSB  
NVM Backup:  
Update Rate:  
No  
190 µs  
8 V 16 V  
Supported Range:  
The VID_SETTING command returns the last commanded VOUT level either from I2C or from SVID including  
Vboot. The reading in this register is in syncwith the SVID (31h) VID_SETTING register. This register does  
not include any OFFSET contributions from either SVID or I2C space.  
Return to Supported I2C and Default Values.  
7-43. (A7h) VID_SETTING Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
VID_SETTING  
LEGEND: R/W = Read/Write; R = Read only  
7-59. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:0  
VID_SETTI  
NG  
R
Last  
commanded  
VOUT  
These bits tells the last commanded VOUT (VID format).  
Copyright © 2022 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.43 (A8h) I2C_OFFSET  
Register Address  
Write Transaction:  
Read Transaction:  
Format:  
A8h  
Write Byte  
Read Byte  
DIRECT  
EEPROM  
on-the-fly  
NVM Back-up:  
Updates:  
The I2C_OFFSET is used to apply a fixed offset voltage to the output voltage command value. Output voltage  
changes due to I2C_OFFSET occur at ¼ of the fast slew rate which is selected in (AFh) DVS_CFG register..  
The usage of I2C_OFFSET depends on the value of VOUT_CTRL in (A0h) SYS_CFG_USER1 register. See 表  
7-4 for more details.  
When the PROTOCOL_ID bits in (C2h) PROTOCOL_ID_SVID is 01b or 10b (VOUT step = 5 mV), the  
I2C_OFFSET adds offset to the output voltage with the 0.5 mV/LSB. With a signed implementation, the offset  
can be programmed in a range of 64 mV to +63 mV.  
When the PROTOCOL_ID bits in (C2h) PROTOCOL_ID_SVID is 00b or 11b (VOUT step = 10 mV), the  
I2C_OFFSET adds offset to the output voltage with the 1.0 mV/LSB. With a signed implementation, the offset  
can be programmed in a range of 128 mV to +127 mV.  
Return to Supported I2C and Default Values.  
7-44. (A8h) I2C_OFFSET Register Map  
7
6
5
4
3
2
1
0
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
I2C_OFFSET  
LEGEND: R/W = Read/Write; R = Read only  
7-60. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:0  
I2C_OFFSET  
R/W  
NVM  
Output voltage offset with Direct format.  
VOUT step = 5 mV configuration: I2C OFFSET is 0.5 mV/LSB, with a range of 64  
mV to +63 mV.  
VOUT step = 10 mV configuration: I2C OFFSET is 1.0 mV/LSB, with a range of  
128 mV to +127 mV.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.44 (A9h) COMP1_MAIN  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
A9h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Back-up:  
Updates:  
On-the-fly  
The COMP1_MAIN command contains 2 fields (AC Gain and AC Load Line) for the control loop compensation.  
See Loop Compensation for more details.  
The AC_GAIN bits select the gain of the AC paths including the output voltage error and the load current step.  
The AC Load Line (ACLL) bits set the AC response to an output voltage error.  
Return to Supported I2C and Default Values.  
7-45. (A9h) COMP1_MAIN Register Map  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
AC_GAIN  
ACLL  
LEGEND: R/W = Read/Write; R = Read only  
7-61. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:4  
AC_GAIN  
R/W  
NVM  
These bits determine the AC gain setting.  
0000b: AC Gain = 0.3  
0001b: AC Gain = 0.5  
0010b: AC Gain = 1.0  
0011b: AC Gain = 1.5  
0100b: AC Gain = 2.0  
0101b: AC Gain = 2.5  
0110b: AC Gain = 3.0  
0111b: AC Gain = 3.5  
1000b: AC Gain = 4.0  
1001b: AC Gain = 5.0  
1010b: AC Gain = 6.0  
1011b: AC Gain = 7.0  
1100b to 1111b: Reserved. Do not set AC Gain to these values.  
Copyright © 2022 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-61. Register Field Descriptions (continued)  
Bit  
Field  
Access  
Reset  
Description  
3:0  
ACLL  
R/W  
NVM  
These bits determine the AC Load Line (ACLL) setting.  
0000b: ACLL = 0.5  
0001b: ACLL = 1.0  
0010b: ACLL = 1.5  
0011b: ACLL = 2.0  
0100b: ACLL = 2.5  
0101b: ACLL = 3.0  
0110b: ACLL = 3.5  
0111b: ACLL = 4.0  
1000b: ACLL = 5.0  
1001b: ACLL = 6.0  
1010b: ACLL = 7.0  
1011b: ACLL = 9.0  
1100b: ACLL = 10.0  
1101b: ACLL = 12.0  
1110b: ACLL = 13.0  
1111b: ACLL = 15.0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.45 (AAh) COMP2_MAIN  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
AAh  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Back-up:  
Updates:  
On-the-fly  
This COMP2_MAIN command contains 3 fields for configuring the internal integration circuit and the ramp  
generation circuit. See Loop Compensation for more details.  
The INT_GAIN bits select the gain of the integration stage.  
The INT_TIME bits set the time constant of the integration stage which affects the settling and response time  
following an output voltage error.  
The RAMP bits select the amplitude of the internal-generated ramp.  
Return to Supported I2C and Default Values.  
7-46. (AAh) COMP2_MAIN Register Map  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
INT_GAIN  
INT_TIME  
RAMP  
LEGEND: R/W = Read/Write; R = Read only  
7-62. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:6  
INT_GAIN  
R/W  
NVM  
These bits selects the gain of the integration stage.  
00b: integration stage gain = 2  
01b: integration stage gain = 1.5  
10b: integration stage gain = 1  
11b: integration stage gain = 0.5  
5:3  
INT_TIME  
R/W  
NVM  
These bits set the time constant of the integration stage which affects the settling  
and response time following an output voltage error.  
000b: integration time constant = 0.25 µs  
001b: integration time constant = 1.0 µs  
010b: integration time constant = 3.0 µs  
011b: integration time constant = 4.5 µs  
100b: integration time constant = 6.25 µs  
101b: integration time constant = 8.0 µs  
110b: integration time constant = 10.0 µs  
111b: integration time constant = 20.0 µs  
2:0  
RAMP  
R/W  
NVM  
These bits select the amplitude of the internal-generated ramp.  
000b: ramp amplitude = 40 mV  
001b: ramp amplitude = 60 mV  
010b: ramp amplitude = 80 mV  
011b: ramp amplitude = 100 mV  
100b: ramp amplitude = 120 mV  
101b: ramp amplitude = 160 mV  
110b: ramp amplitude = 200 mV  
111b: ramp amplitude = 240 mV  
Copyright © 2022 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.46 (ABh) COMP1_ALT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
ABh  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Back-up:  
Updates:  
On-the-fly  
The COMP1_ALT command contains 2 alternate fields (AC Gain and AC Load Line) for the control loop  
compensation. This register is not activated in the TPS544C26 device and affects nothing.  
Return to Supported I2C and Default Values.  
7-47. (ABh) COMP1_ALT Register Map  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
AC_GAIN_ALT  
ACLL_ALT  
LEGEND: R/W = Read/Write; R = Read only  
7-63. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:4  
AC_GAIN_ALT  
R/W  
NVM  
These bits determine the alternate AC gain setting.  
0000b: alternate AC Gain = 0.3  
0001b: alternate AC Gain = 0.5  
0010b: alternate AC Gain = 1.0  
0011b: alternate AC Gain = 1.5  
0100b: alternate AC Gain = 2.0  
0101b: alternate AC Gain = 2.5  
0110b: alternate AC Gain = 3.0  
0111b: alternate AC Gain = 3.5  
1000b: alternate AC Gain = 4.0  
1001b: alternate AC Gain = 5.0  
1010b: alternate AC Gain = 6.0  
1011b: alternate AC Gain = 7.0  
1100b to 1111b: Reserved. Do not set AC Gain to these values.  
3:0  
ACLL_ALT  
R/W  
NVM  
These bits determine the alternate AC Load Line (ACLL) setting.  
0000b: alternate ACLL = 0.5  
0001b: alternate ACLL = 1.0  
0010b: alternate ACLL = 1.5  
0011b: alternate ACLL = 2.0  
0100b: alternate ACLL = 2.5  
0101b: alternate ACLL = 3.0  
0110b: alternate ACLL = 3.5  
0111b: alternate ACLL = 4.0  
1000b: alternate ACLL = 5.0  
1001b: alternate ACLL = 6.0  
1010b: alternate ACLL = 7.0  
1011b: alternate ACLL = 9.0  
1100b: alternate ACLL = 10.0  
1101b: alternate ACLL = 12.0  
1110b: alternate ACLL = 13.0  
1111b: alternate ACLL = 15.0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.47 (ACh) COMP2_ALT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
ACh  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Back-up:  
Updates:  
On-the-fly  
This COMP2_ALT command contains 3 alternate fields for configuring the internal integration circuit and the  
ramp generation circuit. This register is not activated in the TPS544C26 device and affects nothing.  
Return to Supported I2C and Default Values.  
7-48. (ACh) COMP2_ALT Register Map  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
INT_GAIN_ALT  
INT_TIME_ALT  
RAMP_ALT  
LEGEND: R/W = Read/Write; R = Read only  
7-64. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:6  
INT_GAIN_ALT  
R/W  
NVM  
These bits selects the gain of the integration stage.  
00b: alternate integration stage gain = 2  
01b: alternate integration stage gain = 1.5  
10b: alternate integration stage gain = 1  
11b: alternate integration stage gain = 0.5  
5:3  
INT_TIME_ALT  
R/W  
NVM  
These bits set the time constant of the integration stage which affects the settling  
and response time following an output voltage error.  
000b: alternate integration time constant = 0.25 µs  
001b: alternate integration time constant = 1.0 µs  
010b: alternate integration time constant = 3.0 µs  
011b: alternate integration time constant = 4.5 µs  
100b: alternate integration time constant = 6.25 µs  
101b: alternate integration time constant = 8.0 µs  
110b: alternate integration time constant = 10.0 µs  
111b: alternate integration time constant = 20.0 µs  
2:0  
RAMP_ALT  
R/W  
NVM  
These bits select the amplitude of the internal-generated ramp.  
000b: alternate ramp amplitude = 40 mV  
001b: alternate ramp amplitude = 60 mV  
010b: alternate ramp amplitude = 80 mV  
011b: alternate ramp amplitude = 100 mV  
100b: alternate ramp amplitude = 120 mV  
101b: alternate ramp amplitude = 160 mV  
110b: alternate ramp amplitude = 200 mV  
111b: alternate ramp amplitude = 240 mV  
Copyright © 2022 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.48 (ADh) COMP3  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
ADh  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The COMP3 command contains 4 fields for configuring the control loop.  
The EN_SS_DCM bit sets the operation mode during the soft-start ramp. With value "1" on this bit, the device is  
forced to under DCM operation during the soft-start ramp. This bit doesn't control the operation mode after the  
soft-start ramp completes.  
The SEL_NOC_TON bit selects the on-time reference for a NOC operation and thus determines the high-side  
FET conduction time during a NOC operation period. The on-time option selected here can help to avoid two  
undesired behaviors:  
For relatively low VOUT applications (such as VOUT = 1.1 V) using longer tON_NOC helps to prevent negative  
current run-away behavior. A NOC run-away behavior occurs when the inductor current moves more  
negatively during low-side FET conduction time than the movement during high-side conduction time. A NOC  
run-away behavior can lead to excessive stress on low-side FET and raise the concern of FET reliability.  
For applications with an extra large inductor current ripple (10 A) and the NOC threshold is set to a less  
negative value (for example NOC threshold = 7.5 A), the average current during the NOC operation is likely  
not that negative. This leads to insufficient discharge on VOUT and thus the load is stressed under the  
overvoltage condition for a longer period. To build sufficient negative current during the NOC operation, select  
the shorter tON_NOC to reduce the positive inductor current movement during the high-side on-time. A design  
example of this kind of case is VCCFA_EHV rail which can have the following configuration: PVIN = 12 V,  
VOUT = 1.8 V, fSW = 1 MHz, LOUT = 150 nH, ICC_MAX = 10 A, and NOC threshold = 7.5 A. To have  
sufficient discharge on VOUT, the design can either select the shorter tON_NOC or set ICC_MAX to 15 A so  
that the NOC threshold is more negative (such as 15 A).  
These SEL_LO_CS bits select the LOUT (output inductor value) for the current sensing circuit. The TPS544C26  
IC utilizes the output inductor value entered here to build an accurate output from the current sense circuit.  
Please choose a value closest to the inductor that is used in a BOM. For any inductor value higher than 400 nH,  
set SEL_LO_CS to 11b. Selecting a value that is significantly different from the real inductor (for example, 400  
nH used but 100 nH selected) can lead to an inaccurate current sense output which can cause unexpected  
control loop behavior and also an inaccurate READ_IOUT telemetry report.  
The DCLL bits determine the DC load line setting. Select a DCLL value per the requirement from the processor  
or the load, otherwise, the load regulation can be out of expectation.  
Return to Supported I2C and Default Values.  
7-49. (ADh) COMP3 Register Map  
7
6
5
4
3
2
1
0
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SEL_NOC_TO  
N
Reserved  
EN_SS_DCM  
SEL_LO_CS  
DCLL  
LEGEND: R/W = Read/Write; R = Read only  
7-65. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
Reserved  
R
0b  
Not used and always set to 0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-65. Register Field Descriptions (continued)  
Bit  
Field  
Access  
Reset  
Description  
6
EN_SS_DC  
M
R/W  
NVM  
0b: the operation during the soft-start ramp follows the configuration set by the  
FCCM bit in (A0h) SYS_CFG_USER1 register.  
1b: Forced DCM operation during the soft-start ramp  
5
SEL_NOC_  
TON  
R/W  
R/W  
NVM  
NVM  
Select the on-time for NOC operation. See for more details  
4:3  
SEL_LO_C  
S
These bits select the LOUT (output inductor value) for the current sensing circuit.  
00b: LOUT = 100 nH  
01b: LOUT = 200 nH  
10b: LOUT = 300 nH  
11b: LOUT = 400 nH  
2:0  
DCLL  
R/W  
NVM  
These bits determine the DCLL setting.  
000b: DCLL = 0 m(VOUT maintains the regulation regardless of the load current)  
001b: DCLL = 0.5 mΩ  
010b: DCLL = 0.75 mΩ  
011b: DCLL = 1.0 mΩ  
100b: DCLL = 1.5 mΩ  
101b: DCLL = 2.9 mΩ  
110b: DCLL = 3.2 mΩ  
111b: DCLL = 4.05 mΩ  
7-66. High-side On Time During a NOC Operation  
PROTOCOL_ID in (C2h)  
PROTOCOL_ID_SVID  
SEL_NOC_TON  
Option  
tON_NOC (ns)  
Use:  
0.6 V  
PVIN × f  
1
Shorter tON_NOC  
t
t
t
t
=
=
=
=
(9)  
(10)  
(11)  
(12)  
ON_NOC  
ON_NOC  
ON_NOC  
ON_NOC  
SW  
PROTOCOL_ID = 01b or 10b (VOUT  
step = 5 mV)  
Use:  
Use:  
Use:  
1.6 V  
PVIN × f  
0
1
0
Longer tON_NOC  
Shorter tON_NOC  
Longer tON_NOC  
SW  
SW  
SW  
1.2 V  
PVIN × f  
PROTOCOL_ID = 00b or 11b (VOUT  
step = 10 mV)  
3.2 V  
PVIN × f  
Copyright © 2022 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.49 (AFh) DVS_CFG  
Register Address  
Write Transaction:  
Read Transaction:  
Format:  
AFh  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Back-up:  
Updates:  
on-the-fly  
The DVS_CFG sets the fast slew rate at which any output voltage changes per SVID SetVID-Fast command.  
This commanded rate of change does not apply when the unit is commanded to turn on or to turn off. The unit is  
mV/μs.  
Return to Supported I2C and Default Values.  
7-50. (AFh) DVS_CFG Register Map  
7
6
5
R
4
3
2
1
0
R
R
R
R
R/W  
R/W  
R/W  
Reserved  
DVS_CFG  
LEGEND: R/W = Read/Write; R = Read only  
7-67. Register Field Descriptions  
Bit  
7:3  
2:0  
Field  
Access  
R
Reset  
00000b  
NVM  
Description  
Reserved  
DVS_CFG  
Not used and always set to 0.  
R/W  
These bits select the Dynamic Voltage Scale (DVS) fast slew rate. Upon  
acknowledging a new value written into this register, the new slew rate value is  
loaded into SVID (24h) SR_FAST register immediately. See below table for details.  
7-68. Dynamic Voltage Scale Fast Slew Rate Options  
DVS Fast Slew Rate (mV/μs)  
DVS_CFG  
PROTOCOL_ID = 01b or 10b (VOUT step = 5 mV)  
PROTOCOL_ID = 00b or 11b (VOUT step = 10 mV)  
000  
001  
010  
011  
100  
101  
110  
111  
1.34  
1.43  
2.50  
2.67  
5.00  
5.56  
10.00  
12.50  
2.67  
2.86  
5.00  
5.34  
10.00  
11.12  
20.00  
25.00  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.50 (B0h) DVID_OFFSET  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
B0h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The DVID_OFFSET command contains 2 fields for configuring the DAC offset during a DVID transition. This  
Vout-referred offset is added only during a DVID transition (for example per SetVID or SetWP command).  
DVID_OFS_UP is used to compensate for delays in the feedback compensation network and reach the target  
value faster for DVID up scenario, and DVID_OFS_DOWN is implemented to prevent the output from ringing  
below the target for DVID down scenario. Note that:  
The offsets are used only when the selected DVID slew rate is Fast or Slow.  
The offsets are not used when the selected DVID slew rate is Decay nor for (A6h) VOUT_CMD changes via  
I2C.  
The offsets are not used during soft-start nor during soft-stop period.  
Return to Supported I2C and Default Values.  
7-51. (B0h) DVID_OFFSET Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R/W  
R/W  
R/W  
R/W  
Reserved  
DVID_OFS_DOWN  
DVID_OFS_UP  
LEGEND: R/W = Read/Write; R = Read only  
7-69. Register Field Descriptions  
Bit  
7:4  
3:2  
Field  
Access  
R
Reset  
0000b  
NVM  
Description  
Reserved  
Not used and always set to 0.  
DVID_OFS_  
DOWN  
R/W  
This positive offset is effectively a threshold: When the new VID target is lower than  
the current VOUT, the DAC starts counting down from its current value using the  
selected slew rate, and continues until the DAC reaches VID target +  
DVID_OFS_DOWN. At that point, the VOUT transition slew rate changes to ¼ of  
the selected slew rate until the actual VID target is reached.  
00b: DVID_OFS_DOWN = 0 mV  
01b: DVID_OFS_DOWN = 5 mV  
10b: DVID_OFS_DOWN = 10 mV  
11b: DVID_OFS_DOWN = 20 mV  
1:0  
DVID_OFS_  
UP  
R/W  
NVM  
This positive DAC offset is to be added when the new VID target is higher than the  
current VOUT. DVID_OFS_UP is added immediately to the current DAC count as  
the first step toward the new target, and as soon as the DAC count reaches the  
VID target, the DAC stops the ramp, and DVID_OFS_UP is no longer applied.  
00b: DVID_OFS_UP = 0 mV  
01b: DVID_OFS_UP = 5 mV  
10b: DVID_OFS_UP = 10 mV  
11b: DVID_OFS_UP = 20 mV  
Copyright © 2022 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.51 (B1h) REG_LOCK  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
B1h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
No  
NVM Backup:  
Updates:  
On-the-fly  
The REG_LOCK command controls writing to the TPS544C26 device. The intent of this command is to provide  
protection against accidental changes. This command does NOT provide protection against deliberate or  
malicious changes to a configuration or operation of the device.  
After power-on, the user accessible registers with write access are by default under "write protected" state,  
meaning the response to a write is NACK. The device always acknowledges a read command and responds the  
data byte accordantly. Only after writing the correct passcodes (multiple writes in the right order) into this  
REG_LOCK register, the user accessible registers are "unlocked" and the device acknowledges the next write  
commands. For a device under "unlock" state, the writable registers turn to "write protected" state again if one  
more write is sent to (B1h) REG_LOCK register, no matter with the correct passcode or wrong one. The user has  
to go through the complete passcode write combination to unlock the write protection again.  
For a device under "unlock" state, VCC power cycling resets the device and the user accessible registers with  
write access are now under "write protected" state. A RESTORE_USER_ALL command does not change the  
state.  
The expected response for a write into this REG_LOCK register is always NACK, no matter with a correct  
passcode or a wrong value. For security considerations, the passcodes are not listed in this datasheet. Please  
contact TI for more details.  
All user accessible registers with write access are protected by this mechanism except below ones:  
(03h) CLEAR_FAULTS  
(7Ah) STATUS_VOUT  
(7Bh) STATUS_IOUT  
(7Ch) STATUS_INPUT  
(7Dh) STATUS_TEMPERATURE  
(80h) STATUS_MFR  
(A2h) I2C_ADDR, bit[7] - this bit is reserved for TI usage and always under write protection  
(B1h) REG_LOCK  
Return to Supported I2C and Default Values.  
7-52. (B1h) REG_LOCK Register Map  
7
6
5
4
3
2
1
0
W
W
W
W
W
W
W
W
Passcode  
LEGEND: R/W = Read/Write; R = Read only  
7-70. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:0  
Passcode  
W
00000000b Write the passcodes to unlock the write protection.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.52 (B3h) PIN_SENSE_RES  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
B3h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The PIN_SENSE_RES command selects the external input current/power sense resistor value and related  
configurations. The supported sensing resistor value ranges from 0.25 mto 4 m.  
Return to Supported I2C and Default Values.  
7-53. (B3h) PIN_SENSE_RES Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R/W  
R/W  
R/W  
Reserved  
PIN_SENSE_RES  
LEGEND: R/W = Read/Write; R = Read only  
7-71. Register Field Descriptions  
Bit  
7:3  
2:0  
Field  
Access  
R
Reset  
00000b  
NVM  
Description  
Reserved  
Not used and always set to 0.  
PIN_SENSE  
_RES  
R/W  
These bits select the external sensing resistor used for input current/power  
measurement. See below table for more details.  
7-72. Input Current/Power Sense Resistor Value and IIN_MAX  
RSENSE used in a BOM  
(m)  
PIN_SENSE_RES  
Internal Gain (V/V)  
IIN_MAX (A)  
IIN LSB (A)  
0.0625  
000  
001  
010  
011  
100  
101  
110  
111  
4
3
12.5  
12.5  
25  
16  
21.3  
16  
0.0833  
0.0625  
0.15625  
0.125  
2
1
20  
40  
1
25  
32  
0.5  
0.5  
0.25  
40  
40  
0.15625  
0.125  
50  
32  
50  
64  
0.250  
Copyright © 2022 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.53 (B4h) IOUT_NOC_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
B4h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The IOUT_NOC_LIMIT command contains 3 fields for configuring the VOUT Fixed OVF and Neagive  
Overcurrent (NOC) limit selection.  
The SEL_FIX_OVF bit sets the value of the output voltage measured at the (VOSNS GOSNS) pins that  
causes an output overvoltage fault. The Fixed OVF function sets a constant overvoltage threshold that has no  
relationship to the current VOUT setting. The VOUT Fixed OVF is active as soon as the TPS544C26 device  
completes its power-on reset, even if the output conversion is disabled.  
Following a Fixed OVF condition, the device always latches OFF high-side MOSFET and latches ON low-side  
MOSFET. The response setting in (41h) VOUT_OV_FAULT_RESP register does not affect the response for a  
Fixed OVF condition.  
The VOUT Fixed OVF feature can be disabled through the EN_FIX_OVF bit.  
The NOC threshold which scales with ICC_MAX setting (see (C0h) ICC_MAX) is selected by SEL_NOC field.  
Return to Supported I2C and Default Values.  
7-54. (B4h) IOUT_NOC_LIMIT Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R/W  
R/W  
R/W  
R/W  
Reserved  
SEL_FIX_OVF EN_FIX_OVF  
SEL_NOC  
LEGEND: R/W = Read/Write; R = Read only  
7-73. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:4  
Reserved  
R
0000b  
Not used and always set to 0.  
SEL_FIX_O  
VF  
3
2
R/W  
R/W  
R/W  
NVM  
NVM  
NVM  
Select the VOUT Fixed OVF thresholds. See details on 7-74.  
EN_FIX_OV  
F
0b: Enable the VOUT Fixed OVF  
1b: Disable the VOUT Fixed OVF  
SEL_NOC  
Select the Negative Overcurrent limits which scale with ICC_MAX setting. See  
details on 7-75.  
1:0  
7-74. VOUT Fixed OV Fault Thresholds  
PROTOCOL_ID in (C2h)  
PROTOCOL_ID_SVID  
SEL_FIX_OVF[1] in (B4h)  
VOUT Fixed OVF threshold (V)  
IOUT_NOC_LIMIT  
PROTOCOL_ID = 01b or 10b (VOUT step =  
5 mV)  
0
1
0
1
1.5  
1.8  
2.4  
3.0  
PROTOCOL_ID = 01b or 10b (VOUT step =  
5 mV)  
PROTOCOL_ID = 00b or 11b (VOUT step =  
10 mV)  
PROTOCOL_ID = 00b or 11b (VOUT step =  
10 mV)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TPS544C26  
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-75. Negative Overcurrent Limits  
Negative Overcurrent Limits (A)  
SEL_NOC[1:0]  
ICC_MAX 15 A  
ICC_MAX 10 A  
00  
01  
10  
11  
20  
15  
12  
10  
10  
7.5  
6  
5  
Copyright © 2022 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.54 (B5h) USER_DATA_01  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
B5h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The USER_DATA_01 command provides memory for users to store manufacturer specific information. User  
chooses the format and data value.  
Return to Supported I2C and Default Values.  
7-55. (B5h) USER_DATA_01 Register Map  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R
R
R
R
USER_DATA_01  
Reserved  
LEGEND: R/W = Read/Write; R = Read only  
7-76. Register Field Descriptions  
Bit  
7:4  
3:0  
Field  
Access  
Reset  
Description  
USER_DAT  
A_01  
R
R
NVM  
User to store manufacturer specific information  
Not used and always set to 0.  
Reserved  
0000b  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.55 (B6h) USER_DATA_02  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
B6h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The USER_DATA_02 command provides memory for users to store manufacturer specific information. User  
chooses the format and data value.  
Return to Supported I2C and Default Values.  
7-56. (B6h) USER_DATA_02 Register Map  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R
R
R
R
R
USER_DATA_02  
Reserved  
LEGEND: R/W = Read/Write; R = Read only  
7-77. Register Field Descriptions  
Bit  
7:5  
4:0  
Field  
Access  
R/W  
R
Reset  
Description  
USER_DAT  
A_02  
NVM  
User to store manufacturer specific information  
Not used and always set to 0.  
Reserved  
00000b  
Copyright © 2022 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.56 (BAh) STATUS1_SVID  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
BAh  
N/A  
Read Byte  
Unsigned Binary (1 byte)  
The STATUS1_SVID command contains direct copies of the bits of SVID (10h) STATUS_1 register. When a bit  
in the SVID (10h) STATUS_1 register is cleared via the SVID bus, the corresponding bit in I2C (BAh)  
STATUS1_SVID register also get cleared. There is no separate clear mechanism for the bits in BAh register via  
the I2C bus.  
Return to Supported I2C and Default Values.  
7-57. (BAh) STATUS1_SVID Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_STATUS  
2
Reserved  
VID_DAC_High  
IccMaxAlert  
ThermAlert  
VR_Settled  
LEGEND: R/W = Read/Write; R = Read only  
7-78. Register Field Descriptions  
Bit  
7
Field  
Access  
Reset  
Description  
READ_STA  
TUS2  
Current  
status  
R
R
R
Defined by Intel. Refer to Intel document for details.  
Not supported and always set to 0.  
Defined by Intel. Refer to Intel document for details.  
6:4  
3
Reserved  
000b  
VID_DAC_H  
igh  
Current  
status  
Current  
status  
2
1
IccMaxAlert  
ThermAlert  
R
R
Defined by Intel. Refer to Intel document for details.  
Defined by Intel. Refer to Intel document for details.  
Current  
status  
0
VR_Settled  
R
Current  
status  
Defined by Intel. Refer to Intel document for details.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.57 (BBh) STATUS2_SVID  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
BBh  
N/A  
Read Byte  
Unsigned Binary (1 byte)  
The STATUS2_SVID command contains direct copies of the bits of SVID (11h) STATUS_2 register. When a bit in  
the SVID (11h) STATUS_2 register is cleared via the SVID bus, the corresponding bit in I2C (BBh)  
STATUS2_SVID register also get cleared. There is no separate clear mechanism for the bits in BBh register via  
the I2C bus.  
Return to Supported I2C and Default Values.  
7-58. (BBh) STATUS2_SVID Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
SVID_OCL_LA  
TCH  
Reserved  
SVID_frame_err SVID_parity_err  
LEGEND: R/W = Read/Write; R = Read only  
7-79. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:3  
Reserved  
R
00000b  
Not supported and always set to 0.  
SVID_OCL_  
LATCH  
Current  
status  
2
1
R
R
Defined by Intel. Refer to Intel document for details.  
Defined by Intel. Refer to Intel document for details.  
SVID_frame  
_err  
Current  
status  
0
SVID_parity  
_err  
R
Current  
status  
Defined by Intel. Refer to Intel document for details.  
Copyright © 2022 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.58 (BCh) CAPABILITY  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
BCh  
N/A  
Read Byte  
Unsigned Binary (1 byte)  
The CAPABILITY command contains direct copies of the bits of SVID (06h) CAPABILITY register, which  
indicates telemetry capabilities of the part. This register is read-only.  
Return to Supported I2C and Default Values.  
7-59. (BCh) CAPABILITY Register Map  
7
R
6
R
5
4
3
2
1
R
0
R
R
R
R
R
IOUT  
TEMP  
PIN  
VIN  
IIN  
POUT  
VOUT  
VR13+  
LEGEND: R/W = Read/Write; R = Read only  
7-80. Register Field Descriptions  
Bit  
7
Field  
IOUT  
TEMP  
PIN  
Access  
Reset  
Description  
R
R
R
R
R
R
R
R
1b  
1b: IOUT telemetry is supported  
1b: TEMP telemetry is supported  
1b: PIN telemetry is supported  
1b: VIN telemetry is supported  
1b: IIN telemetry is supported  
0b: POUT telemetry is NOT supported  
1b: VOUT telemetry is supported  
6
1b  
5
1b  
4
VIN  
1b  
3
IIN  
1b  
2
POUT  
VOUT  
VR13+  
0b  
1
1b  
0
1b  
1b: The output current telemetry is supported in the VR13+ format  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.59 (BDh) EXT_CAPABILITY_VIDOMAX_H  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
BDh  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
Bit[7:1]: No  
Bit[0]: Yes  
NVM Backup:  
Updates:  
Bit[0] only: On-the-fly when the power conversion is disabled. A write is not allowed (NACK  
response) when the power conversion is enabled.  
The EXT_CAPABILITY_VIDOMAX_H command contains direct copies of the bits of SVID (09h)  
VIDOMAX_H_CAPA register except bit[0]. The lowest bit (bit[0]) is MSB of 9-bit VIDo_MAX value and the user  
can read and write into this bit. See more details in (BEh) VIDO_MAX_L register. The rest 7 bits in this register  
indicates the extended capabilities of the part. These 7 bits are read-only.  
Return to Supported I2C and Default Values.  
7-60. (BDh) EXT_CAPABILITY_VIDOMAX_H Register Map  
7
R
6
R
5
4
3
2
1
R
0
R
R
R
R
R/W  
PsysWarn  
IMON_CAL  
DFDS  
DFDV  
HI_PRES  
IccInMax  
Reserved  
VIDo_MAX[8]  
LEGEND: R/W = Read/Write; R = Read only  
7-81. Register Field Descriptions  
Bit  
7
Field  
PsysWarn  
IMON_CAL  
DFDS  
Access  
Reset  
Description  
R
R
0b  
0b: PsysWarn is NOT supported  
0b: SVID IMON_CAL is NOT supported  
0b: DFDS function is NOT supported  
0b: DFDV function is NOT supported  
0b: HI_PRES telemetry is NOT supported  
1b: IccInMax is supported for IIN telemetry  
Not used and always set to 0.  
6
0b  
5
R
0b  
4
DFDV  
R
0b  
3
HI_PRES  
IccInMax  
Reserved  
R
0b  
2
R
0b  
1
R
0b  
0
VIDo_MAX[  
8]  
R/W  
NVM  
MSB of 9-bit VIDo_MAX value. See more details in (BEh) VIDO_MAX_L register.  
Copyright © 2022 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: TPS544C26  
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.60 (BEh) VIDOMAX_L  
Register Address  
Write Transaction:  
Read Transaction:  
Format:  
BEh  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Back-up:  
On-the-fly when the power conversion is disabled. A write is not allowed (NACK response) when  
the power conversion is enabled.  
Updates:  
The VIDOMAX_L command together with the bit[0] in (BDh) EXT_CAPABILITY_VIDOMAX_H forms a 9-bit  
register to set the maximum value of (VID+Offset) allowed via SVID. Setting the 9-bit VIDo_MAX register to 17E  
(hex) value reaches the maximum possible (VID+Offset) value with 8-bit register for each (VID unsigned, offset  
signed).  
Exceeding VIDo_MAX with (VID + offset) causes a REJ (Reject) response for individual rail SVID requests and a  
NACK response for all-call SVID requests.  
When a write to this register is attempted, the VIDOMAX_L value combined with VIDo_MAX[8] value (bit[0] in  
(BDh) EXT_CAPABILITY_VIDOMAX_H register) must satisfy a range check:  
If the combined value is not greater than 0, the write is NACKed.  
If the combined value is greater than 0, then the write is ACKed.  
Further, VIDo_MAX bit in (BDh) EXT_CAPABILITY_VIDOMAX_H register does not take effect when updated. It  
only takes effect when the VIDOMAX_L register is written with a value (can be the same value as the current  
one) and also the combined value satisfies the range check. When attempting to write a new VIDo_MAX value, it  
is recommended to write in the following order: write into the (BDh) EXT_CAPABILITY_VIDOMAX_H register  
first, and then write into the VIDOMAX_L register. To illustrate, a few examples are listed below:  
Example #1: Firstly, a value is written into (BDh) EXT_CAPABILITY_VIDOMAX_H register and is  
acknowledged. Secondly, another write command is sent to (BEh) VIDOMAX_L register and this write is  
acknowledged too.  
Result: The 9-bit VIDo_MAX register is updated and takes effect.  
Example #2: A value is written into (BEh) VIDOMAX_L register and is acknowledged. No write command is  
sent to (BDh) EXT_CAPABILITY_VIDOMAX_H register.  
Result: The 9-bit VIDo_MAX register is updated in the lower 8-bit (in (BEh) VIDOMAX_L register) and the  
new value takes effect.  
Example #3: Firstly, a value is written into (BEh) VIDOMAX_L register and is acknowledged. Secondly,  
another write command is sent to (BDh) EXT_CAPABILITY_VIDOMAX_H register to update VIDo_MAX bit  
with a new value and this write is acknowledged too.  
Result: The 9-bit VIDo_MAX register is updated but the VIDo_MAX bit in (BDh)  
EXT_CAPABILITY_VIDOMAX_H register does not take effect.  
Note: (BDh) EXT_CAPABILITY_VIDOMAX_H and (BEh) VIDOMAX_L registers acknowledges a write only when  
the power conversion is disabled. A write is not allowed (NACK response) when the power conversion is  
enabled.  
Return to Supported I2C and Default Values.  
7-61. (A6h) VOUT_CMD Register Map  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
VIDOMAX_L  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-82. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:0  
VIDOMAX_L  
R/W  
NVM  
These bits sets the lower 8-bit value for the 9-bit VIDoMAX register.  
Copyright © 2022 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.61 (C0h) ICC_MAX  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
C0h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The ICC_MAX command sets the effective maximum output current that the device reports through the IOUT  
telemetry sub-system. ICC_MAX setting is not a fault threshold. Upon acknowledging a new value written into  
this register, the new ICC_MAX value is loaded into SVID (21h) ICC_MAX register immediately.  
Return to Supported I2C and Default Values.  
7-62. (C0h) ICC_MAX Register Map  
7
6
5
R
4
3
2
1
0
R
R
R
R
R/W  
R/W  
R/W  
Reserved  
ICC_MAX  
LEGEND: R/W = Read/Write; R = Read only  
7-83. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:3  
Reserved  
R
00000b  
Not used and always set to 0.  
These bits configures the ICC_MAX setting.  
000b: ICC_MAX = 6 A (not recommended)  
001b: ICC_MAX = 10 A (not recommended)  
010b: ICC_MAX = 15 A (recommend using 15 A setting for a design with maximum  
load less than 10 A)  
011b: ICC_MAX = 20 A  
100b: ICC_MAX = 25 A  
101b: ICC_MAX = 30 A  
110b: ICC_MAX = 35 A  
111b: ICC_MAX = 40 A  
2:0  
ICC_MAX  
R/W  
NVM  
Note: ICC_MAX = 6 A or 10 A option is not recommended to use. Instread, using  
the 15 A option for a design with 10A or less load is recommended.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.62 (C1h) TEMP_MAX  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
C1h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Backup:  
Updates:  
On-the-fly  
The TEMP_MAX command provides a default value for SVID (22h) TEMP_MAX register. The TEMP_MAX  
setting is not a fault threshold. Upon acknowledging a new value written into this register, the new TEMP_MAX  
value is loaded into SVID (22h) TEMP_MAX register immediately.  
Return to Supported I2C and Default Values.  
7-63. (C1h) TEMP_MAX Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R/W  
R/W  
R/W  
Reserved  
TEMP_MAX  
LEGEND: R/W = Read/Write; R = Read only  
7-84. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:3  
Reserved  
R
00000b  
Not used and always set to 0.  
These bits configures the TEMP_MAX setting.  
000b: TEMP_MAX = 95 °C  
001b: TEMP_MAX = 100 °C  
010b: TEMP_MAX = 105 °C  
011b: TEMP_MAX = 110 °C  
100b: TEMP_MAX = 115 °C  
101b: TEMP_MAX = 120 °C  
110b: TEMP_MAX = 125 °C  
111b: TEMP_MAX = 130 °C  
2:0  
TEMP_MAX  
R/W  
NVM  
Copyright © 2022 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.63 (C2h) PROTOCOL_ID_SVID  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
C2h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
EEPROM  
NVM Back-up:  
Vboot: on-the-fly.  
Updates:  
PROTOCOL_ID and ALL_CALL_SEL: field value update will wait until the power conversion is  
disabled.  
This PROTOCOL_ID_SVID command contains 3 fields for configuring the SVID Protocol ID, Vboot (boot up  
voltage), and All-call address selection.  
The PROTOCOL_ID bits set the Protocol ID for SVID communication. The setting also programs an internal  
precision resistor divider thus determines the VOUT scaling (mV/LSB) of the device.  
The Vboot bits program the initial output voltage at start-up when the output voltage is controlled by SVID  
interface (e.g. VOUT_CTRL = 00b or 01b).  
The ALL_CALL_SEL bits set the All-call address for SVID communication.  
Return to Supported I2C and Default Values.  
7-64. (C2h) PROTOCOL_ID_SVID Register Map  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PROTOCOL_ID  
Vboot  
ALL_CALL_SEL  
LEGEND: R/W = Read/Write; R = Read only  
7-85. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:6  
PROTOCOL_ID  
R/W  
NVM  
These bits set the Protocol ID for SVID communication. The setting also programs  
an internal precision resistor divider thus determines the VOUT scaling (mV/LSB)  
of the device.  
00b: SVID PROTOCOL ID = 04h (VR13, 10 mV). And VOUT_CMD step = 10  
mV/LSB  
01b: SVID PROTOCOL ID = 07h (VR13, 5 mV). And VOUT_CMD step = 5  
mV/LSB  
10b: SVID PROTOCOL ID = 09h (VR14, 5 mV). And VOUT_CMD step = 5  
mV/LSB  
11b: SVID PROTOCOL ID = 0Ah (VR14, 10 mV). And VOUT_CMD step = 10  
mV/LSB  
The function selected in this field is loaded into SVID register (05h)  
PROTOCOL_ID as well. In order for this field to take effect, the power conversion  
must be disabled.  
Note: The TPS544C26 device is VR13 compliant and no support to VR14.  
5:2  
Vboot  
R/W  
NVM  
These bits program the initial output voltage at start-up. See 7-86 for the  
available settings. The Vboot and Protocol ID selections have to align based on the  
listed options on 7-86 no matter the VOUT adjustment is controlled by SVID  
interface or I2C interface. Otherwise, an error check will NACK the write attempt.  
For example, a write attempt with C2h = 011111xxb (Vboot = 1.8 V and Protocol ID  
= 5 mV) will be NACKed, while a write attempt with C2h = 011000xxb (Vboot =  
1.1V and Protocol ID = 5mV) will be ACKed.  
The function selected in this field is loaded into SVID register (26h) VBOOT as  
well, in VID format.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7-85. Register Field Descriptions (continued)  
Bit  
Field  
Access  
Reset  
Description  
1:0  
ALL_CALL_SEL  
R/W  
NVM  
These bits set the All-call address for SVID communication.  
00b: Not support All-call address, will reject both 0Eh and 0Fh address  
01b: Respond to All-call address 0Fh only  
10b: Respond to All-call address 0Eh only  
11b: Respond to All-call address both 0Eh and 0Fh  
The function selected in this field is loaded into SVID register (0Fh) ALLCALL_ACT  
as well. In order for this field to take effect, the power conversion must be disabled.  
7-86. Vboot settings  
Vboot  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
1111b  
VID code(1) (Hex)  
Vboot (V)  
PROTOCOL_ID  
00h  
65h  
6Fh  
79h  
83h  
8Dh  
97h  
A1h  
ABh  
AFh  
C9h  
DDh  
FBh  
6Fh  
79h  
83h  
0
0.75  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.20  
1.25  
1.35  
1.50  
1.60  
1.70  
1.80  
Must set PROTOCOL_ID = 01b  
or 10b (VOUT step = 5 mV)  
Must set PROTOCOL_ID = 00b  
or 11b (VOUT step = 10 mV)  
Copyright © 2022 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.64 (C6h) VENDOR_ID  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
C6h  
N/A  
Read Byte  
Unsigned Binary (1 byte)  
The VENDOR_ID command reads an unique identity of the IC vendor. This vendor ID value is assigned to Texas  
Instruments by Intel. The Vendor ID value is loaded into SVID (00h) VENDOR_ID register during the initial  
power-on.  
Return to Supported I2C and Default Values.  
7-65. (C6h) VENDOR_ID Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
VENDOR_ID  
LEGEND: R/W = Read/Write; R = Read only  
7-87. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:0  
VENDOR_I  
D
R
00100010b A Vendor ID to identify the IC vendor.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.65 (C8h) PRODUCT_ID  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
C8h  
N/A  
Read Byte  
Unsigned Binary (1 byte)  
The PRODUCT_ID command reads an unique identity of the IC. This unique product ID is chosen by Texas  
Instruments for TPS544C26 device. The product ID value is loaded into SVID (01h) PRODUCT_ID register  
during the initial power-on.  
Return to Supported I2C and Default Values.  
7-66. (C8h) PRODUCT_ID Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
PRODUCT_ID  
LEGEND: R/W = Read/Write; R = Read only  
7-88. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:0  
PRODUCT_  
ID  
R
00010011b A product ID to identify the TPS544C26 device.  
Copyright © 2022 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
7.6.66 (C9h) PRODUCT_REV_ID  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
C9h  
N/A  
Read Byte  
Unsigned Binary (1 byte)  
The PRODUCT_REV_ID command reads the IC's revision. This product revision ID is assigned by Texas  
Instruments and this value is loaded into SVID (02h) PRODUCT_REV register during the initial power-on.  
Return to Supported I2C and Default Values.  
7-67. (C9h) PRODUCT_REV_ID Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
PRODUCT_REV_ID  
LEGEND: R/W = Read/Write; R = Read only  
7-89. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:0  
PRODUCT_  
REV_ID  
R
00000010b These bits read the TPS544C26 device's revision.  
00000010b: PG2.1 production unit (current revision)  
00000001b: PG2.0 engineering samples (previous revision)  
00000000b: PG1.0 engineering samples (previous revision)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TPS544C26 device is a highly-integrated, synchronous, step-down DC/DC converter. The TPS544C26 has  
a simple design procedure where programmable parameters can be configured by I2C and stored to nonvolatile  
memory (NVM) to minimize external component count.  
8.2 Typical Application  
8.2.1 Application  
This design describes a 1.1-V, 35-A application for a VCCD_HV rail in an Intel Server platform.  
8-1. VCCD_HV 1.1 V Output Application  
8.2.2 Design Requirements  
This design uses the parameters listed in 8-1.  
8-1. Design Parameters  
PARAMETER  
VALUE  
10.8 V 13.2 V  
1.1 V  
Input Voltage  
Output Voltage  
Output Current  
Switching Frequency  
I2C Address  
35 A  
800 kHz  
71h  
SVID Address  
00h  
8.2.3 Detailed Design Procedure  
This design example leverages the requirements for the VCCD_HV rail in an Intel Server platform. The default  
settings for this device are optimal for this application. The following steps illustrate how to select key  
components.  
Copyright © 2022 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: TPS544C26  
 
 
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
8.2.3.1 Inductor Selection  
The inductor must be selected such that the transient performance and ripple requirements are balanced for a  
particular design. In general, a smaller inductance increases loop bandwidth leading to better transient response  
at the expense of higher current and voltage ripple. In this example, a 120-nH, 0.228-minductor is used.  
8.2.3.2 Input Capacitor Selection  
Input capacitors must be selected to provide reduction in input voltage ripple and high-frequency bypassing,  
which in return will reduce switching stress on the power stage MOSFETs internal to the device. In this example,  
a 0.1-µF, 25-V, 0402 must be placed as close as possible to pin 20 of the device on the same layer as the IC on  
the PCB. In addition, 6x 10-µF ceramic capacitors are used and a 270-µF bulk capacitor is used on the input.  
8.2.3.3 Output Capacitor Selection  
To meet the output voltage ripple and load transient requirements in the Intel specification, use a 1-µF and 2 x  
47-µF ceramic capacitors local to the output of the inductor. Additionally, use 6 x 47-µF on the top-side of the  
CPU socket cavity combined with 4 x 22-µF capacitors on the bottom-side of the CPU socket cavity.  
8.2.3.4 VCC/VRDV Bypass Capacitor  
Use a minimum of 2.2-µF to 4.7-µF, 10-V rated capacitor for bypassing of the VCC/VDRV pin. This bypass  
capcitor must refer to PGND to minimize the length of high-frequency driving current path.  
8.2.3.5 BOOT Capacitor Selection  
Use a minimum of a 0.1-µF capacitor connected from Phase (pin 25) to Boot (pin 26). An optional serires boot  
resistor of 0-or 2.2-can be added.  
8.2.3.6 RSENSE Selection  
In this application, a 0.5-resistor is selected to sense the input current (IIN) on a 12 V bus for DDR5 DIMMs.  
The sensed input current and the sensed input voltage on pin 4 VINSENM are used to calculate the total input  
power. The input power information can be read through telemetry registers and used for power management.  
8.2.3.7 VINSENP and VINSENN Capacitor Selection  
Use a 100-pF ceramic capacitor referenced to PGND on both the VINSENP (pin 3) and VINSENN (pin 4). The  
decoupling capacitors minimizes the impact from switching noise on the 12 bus and thus help the device to  
achieve high accuracy on IIN reporting.  
8.2.3.8 VRRDY Pullup Resistor Selection  
The VRRDY output is an open-drain output and must be pulled up externally through a pullup resistor. Place a  
pull-up resistor, within a 1-kto 100-krange, at the VRRDY pin (pin 2). In this example, VRRDY is pulled up to  
VCC/VDRV with a 10-kresitor.  
8.2.3.9 I2C Address Resistor Selection  
Refer to 7-16 for the list of I2C addresses selectable by an external resistor. A resistor between the I2C_ADDR  
(pin 29) and AGND sets the preconfigured I2C address in the memory map. In this application, the 5.62-kΩ  
resistor selects an I2C address of 71h.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
8.2.4 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
9
8
7
6
5
4
3
2
1
0
600 kHz  
800 kHz  
1.0 MHz  
1.2 MHz  
600 kHz  
800 kHz  
1.0 MHz  
1.2 MHz  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
Load Current (A)  
Load Current (A)  
PVIN = 12 V  
VOUT = 1.1 V  
PVIN = 12 V  
VOUT = 1.1 V  
8-2. Efficiency, FCCM, Internal LDO  
8-3. Power Dissipation, FCCM, Internal LDO  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
7
6
5
4
3
2
600 kHz  
800 kHz  
1.0 MHz  
1.2 MHz  
600 kHz  
800 kHz  
1.0 MHz  
1.2 MHz  
1
0
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30 35  
Load Current (A)  
Load Current (A)  
PVIN = 12 V  
VOUT = 1.1 V  
PVIN = 12 V  
VOUT = 1.1 V  
8-4. Efficiency, FCCM, External 5-V Bias  
8-5. Power Dissipation, FCCM, External 5-V Bias  
100  
90  
80  
70  
60  
50  
40  
7
6
5
4
3
30  
2
600 kHz  
800 kHz  
600 kHz  
20  
800 kHz  
1.0 MHz  
1.2 MHz  
1.0 MHz  
1.2 MHz  
1
10  
0
0
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30 35  
Load Current (A)  
Load Current (A)  
PVIN = 12 V  
VOUT = 1.1 V  
备注  
VOUT = 1.1 V  
PVIN = 12 V  
8-7. Power Dissipation, DCM, External 5-V Bias  
8-6. Efficiency, DCM, External 5-V Bias  
Copyright © 2022 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
1.11  
1.105  
1.1  
1.12  
1.11  
1.1  
600 kHz  
800 kHz  
1.0 MHz  
1.2 MHz  
600 kHz  
800 kHz  
1.0 MHz  
1.2 MHz  
1.095  
1.09  
1.09  
1.08  
1.07  
1.06  
1.085  
1.08  
1.075  
1.07  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
Load Current (A)  
Load Current (A)  
PVIN = 12 V  
PVIN = 12 V  
DC Load Line (DCLL) = 0.75  
DC Load Line (DCLL) = 0.75  
mΩ  
mΩ  
8-8. Load Regulation, FCCM, Internal LDO  
8-9. Load Regulation, FCCM, External 5-V Bias  
1.12  
1.12  
600 kHz  
800 kHz  
1.0 MHz  
1.2 MHz  
600 kHz  
800 kHz  
1.0 MHz  
1.2 MHz  
1.11  
1.1  
1.11  
1.1  
1.09  
1.08  
1.07  
1.06  
1.09  
1.08  
1.07  
1.06  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
Load Current (A)  
Load Current (A)  
PVIN = 12 V  
PVIN = 12 V  
DC Load Line (DCLL) = 0.75  
DC Load Line (DCLL) = 0.75  
mΩ  
mΩ  
8-10. Load Regulation, DCM, Internal VCC LDO 8-11. Load Regulation, DCM, External 5-V Bias  
8-12. ENABLE Start-Up Waveform  
8-13. ENABLE Shutdown Waveform  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
8-14. Output Voltage Ripple, 600 kHz FCCM, 35- 8-15. Output Voltage Ripple, 800 kHz FCCM, 35-  
A Load  
A Load  
8-16. Output Voltage Ripple, FCCM, No load  
8-17. Output Voltage Ripple, DCM, No load  
8-18. Output Voltage Ripple, DCM, 500-mA Load  
8-19. Output Voltage Ripple, DCM, 1-A Load  
8.3 Power Supply Recommendations  
The device is designed to operate from a wide input voltage supply range between 2.7 V and 16 V when the  
VCC/VDRV pin is powered by an external bias ranging from 4.75 V to 5.3 V. Both input supplies (PVIN and VCC  
bias) must be well regulated. Proper bypassing of input supplies (PVIN and VCC/VDRV) is also critical for noise  
performance, as are PCB layout and grounding scheme. See the recommendations in Layout Guidelines.  
Copyright © 2022 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: TPS544C26  
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
8.4 Layout  
8.4.1 Layout Guidelines  
Layout is critical for good power-supply design. Layout example shows the recommended PCB-layout  
configuration. A list of PCB layout considerations using the device is listed as follows:  
Place the power components (including input and output capacitors, the inductor, and the IC) on the top side  
of the PCB. To shield and isolate the small signal traces from noisy power lines, insert at least one solid  
ground inner plane.  
PVIN-to-PGND decoupling capacitors are important for FET robustness. Besides the large volume 0603 or  
0805 ceramic capacitors, TI highly recommends a 0.1-µF 0402 ceramic capacitor with 25 V / X7R rating on  
PVIN pin 20 (top layer) to bypass any high frequency current in PVIN to PGND loop. The 25-V rating is  
recommended but can be lowered to 16-V rating for an application with tightly regulated 12-V input bus.  
When one or more PVIN-to-PGND decoupling capacitors are placed on bottom layer, extra impedance is  
introduced to bypass IC PVIN node to IC PGND node. Placing at least 3 times PVIN vias on PVIN pad  
(formed by pin 20 to pin 24) and at least 9 times PGND vias on the thermal pad (underneath of the IC) is  
important to minimize the extra impedance for the bottom layer bypass capacitors.  
Except the PGND vias underneath the thermal pad, at least 4 PGND vias are required to be placed as close  
as possible to the PGND pin 7 to pin 10. At least 2 PGND vias are required to be placed as close as possible  
to the PGND pin 19. Thisaction minimizes PGND bounces and also lowers thermal resistance.  
Place the VCC/VDRV-to-PGND decoupling capacitor as close as possible to the device. TI recommends  
a2.2-µF/6.3-V/X7R/0603 or 4.7-µF/6.3-V/X6S/0603 ceramic capacitor. The voltage rating of this bypass  
capacitor must be at least 6.3 V but no more than 10 V to lower ESR and ESL. The recommended capacitor  
size is 0603 to minimize the capacitance drop due to DC bias effect. Ensure the VCC/VDRV to PGND  
decoupling loop is the smallest and ensure the routing trace is wide enough to lower impedance.  
For remote sensing, the connections from the VOSNS/GOSNS pins to the remote location must be a pair of  
PCB traces with at least 12 mil trace width, and must implement Kelvin sensing across a high bypass  
capacitor of 0.1 μF or higher. The ground connection of the remote sensing signal must be connected to  
GOSNS pin. The VOUT connection of the remote sensing signal must be connected to the VOSNS pin. To  
maintain stable output voltage and minimize the ripple, the pair of remote sensing lines must stay away from  
any noise sources such as inductor and SW nodes, or high frequency clock lines. And TI recommends to  
shield the pair of remote sensing lines with ground planes above and below.  
For single-end sensing, connect the VOSNS pin to a high-frequency local bypass capacitor of 0.1 μF or  
higher, and short GOSNS to AGND with shortest trace.  
To minimize the impact from switching noise and achieve high accuracy on the input power monitoring  
feature, a PGND referenced bypass capacitor is required for each of VINSENP and VINSENM pins, with at  
least 100-pF volume and at least 25-V rating. These bypass capacitors must be placed close to VINSENP or  
VINSENM pin accordingly.  
In a case that the input power feature is not used, follow below connection for pin 3 VINSENP and pin 4  
VINSENM so that the device can report the input voltage level on PVIN node:  
1. Short pin 3 VINSENP to pin 4 VINSENM,  
2. Place a 0.1 µF ceramic bypass capacitor on pin 4 VINSENM referring to AGND,  
3. Connect pin 4 VINSENM to PVIN node of TPS544C26 device.  
The AGND pin 32 must be connected to a solid PGND plane. TI recommends to place two AGND vias close  
to pin 32 to route AGND from top layer to bottom layer, and then connect the AGND trace to the PGND vias  
(underneath IC) through either a net-tie or a 0 resistor on the bottom layer.  
Connecting a resistor from pin 29 (I2C_ADDR) to AGND sets I2C address. It is required not to have any  
capacitor on pin 29. A capacitor on pin 29 likely leads to a wrong detection result for I2C address.  
Pin 6 (DNC) is a Do-Not-Connect pin. Pin 6 can be shorted to pin 37, which is an NC pin (No internal  
Connection). Do not connect pin 6 to any other net including ground.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TPS544C26  
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
8.4.2 Layout Example  
8/20  
0402  
0402  
GOSNS_Local  
8/20  
GOSNS_Remote  
SVID Bus  
8/20  
8/20  
8/20  
8/20  
8/20  
0402  
0402  
VOSNS_Remote  
VOSNS_Local  
8/20  
0402  
8/20  
8/20  
8/20  
I2C Clock  
I2C Data  
CAT_FAULT#  
Signal  
8/20  
0402  
AGND  
8/20  
8/20  
8/20  
8/20  
0402  
VRRDY Singal  
VRRDY  
Pullup  
source  
CAT_FAULT#  
Pullup Source  
8/20  
Enable  
0402  
0402  
0402  
8/20  
I2C_SDA  
VRRDY  
CAT_FAULT#  
EN  
8/20  
8/20  
8/20  
8/20  
0402  
8/20  
PVIN Bypass capacitors:  
8/20  
8/20  
1x 0402 capacitors on top layer;  
2x 0805 capacitors on top layer;  
2x 0805 capacitors on bo om layer  
VINSENP  
VINSENM  
VCC/VDRV  
DNC  
BOOT  
PHASE  
PVIN  
PGND  
8/20  
8/20  
8/20  
0402  
8/20  
8/20  
8/20  
8/20  
8/20  
8/20  
NC  
PVIN  
8/20  
8/20  
8/20  
PGND  
PVIN  
8/20  
PGND  
PVIN  
8/20  
PGND  
PVIN  
PGND  
PGND  
8/20  
8/20  
8/20  
8/20  
8/20  
8/20  
8/20  
8/20  
8/20  
8/20  
8 / 2 0  
8 / 2 0  
08  
08  
GOSNS_Local  
VOSNS_Local  
8 / 2 0  
8 / 2 0  
8 / 2 0  
8 / 2 0  
8 / 2 0  
8 / 2 0  
VOUT  
VOUT Bypass capacitors:  
Place ceramic capacitors on top  
layer; Bulk capacitors are op onal  
and can be placed on bo om layer  
8-20. Layout Recommendation  
Copyright © 2022 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
8.4.2.1 Thermal Performance on TPS544C26EVM  
Below are thermal results captured on the TPS544C26EVM with PVIN = 12 V, VOUT = 1.1 V conditions.  
8-21. Thermal Characteristics, 600 kHz FCCM,  
8-22. Thermal Characteristics, 600 kHz FCCM,  
Internal LDO, 35 A Load  
External 5-V Bias, 35-A Load  
8-23. Thermal Characteristics, 800 kHz FCCM,  
8-24. Thermal Characteristics, 800 kHz FCCM,  
Internal LDO, 35-A Load  
External 5-V Bias, 35-A Load  
8-25. Thermal Characteristics, 1.2-MHz FCCM,  
8-26. Thermal Characteristics, 1.2-MHz FCCM,  
Internal LDO, 35-A Load  
External 5-V Bias, 35-A Load  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
9 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
9.1 Documentation Support  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
D-CAP+and TI E2Eare trademarks of Texas Instruments.  
Intel® is a registered trademark of Intel.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: TPS544C26  
 
 
 
 
 
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
10.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
WQFN-  
FCRLF  
TPS544C26RXXR  
RXX  
37  
3000  
330.0  
12.0  
5.25  
6.3  
1.0  
8.0  
12.0  
Q1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: TPS544C26  
 
 
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
WQFN-FCRLF  
Package Drawing Pins  
RXX 37  
SPQ  
Length (mm) Width (mm)  
355.0 338.0  
Height (mm)  
TPS544C26RXXR  
3000  
35.0  
Copyright © 2022 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
Copyright © 2022 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: TPS544C26  
TPS544C26  
ZHCSR16 SEPTEMBER 2022  
www.ti.com.cn  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: TPS544C26  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS544C26RXXR  
ACTIVE WQFN-FCRLF  
RXX  
37  
3000 RoHS & Green  
Call TI | NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
544C26  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
RXX 37  
5 x 6, 0.5 mm pitch  
VQFN-FCRLF - 1.05 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4228557/A  
www.ti.com  
PACKAGE OUTLINE  
WQFN-FCRLF - 0.7 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
A
RXX0037B  
5.1  
4.9  
B
6.1  
5.9  
PIN 1 INDEX AREA  
0.7  
0.6  
C
SEATING PLANE  
0.01  
0.00  
0.08  
(0.2)  
C
0.45  
0.35  
(0.20) TYP  
(0.25) TYP  
11  
18  
19  
20  
2.34±0.1  
10  
6X (2.07)  
2.089±0.1  
1.839±0.1  
6X (1.5)  
(1.405)  
0.5  
0.4  
(1.375)  
(0.975)  
2X (1)  
4X (0.925)  
0.625±0.1  
(0.612)  
(0.3)  
7
(0.952)  
(0.543)  
(0.526)  
3X (0.028)  
6
2X (0.5)  
0.15±0.1  
0.000 PKG  
2X 4.5  
0.3  
0.2  
37  
24  
25  
0.306±0.1  
0.626±0.1  
0.325±0.1  
3X (0.5)  
(0.668)  
2X (1)  
2X (1.075)  
(1.438)  
2X (1.522)  
2X (1.582)  
2X NO METAL  
40X (Ø 0.15) NO METAL  
2.25±0.1  
28  
1
PIN 1 ID  
(OPTIONAL)  
36  
29  
0.45  
18X  
0.3  
0.2  
37X  
0.35  
0.1  
C
A
B
0.05  
C
32X 0.5  
2X 3.5  
4228540/C 10/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN-FCRLF - 0.7 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RXX0037B  
29  
36  
10X (R0.1)  
(2.9)  
(0.05) MIN  
ALL AROUND  
TYP  
(R 0.05) TYP  
28  
(2.25)  
1
(1.938)  
18X (0.6)  
(0.938)  
25  
(0.363)  
(0.325)  
(0.626)  
(0.306)  
24  
37  
0.000 PKG ℄  
2X (4.5)  
(0.15)  
6
(0.45)  
(0.625)  
7
(0.635)  
(0.767)  
(Ø0.2) TYP  
(1.483)  
20  
(1.839)  
(2.089)  
(2.34)  
19  
10  
(2.6)  
(2.8)  
(3.2)  
11  
18  
37X (0.25)  
32X (0.5)  
2X (3.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON- SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4228540/C 10/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN-FCRLF - 0.7 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RXX0037B  
3X (1)  
37X (0.25)  
18X (0.6)  
36  
29  
(2.9)  
(R 0.05) TYP  
28  
1
(1.438)  
(1.47)  
2X (1.318)  
2X (1.71)  
25  
24  
37  
2X (4.5)  
(0.84)  
0.000 PKG ℄  
(0.155)  
(0.187)  
6
7
(1.47)  
10X (0.45)  
2X (0.96)  
(1.347)  
2X (1.547)  
2X (1.55)  
20  
(1.2)  
2X (1.05)  
(2.09)  
10  
19  
(2.6)  
(2.8)  
(3.2)  
18  
11  
(1.17)  
32X (0.5)  
2X (3.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SOLDER COVERAGE BY AREA UNDER PACKAGE :  
THERMAL PAD CONNECTED TO PINS 7-10 &19: 80%  
THERMAL PAD CONNECTED TO PINS 20-24: 86%  
SCALE: 15X  
4228540/C 10/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS544C26RXXR

4V 至 16V、35A SVID 和 I²C 同步降压转换器

| RXX | 37 | -40 to 125
TI

TPS5450

5-A, WIDE INPUT RANGE, STEP-DOWN SWIFT CONVERTER
TI

TPS5450-EP

5-A, WIDE INPUT RANGE, STEP-DOWN SWIFT™ CONVERTER
TI

TPS5450-Q1

5-A, WIDE INPUT RANGE, STEP-DOWN SWIFT™ CONVERTER
TI

TPS5450DDA

5-A, WIDE INPUT RANGE, STEP-DOWN SWIFT CONVERTER
TI

TPS5450DDAG4

5-A, WIDE INPUT RANGE, STEP-DOWN SWIFT CONVERTER
TI

TPS5450DDAR

5-A, WIDE INPUT RANGE, STEP-DOWN SWIFT CONVERTER
TI

TPS5450DDARG4

5-A, WIDE INPUT RANGE, STEP-DOWN SWIFT CONVERTER
TI

TPS5450MDDAREP

5-A, WIDE INPUT RANGE, STEP-DOWN SWIFT™ CONVERTER
TI

TPS5450QDDARQ1

5-A, WIDE INPUT RANGE, STEP-DOWN SWIFT™ CONVERTER
TI

TPS54519

2.95 V to 6 V Input, 5-A Synchronous Step Down SWIFT Converter
TI

TPS54519EVM-037

TPS54519EVM-037, 5-A, SWIFT™ Regulator Evaluation Module
TI