TPS54626PWP [TI]

采用 HTSSOP 封装、具有 Eco-Mode 的 4.5V 至 18V、6.5A 同步降压转换器 | PWP | 14 | -40 to 85;
TPS54626PWP
型号: TPS54626PWP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 HTSSOP 封装、具有 Eco-Mode 的 4.5V 至 18V、6.5A 同步降压转换器 | PWP | 14 | -40 to 85

开关 光电二极管 转换器
文件: 总23页 (文件大小:1326K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS54626  
www.ti.com.cn  
ZHCSBE3 AUGUST 2013  
具有 ECO-Mode™ 4.5V 18V 输入,6.5A 同步降压 SWIFT™ 转换器  
查询样品: TPS54626  
1
特性  
说明  
23  
D-CAP2™ 模式支持快速瞬态响应  
低输出纹波,支持陶瓷输出电容器  
VIN 输入电压范围:4.5V 18V  
输出电压范围:0.76V 5.5V  
TPS54626 是一款自适应接通时间 D-CAP2™ 模式同  
步降压转换器。 TPS54626 可帮助系统设计人员用成  
本有效、低组件数量、低待机电流解决方案来完成不同  
终端设备的电源总线调节器集。 TPS54626 的主控制  
环路采用 D-CAP2™ 模式控制,此模式无需外部补偿  
组件便可实现极快的瞬态响应。 自适应接通时间支持  
高负载条件下脉宽调制 (PWM) 模式与轻负载下减频运  
行之间的无缝操作,以实现高效率。 TPS54626 的专  
有电路还可使该器件能够适应诸如高分子聚合物电容器  
(SP-CAP) 等低等效串联电阻 (ESR) 输出电容器以及  
超低 ESR 陶瓷电容器。 该器件在 4.5V 18V VIN  
输入电源电压范围内运行。 输出电压可在 0.76V 与  
5.5V 之间设定。该器件还特有一个可调软启动时间和  
一个电源正常功能。 TPS54626 采用 14 引脚散热薄  
型小外形尺寸 (HTSSOP) 封装,设计工作温度介于 -  
40°85° 之间。  
高效率集成型场效应晶体管 (FET) 针对更低占空比  
应用进行了优化 - 36mΩ(高侧)与ꢀ28  
mΩ(低侧)  
关断时的高效率,流耗不足 10μA  
高初始带隙基准精度  
可调软启动  
预偏置软启动  
650kHz 开关频率 (fSW  
)
逐周期限流  
电源正常输出  
自动跳跃 Eco-mode™ 为了在轻负载下实现高效率  
应用范围  
Io = 50 mA – 6.5 A  
S/R = 0.35 A/μs  
低电压系统的广泛应用  
数字电视电源  
Vo (50 mV/div)  
Io (2 A/div)  
高清 Blu-ray Disc™ 播放器  
网络家庭终端设备  
数字机顶盒 (STB)  
U1  
TPS54626PWP  
Time (100 μs/div)  
L004_SLVSC34  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
D-CAP2, Eco-mode are trademarks of Texas Instruments.  
Blu-ray Disc is a trademark of Blu-ray Disc Association.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
English Data Sheet: SLVSC34  
TPS54626  
ZHCSBE3 AUGUST 2013  
www.ti.com.cn  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
TA  
PACKAGE(2) (3)  
ORDERABLE PART NUMBER  
PIN  
TRANSPORT MEDIA  
Tube  
TPS54626PWP  
–45°C to 85°C  
PWP  
14  
TPS54626PWPR  
Tape and Reel  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
(3) All package options have Cu NIPDAU lead/ball finish.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
(1)  
VALUE  
UNIT  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–2  
MAX  
20  
VIN1, VIN2, EN  
VBST  
V
V
26  
VBST (10 ns transient)  
VBST (vs Sw1, SW2)  
VFB, VO, SS, PG  
SW1, SW2  
28  
V
VI  
Input voltage range  
Output voltage range  
6.5  
6.5  
20  
V
V
V
SW1, SW2 (10 ns transient)  
VREG5  
–3  
22  
V
–0.3  
–0.3  
–0.2  
6.5  
0.3  
0.2  
2
V
VO  
PGND1, PGND2  
V
Vdiff  
Voltage from GND to POWERPAD  
Human Body Model (HBM)  
Charged Device Model (CDM)  
V
kV  
V
ESD rating  
Electrostatic discharge  
500  
150  
150  
TJ  
Operating junction temperature  
Storage temperature  
–40  
–55  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
THERMAL INFORMATION  
TPS54626  
THERMAL METRIC(1)  
UNITS  
PWP (14 PINS)  
θJA  
Junction-to-ambient thermal resistance  
40.5  
28.7  
24.2  
0.8  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
23.9  
2.4  
θJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
2
Copyright © 2013, Texas Instruments Incorporated  
TPS54626  
www.ti.com.cn  
ZHCSBE3 AUGUST 2013  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
MAX  
18  
UNIT  
VIN  
Supply input voltage range  
V
VBST  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–1.8  
–3  
24  
VBST (10 ns transient)  
VBST (vs SW)  
SS, PG  
27  
6.0  
5.7  
18  
VI  
Input voltage range  
EN  
V
VO, VFB  
5.5  
18  
SW1, SW2  
SW1, SW2 (10 ns transient)  
PGND1, PGND2  
VREG5  
21  
–0.1  
–0.1  
0
0.1  
5.7  
5
VO  
IO  
Output voltage range  
V
Output Current range  
IVREG5  
mA  
kΩ  
°C  
°C  
RPG  
TA  
TJ  
Power Good resistor  
25  
150  
85  
Operating free-air temperature  
Operating junction temperature  
–40  
–40  
150  
ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range, VIN = 12V (unless otherwise noted)  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN current, TA = 25°C, EN = 5 V,  
VVFB = 0.8 V  
IVIN  
Operating - non-switching supply current  
Shutdown supply current  
950  
3.6  
1400  
10  
μA  
μA  
IVINSDN  
VIN current, TA = 25°C, EN = 0 V  
LOGIC THRESHOLD  
VENH  
VENL  
REN  
EN high-level input voltage  
En  
1.6  
V
V
EN low-level input voltage  
EN pin resistance to GND  
EN  
0.6  
VEN = 12 V  
200  
400  
800  
kΩ  
VFB VOLTAGE AND DISCHARGE RESISTANCE  
VFB voltage light load mode, TA = 25°C,  
VO = 1.05 V, IO = 10mA  
772  
765  
TA = 25°C, VO = 1.05 V, continuous mode  
757  
753  
773  
777  
VFBTH  
VFB threshold voltage  
mV  
TA = 0°C to 85°C, VO = 1.05 V, continuous  
mode(1)  
TA = –40°C to 85°C, VO = 1.05 V, continuous  
mode(1)  
751  
779  
IVFB  
VFB input current  
VVFB = 0.8 V, TA = 25°C  
0
±0.15  
150  
μA  
RDischg  
VO discharge resistance  
VEN = 0 V, VO = 0.5 V, TA = 25°C  
100  
VREG5 OUTPUT  
TA = 25°C, 6 V < VIN < 18 V,  
0 < IVREG5 < 5 mA  
VVREG5  
VREG5 output voltage  
5.2  
20  
5.5  
5.7  
V
IVREG5  
MOSFET  
Rdsonh  
Output current  
VIN = 6 V, VVREG5 = 4 V, TA = 25°C  
mA  
High side switch resistance  
Low side switch resistance  
TA = 25°C, VBST-SW1,2 = 5.5V  
TA = 25°C  
36  
28  
mΩ  
mΩ  
Rdsonl  
(1) Not production tested.  
Copyright © 2013, Texas Instruments Incorporated  
3
TPS54626  
ZHCSBE3 AUGUST 2013  
www.ti.com.cn  
ELECTRICAL CHARACTERISTICS (continued)  
over operating free-air temperature range, VIN = 12V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT LIMIT  
Iocl Current limit  
THERMAL SHUTDOWN  
L = 1.5 μH(2)  
,
7.2  
8.2  
9.5  
A
(2)  
Shutdown temperature  
165  
35  
TSDN  
Thermal shutdown threshold  
°C  
(2)  
Hysteresis  
ON-TIME TIMER CONTROL  
TON  
On time  
VIN = 12 V, VO = 1.05 V  
TA = 25°C, VFB = 0.7 V  
150  
260  
ns  
ns  
TOFF(MIN)  
Minimum off time  
310  
7.8  
SOFT START  
ISSC SS charge current  
ISSD SS discharge current  
POWER GOOD  
VSS = 1.0 V  
VSS = 0.5 V  
4.2  
1.5  
6.0  
3.3  
μA  
mA  
VVFB rising (good)  
VVFB falling (fault)  
VPG = 0.5 V  
85%  
2.5  
90%  
85%  
5
95%  
VTHPG  
IPG  
PG threshold  
PG sink current  
mA  
μs  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
VOVP  
Output OVP trip threshold  
Output OVP prop delay  
OVP detect  
120% 125% 130%  
10  
TOVPDEL  
UVP detect  
Hysteresis  
60%  
65%  
10%  
0.25  
70%  
VUVP  
Output UVP trip threshold  
TUVPDEL  
TUVPEN  
UVLO  
Output UVP delay  
ms  
Output UVP enable delay  
Relative to soft-start time  
X 1.7  
Wake up VREG5 voltage  
Hysteresis VREG5 voltage  
3.45  
0.13  
3.75  
0.32  
4.05  
0.48  
VUVLO  
UVLO threshold  
V
(2) Not production tested.  
4
Copyright © 2013, Texas Instruments Incorporated  
TPS54626  
www.ti.com.cn  
ZHCSBE3 AUGUST 2013  
DEVICE INFORMATION  
PWP PACKAGE  
(TOP VIEW)  
14  
13  
1
2
VIN2  
VIN1  
VO  
VFB  
3
4
5
VREG5  
12  
11  
VBST  
SW2  
POWER PAD  
SS  
SW1  
10  
GND  
6
7
9
PGND2  
PGND1  
PG  
EN  
8
PIN FUNCTIONS  
PIN  
DESCRIPTION  
NAME  
NUMBER  
VO  
1
2
Connect to output of converter. This pin is used for output discharge function.  
Converter feedback input. Connect with feedback resistor divider.  
VFB  
5.5V power supply output. A Capacitor (typical 1µF) should be connected to GND. VREG5 is not active  
when EN is low.  
VREG5  
3
SS  
4
5
6
7
Soft start control. An external capacitor should be connected to GND.  
Signal ground pin.  
GND  
PG  
Open drain power good output  
EN  
Enable control input. EN is active high and must be pulled up to enable the device.  
PGND1,  
PGND2  
Ground returns for low-side MOSFET. Also serve as inputs of current comparators. Connect PGND and  
GND strongly together near the IC.  
8, 9  
Switch node connection between high-side NFET and low-side NFET. Also serve as inputs to current  
comparator.  
SW1, SW2  
10,11  
Supply input for high-side NFET gate driver (boost terminal). Connect capacitor from this pin to respective  
SW1,SW2 terminals. An internal PN diode is connected between VREG5 and VBST pin.  
VBST  
12  
VIN1,VIN2  
13,14  
Power Input and connected to high side NFET drain.  
Supply Input for 5V internal linear regulator for the control circuitry  
Thermal pad of the package. Must be soldered to achieve appropriate dissipation. Should be connected to  
PGND  
PowerPAD™  
Back side  
Copyright © 2013, Texas Instruments Incorporated  
5
TPS54626  
ZHCSBE3 AUGUST 2013  
www.ti.com.cn  
FUNCTIONAL BLOCK DIAGRAM (HTSSOP)  
-35%  
UV  
OV  
VIN  
VIN2  
VIN1  
14  
13  
1
VO  
+25%  
VREG5  
VBST  
12  
Control logic  
1 shot  
Ref  
SS  
SW2  
SW1  
VO  
11  
10  
2
VFB  
XCON  
VREG5  
SGND  
VREG5  
Ceramic  
Capacitor  
3
4
PGND2  
PGND1  
SS  
9
8
1mF  
SW  
Softstart  
ZC  
SS  
PGND  
PGND  
5
GND  
SW  
OCP  
PGND  
SGND  
PG  
Ref  
-10%  
VI  
N
6
UV  
VREG5  
OV  
UVLO  
TSD  
Protection  
Logic  
UVLO  
Ref  
EN  
EN  
7
Logic  
REF  
OVERVIEW  
The TPS54626 is a 6.5-A synchronous step-down (buck) converter with two integrated N-channel MOSFETs and  
auto-skip Eco-mode™ to improve light lode efficiency. It operates using D-CAP2™ mode control. The fast  
transient response of D-CAP2™ control reduces the output capacitance required to meet a specific level of  
performance. Proprietary internal circuitry allows the use of low ESR output capacitors including ceramic and  
special polymer types.  
DETAILED DESCRIPTION  
PWM Operation  
The main control loop of the TPS54626 is an adaptive on-time pulse width modulation (PWM) controller that  
supports a proprietary D-CAP2™ mode control. D-CAP2™ mode control combines constant on-time control with  
an internal compensation circuit for pseudo-fixed frequency and low external component count configuration with  
both low ESR and ceramic output capacitors. It is stable with virtually no ripple at the output.  
6
Copyright © 2013, Texas Instruments Incorporated  
TPS54626  
www.ti.com.cn  
ZHCSBE3 AUGUST 2013  
At the beginning of each cycle, the high-side MOSFET is turned on. The MOSFET is turned off after the internal  
one-shot timer expires. The one-shot timer is set by the converter input voltage, VIN, and the output voltage, VO,  
to maintain a pseudo-fixed frequency over the input voltage range, hence it is called adaptive on-time control.  
The one-shot timer is reset and the high-side MOSFET is turned on again when the feedback voltage falls below  
the reference voltage. An internal ramp is added to reference voltage to simulate output ripple, eliminating the  
need for ESR induced output ripple from D-CAP2™ mode control.  
PWM Frequency and Adaptive On-Time Control  
TPS54626 uses an adaptive on-time control scheme and does not have a dedicated on board oscillator. The  
TPS54626 runs with a pseudo-constant frequency of 650 kHz by using the input voltage and output voltage to  
set the on-time one-shot timer. The on-time is inversely proportional to the input voltage and proportional to the  
output voltage. Therefore, when duty ratio is VOUT/VIN, the frequency is constant.  
Auto-Skip Eco-Mode™ Control  
The TPS54626 is designed with Auto-Skip mode to increase light load efficiency. As the output current  
decreases from heavy load condition, the inductor current is also reduced and eventually comes to point that its  
rippled valley touches zero level, which is the boundary between continuous conduction and discontinuous  
conduction modes. The rectifying MOSFET is turned off when its zero inductor current is detected. As the load  
current further decreases the converter run into discontinuous conduction mode. The on-time is kept almost the  
same as is was in the continuous conduction mode so that it takes longer time to discharge the output capacitor  
with smaller load current to the level of the reference voltage. The transition point to the light load operation  
IOUT(LL) current can be calculated in Equation 1.  
V -V  
IN OUT  
×V  
)
OUT  
(
1
IOUT(LL)  
=
×
2×L×fSW  
V
IN  
(1)  
Soft Start and Pre-Biased Soft Start  
The soft start function is adjustable. When the EN pin becomes high, 6 μA current begins charging the capacitor  
which is connected from the SS pin to GND. Smooth control of the output voltage is maintained during start up.  
The equation for the slow start time is shown in Equation 2. VFB voltage is 0.765 V and SS pin source current is  
6 μA.  
C
(nF) x V  
´1.1  
C
(nF) x 0.765´1.1  
SS  
REF  
SS  
t
(ms) =  
=
SS  
I
(mA)  
6
SS  
(2)  
TPS54626 contains a unique circuit to prevent current from being pulled from the output during startup if the  
output is pre-biased. When the soft-start commands a voltage higher than the pre-bias level (internal soft-start  
becomes greater than feedback voltage VFB), the controller slowly activates synchronous rectification by starting  
the first low side FET gate driver pulses with a narrow on-time. It then increments that on-time on a cycle-by-  
cycle basis until it coincides with the time dictated by (1-D), where D is the duty cycle of the converter. This  
scheme prevents the initial sinking of the pre-bias output, and ensure that the out voltage (VO) starts and ramps  
up smoothly into regulation and the control loop is given time to transition from pre-biased start-up to normal  
mode operation.  
Power Good  
The TPS54626 has power good open drain output. The power-good function is activated after soft start has  
finished. The power good function becomes active after 1.7 times soft-start time. When the output voltage  
becomes within –10% of the target value, internal comparators detect power good state and the power good  
signal becomes high. Rpg resistor value, which is connected between PG and VREG5, is required from 25kΩ to  
150kΩ. If the feedback voltage goes under 15% of the target value, the power good signal becomes low.  
Output Discharge Control  
TPS54626 discharges the output when EN is low, or the controller is turned off by the protection functions (OVP,  
UVP, UVLO and thermal shutdown). The device discharges the output using an internal 100-Ω MOSFET which is  
connected from VO to PGND.The internal low-side MOSFET is not turned on during the output discharge  
operation to avoid the possibility of causing negative voltage at the output.  
Copyright © 2013, Texas Instruments Incorporated  
7
 
 
TPS54626  
ZHCSBE3 AUGUST 2013  
www.ti.com.cn  
Current Protection  
The output over-current protection (OCP) is implemented using a cycle-by-cycle valley detect control circuit. The  
switch current is monitored by measuring the low-side FET switch voltage between the SW pin and GND. This  
voltage is proportional to the switch current. To improve accuracy, the voltage sensing is temperature  
compensated.  
During the on time of the high-side FET switch, the switch current increases at a linear rate determined by Vin,  
Vout, the on-time and the output inductor value. During the on time of the low-side FET switch, this current  
decreases linearly. The average value of the switch current is the load current Iout. If the measured voltage is  
above the voltage proportional to the current limit, then the device constantly monitors the low side FET switch  
voltage, which is proportional to the switch current, during the low-side on-time.  
The converter maintains the low-side switch on until the measured voltage is below the voltage corresponding to  
the current limit at which time the switching cycle is terminated and new switching cycle begins. IN subsequent  
switching cycles, the on-time is set to fixed value and the current is monitored in the same manner.  
There are some important considerations for this type of over-current protection. The load current one half of the  
peak-to-peak inductor current is higher than the over-current threshold. Also, when the current is being limited,  
the output voltage tends to fall as the demanded load current may be higher than the current available from the  
converter. This may cause the output under-voltage protection circuit to be activated. This protection itself is non-  
latching.  
Over/Under Voltage Protection  
TPS54626 detects over and under voltage conditions by monitoring the feedback voltage (VFB). This function is  
enabled after approximately 1.7 x times the softstart time.  
When the feedback voltage becomes higher than 125% of the target voltage, the OVP comparator output goes  
high and the circuit latches and both the high-side MOSFET driver and the low-side MOSFET driver turn off.  
When the feedback voltage becomes lower than 65% of the target voltage, the UVP comparator output goes  
high and an internal UVP delay counter begins. After 250us, the device latches off both internal top and bottom  
MOSFET.  
UVLO Protection  
Under voltage lock out protection (UVLO) monitors the voltage of the VREG5 pin. When the VREG5 voltage is lower  
than UVLO threshold voltage, the TPS54626 is shut off. This is protection is non-latching.  
Thermal Shutdown  
Thermal protection is self-activating. If the junction temperature exceeds the threshold value (typically 165°C),  
the TPS54626 is shut off. This protection is non-latching.  
8
Copyright © 2013, Texas Instruments Incorporated  
TPS54626  
www.ti.com.cn  
ZHCSBE3 AUGUST 2013  
TYPICAL CHARACTERISTICS  
VIN = 12 V, TA = 25 °C (unless otherwise noted)  
Vin CURRENT  
Vin SHUTDOWN CURRENT  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
1200  
1000  
800  
14  
12  
10  
8
EN = 0 V  
600  
6
400  
4
200  
2
Vin = 12 V  
150  
Vin = 12 V  
100 150  
EN = 5 V  
0
0
0
50  
100  
0
50  
±50  
±50  
Junction Temperature (ƒC)  
Junction Temperature (ƒC)  
C001  
C002  
Figure 1.  
Figure 2.  
EN CURRENT  
vs  
EN VOLTAGE  
1.05V OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1.100  
1.075  
1.050  
1.025  
1.000  
Vo = 1.05 V  
Vin = 12 V  
Vin = 5 V  
Vin = 12 V  
Vin = 18 V  
0
0
5
10  
15  
20  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
Output Current (A)  
EN Input Voltage (V)  
C003  
C004  
Figure 3.  
Figure 4.  
Copyright © 2013, Texas Instruments Incorporated  
9
TPS54626  
ZHCSBE3 AUGUST 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
VIN = 12 V, TA = 25 °C (unless otherwise noted)  
1.05V OUTPUT VOLTAGE  
vs  
INPUT VOLTAGE  
1.05 V 0.05A to 6.5A LOAD TRANSIENT RESPONSE  
1.10  
1.09  
1.08  
1.07  
1.06  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
Io = 50 mA – 6.5 A  
S/R = 0.35 A/μs  
Vo (50 mV/div)  
Io (2 A/div)  
Io = 10 mA  
Io = 1 A  
Time (100 μs/div)  
0
5
10  
15  
20  
L004_SLVSC34  
Input Voltage (V)  
C005  
Figure 5.  
Figure 6.  
EFFICIENCY vs OUTPUT CURRENT  
STARTUP WAVEFORM  
100  
90  
80  
70  
60  
50  
40  
EN (10 V/div)  
Vi = 12 V  
VREG (5 V/div)  
Vo (0.5 V/div)  
Vo = 1.8 V  
Vo = 3.3 V  
Vo = 5 V  
Io = 0 A  
Css = 8200 pF  
Time (1 ms/div)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
L003_SLVSC34  
Output Current (A)  
C006  
Figure 7.  
Figure 8.  
10  
Copyright © 2013, Texas Instruments Incorporated  
TPS54626  
www.ti.com.cn  
ZHCSBE3 AUGUST 2013  
TYPICAL CHARACTERISTICS (continued)  
VIN = 12 V, TA = 25 °C (unless otherwise noted)  
LIGHT LOAD EFFICIENCY  
SWITCHING FREQUENCY  
vs  
vs  
OUTPUT CURRENT  
INPUT VOLTAGE (IO=1A)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
850  
800  
750  
700  
650  
600  
550  
500  
450  
400  
Vi = 12 V  
Vo = 1.05 V  
Vo = 1.2 V  
Vo = 1.5 V  
Vo = 1.8 V  
Vo = 2.5 V  
Vo = 3.3 V  
Vo = 5 V  
Vo = 1.8 V  
Vo = 3.3 V  
Vo = 5 V  
0.001  
0.01  
0.1  
0
5
10  
15  
20  
Output Current (A)  
Input Voltage (V)  
C007  
C008  
Figure 9.  
Figure 10.  
SWITCHING FREQUENCY  
vs  
OUTPUT CURRENT  
VFB VOLTAGE vs JUNCTION TEMPERATURE  
900  
0.780  
0.775  
0.770  
0.765  
0.760  
0.755  
0.750  
Vin = 12 V  
Io = 1 A  
800  
700  
600  
500  
400  
300  
200  
100  
0
Vo=1.05V  
Vo=1.8V  
Vo=3.3V  
VFB  
0.01  
0.1  
Output Current (A)  
1
10  
0
50  
100  
150  
±50  
Junction Temperature (ƒC)  
C009  
C010  
Figure 11.  
Figure 12.  
Copyright © 2013, Texas Instruments Incorporated  
11  
TPS54626  
ZHCSBE3 AUGUST 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
VIN = 12 V, TA = 25 °C (unless otherwise noted)  
OUTPUT CURRENT  
vs  
AMBIENT TEMPERATURE  
VOLTAGE RIPPLE AT INTPUT (IO=6.5A)  
7
6
5
4
3
2
1
0
Vo = 1.05 V  
Io = 6.5 A  
Vi (50 mV/div)  
SW (5 V/div)  
Vo = 1.05 V  
Vo = 1.8 V  
Vo = 2.5 V  
Vo = 3.3 V  
Vo = 5 V  
Time (1 ms/div)  
0
20  
40  
60  
80  
100  
L001_SLVSC34  
Ambient Temperature (ƒC)  
C011  
Figure 13.  
Figure 14.  
VOLTAGE RIPPLE AT OUTPUT (IO=6.5A)  
Vo = 1.05 V  
Io = 6.5 A  
Vo (10 mV/div)  
SW (5 V/div)  
Time (100 μs/div)  
L002_SLVSC34  
Figure 15.  
12  
Copyright © 2013, Texas Instruments Incorporated  
TPS54626  
www.ti.com.cn  
ZHCSBE3 AUGUST 2013  
DESIGN GUIDE  
Step By Step Design Procedure  
To begin the design process, you must know a few application parameters:  
Input voltage range  
Output voltage  
Output current  
Output voltage ripple  
Input voltage ripple  
U1  
TPS54626PWP  
1.05V, 6.5A  
Figure 16. Schematic  
Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the VFB pin. It is recommended to use  
1% tolerance or better divider resistors. Start by using Equation 3 to calculate VOUT  
To improve efficiency at very light loads consider using larger value resistors, too high of resistance will be more  
susceptible to noise and voltage errors from the VFB input current will be more noticeable.  
R1  
VOUT = 0.765 •  
(
1 +  
)
R2  
(3)  
Output Filter Selection  
The output filter used with the TPS54626 is an LC circuit. This LC filter has double pole at:  
1
FP =  
2p LOUT ´COUT  
(4)  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the TPS54626. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain rolls  
off at a -40 dB per decade rate and the phase drops rapidly. D-CAP2™ introduces a high frequency zero that  
reduces the gain roll off to –20 dB per decade and increases the phase to 90 degrees one decade above the  
zero frequency. The inductor and capacitor selected for the output filter must be selected so that the double pole  
of Equation 4 is located below the high frequency zero but close enough that the phase boost provided be the  
high frequency zero provides adequate phase margin for a stable circuit. To meet this requirement use the  
values recommended in Table 1  
Copyright © 2013, Texas Instruments Incorporated  
13  
 
 
TPS54626  
ZHCSBE3 AUGUST 2013  
www.ti.com.cn  
Table 1. Recommended Component Values  
Output Voltage (V)  
R1 (kΩ)  
6.81  
8.25  
12.7  
21.5  
30.1  
49.9  
73.2  
124  
R2 (kΩ)  
22.1  
22.1  
22.1  
22.1  
22.1  
22.1  
22.1  
22.1  
C4 (pF)(1)  
5 - 220  
5 - 220  
5 - 100  
5 - 68  
L1 (µH)  
C8 + C9 (µF)  
1
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5
1.0 - 1.5 - 4.7  
1.0 - 1.5 - 4.7  
1.0 - 1.5 - 4.7  
1.0 - 1.5 - 4.7  
1.2 - 1.5 - 4.7  
1.5 - 2.2 – 4.7  
1.8 - 2.2 – 4.7  
2.5 - 3.3 – 4.7  
22 - 68  
22 - 68  
22 - 68  
22 - 68  
22 - 68  
22 - 68  
22 - 68  
22 - 68  
5 - 22  
5 - 22  
5 - 22  
5 - 22  
(1) Optional  
For higher output voltages at or above 1.8 V, additional phase boost can be achieved by adding a feed forward  
capacitor (C4) in parallel with R1.  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using Equation 5,  
Equation 6 and Equation 7. The inductor saturation current rating must be greater than the calculated peak  
current and the RMS or heating current rating must be greater than the calculated RMS current. Use 650 kHz for  
fSW  
.
Use 650 kHz for fSW. and also use 1.5µH for LO Make sure the chosen inductor is rated for the peak current of  
Equation 6 and the RMS current of Equation 7.  
VIN (max) - VOUT  
LO · fSW  
VOUT  
VIN (max)  
·
Ilp - p =  
(5)  
(6)  
(7)  
Ilp - p  
Ilpeak = IO +  
2
2
IO +  
Ilp - p2  
1
12  
ILo(RMS)  
=
For this design example, the calculated peak current is 7.01 A and the calculated RMS current is 6.51 A. The  
inductor used is a TDK SPM6530-1R5M100 with a peak current rating of 11.5 A and an RMS current rating of 11  
A.  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS54626 is intended for use  
with ceramic or other low ESR capacitors. Recommended values range from 22µF to 68µF. Use Equation 8 to  
determine the required RMS current rating for the output capacitor  
VOUT  
12 •  
(VIN - VOUT)  
ICO(RMS)  
=
fSW  
VIN  
LO  
(8)  
For this design two TDK C3216X5R0J226M 22µF output capacitors are used. The typical ESR is 2 mΩ each.  
The calculated RMS current is 0.284 A and each output capacitor is rated for 4 A.  
Input Capacitor Selection  
The TPS54626 requires an input decoupling capacitor and a bulk capacitor is needed depending on the  
application. A ceramic capacitor over 10 uF. is recommended for the decoupling capacitor. An additional 0.1 µF  
capacitor from pin 14 to ground is recommended to improve the stability of the over-current limit function. The  
capacitor voltage rating needs to be greater than the maximum input voltage.  
Bootstrap Capacitor Selection  
A 0.1-μF ceramic capacitor must be connected between the VBST to SW pin for proper operation. It is  
recommended to use a ceramic capacitor.  
VREG5 Capacitor Selection  
A 1-μF ceramic capacitor must be connected between the VREG5 to GND pin for proper operation. It is  
recommended to use a ceramic capacitor.  
14  
Copyright © 2013, Texas Instruments Incorporated  
 
 
 
 
TPS54626  
www.ti.com.cn  
ZHCSBE3 AUGUST 2013  
THERMAL INFORMATION  
This PowerPad™ package incorporates an exposed thermal pad that is designed to be directly to an external  
heatsink. The thermal pad must be soldered directly to the printed board (PCB). After soldering, the PCB can be  
used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the  
appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a  
special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated  
circuit (IC).  
For additional information on the PowerPAD™ package and how to use the advantage of its heat dissipating  
abilities, refer to Technical Brief, PowerPAD™ Thermally Enhanced Package, Texas Instruments Literature No.  
SLMA002 and Application Brief, PowerPAD™ Made Easy, Texas Instruments Literature No. SLMA004.  
The exposed thermal pad dimensions for this package are shown in the following illustration.  
8
14  
Thermal Pad  
2.46  
°
7
1
2.31  
Figure 17. Thermal Pad Dimensions  
Copyright © 2013, Texas Instruments Incorporated  
15  
TPS54626  
ZHCSBE3 AUGUST 2013  
www.ti.com.cn  
LAYOUT CONSIDERATIONS  
1. A top side area should be filled with ground as much as possible due to relatively higher current output  
device.  
2. The ground area under the device thermal pad should be large as possible and directly connect to the  
thermal pad. Also 2nd, 3rd and 4th PCB layer should be connected to ground directly from the thermal pad.  
3. Keep the input switching current loop as small as possible.  
4. Keep the SW node as physically small and short as possible to minimize parasitic capacitance and  
inductance and to minimize radiated emissions. Kelvin connections should be brought from the output to the  
feedback pin of the device.  
5. Keep analog and non-switching components away from switching components.  
6. Make a single point connection from the signal ground to power ground.  
7. Do not allow switching current to flow under the device.  
8. Keep the pattern lines for VIN and PGND broad.  
9. Exposed pad of device must be connected to PGND with solder.  
10. VREG5 capacitor should be placed near the device, and connected PGND.  
11. Output capacitor should be connected to a broad pattern of the PGND.  
12. Voltage feedback loop should be as short as possible, and preferably with ground shield.  
13. Lower resistor of the voltage divider which is connected to the VFB pin should be tied to SGND.  
14. Providing sufficient via is preferable for VIN, SW and PGND connection.  
15. PCB pattern for VIN, SW, and PGND should be as broad as possible.  
16. VIN Capacitor should be placed as near as possible to the device.  
VIN  
Additional  
Thermal  
Vias  
VIN  
INPUT  
BYPASS  
CAPACITOR  
VIN OVER  
CURRENT  
STABILITY  
CAPACITOR  
EXPOSED  
POWERPAD  
AREA  
FEEDBACK  
RESISTORS  
VOUT  
VFB  
VREG5  
SS  
VIN2  
VIN1  
BOOST  
CAPACITOR  
VBST  
SW1  
VOUT  
BIAS  
CAP  
GND  
PG  
SW2  
OUTPUT  
INDUCTOR  
OUTPUT  
FILTER  
CAPACITOR  
PGND1  
PGND2  
SLOW  
START  
CAP  
EN  
Connection to  
POWER GROUND  
on internal or  
ANALOG  
GROUND  
TRACE  
Additional  
Thermal  
Vias  
bottom layer  
To Enable  
Control  
POWER GROUND  
VIA to Ground Plane  
Etch on Bottom Layer  
or Under Component  
Figure 18. PCB Layout for PWP Package  
16  
Copyright © 2013, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS54626PWP  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
PWP  
PWP  
14  
14  
90  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
PS54626  
PS54626  
TPS54626PWPR  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
PWP 14  
4.4 x 5.0, 0.65 mm pitch  
PowerPAD TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224995/A  
www.ti.com  
PACKAGE OUTLINE  
PWP0014K  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
12X 0.65  
14  
1
2X  
5.1  
4.9  
3.9  
NOTE 3  
7
8
0.30  
14X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X (0.6)  
NOTE 5  
2X (0.4)  
NOTE 5  
THERMAL  
PAD  
7
8
0.25  
1.2 MAX  
GAGE PLANE  
2.59  
1.89  
15  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
1
14  
DETAIL A  
TYPICAL  
2.6  
1.9  
4229706/A 06/2023  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0014K  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(2.6)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
14X (1.5)  
(1.2) TYP  
14  
14X (0.45)  
1
(5)  
NOTE 9  
(R0.05) TYP  
SYMM  
(0.6)  
15  
(2.59)  
12X (0.65)  
7
8
(
0.2) TYP  
VIA  
SEE DETAILS  
(1.1) TYP  
SOLDER MASK  
DEFINED PAD  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 12X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4229706/A 06/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0014K  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.6)  
BASED ON  
0.125 THICK  
STENCIL  
METAL COVERED  
BY SOLDER MASK  
14X (1.5)  
14X (0.45)  
14  
1
(R0.05) TYP  
(2.59)  
SYMM  
15  
BASED ON  
0.125 THICK  
STENCIL  
12X (0.65)  
7
8
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 12X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.91 X 2.90  
2.60 X 2.59 (SHOWN)  
2.37 X 2.36  
0.125  
0.15  
0.175  
2.20 X 2.19  
4229706/A 06/2023  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS54626PWPR

采用 HTSSOP 封装、具有 Eco-Mode 的 4.5V 至 18V、6.5A 同步降压转换器 | PWP | 14 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54627

4.5V to 18V Input, 6-A Synchronous Step-Down Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54627DDA

4.5V to 18V Input, 6-A Synchronous Step-Down Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54627DDAR

4.5V to 18V Input, 6-A Synchronous Step-Down Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54628

4.5V to 18V Input, 6-A Synchronous Step-Down Converter with Eco-mode™

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54628DDA

4.5V to 18V Input, 6-A Synchronous Step-Down Converter with Eco-mode™

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54628DDAR

4.5V to 18V Input, 6-A Synchronous Step-Down Converter with Eco-mode™

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54672

3-V TO 6-V INPUT, 6-A OUTPUT SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54672PWP

6-A OUTPUT ACTIVE BUS TERMINATION SYNCHRONOUS PWM SWITCHER WITH INTEGRATED FETs(SWIFT)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54672PWPG4

6-A OUTPUT ACTIVE BUS TERMINATION SYNCHRONOUS PWM SWITCHER WITH INTEGRATED FETs(SWIFT)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54672PWPR

6-A OUTPUT ACTIVE BUS TERMINATION SYNCHRONOUS PWM SWITCHER WITH INTEGRATED FETs(SWIFT)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS54672PWPRG4

6-A OUTPUT ACTIVE BUS TERMINATION SYNCHRONOUS PWM SWITCHER WITH INTEGRATED FETs(SWIFT)

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI