TPS54680PWP [TI]

3-V TO 6-V INPUT, 6-A OUTPUT TRACKING SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs (SWIFT) FOR SEQUENCING; 3 V至6 V的输入, 6 -A输出跟踪同步降压型PWM具有集成FET SWITCHER ( SWIFT )进行测序
TPS54680PWP
型号: TPS54680PWP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3-V TO 6-V INPUT, 6-A OUTPUT TRACKING SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs (SWIFT) FOR SEQUENCING
3 V至6 V的输入, 6 -A输出跟踪同步降压型PWM具有集成FET SWITCHER ( SWIFT )进行测序

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管 输出元件 输入元件
文件: 总18页 (文件大小:226K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Typical Size  
6,4 mm X 9,7 mm  
www.ti.com  
TPS54680  
SLVS429 – OCTOBER 2002  
3-V TO 6-V INPUT, 6-A OUTPUT TRACKING SYNCHRONOUS BUCK  
PWM SWITCHER WITH INTEGRATED FETs (SWIFT ) FOR SEQUENCING  
FEATURES  
DESCRIPTION  
D
Power Up/Down Tracking For Sequencing  
As a member of the SWIFT family of dc/dc regulators,  
the TPS54680 low-input voltage high-output current  
synchronous buck PWM converter integrates all  
required active components. Using the TRACKIN pin  
with other regulators, simultaneous power up and down  
are easily implemented. Included on the substrate with  
the listed features are a true, high performance, voltage  
error amplifier that enables maximum performance and  
flexibility in choosing the output filter L and C  
components; an under-voltage-lockout circuit to  
prevent start-up until the input voltage reaches 3 V; an  
internally or externally set slow-start circuit to limit  
inrush currents; and a power good output useful for  
processor/logic reset.  
D
30-m, 12-A Peak MOSFET Switches for High  
Efficiency at 6-A Continuous Output Source  
or Sink Current  
D
Wide PWM Frequency:  
Fixed 350 kHz or Adjustable 280 kHz to  
700 kHz  
D
D
D
Power Good and Enable  
Load Protected by Peak Current Limit and  
Thermal Shutdown  
Integrated Solution Reduces Board Area and  
Component Count  
APPLICATIONS  
D
D
Low-Voltage, High-Density Distributed Power  
Systems  
The TPS54680 is available in a thermally enhanced  
28-pin TSSOP (PWP) PowerPAD package, which  
eliminates bulky heatsinks. TI provides evaluation  
modules and the SWIFT designer software tool to aid  
in quickly achieving high-performance power supply  
designs to meet aggressive equipment development  
cycles.  
Point of Load Regulation for High  
Performance DSPs, FPGAs, ASICs and  
Microprocessors Requiring Sequencing  
D
Broadband, Networking and Optical  
Communications Infrastructure  
SIMPLIFIED SCHEMATIC  
STARTUP TIMING  
I/O Supply  
I/O  
V
= 5 V  
I
Input  
Core Supply  
f
= 700 kHz  
s
VIN  
PH  
CORE  
TPS54680  
BOOT  
PGND  
TRACKIN  
VSENSE  
AGND COMP  
VBIAS  
PWRGD(I/O)  
PWRGD(CORE)  
t – Time – 500 µs/div  
Pleasebe aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD and SWIFT are trademarks of TexasInstruments.  
PRODUCTION DATA information is current as of publication date. Products  
conform to specifications per the terms of Texas Instruments standard warranty.  
Production processing does not necessarily include testing of all parameters.  
Copyright 2002, Texas Instruments Incorporated  
TPS54680  
SLVS429 OCTOBER 2002  
www.ti.com  
Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoamduring  
storageor handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION  
T
A
OUTPUT VOLTAGE  
PACKAGE  
PART NUMBER  
(1)  
40°C to 85°C  
0.9 V to 3.3 V  
Plastic HTSSOP (PWP)  
TPS54680PWP  
(1)  
ThePWPpackageisalsoavailabletapedandreeled. AddanRsuffix to the device type(i.e.,TPS54680PWPR).Seetheapplicationsectionof  
the data sheet for PowerPAD drawing and layout information.  
ABSOLUTE MAXIMUM RATINGS  
overoperating free-air temperature range unless otherwise noted  
(1)  
TPS54680  
0.3 V to 7 V  
0.3 V to 6 V  
0.3 V to 4V  
0.3 V to 17 V  
0.3 V to 7 V  
0.6 V to 10 V  
UNIT  
VIN, ENA  
RT  
Input voltage range, V  
V
I
VSENSE, TRACKIN  
BOOT  
VBIAS, COMP, PWRGD  
Output voltage range, V  
V
O
PH  
PH  
InternallyLimited  
Source current, I  
O
COMP, VBIAS  
PH  
6
12  
mA  
A
COMP  
6
Sink current, I  
S
mA  
ENA, PWRGD  
AGND to PGND  
10  
Voltagedifferential  
Operating virtual junction temperature range, T  
±0.3  
V
40 to 125  
65 to 150  
300  
°C  
°C  
°C  
J
Storagetemperature,T  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
(1)  
Stressesbeyondthoselistedunderabsolutemaximumratingsmaycausepermanentdamagetothedevice.Thesearestressratingsonly,and  
functionaloperation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM MAX UNIT  
Inputvoltage, V  
3
6
V
I
Operatingjunctiontemperature, T  
40  
125  
°C  
J
DISSIPATION RATINGS(1)(2)  
THERMALIMPEDANCE  
JUNCTION-TO-AMBIENT  
T
= 25°C  
T
= 70°C  
T = 85°C  
A
A
A
PACKAGE  
POWER RATING POWER RATING POWER RATING  
(3)  
28 Pin PWP with solder  
18.2 °C/W  
40.5 °C/W  
5.49 W  
3.02 W  
1.36 W  
2.20 W  
0.99 W  
28 Pin PWP without solder  
2.48 W  
(1)  
(2)  
For more information on the PWP package, refer to TI technical brief, literature number SLMA002.  
Test board conditions:  
1. 3x 3, 4 layers, thickness: 0.062”  
2. 1.5 oz. copper traces located on the top of the PCB  
3. 1.5 oz. copper ground plane on the bottom of the PCB  
4. 0.5 oz. copper ground planes on the 2 internal layers  
5. 12 thermal vias (see Recommended Land Patternin applications section of this data sheet)  
Maximum power dissipation may be limited by over current protection.  
(3)  
2
www.ti.com  
TPS54680  
SLVS429 OCTOBER 2002  
ELECTRICAL CHARACTERISTICS  
overoperating free-air temperature range unless otherwise noted  
PARAMETER  
SUPPLY VOLTAGE, VIN  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input voltage range, VIN  
3.0  
6.0  
V
f = 350 kHz, RT open,  
PH pin open  
s
11  
15.8  
I
Quiescentcurrent  
mA  
(Q)  
f = 500 kHz, RT = 100 k, PH pin open  
16  
1
23.5  
1.4  
s
Shutdown, ENA = 0 V  
UNDER VOLTAGE LOCK OUT  
Start threshold voltage, UVLO  
2.95  
2.80  
0.16  
2.5  
3.0  
V
V
Stop threshold voltage, UVLO  
Hysteresis voltage, UVLO  
2.70  
0.14  
V
(1)  
Rising and falling edge deglitch, UVLO  
µs  
BIAS VOLTAGE  
Output voltage, VBIAS  
Output current, VBIAS  
I
= 0  
2.70  
2.80  
2.90  
100  
V
(VBIAS)  
(2)  
µA  
CUMULATIVE REFERENCE  
V
ref  
Accuracy  
0.882 0.891  
0.900  
V
REGULATION  
I
L
I
L
I
L
I
L
= 3 A, f = 350 kHz, T = 85°C  
0.04  
0.04  
0.03  
0.03  
s
J
(1)(3)  
Lineregulation  
%/V  
%/A  
= 3 A, f = 550 kHz, T = 85°C  
s
J
= 0 A to 6 A, f = 350 kHz, T = 85°C  
s
J
(1)(3)  
Loadregulation  
= 0 A to 6 A, f = 550 kHz, T = 85°C  
s
J
OSCILLATOR  
Internallysetfreerunningfrequency  
RT open  
280  
252  
460  
663  
350  
280  
500  
700  
0.75  
1
420  
308  
540  
762  
kHz  
kHz  
RT = 180 k(1% resistor to AGND)  
RT = 100 k(1% resistor to AGND)  
RT = 68 k(1% resistor to AGND)  
Externally setfree running frequency range  
(1)  
Ramp valley  
(1)  
Rampamplitude(peak-to-peak)  
V
V
(1)  
Minimumcontrollableontime  
Maximum duty cycle  
200  
ns  
90%  
(1)  
(2)  
(3)  
Specified by design  
Static resistive loads only  
Specified by the circuit used in Figure 9  
3
TPS54680  
SLVS429 OCTOBER 2002  
www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
overoperating free-air temperature range unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ERROR AMPLIFIER  
(1)  
Error amplifier open loop voltage gain  
Error amplifier unity gain bandwidth  
1 kCOMP to AGND  
90  
3
110  
5
dB  
(1)  
Parallel 10 k, 160 pF COMP to AGND  
MHz  
Error amplifier common mode input voltage  
range  
(1)  
Powered by internal LDO  
0
VBIAS  
250  
V
Input bias current, VSENSE  
VSENSE = V  
ref  
60  
nA  
Output voltage slew rate (symmetric), COMP  
1.0  
1.4  
V/µs  
PWM COMPARATOR  
PWMcomparatorpropagationdelaytime,  
PWM comparator input to PH pin (excluding  
deadtime)  
(1)  
10-mVoverdrive  
70  
85  
ns  
ENABLE  
Enable threshold voltage, ENA  
Enable hysteresis voltage, ENA  
0.82  
1.20  
0.03  
2.5  
1.40  
V
V
(1)  
Falling edge deglitch, ENA  
µs  
µA  
Leakage current, ENA  
V = 5.5 V  
I
1
POWER GOOD  
Power good threshold voltage  
Power good hysteresis voltage  
VSENSEfalling  
90  
3
%V  
%V  
ref  
(1)  
(1)  
ref  
Power good falling edge deglitch  
35  
µs  
Output saturation voltage, PWRGD  
Leakage current, PWRGD  
I
= 2.5 mA  
0.18  
0.3  
1
V
(sink)  
V = 5.5 V  
µA  
I
CURRENT LIMIT  
(1)  
(1)  
V = 3 V Outputshorted  
7.2  
10  
10  
12  
I
Current limit trip point  
A
V = 6 V Outputshorted  
I
Current limit leading edge blanking time  
Current limit total response time  
100  
200  
ns  
ns  
THERMAL SHUTDOWN  
Thermal shutdown trip point  
(1)  
(1)  
135  
150  
10  
165  
°C  
°C  
Thermalshutdownhysteresis  
OUTPUT POWER MOSFETS  
(4)  
(4)  
V = 6 V  
26  
36  
47  
65  
I
r
Power MOSFET switches  
mΩ  
DS(on)  
V = 3 V  
I
TRACKIN  
Input offset, TRACKIN  
V
= TRACKIN = 1.25 V  
1.5  
1.5  
mV  
V
SENSE  
See Note 1  
Input voltage range, TRACKIN  
Specified by design  
0
V
ref  
(1)  
(2)  
(3)  
(4)  
Static resistive loads only  
Specified by the circuit used in Figure 9  
MatchedMOSFETs low-side r  
DS(on)  
production tested, high-side r specified by design  
DS(on)  
4
www.ti.com  
TPS54680  
SLVS429 OCTOBER 2002  
PWP PACKAGE  
(TOP VIEW)  
1
28  
AGND  
VSENSE  
COMP  
PWRGD  
BOOT  
PH  
RT  
ENA  
TRACKIN  
VBIAS  
VIN  
VIN  
VIN  
VIN  
VIN  
PGND  
PGND  
PGND  
PGND  
PGND  
2
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
3
4
5
6
7
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
THERMAL  
PAD  
8
9
10  
11  
12  
13  
14  
TERMINAL FUNCTIONS  
TERMINAL  
DESCRIPTION  
NAME  
AGND  
NO.  
1
Analog ground. Return for compensation network/output divider, slow-start capacitor, VBIAS capacitor, RT resistor.  
ConnectPowerPAD to AGND.  
BOOT  
5
Bootstrap output. 0.022-µF to 0.1-µF low-ESR capacitor connected from BOOT to PH generates floating drive for the  
high-side FET driver.  
COMP  
ENA  
3
Error amplifier output. Connect frequency compensation network from COMP to VSENSE  
27  
Enableinput. Logic high enables oscillator, PWM control and MOSFET driver circuits. Logic low disables operation and  
places device in low quiescent current state.  
PGND  
1519 Power ground. High current return for the low-side driver and power MOSFET. Connect PGND with large copper areas  
totheinputandoutputsupplyreturns,andnegativeterminalsoftheinputandoutputcapacitors.Asinglepointconnection  
to AGND is recommended.  
PH  
614 Phase output. Junction of the internal high-side and low-side power MOSFETs, and output inductor.  
PWRGD  
RT  
4
Power good open drain output. High when VSENSE 90% V , otherwise PWRGD is low.  
ref  
28  
26  
25  
Frequency setting resistor input. Connect a resistor from RT to AGND to set the switching frequency.  
External reference input. High impedance input to internal reference/multiplexer and error amplifier circuits.  
TRACKIN  
VBIAS  
Internal biasregulatoroutput.Suppliesregulatedvoltagetointernalcircuitry. BypassVBIASpintoAGNDpinwithahigh  
quality, low-ESR 0.1-µF to 1.0-µF ceramic capacitor.  
2024 Input supplyforthepowerMOSFETswitchesandinternalbiasregulator. Bypass VIN pins to PGND pins close to device  
packagewith a high quality, low-ESR 10-µF ceramic capacitor.  
VIN  
VSENSE  
2
Error amplifier inverting input. Connect to output voltage through compensation network/output divider.  
5
TPS54680  
SLVS429 OCTOBER 2002  
www.ti.com  
INTERNAL BLOCK DIAGRAM  
VBIAS  
AGND  
VBIAS  
Enable  
Comparator  
REG  
Falling  
Edge  
Deglitch  
SHUTDOWN  
ENA  
VIN  
ILIM  
1.2 V  
VIN  
Comparator  
Thermal  
Shutdown  
150°C  
Hysteresis: 0.03 V  
Leading  
Edge  
2.5 µs  
Blanking  
VIN UVLO  
Comparator  
Falling  
and  
100 ns  
VIN  
BOOT  
Rising  
Edge  
2.95 V  
sense Fet  
Deglitch  
Hysteresis: 0.16 V  
30 mΩ  
I/O  
2.5 µs  
SS_DIS  
SHUTDOWN  
L
OUT  
Core  
PH  
TRACKIN  
Multiplexer  
Reference  
+
C
O
Adaptive Dead-Time  
and  
Control Logic  
R
S
Q
Error  
Amplifier  
PWM  
Comparator  
VIN  
25 ns Adaptive  
Dead Time  
30 mΩ  
PGND  
OSC  
Powergood  
Comparator  
PWRGD  
VSENSE  
Falling  
Edge  
Deglitch  
0.90 V  
ref  
Hysteresis: 0.03 Vref  
TPS54680  
SHUTDOWN  
35 µs  
VSENSE  
COMP  
RT  
ADDITIONAL 6A SWIFT DEVICES, (REFER TO SLVS397 AND SLVS400)  
DEVICE  
TPS54611  
TPS54612  
TPS54613  
OUTPUT VOLTAGE  
DEVICE  
TPS54614  
TPS54615  
TPS54616  
OUTPUT VOLTAGE  
DEVICE  
TPS54672  
TPS54610  
OUTPUT VOLTAGE  
Activeterminal  
Adjustable  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
RELATED DC/DC PRODUCTS  
D
D
D
D
UCC3585dc/dc controller  
TPS56300dc/dc controller  
TPS759xx7.5-A low dropout regulator  
PT6440 series6-A plugin modules  
6
www.ti.com  
TPS54680  
SLVS429 OCTOBER 2002  
TYPICAL CHARACTERISTICS  
INTERNALLY SET  
DRAIN-SOURCE  
DRAIN-SOURCE  
OSCILLATOR FREQUENCY  
vs  
ON-STATE RESISTANCE  
vs  
ON-STATE RESISTANCE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
60  
50  
40  
750  
650  
550  
60  
VIN = 3.3 V  
VIN = 5 V  
I
= 6 A  
O
50  
I
= 6 A  
O
40  
30  
20  
30  
20  
450  
350  
250  
10  
0
10  
0
40  
0
25  
85  
125  
40  
0
25  
85  
125  
40  
0
25  
85  
125  
T
J
Junction Temperature °C  
T
J
Junction Temperature °C  
T
J
Junction Temperature °C  
Figure 1  
Figure 2  
Figure 3  
EXTERNALLY SET  
OSCILLATOR FREQUENCY  
vs  
DEVICE POWER LOSSES AT T = 125°C  
J
VOLTAGE REFERENCE  
vs  
JUNCTION TEMPERATURE  
vs  
LOAD CURRENT  
JUNCTION TEMPERATURE  
5
0.895  
0.893  
0.891  
0.889  
800  
700  
600  
T
= 125°C  
= 700 kHz  
J
4.5  
4
f
s
RT = 68 k  
RT = 100 k  
RT = 180 k  
V
= 3.3 V  
I
3.5  
3
2.5  
2
500  
400  
300  
200  
1.5  
1
V
I
= 5 V  
0.887  
0.885  
0.5  
0
0
1
2
3
4
5
6
7
8
40  
0
25  
85  
125  
40  
0
25  
85  
125  
I
Load Current A  
L
T
J
Junction Temperature °C  
T
J
Junction Temperature °C  
Figure 6  
Figure 4  
Figure 5  
OUTPUT VOLTAGE REGULATION  
ERROR AMPLIFIER  
OPEN LOOP RESPONSE  
vs  
INPUT VOLTAGE  
0
140  
120  
0.895  
0.893  
0.891  
0.889  
R
C
T
= 10 k,  
= 160 pF,  
= 25°C  
L
L
A
T
= 85°C,  
= 3 A  
A
20  
40  
60  
80  
I
O
100  
80  
60  
40  
20  
Phase  
f
= 550 kHz  
s
100  
120  
140  
160  
180  
200  
Gain  
0.887  
0.885  
0
20  
1
10 100 1 k 10 k 100 k 1 M 10 M  
3
3.5  
4
4.5  
5
5.5  
6
f Frequency Hz  
V Input Voltage V  
I
Figure 7  
Figure 8  
7
TPS54680  
SLVS429 OCTOBER 2002  
www.ti.com  
APPLICATION INFORMATION  
Figure 9 shows the schematic diagram for a typical  
TPS54680 application. The TPS54680 (U1) can provide  
greater than 6 A of output current at a nominal output  
voltage of 1.8 V. For proper thermal performance, the  
exposed thermal PowerPAD underneath the integrated  
circuit package must be soldered to the printed-circuit  
board. To provide power up tracking, the enable of the I/O  
supply should be used. If the I/O enable is not used to  
power up, then devices with similar undervoltage lockout  
thresholds need to be implemented to ensure power up  
tracking. To ensure power down tracking, the enable pin  
should be used.  
TPS54610  
I/O Power Supply  
VOUT_I/O  
R1  
10 k  
U1  
R2  
28  
1
2
3
4
5
6
7
RT  
AGND  
R3  
R4  
10 kΩ  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
71.5 kΩ  
ENA  
VSENSE  
R5  
C1  
10 kΩ  
TRACKIN COMP  
10 kΩ  
R7  
VBIAS  
VIN  
PWRGD  
BOOT  
PH  
470 pF  
C4  
C3  
C2  
R6  
301 Ω  
470 pF  
C5  
VIN  
1 µF  
9.76 kΩ  
R8  
12 pF  
0.047 µF  
VIN  
VIN  
VIN  
PH  
8
9.76 kΩ  
PH  
9
PH  
10  
11  
12  
PGND  
PGND  
PGND  
PGND  
PGND  
PH  
VOUT_CORE  
VIN  
L1  
0.65 µH  
PH  
R9  
2.2 Ω  
PH  
C7  
10 µF  
C9  
C10  
22 µF 22 µF  
C6  
10 µF  
C8  
22 µF  
13  
14  
PH  
PH  
C11  
PwrPad  
3300 pF  
Analog and Power Grounds are Tied at  
the Power Pad Under the Package of IC  
Figure 9. Application Circuit  
at 1.8 V. R3, along with R7, R5, C1, C3, and C4 form the  
loopcompensation network for the circuit. For this design,  
a Type 3 topology is used.  
COMPONENT SELECTION  
The values for the components used in this design  
example were selected for low output ripple voltage and  
small PCB area. Additional designinformationisavailable  
at www.ti.com.  
OPERATING FREQUENCY  
In the application circuit, the 350 kHz operation is selected  
byleavingRTopen.Connectinga180 kto68kresistor  
betweenRT(pin28) and analog ground can be used to set  
the switching frequency to 280 kHz to 700 kHz. To  
calculate the RT resistor, use the equation below:  
INPUT FILTER  
The input voltage is a nominal 5 Vdc. The input filter C6 is  
a 10-µF ceramic capacitor (Taiyo Yuden). C7 also a 10-µF  
ceramic capacitor (Taiyo Yuden) provides high frequency  
decoupling of the TPS54680 from the input supply and  
must be located as close as possible to the device. Ripple  
current is carried in both C6 and C7, and the return path to  
PGND must avoid the current circulating in the output  
capacitors C8, C9, and C10.  
500 kHz  
Switching Frequency  
R +  
  100 [kW]  
(1)  
OUTPUT FILTER  
The output filter is composed of a 0.65-µH inductor and 3  
x 22-µF capacitor. The inductor is a low dc resistance  
(0.017 ) type, Pulse Engineering PA0227. The  
capacitors used are 22-µF, 6.3 V ceramic types with X5R  
dielectric. The feedback loop is compensated so that the  
unity gain frequency is approximately 75 kHz.  
FEEDBACK CIRCUIT  
The values for these components have been selected to  
provide low output ripple voltage. The resistor divider  
network of R3 and R8 sets the output voltage for the circuit  
8
www.ti.com  
TPS54680  
SLVS429 OCTOBER 2002  
GROUNDING AND POWERPAD LAYOUT  
LAYOUT CONSIDERATIONS FOR THERMAL  
PERFORMANCE  
The TPS54680 has two internal grounds (analog and  
power).Inside the TPS54680, the analog ground ties to all  
of the noise sensitive signals, while the power ground ties  
to the noisier power signals. The PowerPAD must be tied  
directlyto AGND. Noise injected between the two grounds  
can degrade the performance of the TPS54680,  
particularly at higher output currents. However, ground  
noiseonananaloggroundplanecanalsocauseproblems  
with some of the control and bias signals. Therefore,  
separate analog and power ground planes are  
recommended. These two planes must tie together  
directlyattheICtoreducenoisebetweenthetwogrounds.  
The only components that must tie directly to the power  
groundplane are the input capacitor, the output capacitor,  
theinputvoltagedecouplingcapacitor, andthePGNDpins  
of the TPS54680. The layout of the TPS54680 evaluation  
module is representative of a recommended layout for a  
4-layer board. Documentation for the TPS54680  
evaluationmodule can be found on the TexasInstruments  
web site under the TPS54680 product folder. See the  
TPS54680 EVM users guide.  
For operation at full rated load current, the analog ground  
plane must provide an adequate heat dissipating area. A  
3-inchby3-inchplaneof1ouncecopperisrecommended,  
thoughnotmandatory,dependingonambienttemperature  
andairflow. Most applicationshavelargerareasofinternal  
ground plane available, and the PowerPAD must be  
connected to the largest area available. Additional areas  
on the top or bottom layers also help dissipate heat, and  
any area available must be used when 6 A or greater  
operationis desired. Connection from theexposedareaof  
the PowerPAD to the analog ground plane layer must be  
made using 0.013 inch diameter vias to avoid solder  
wicking through the vias. Eight vias must be in the  
PowerPAD areawithfouradditionalviaslocatedunderthe  
device package. The size of the vias under the package,  
butnot in the exposed thermal pad area, can be increased  
to 0.018. Additional vias beyondthetwelverecommended  
that enhance thermal performance must be included in  
areas not under the device package.  
Minimum Recommended Thermal Vias: 8 x 0.013 Diameter Inside  
Powerpad Area 4 x 0.018 Diameter Under Device as Shown.  
Additional 0.018 Diameter Vias May Be Used if Top Side Analog Ground  
Area Is Extended.  
Ø0.0130  
8 PL  
4 PL Ø0.0180  
Connect Pin 1 to Analog Ground Plane  
in This Area for Optimum Performance  
0.0150  
0.06  
0.0339  
0.0650  
0.0500  
0.3820 0.3478  
0.2090  
0.0256  
0.0500  
0.0500  
0.0650  
0.0339  
Minimum Recommended Exposed  
Copper Area for Powerpad. 5mil  
Stencils May Require 10 Percent  
0.1700  
Larger Area  
0.1340  
0.0630  
Minimum Recommended Top  
Side Analog Ground Area  
0.0400  
Figure 10. Recommended Land Pattern for 28-Pin PWP PowerPAD  
9
TPS54680  
SLVS429 OCTOBER 2002  
www.ti.com  
PERFORMANCE GRAPHS  
EFFICIENCY  
vs  
LOAD REGULATION  
vs  
LINE REGULATION  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
INPUT VOLTAGE  
0.20  
0.15  
0.10  
0.05  
95  
0.20  
0.15  
T
A
= 25°C,  
V
= 0.9 V  
F
V
= 700 kHz,  
= 1.8 V  
O
S
O
V
= 1.8 V  
O
90  
85  
80  
75  
70  
V
= 1.2 V  
O
0.10  
I
= 6 A  
O
V
= 1.8 V  
O
0.05  
0
V
= 1.2 V  
O
0
V
= 0.9 V  
I
= 0 A  
O
O
0.05  
0.05  
0.10  
T
A
= 25°C,  
0.10  
V
= 3.3 V,  
V
F
= 3.3 V,  
I
I
65  
60  
F
S
= 700 kHz,  
0.15  
0.20  
= 700 kHz,  
0.15  
0.20  
S
V
= 0.9 V, 1.2 V and 1.8 V  
V
= 0.9 V, 1.8 V and 2.5 V  
O
O
3
3.5  
4
4.5  
5
5.5  
6
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6  
I
Output Current A  
I
Output Current A  
O
V Input Voltage V  
I
O
Figure 11  
Figure 13  
Figure 12  
AMBIENTTEMPERATURE  
vs  
LOAD CURRENT  
OUTPUT AND INPUT RIPPLE  
LOOP RESPONSE  
125  
115  
105  
95  
180  
150  
120  
90  
60  
T
J
= 125°C  
50  
f
= 700 kHz  
s
40  
30  
20  
10  
V
= 5 V  
Phase  
I
60  
85  
30  
(1)  
Safe Operating Area  
75  
Gain  
0
0
10  
30  
65  
V
= 3.3 V  
I
20  
60  
55  
30  
40  
50  
90  
45  
V
I
f
= 5 V,  
= 0 A,  
= 700 kHz  
I
O
S
120  
35  
150  
180  
25  
60  
0
1
2
3
4
5
6
7
8
t Time 1 µs/div  
100  
1 k  
10 k  
100 k  
1 M  
I
Output Current A  
f Frequency Hz  
O
Figure 14  
Figure 16  
Figure 15  
STARTUP TIMING  
LOAD TRANSIENT RESPONSE  
POWER DOWN TIMING  
I/O  
I/O  
V
f
= 5 V  
= 700 kHz  
I
s
V
V
= 5 V,  
I
= 1.8 V  
O
CORE  
CORE  
PWRGD(I/O)  
PWRGD(I/O)  
PWRGD(CORE)  
PWRGD(CORE)  
t Time 500 µs/div  
t Time 20 µs/div  
t Time 20 µs/div  
Figure 19  
Figure 17  
Figure 18  
(1)  
10  
Safe operating area is applicable to the test board conditions in the Dissipation Ratings  
www.ti.com  
TPS54680  
SLVS429 OCTOBER 2002  
Figure 20 shows the schematic diagram for a power  
supply tracking design using a TPS2034 high side power  
switch and a TPS54680 device. The TPS2034 power  
switch ensures the I/O voltage is not applied to the load  
before U1 has enough bias voltage to operate and  
generate the core voltage.  
TPS2034  
Distribution Switch  
VOUT_I/O  
R1  
10 kΩ  
U1  
R2  
28  
1
2
3
4
5
6
7
RT  
AGND  
R3  
R4  
10 kΩ  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
71.5 kΩ  
ENA  
VSENSE  
R5  
C1  
10 kΩ  
TRACKIN COMP  
10 kΩ  
R7  
VBIAS  
VIN  
PWRGD  
BOOT  
PH  
470 pF  
C4  
C3  
C2  
R6  
301 Ω  
470 pF  
C5  
VIN  
1 µF  
9.76 kΩ  
R8  
12 pF  
0.047 µF  
VIN  
VIN  
VIN  
PH  
8
9.76 kΩ  
PH  
9
PH  
10  
11  
12  
PGND  
PGND  
PGND  
PGND  
PGND  
PH  
VOUT_CORE  
VIN  
L1  
0.65 µH  
PH  
R9  
2.2 Ω  
PH  
C7  
10 µF  
C9  
C10  
22 µF 22 µF  
C6  
10 µF  
C8  
22 µF  
13  
14  
PH  
PH  
C11  
PwrPad  
3300 pF  
Analog and Power Grounds are Tied at  
the Power Pad Under the Package of IC  
Figure 20. 3.3-V Small Size, High Frequency Design  
11  
TPS54680  
SLVS429 OCTOBER 2002  
www.ti.com  
LOAD TRANSIENT RESPONSE  
V
V
= 3.3 V,  
I
= 1.8 V  
O
t Time 20 µs/div  
Figure 21  
EFFICIENCY  
LOAD REGULATION  
vs  
LINE REGULATION  
vs  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
INPUT VOLTAGE  
100  
95  
0.20  
0.15  
0.20  
0.15  
0.10  
0.05  
V
T
= 1.8 V,  
25°C,  
= 700 kHz  
O
A
V
V
T
A
= 5 V,  
I
= 1.8 V,  
= 25°C,  
O
V
= 1.8 V  
O
90  
F
S
0.10  
0.05  
0
F
S
= 700 kHz  
85  
80  
I
= 6 A  
O
V
= 0.9 V  
O
75  
70  
0
I
= 0 A  
V
= 1.2 V  
O
O
0.05  
0.05  
65  
60  
0.10  
0.15  
0.20  
0.10  
0.15  
0.20  
V
= 5 V,  
= 25°C,  
= 700 kHz  
I
T
A
55  
50  
F
S
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8  
0
1
2
3
4
5
6
7
8
4
4.5  
5
5.5  
6
I
Output Current A  
I
Output Current A  
O
O
V Input Voltage V  
I
Figure 22  
Figure 24  
Figure 23  
AMBIENTTEMPERATURE  
vs  
LOAD CURRENT  
LOOP RESPONSE  
OUTPUT AND INPUT RIPPLE  
125  
115  
105  
95  
180  
150  
120  
90  
60  
50  
T
J
= 125°C  
f
= 700 kHz  
s
40  
30  
20  
10  
Phase  
V = 5 V  
I
60  
85  
30  
(1)  
Safe Operating Area  
Gain  
75  
0
0
10  
30  
65  
V
= 3.3 V  
I
20  
60  
55  
30  
40  
50  
90  
V
I
f
= 3.3 V,  
= 0 A,  
= 700 kHz  
I
O
S
45  
120  
35  
150  
180  
25  
60  
0
1
2
3
4
5
6
7
8
100  
1 k  
10 k  
100 k  
1 M  
t Time 1 µs/div  
I
Output Current A  
f Frequency Hz  
O
Figure 25  
Figure 27  
Figure 26  
12  
www.ti.com  
TPS54680  
SLVS429 OCTOBER 2002  
SLOW-START TIMING  
SLOW-START TIMING  
4.0 ms/div  
4.0 ms/div  
Figure 28  
Figure 29  
13  
TPS54680  
SLVS429 OCTOBER 2002  
www.ti.com  
DETAILED DESCRIPTION  
VOLTAGE REFERENCE  
The voltage reference system produces a precise V  
ref  
UNDERVOLTAGE LOCK OUT (UVLO)  
signal by scaling the output of a temperature stable  
bandgap circuit. During manufacture, the bandgap and  
scaling circuits are trimmed to produce 0.891 V at the  
output of the error amplifier, with the amplifier connected  
as a voltage follower. The trim procedure adds to the high  
precision regulation of the TPS54680, since it cancels  
offset errors in the scale and error amplifier circuits.  
The TPS54680 incorporates an under voltage lockout  
circuit to keep the device disabled when the input voltage  
(VIN) is insufficient. During power up, internal circuits are  
held inactive until VIN exceeds the nominal UVLO  
thresholdvoltageof2.95V.OncetheUVLOstartthreshold  
is reached, device start-up begins. The device operates  
until VIN falls below the nominal UVLO stop threshold of  
2.8 V. Hysteresis in the UVLO comparator, and a 2.5-µs  
risingandfallingedgedeglitchcircuitreducethelikelihood  
of shutting the device down due to noise on VIN.  
OSCILLATOR AND PWM RAMP  
The oscillator frequency is set internally to 350 kHz. If a  
different frequency of operation is required for the  
application, the oscillator frequency can be externally  
adjusted from 280 to 700 kHz by connecting a resistor  
between the RT pin and AGND. The switching frequency  
is approximated by the following equation, where R is the  
resistance from RT to AGND:  
TRACKIN/INTERNAL SLOW-START  
The internal slow-start circuit provides start-up slope  
control of the output voltage. The nominal internal  
slow-start rate is 25 V/ms. When the voltage on TRACKIN  
rises faster than the internal slope or is present when  
deviceoperationisenabled, theoutputrisesattheinternal  
rate. If the reference voltage on TRACKIN rises more  
slowly, then the output rises at about the same rate as  
TRACKIN.  
(2)  
100 kW  
Switching Frequency +  
  500 [kHz]  
R
SWITCHING FREQUENCY  
350 kHz, internally set  
RT PIN  
Float  
R = 180 kto 68 kΩ  
Externally set 280 kHz to 700 kHz  
Once the voltage on the TRACKIN pin is greater than the  
internal reference of 0.891 V, the multiplexer switches the  
noninverting node to the high precision reference.  
ERROR AMPLIFIER  
The high performance, wide bandwidth, voltage error  
amplifier sets the TPS54680 apart from most dc/dc  
converters. The user is given the flexibility to use a wide  
range of output L and C filter components to suit the  
particular application needs. Type  
compensation can be employed using external  
compensation components.  
ENABLE (ENA)  
The enable pin, ENA, provides a digital control enable or  
disable (shut down) for the TPS54680. An input voltage of  
1.4VorgreaterensuresthattheTPS54680isenabled. An  
input of 0.82 V or less ensures that device operation is  
disabled. These are not standard logic thresholds, even  
though they are compatible with TTL outputs.  
2 or type 3  
PWM CONTROL  
Signals from the error amplifier output, oscillator, and  
current limit circuit are processed by the PWM control  
logic. Referring to the internal block diagram, the control  
logic includes the PWM comparator, OR gate, PWMlatch,  
and portions of the adaptive dead-time and control logic  
block. During steady-state operation below the current  
limit threshold, the PWM comparator output and oscillator  
pulse train alternately reset and set the PWM latch. Once  
the PWM latch is reset, the low-side FET remains on for a  
minimumduration set by the oscillator pulse width. During  
this period, the PWM ramp discharges rapidly to its valley  
voltage. When the ramp begins to charge back up, the  
low-side FET turns off and high-side FET turns on. As the  
PWM ramp voltage exceeds the error amplifier output  
voltage, the PWM comparator resets the latch, thus  
turning off the high-side FET and turning on the low-side  
FET. The low-side FET remains on until the next oscillator  
pulse discharges the PWM ramp.  
When ENA is low, the oscillator, slow-start, PWM control  
and MOSFET drivers are disabled and held in an initial  
state ready for device start-up. On an ENA transition from  
low to high, device start-up begins with the output starting  
from 0 V.  
VBIAS REGULATOR (VBIAS)  
The VBIAS regulator provides internal analog and digital  
blocks with a stable supply voltage over variations in  
junction temperature and input voltage. A high quality,  
low-ESR, ceramic bypass capacitor is required on the  
VBIAS pin. X7R or X5R grade dielectrics are  
recommendedbecause their values are more stable over  
temperature. The bypass capacitor must be placed close  
to the VBIAS pin and returned to AGND.  
Externalloading on VBIAS is allowed, with the cautionthat  
internal circuits require a minimum VBIAS of 2.70 V, and  
external loads on VBIAS with ac or digital switching noise  
may degrade performance. The VBIAS pin may be useful  
as a reference voltage for external circuits.  
During transient conditions, the error amplifier output  
could be below the PWM ramp valley voltage or above the  
PWM peak voltage. If the error amplifier is high, the PWM  
latchisneverreset, andthehigh-sideFETremainsonuntil  
14  
www.ti.com  
TPS54680  
SLVS429 OCTOBER 2002  
the oscillator pulse signals the control logic to turn the  
high-side FET off and the low-side FET on. The device  
operatesatitsmaximumdutycycleuntiltheoutputvoltage  
rises to the regulation set-point, setting VSENSE to  
approximately the same voltage as VREF. If the error  
amplifier output is low, the PWM latch is continually reset  
and the high-side FET does not turn on. The low-side FET  
remains on until the VSENSE voltage decreases to a  
range that allows the PWM comparator to change states.  
The TPS54680 is capable of sinking current continuously  
until the output reaches the regulation set-point.  
OVERCURRENT PROTECTION  
The cycle-by-cycle current limiting is achieved by sensing  
the current flowing through the high-side MOSFET and  
comparing this signal to a preset overcurrent threshold.  
The high side MOSFET is turned off within 200 ns of  
reachingthecurrentlimitthreshold. A100-nsleadingedge  
blanking circuit prevents the current limit from false  
tripping. Current limit detection occurs only when current  
flows from VIN to PH when sourcing current to the output  
filter. Load protection during current sink operation is  
provided by thermal shutdown.  
If the current limit comparator trips for longer than 100 ns,  
the PWM latch resets before the PWM ramp exceeds the  
error amplifier output. The high-side FET turns off and  
low-sideFETturnsontodecreasetheenergyintheoutput  
inductor and consequently the output current. This  
process is repeated each cycle in which the current limit  
comparator is tripped.  
THERMAL SHUTDOWN  
Thedeviceusesthethermalshutdowntoturnoffthepower  
MOSFETs and disable the controller if the junction  
temperatureexceeds 150°C. The device is released from  
shutdown automatically when the junction temperature  
decreases to 10°C below the thermal shutdown trip point,  
and starts up under control of the slow-start circuit.  
DEAD-TIME CONTROL AND MOSFET  
DRIVERS  
Thermal shutdown provides protection when an overload  
condition is sustained for several milliseconds. With a  
persistent fault condition, the device cycles continuously;  
startingupbycontrolofthesoft-startcircuit,heatingupdue  
to the fault condition, and then shutting down upon  
reaching the thermal shutdown trip point. This sequence  
repeats until the fault condition is removed.  
Adaptive dead-time control prevents shoot-through  
current from flowing in both N-channel power MOSFETs  
during the switching transitions by actively controlling the  
turnon times of the MOSFET drivers. The high-side driver  
doesnotturnonuntilthevoltageatthegateofthelow-side  
FET is below 2 V. While the low-side driver does not turn  
on until the voltage at the gate of the high-side MOSFET  
is below 2 V.  
POWER-GOOD (PWRGD)  
The power good circuit monitors for under voltage  
conditions on VSENSE. If the voltage on VSENSE is 10%  
below the reference voltage, the open-drain PWRGD  
output is pulled low. PWRGD is also pulled low if VIN is  
less than the UVLO threshold or ENA is low, or a thermal  
shutdown occurs. When VIN UVLO threshold, ENA ≥  
The high-side and low-side drivers are designed with  
300-mA source and sink capability to quickly drive the  
power MOSFETs gates. The low-side driver is supplied  
from VIN, while the high-side drive is supplied from the  
BOOT pin. A bootstrap circuit uses an external BOOT  
capacitor and an internal 2.5-bootstrap switch  
connected between the VIN and BOOT pins. The  
integrated bootstrap switch improves drive efficiency and  
reduces external component count.  
enable threshold, and VSENSE > 90% of V , the open  
ref  
drain output of the PWRGD pin is high. A hysteresis  
voltageequalto3%ofV anda35µsfallingedgedeglitch  
ref  
circuit prevent tripping of the power good comparator due  
to high frequency noise.  
15  
TPS54680  
SLVS429 OCTOBER 2002  
www.ti.com  
MECHANICAL DATA  
PWP (R-PDSO-G**)  
POWERPAD PLASTIC SMALL-OUTLINE  
20 PINS SHOWN  
0,30  
0,19  
M
0,65  
20  
0,10  
11  
ThermalPad  
(See Note D)  
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
1
10  
0,25  
A
0°ā8°  
0,75  
0,50  
SeatingPlane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
14  
16  
20  
24  
28  
DIM  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4073225/F10/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusions.  
D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane.  
This pad is electrically and thermally connected to the backside of the die and possibly selected leads.  
E. Falls within JEDEC MO-153  
PowerPAD is a trademark of TexasInstruments.  
16  
THERMAL PAD MECHANICAL DATA  
PWP (R-PDSO-G28)  
PowerPADPLASTIC SMALL-OUTLINE  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third–party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2002, Texas Instruments Incorporated  

相关型号:

TPS54680PWPG4

3V to 6V Input, 6A Synchronous Step-Down SWIFT™ Converter for Sequencing  28-HTSSOP -40 to 85
TI

TPS54680PWPR

3-V TO 6-V INPUT, 6-A OUTPUT TRACKING SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs
TI

TPS54680QPWPREP

3-V TO 6-V INPUT, 6-A OUTPUT TRACKING SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs(SWIFT™)FOR SEQUENCING
TI

TPS54680QPWPRQ1

3-V TO 6-V INPUT, 6-A OUTPUT TRACKING SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETs (SWIFT™) FOR SEQUENCING
TI

TPS546A24A

具有引脚束带和 PMBus 的 2.95V 至 18V、可堆叠 10A 同步 SWIFT™ 降压转换器
TI

TPS546A24ARVFR

具有引脚束带和 PMBus 的 2.95V 至 18V、可堆叠 10A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 150
TI

TPS546B24A

具有引脚束带和 PMBus 的 2.95V 至 18V、可堆叠 20A 同步 SWIFT™ 降压转换器
TI

TPS546B24ARVFR

具有引脚束带和 PMBus 的 2.95V 至 18V、可堆叠 20A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 150
TI

TPS546C20A

具有 PMBus 和引脚束带功能的 4.5V 至 18V 可堆叠 35A 同步 SWIFT™ 降压转换器
TI

TPS546C20ARVFR

具有 PMBus 和引脚束带功能的 4.5V 至 18V 可堆叠 35A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125
TI

TPS546C20ARVFT

具有 PMBus 和引脚束带功能的 4.5V 至 18V 可堆叠 35A 同步 SWIFT™ 降压转换器 | RVF | 40 | -40 to 125
TI

TPS546C23

支持 PMBus 和遥测功能的 4.5V 至 18V、可堆叠 35A 同步 SWIFT™ 降压转换器
TI