TPS546D24SRVFR [TI]

具有增强安全性的 2.95V 至 16V、可堆叠 40A 同步 SWIFT™ 降压 PMBus® 转换器 | RVF | 40 | -40 to 150;
TPS546D24SRVFR
型号: TPS546D24SRVFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有增强安全性的 2.95V 至 16V、可堆叠 40A 同步 SWIFT™ 降压 PMBus® 转换器 | RVF | 40 | -40 to 150

转换器
文件: 总181页 (文件大小:5003K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS546D24S  
ZHCSQY3 MARCH 2023  
TPS546D24S PMBus® 和扩展写保护功能且最多可堆4 2.95V 至  
16V40A SWIFT同步降压转换器  
1 特性  
3 说明  
• 集成扩展安全功能  
• 支持双电源2.95V 16V PVIN2.95V 18V  
AVIN4VIN VDD5 开关电压)  
TPS546D24S 是一款高度集成的非隔离式直流/直流转  
换器它通过添加制造商特定的 PMBus 命令以及扩展  
写保护和密钥TPS546D24A 的基础上进行了扩  
展。与标准写保护命令相比此功能能够以更高的分辨  
率限制写入功能从而提高了安全性有助于防止恶意  
访问 PMBusTPS546D24S 具有较高的工作频率和  
40A 的电流输出并采用 7mm × 5mm 封装。可将两  
个、三个和四个 TPS546D24S 器件互连在单个输出  
上提供最高 160A 的电流。该器件可通过 VDD5 引  
利用 5V 的外部电源对内部的 5V LDO 进行过驱  
从而提高效率并降低转换器的功耗。  
• 集4.5m/0.9mMOSFET  
• 具有可选内部补偿的平均电流模式控制  
• 可堆2 个、3 个、4 电流共享高160A每  
个输出可支持单个地址  
• 通过引脚搭接的可选输出电压范围0.5V 至  
5.5V使PMBus VOUT_COMMAND 的电压范  
0.25V 5.5V  
• 广泛PMBus 命令集可遥VOUTIOUT 和内部  
裸片温度  
• 通过内部反馈分压器实现差分遥感可检测到小于  
1% VOUT 误差TJ 40°C +150°C  
• 通PMBus AVS 和裕量调节  
• 采MSEL 引脚引脚编PMBus 默认值  
12 种介225kHz 1.5MHz 之间的可选开关频率  
8 个引脚搭接选项)  
TPS546D24S 使用专有的固定频率电流模式控制具  
有输入前馈和可选的内部补偿元件可在各种输出电容  
下更大限度减小尺寸和提高稳定性。  
PMBus® 接口具有 1MHz 时钟支持为转换器配置提  
供了便捷且标准化的数字接口并且实现了对输出电  
压、输出电流和内部裸片温度等关键参数的监控。对故  
障状况的响应可设置为重新启动、锁存或忽略具体取  
决于系统要求。堆叠器件之间的反向通道通信使得所有  
TPS546D24S 转换器能够为单个输出轨供电共享一  
个地址从而简化系统软件/固件设计。也可通过 BOM  
选择在不进行 PMBus 通信的情况下配置输出电压、  
开关频率、软启动时间和过流故障限制等关键参数以  
支持无程序加电。  
• 频率同步输入/同步输出  
• 支持预偏置输出  
7mm × 5mm × 1.5mm40 QFN  
TPS546D24A 直接兼容  
• 使TPS546D24S 并借WEBENCH® Power  
Designer 创建定制设计方案  
2 应用  
封装信息  
封装(1)  
数据中心交换机机架式服务器  
有源天线系统远程射频基带单元  
自动化测试设备CTPET MRI  
ASICSoCFPGADSP 内核I/O 电压  
VIN  
封装尺寸标称值)  
器件型号  
RVFLQFN-CLIP,  
40)  
TPS546D24S  
7.00mm × 5.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
BP1V5  
DRTN  
VOSNS  
GOSNS/FLWR  
BOOT  
MSEL1  
MSEL2  
ADRSEL  
VSEL  
VOUT  
TPS546D24S  
SW  
VDD5  
PGND  
AGND  
To Loop Followers  
To PMBus  
简化版应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSF26  
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
Table of Contents  
7.6 Register Maps...........................................................47  
8 Application and Implementation................................155  
8.1 Application Information........................................... 155  
8.2 Typical Application.................................................. 155  
8.3 Two-Phase Application........................................... 165  
8.4 Four-Phase Application...........................................169  
8.5 Power Supply Recommendations...........................170  
8.6 Layout..................................................................... 170  
9 Device and Documentation Support..........................173  
9.1 Device Support....................................................... 173  
9.2 Documentation Support.......................................... 173  
9.3 接收文档更新通知................................................... 173  
9.4 支持资源..................................................................173  
9.5 Trademarks.............................................................173  
9.6 静电放电警告.......................................................... 174  
9.7 术语表..................................................................... 174  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings ....................................... 6  
6.2 ESD Ratings .............................................................. 6  
6.3 Recommended Operating Conditions ........................6  
6.4 Thermal Information ...................................................6  
6.5 Electrical Characteristics ............................................7  
6.6 Typical Characteristics..............................................15  
7 Detailed Description......................................................19  
7.1 Overview...................................................................19  
7.2 Functional Block Diagram.........................................19  
7.3 Feature Description...................................................20  
7.4 Device Functional Modes..........................................35  
7.5 Programming............................................................ 36  
Information.................................................................. 175  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
March 2023  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
PGD/RST_B  
PMB_DATA  
PMB_CLK  
BP1V5  
DRTN  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
MSEL1  
ADRSEL  
VSEL  
2
3
4
MSEL2  
VDD5  
EN/UVLO  
AVIN  
5
SMB_ALRT  
BOOT  
6
Thermal  
Pad  
7
SW  
8
PVIN  
SW  
9
PVIN  
SW  
10  
11  
12  
PVIN  
SW  
PVIN  
SW  
PVIN  
Not to scale  
5-1. 40-Pin LQFN-CLIP with Exposed Thermal Pad RVF Package (Top View)  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
Open-drain power good or (21h) VOUT_COMMAND RESET#. As determined by user-programmable  
RESET# bit in (EDh) MFR_SPECIFIC_29 (MISC_OPTIONS). The default pin function is an open-drain  
power-good indicator. When configured as RESET#, an internal pullup can be enabled or disabled by the  
PULLUP# bit in (EDh) MFR_SPECIFIC_29 (MISC_OPTIONS).  
1
PGD/RST_B  
I/O  
2
3
PMB_DATA  
PMB_CLK  
I/O PMBus DATA pin. See Current PMBus Specifications.  
I
PMBus CLK pin. See Current PMBus Specifications.  
Output of the 1.5-V internal regulator. This regulator powers the digital circuitry and must be bypassed  
with a minimum of 1 µF to DRTN with an X5R or better ceramic capacitor rated for a minimum of 6 V.  
BP1V5 is not designed to power external circuit.  
4
BP1V5  
O
Digital bypass return for bypass capacitor for BP1V5. Internally connected to AGND. Do not connect to  
PGND or AGND.  
5
6
DRTN  
SMB_ALRT  
O
SMBus alert pin. See SMBus specification.  
Bootstrap pin for the internal flying high side driver. Connect a typical 100-nF X5R or better ceramic  
capacitor rated for a minimum of 10 V from this pin to SW. To reduce the voltage spike at SW, an optional  
BOOT resistor of up to 8 Ωcan be placed in series with the BOOT capacitor to slow down turn-on of the  
high-side FET.  
7
BOOT  
I
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
8
NAME  
9
Switched power output of the device. Connect the output averaging filter and bootstrap to this group of  
pins.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
SW  
I/O  
PGND  
Power stage ground return. These pins are internally connected to the thermal pad.  
Input power to the power stage. Low-impedance bypassing of these pins to PGND is critical. PVIN to  
PGND must be bypassed with X5R or better ceramic capacitors rated for at least 1.5x the maximum  
PVIN voltage. In addition, a minimum of one 0402 2.2-nF - 10-nF X7R or better ceramic capacitance  
rated for at least 1.5x the maximum PVIN voltage must placed as close to the PVIN and PGND pins or  
under the PVIN pins to reduce the high-frequency bypass impedance.  
PVIN  
AVIN  
I
I
Input power to the controller. Bypass with a minimum 1-µF X5R or better ceramic capacitor rated for at  
least 1.5x the maximum AVIN voltage to AGND. If AVIN is connected to the same input as PVIN or  
VDD5, a minimum 10-µs R-C filter between PVIN or VDD5 and AVIN is recommended to reduce  
switching noise on AVIN.  
26  
Enable switching as the PMBus CONTROL pin. EN/UVLO can also be connected to a resistor divider to  
program input voltage UVLO.  
27  
28  
EN/UVLO  
VDD5  
I
Output of the 5-V internal regulator. This regulator powers the driver stage of the controller and must be  
bypassed with a minimum of 4.7-µF X5R or better ceramic capacitor rated for a minimum of 10 V to  
PGND at the thermal pad. Low impedance bypassing of this pin to PGND is critical.  
O
Connect this pin to a resistor divider between BP1V5 and AGND for different options of soft-start time,  
overcurrent fault limit,and multiphase information. See Programming MSEL2 or Programming MSEL2 for  
a Loop Follower Device (GOSNS Tied to BP1V5) for a loop follower device (GOSNS tied to BP1V5) if  
GOSNS is tied to BP1V5.  
29  
MSEL2  
I
Connect this pin to a resistor divider between BP1V5 and AGND for different options of internal voltage  
feedback divider and default output voltage. See Programming VSEL.  
30  
31  
32  
VSEL  
ADRSEL  
MSEL1  
I
I
I
Connect this pin to a resistor divider between BP1V5 and AGND for different options of PMBus  
addresses and frequency sync (including determination of SYNC pin as SYNCIN or SYNCOUT  
function).See Programming ADRSEL.  
Connect this pin to a resistor divider between BP1V5and AGND for different options of switching  
frequency and internal compensation parameters. See Programming MSEL1.  
The positive input of the remote sense amplifier. For a stand-alone device or the loop controller device in  
a multi-phase configuration, connect VOSNS pin to the output voltage at the load. For the loop follower  
device in a multi-phase configuration, the remote sense amplifier is not required for output voltage  
sensing or regulation and this pin can be left floating. If used to monitor another voltage with the Phased  
READ_VOUT command, VOSNS must be maintained between 0 V and 0.75 V with a <1-kΩresistor  
divider due to the internal resistance to GOSNS, which is connected to BP1V5.  
33  
34  
VOSNS  
I
I
The negative input of the remote sense amplifier for loop controller device or must be pulled up high to  
indicate loop follower. For a standalone device or the loop controller device in a multi-phase  
configuration, connect the GOSNS pin to the ground at the load. For the loop follower device in a multi-  
phase configuration, the GOSNS pin must be pulled up to BP1V5 to indicate the device a loop follower.  
GOSNS/FLWR  
Voltage sharing signal for multi-phase operation. For standalone device, the VSHARE pin must be left  
floating. VSHARE can by bypassed to AGND with up to 50 pF of capacitance.  
35  
36  
VSHARE  
NC  
I/O  
-
Not internally connected. Connect to PGND at the thermal pad.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
PIN  
5-1. Pin Functions (continued)  
I/O  
DESCRIPTION  
NO.  
NAME  
37  
AGND  
-
Analog ground return for controller. Connect the AGND pin directly to the thermal pad on the PCB board.  
For frequency synchronization, can be programmed as SYNC IN or SYNC OUT pin by ADRSEL pin or  
38  
SYNC  
I/O the (E4h) MFR_SPECIFIC_20 (SYNC_CONFIG) PMBus Command. The SYNC pin can be left floating  
when not used.  
39  
40  
BCX_CLK  
BCX_DAT  
I/O Clock for back-channel communications between stacked devices  
I/O Data for back-channel communications between stacked devices  
Package thermal pad, internally connected to PGND. The thermal pad must have adequate solder  
coverage for proper operation.  
Thermal pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.3  
0.3  
1  
MAX UNIT  
Input voltage  
Input voltage  
Input voltage  
PVIN  
16  
19  
V
V
PVIN, < 2-ms transient  
24  
V
PVIN SW (PVIN to SW differential)  
AVIN  
20  
V
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
1  
BOOT  
35  
V
5.5  
V
BOOT SW (BOOT to SW differential)  
EN/UVLO, VOSNS, SYNC, VSEL, MSEL1, MSEL2, ADRSEL  
VSHARE, GOSNS/FLWR  
Input voltage  
5.5  
V
1.98  
5.5  
V
PMB_CLK, PMB_DATA, BCX_CLK, BCX_DAT  
SW  
V
Output voltage  
Output voltage  
19.5  
19.5  
5.5  
V
SW < 10-ns transient  
V
5  
VDD5, SMB_ALRT, PGD/RST_B  
BP1V5  
V
0.3  
0.3  
40  
55  
Output voltage  
1.65  
150  
150  
V
TJ operating junction temperature  
Tstg Storage temperature  
°C  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
±2000  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. .  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.95  
2.95  
NOM  
12  
MAX  
18  
UNIT  
V
VAVIN  
VPVIN  
VSW(peak)  
TJ  
Controller input voltage  
Power stage input voltage  
12  
16  
V
Peak Switch Node Voltage with respect to PGND  
Junction temperature  
18  
V
150  
°C  
40  
6.4 Thermal Information  
TPS546X24S  
PQFN (RVF)  
40 PINS  
28.9  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance JEDEC  
Junction-to-ambient thermal resistance EVM(2)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
8.1  
18.9  
4.1  
Junction-to-top characterization parameter  
1.3  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
6
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
 
 
 
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
6.4 Thermal Information (continued)  
TPS546X24S  
THERMAL METRIC(1)  
PQFN (RVF)  
40 PINS  
4.1  
UNIT  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
°C/W  
°C/W  
ψJB  
RθJC(bot)  
1.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) EVM thermal resistance measured on TPS546D24SEVM-2PH. 8-layer, 2-oz Cu per layer evaluation board.  
6.5 Electrical Characteristics  
TJ = 40°C to 150°C, VPVIN = VAVIN= 12 V, fSW = 550 kHz; zero power dissipation (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INPUT SUPPLY  
VAVIN  
Input supply voltage range  
Power stage voltage range  
Input operating current  
2.95  
2.95  
16  
V
VPVIN  
16  
IAVIN  
Converter not switching  
12.5  
2.5  
17 mA  
AVIN UVLO  
Analog input voltage UVLO  
for power on reset (PMBus  
communication)  
enable threshold  
2.7  
V
VAVINuvlo  
Analog input voltage UVLO  
for disable  
2.09  
2.3  
V
Analog input voltage UVLO  
hysteresis  
250  
mV  
Delay from AVIN UVLO to  
tdelay(uvlo_PMBus) PMBus ready to  
communicate  
AVIN = 3 V  
8
ms  
PVIN UVLO  
Factory default setting  
Programmable range  
Resolution  
2.75  
0.25  
2.5  
2.75  
5%  
2.5  
15.75  
5%  
V
VIN_ON  
Power input turn on voltage  
Accuracy  
Factory default setting  
Programmable range  
Resolution  
15.5  
5%  
V
VIN_OFF  
Power input turnoff voltage  
0.25  
Accuracy  
5%  
ENABLE AND UVLO  
EN/UVLO Voltage rising  
1.05  
1.1  
V
threshold  
VENuvlo  
EN/UVLO Voltage falling  
threshold  
0.9  
4.5  
VENhys  
IENhys  
EN/UVLO Voltage hysteresis No external resistors on EN/UVLO  
EN/UVLO hysteresis current VEN/UVLO = 1.1 V  
70  
5.5  
mV  
6.5 uA  
-5 nA  
EN/UVLO hysteresis current VEN/UVLO = 0.9 V  
-100  
REMOTE SENSE AMPLIFIER  
Remote sense input  
impedance  
VOSNS –  
GOSNS = 1V  
ZRSA  
VOSNS to GOSNS  
85  
130  
165  
kΏ  
GOSNS input range for  
regulation accuracy (1)  
VOSNS GOSNS = 1V, VOUT_SCALE_LOOP ≤  
0.5  
VIRNG(GOSNS)  
0.05  
V
0.05  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
MAX UNIT  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to 150°C, VPVIN = VAVIN= 12 V, fSW = 550 kHz; zero power dissipation (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
VOSNS input range for  
regulation accuracy (1)  
VIRNG(VOSNS)  
5.5  
V
GOSNS = AGND, VOUT_SCALE_LOOP 0.5  
0.1  
REFERENCE VOLTAGE AND ERROR AMPLIFIER  
Default setting  
0.4  
V
V
V
V
V
V
V
V
V
V
V
V
VREF  
Reference voltage(1)  
Reference voltage range(1)  
Reference voltage resolution(1)  
VOUT = 1000 mV  
0.25  
0.75  
2 12  
0.992  
0.492  
1.490  
0.994  
0.494  
1.492  
0.995  
0.495  
1.493  
1.008  
0.508  
1.510  
1.006  
0.506  
1.508  
1.005  
0.505  
1.507  
40°C TJ 150°C(2)  
0°C TJ 125°C(2)  
0°C TJ 85°C(2)  
VOUT = 500 mV  
VOUT = 1500 mV  
VOUT = 1000 mV  
VOUT = 500 mV  
VOUT = 1500 mV  
VOUT = 1000 mV  
VOUT = 500 mV  
VOUT = 1500 mV  
VOUT(ACC)  
Output voltage accuracy  
Progrmmable error amplifier  
transonductance  
25  
200  
µS  
MHz  
kΩ  
GmEA  
Resolution(1)  
Four settings: 25 uS, 50 uS, 100 uS, 200 uS  
25  
8
Unloaded Bandwidth(1)  
Programmable parallel  
resistor range  
5
1.25  
6.25  
315  
18.75  
RpEA  
CintEA  
CpEA  
Resolution(1)  
5
1.25  
6.25  
Programmable integrator  
capacitor range  
pF  
pF  
Resolution(1)  
Programmable parallel  
capacitor range  
193.75  
pF  
Resolution(1)  
CURRENT GM AMPLIFIER  
Progrmmable current error  
25  
200  
amplifier transonductance  
µS  
MHz  
kΩ  
GmBUF  
Resolution(1)  
Four settings: 25 µS, 50 µS, 100 µS, 200 µS  
25  
17  
Unloaded bandwidth(1)  
Programmable parallel  
resistor range  
5
800  
315  
1600  
RpBUF  
RintBUF  
CintBUF  
Resolution(1)  
5
800  
Programmable integrator  
resistor range(1)  
kΩ  
pF  
pF  
Resolution(1)  
Programmable integrator  
capacitor range  
0.3125  
3.125  
4.6875  
96.875  
Resolution(1)  
0.3125  
3.125  
Programmable parallel  
capacitor range  
CpBUF  
Resolution(1)  
OSCILLATOR  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
8
Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to 150°C, VPVIN = VAVIN= 12 V, fSW = 550 kHz; zero power dissipation (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
225  
500  
TYP  
MAX UNIT  
Adjustment range(2)  
Switching frequency(2)  
1500  
kHz  
600  
fSW  
550  
SYNCHRONIZATION  
VIH(sync) High-level input voltage  
VIL(sync)  
1.35  
V
Low-level input voltage  
0.8  
Sync input minimum pulse  
width  
tpw(sync)  
fsw = 225 kHz to 1500 kHz  
200  
20  
ns  
%
SYNC pin frequency range  
from FREQUENCY_SWITCH  
frequency(1)  
ΔfSYNC  
20  
VDD5  
0.85V  
VOH(sync)  
VOL(sync)  
tPLL  
Sync output high voltage  
Sync output low voltage  
PLL lock time  
VDD5  
0.4  
V
V
100-μA load  
2.4-mA load  
Fsw = 550 kHz, SYNC clock frequency 495 kHz -  
605 kHz(1)  
65  
μs  
Degre  
e
fsw < 1.1 MHz  
9
PhaseErr  
Phase interleaving error(5)  
23  
ns  
fsw 1.1 MHz  
RESET  
VIH(reset)  
VIL(reset)  
High-level input voltage(1)  
Low-level input voltage  
1.35  
25  
V
0.8  
200  
55  
Minimum RESET_B pulse  
width  
tpw(reset)  
ns  
kΩ  
V
Rpullup(reset)  
Vpullup(reset)  
Internal pull-up resistance  
Internal Pull-up Voltage  
VRESET = 0.8V  
RESET# = 1  
RESET# = 1  
34  
VDD5 -  
0.5  
IRESET = 10 μA  
VDD5 REGULATOR  
Regulator output voltage  
Default, IVDD5 = 10 mA  
4.5  
3.9  
4.7  
4.9  
5.3  
V
V
VVDD5  
Programmable range(1)  
Resolution  
200  
130  
mV  
VVDD5(do)  
IVDD5SC  
Regulator dropout voltage  
285 mV  
mA  
VAVIN VVDD5, VAVIN = 4.5 V, IVDD5 = 25 mA  
Regulator short-circuit  
current(1)  
VAVIN = 4.5 V  
100  
Enable voltage on VDD5 for  
pin-strapping  
VVDD5ON(IF)  
VVDD5OFF(IF)  
VVDD5ON(SW)  
VVDD5OFF(SW)  
VVDD5UV(hyst)  
2.62  
2.48  
2.85  
V
V
Disable voltage on VDD5 for  
pin-strapping  
2.25  
Switching enable voltage  
upon VDD5  
4.05  
V
Switching disable voltage  
upon VDD5  
3.10  
400  
V
Regulator UVLO voltage  
hysteresis  
mV  
BOOTSTRAP  
VBOOT(drop)  
Bootstrap voltage drop  
IBOOT = 20 mA, VDD5 = 4.5 V  
225 mV  
BP1V5 REGULATOR  
VBP1V5  
1.5-V regulator output voltage  
1.42  
1.5  
1.58  
V
V
AVIN 4.5 V, IBP1V5 = 5 mA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to 150°C, VPVIN = VAVIN= 12 V, fSW = 550 kHz; zero power dissipation (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
1.5-V regulator short-circuit  
current(1)  
IBP1V5SC  
PWM  
30  
mA  
Minimum controllable pulse  
width(1)  
tON(min)  
20  
ns  
ns  
tOFF(min)  
PWM Minimum off-time(1)  
Soft-start time  
400  
3
500  
SOFT START  
Factory default setting  
Programmable range(1) (3)  
0
10%  
0
31.75 ms  
15%  
tON_RISE  
Resolution  
0.25  
0
Accuracy, TON_RISE = 3 ms  
Factory default setting(4)  
Programmable range(1) (4)  
Resolution  
127.5 ms  
15%  
Upper limit on the time to  
power up the output  
tON_MAX_FLT_LT  
0.5  
0
Accuracy(1)  
10%  
0
Factory default setting  
Programmable range(1)  
Resolution  
127.5 ms  
15%  
tON_DELAY  
SOFT STOP  
tOFF_FALL  
Turn-on delay  
0.5  
Accuracy(1)  
10%  
Factory default setting(3)  
Programmable range(1)  
0.5  
0.25  
0
(3)  
0
10%  
0
31.75 ms  
15%  
Soft-stop time  
Turn-off delay  
Resolution  
Accuracy, TOFF_FALL = 1 ms  
Factory default setting  
Programmable range(1)  
Resolution  
127.5 ms  
15%  
tOFF_DELAY  
0.5  
Accuracy(1)  
10%  
POWER INPUT OVERVOLTAGE/UNDERVOLTAGE  
Factory default  
20  
Power Input overvoltage fault  
limit  
VPVINOVF  
Programmable range  
Resolution  
6
20  
V
V
1
Factory default  
Programmable range  
Resolution  
2.5  
Power Input undervoltage  
warning limit  
VPVINUVW  
2.5  
15.75  
0.25  
POWER STAGE  
VBOOT - VSW = 4.5 V, TJ = 25°C  
VBOOT - VSW = 3 V, TJ = 25°C  
VVDD5 = 4.5 V, TJ = 25°C  
VVDD5 = 3 V, TJ = 25°C  
4.5  
8.0  
0.9  
1.4  
mΩ  
mΩ  
mΩ  
mΩ  
High-side power device on-  
resistance  
RHS  
Low-side power device on-  
resistance  
RLS  
SW internal pull-down  
resistance  
Rswpd  
3
30  
35  
kΩ  
Weak high-side gate drive  
triggering threshold upon  
PVIN rising  
Vwkdr(on)  
14.75  
V
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
10  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to 150°C, VPVIN = VAVIN= 12 V, fSW = 550 kHz; zero power dissipation (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Weak high-side gate drive  
recovering threshold upon  
PVIN falling  
Vwkdr(off)  
14.35  
V
Power stage driver dead-time  
tDEAD(LtoH)  
from Low-side off to High-side VVDD5 = 4.5 V, TJ = 25°C(1)  
on  
6
6
ns  
ns  
Power stage driver dead-time  
tDEAD(HtoL)  
from High-side off to Low-side VVDD5 = 4.5 V, TJ = 25°C(1)  
on  
CURRENT SHARING  
Output current sharing  
accuracy of two devices  
defined as the ratio of the  
current difference between  
two devices to the sum of the  
two  
OUT 20 A per device(5)  
10%  
10%  
I
ISHARE(acc)  
Output current sharing  
accuracy of two devices  
defined as the current  
difference between each  
device and the average of all  
devices  
IOUT < 20 A per device(5)  
2
A
2  
Current Share Ratio between  
TPS546B24S and  
ISHARE(ratio)  
IOUT(B24S + D24S) = 30A(5)  
0.5  
TPS546D24S  
VSHARE fault trip threshold  
0.1  
0.2  
VVSHARE  
V
VSHARE fault release  
threshold  
LOW-SIDE CURRENT LIMIT PROTECTION  
Off time between restart  
7 ×  
tON_RISE  
Factory default setting  
attempts(1)  
tOFF(OC)  
ms  
1 ×  
tON_RISE  
7 ×  
tON_RISE  
Range  
Factory default setting  
Programmable range  
Resolution  
52  
IO_OC_FLT_L Output current overcurrent  
8
62  
MT  
fault threshold  
2
20  
40  
A
Negative output current  
overcurrent protection  
threshold  
INEGOC  
Factory default setting  
Programmable range  
Resolution  
IO_OC_WRN_L Output current overcurrent  
8
62  
A
A
MT  
warning threshold  
2
IOUT = 20 A  
4
8
2  
4  
Output current overcurrent  
fault error  
IOC(acc)  
IOUT = 40 A(5)  
HIGH-SIDE SHORT CIRCUIT PROTECTION  
Ratio of High-side short-  
circuit protection fault  
threshold over Low-side  
(VBOOT VSW) = 4.5V, TJ = 25°C(5)  
105%  
150%  
100  
200%  
IHSOC  
overcurrent limit  
High-side current sense  
blanking time  
ns  
POWER GOOD (PGOOD) AND OVERVOLTAGE/UNDERVOLTAGE WARNING  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
MAX UNIT  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to 150°C, VPVIN = VAVIN= 12 V, fSW = 550 kHz; zero power dissipation (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
RPGD  
PGD pulldown resistance  
IPGD = 5 mA  
VPGD = 5 V  
30  
50  
Ω
Output high open drain  
leakage current into PGD pin  
IPGD(OH)  
15 µA  
PGD pin output low level  
voltage at no supply voltage  
VPGD(OL)  
0.8  
V
VAVIN = 0, IPGD = 80 μA  
Overvoltage warning  
threshold (PGD threshold on  
VOSNS rising)  
106%  
103%  
110%  
114%  
116%  
VOVW  
Factory default, at VOUT_COMMAND (VOC) = 1 V  
Range  
Resolution  
1%  
Undervoltage warning  
threshold (PGD threshold on  
VOSNS falling)  
86%  
84%  
90%  
94%  
97%  
VUVW  
Factory default, at VOUT_COMMAND (VOC) = 1 V  
Range  
VOC  
Resolution  
1%  
PGD release threshold on  
VOSNS rising and  
undervoltage warning de-  
assertion threshold  
VPGD(rise)  
Factory default, at VOUT_COMMAND (VOC) = 1 V  
Factory default, at VOUT_COMMAND (VOC) = 1 V  
95%  
PGD threshold on VOSNS  
falling and overvoltage  
warning de-assertion  
threshold  
VPGD(fall)  
105%  
115%  
OUTPUT OVERVOLTAGE AND UNDERVOLTAGE FAULT PROTECTION  
Factory default, at  
VOUT_COMMAN  
D (VOC) = 1 V  
Factory default, at  
VOUT_COMMAND (VOC) = 1 V  
Overvoltage fault threshold  
Range  
111%  
105%  
119%  
140%  
Factory default, at  
VOUT_COMMAN  
D (VOC) = 1 V  
Factory default, at  
VOUT_COMMAND (VOC) = 1 V  
VOVF  
Factory default, at  
VOUT_COMMAN  
D (VOC) = 1 V  
Factory default, at  
VOUT_COMMAND (VOC) = 1 V  
Resolution  
2.5%  
85%  
VOC  
Factory default, at  
Undervoltage fault threshold VOUT_COMMAN  
D (VOC) = 1 V  
Factory default, at  
VOUT_COMMAND = 1.00 V  
81%  
60%  
89%  
95%  
Factory default, at  
VOUT_COMMAN  
D = 1.00 V  
Factory default, at  
VOUT_COMMAND = 1.00 V  
VUVF  
Range  
Factory default, at  
VOUT_COMMAN  
D = 1.00 V  
Factory default, at  
VOUT_COMMAND = 1.00 V  
Resolution  
2.5%  
1.2  
Factory default, at  
VOUT_COMMAN  
D (VOC) = 1 V  
Fixed overvoltage fault  
threshold  
Factory default, at  
VOUT_COMMAND = 1.00 V  
1.15  
1.25  
VOVF(fix)OFF  
V
Factory default, at  
VOUT_COMMAN  
D = 1.00 V  
Factory default, at  
VOUT_COMMAND = 1.00 V  
Recovery threshold(1)  
0.4  
OUTPUT VOLTAGE TRIMMING  
Default Resolution of VOUT_COMMAND, Trim and  
Margin, VOUT_SCALE_LOOP = 0.5  
1.90  
212  
1.95  
2.00 mV  
2 5  
VOUTRES  
Programmable range(1)  
V
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
12  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to 150°C, VPVIN = VAVIN= 12 V, fSW = 550 kHz; zero power dissipation (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Factory default setting  
1
mV/µs  
VOUT_TRAN_  
RT  
Programmable range(1)  
Accuracy  
0.063  
15.933  
Output voltage transition rate  
10%  
10%  
Factory default setting  
Programmable range, 4 discrete settings  
Factory default setting  
0.5  
0.8  
Feedback loop scaling  
factor(1)  
VOUT_SCL_LP  
0.125  
1
V
V
VOUT_SCALE_LOOP = 1 (5)  
0.25  
0.25  
0.25  
0.75  
1.5  
3
Output voltage programmable  
values  
VOUT_SCALE_LOOP = 0.5  
VOUT_CMD  
Programmable  
range  
VOUT_SCALE_LOOP = 0.25(5)  
VOUT_SCALE_LOOP =  
0.125(5)  
0.25  
6
TEMPERATURE SENSE AND THERMAL SHUTDOWN  
Bandgap thermal shutdown  
TSD  
150  
170  
150  
temperature(1)  
Bandgap thermal shutdown  
THYST  
25  
hysteresis(1)  
Factory default setting  
Internal overtemperature fault  
limit(1)  
OT_FLT_LMT  
Programmable range  
0
0
160  
°C  
Resolution  
1
Factory default setting  
Programmable range  
Resolution  
125  
Internal overtemperature  
warning limit(1)  
OT_WRN_LMT  
TOT(hys)  
160  
25  
1
Internal overtemperature  
fault, warning hysteresis(1)  
Factory default setting  
250 mV < VOUT < 6 V  
MEASUREMENT SYSTEM  
Output voltage measurement  
MVOUT(rng)  
MVOUT(acc)  
MVOUT(lsb)  
MIOUT(rng)  
MIOUT(acc)  
MIOUT(acc)  
MIOUT(acc)  
MIOUT(acc)  
MIOUT(acc)  
MIOUT(lsb)  
MPVIN(rng)  
MPVIN(acc)  
0
6
V
range(1)  
Output voltage measurement  
accuracy  
2%  
2%  
Output voltage measurement  
bit resolution(1)  
244  
µV  
A
Output current measurement  
range(1)  
60  
1.8  
3
10  
1.8  
3  
Output current measurement  
accuracy(5)  
0
0
A
I
OUT 10 A, TJ = 25°C  
Output current measurement  
accuracy(5)  
A
IOUT = 20A, -40°C TJ 150°C  
IOUT = 40A, -40°C TJ 150°C  
IOUT = 20A, 0°C TJ 85°C  
IOUT = 40A, 0°C TJ 85°C  
Output current measurement  
accuracy(5)  
0
4
A
4  
Output current measurement  
accuracy(5)  
0
2.5  
3
A
2.5  
3  
Output current measurement  
accuracy(5)  
0
A
Output current measurement  
bit resolution(1)  
26  
A
Input voltage measurement  
range(1)  
0
20  
3
V
Input voltage measurement  
accuracy  
4 V< PVIN < 20 V  
%
3  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to 150°C, VPVIN = VAVIN= 12 V, fSW = 550 kHz; zero power dissipation (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Input voltage measurement  
bit resolution(1)  
MPVIN(lsb)  
MTSNS(acc)  
MTSNS(lsb)  
26  
V
Internal temperature sense  
accuracy(5)  
3
40°C TJ 150°C  
3  
°C  
Internal temperature sense bit  
resolution(1)  
0.25  
PMBUS INTERFACE + BCX  
High-level input voltage on  
VIH(PMBUS)  
PMB_CLK, PMB_DATA,  
BCX_CLK, BCX_DAT  
1.35  
V
Low-level input voltage on  
PMB_CLK, PMB_DATA,  
BCX_CLK, BCX_DAT  
VIL(PMBUS)  
0.8  
Input high level current into  
PMB_CLK, PMB_DATA  
IlH(PMBUS)  
IIL(PMBUS)  
10  
10  
10  
10  
μA  
μA  
Input low level current into  
PMB_CLK, PMB_DATA  
Output low level votlage on  
PMB_DATA, SMB_ALRT,  
BCX_DAT  
VAVIN > 4.5 V, input current to PMB_DATA,  
SMB_ALRT, BCX_DAT = 20 mA  
VOL(PMBUS)  
0.4  
10  
V
Output high level open drain  
leakage current into  
IOH(PMBUS)  
Voltage on PMB_DATA, SMB_ALRT = 5.5 V  
μA  
PMB_DATA, SMB_ALRT  
Output low level open drain  
sinking current on  
PMB_DATA, SMB_ALRT,  
BCX_DAT  
Voltage on PMB_DATA, SMB_ALRT, BCX_DAT =  
0.4 V  
IOL(PMBUS)  
20  
10  
mA  
PMBus operating frequency  
range  
fPMBUS_CLK  
GOSNS = AGND  
Vpin = 0.1V to 1.35V  
40°C to 150°C  
1000 kHz  
PMBUS_CLK &  
CPMBUS  
PMBUS_DATA pin input  
5
pF  
capactiance(1)  
Number of NVM writeable  
cycles(1)  
NWR_NVM  
1000  
cycle  
ms  
Maximum Allowable Clock  
Stretch(1)  
tCLK_STCH(max)  
6
(1) Specified by design. Not production tested.  
(2) The parameter covers 2.95 V to 18 V of AVIN.  
(3) The setting of TON_RISE and TOFF_FALL of 0 ms means the unit to bring its output voltage to the programmed regulation value of  
down to 0 as quickly as possible, which results in an effective TON_RISE and TOFF_FALL time of 0.5 ms (fastest time supported).  
(4) The setting of TON_MAX_FAULT_LIMIT and TOFF_MAX_WARN_LIMIT of 0 means disabling TON_MAX_FAULT and  
TOFF_MAX_WARN response and reporting completely.  
(5) Not production tested. Specified by correlation. AVIN = PVIN = 12 V, VOUT = 1 V fsw = 325kHz L = 320nH  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
14  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
6.6 Typical Characteristics  
VPIN = VAVIN = 12 V, TA = 25°C, fsw = 325 kHz (unless otherwise specified). Safe operating area curves were measured using  
a Texas Instruments evaluation module (EVM).  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
Nat conv  
100 LFM  
200 LFM  
400 LFM  
Nat conv  
100 LFM  
200 LFM  
400 LFM  
10  
15  
20  
25  
Phase Current (A)  
30  
35  
40  
45  
50  
10  
15  
20  
25  
Phase Current (A)  
30  
35  
40  
45  
50  
D001  
D002  
VIN = 5 V  
fSW = 325 kHz  
VOUT = 1 V  
L = 300 nH  
VIN = 5 V  
VOUT = 1 V  
L = 300 nH  
Snubber = 1 nF + 1 Ω  
RBOOT = 0 Ω  
Snubber = 1 nF + 1 Ω  
RBOOT = 0 Ω  
fSW = 550 kHz  
6-1. TPS546D24S Safe Operating Area  
6-2. TPS546D24S Safe Operating Area  
105  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
Nat conv  
100 LFM  
200 LFM  
400 LFM  
Nat conv  
100 LFM  
200 LFM  
400 LFM  
10  
15  
20  
25  
Phase Current (A)  
30  
35  
40  
45  
50  
10  
15  
20  
25  
Phase Current (A)  
30  
35  
40  
45  
50  
D003  
D004  
VIN = 12 V  
VOUT = 1 V  
L = 300 nH  
VIN = 12 V  
VOUT = 1 V  
L = 300 nH  
Snubber = 1 nF + 1Ω  
RBOOT = 0 Ω  
Snubber = 1 nF + 1 Ω  
RBOOT = 0 Ω  
fSW = 325 kHz  
fSW = 550 kHz  
6-3. TPS546D24S Safe Operating Area  
6-4. TPS546D24S Safe Operating Area  
105  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
Nat conv  
100 LFM  
200 LFM  
400 LFM  
Nat conv  
100 LFM  
200 LFM  
400 LFM  
10  
15  
20  
25  
Phase Current (A)  
30  
35  
40  
45  
50  
10  
15  
20  
25  
Phase Current (A)  
30  
35  
40  
45  
50  
D005  
D006  
VIN = 12 V  
VOUT = 3.3 V  
L = 300nH  
VIN = 12 V  
VOUT = 3.3 V  
L = 300 nH  
Snubber = 1 nF + 1Ω  
RBOOT = 0 Ω  
Snubber = 1 nF + 1 Ω  
RBOOT = 0 Ω  
fSW = 325 kHz  
fSW = 550 kHz  
6-5. TPS546D24S Safe Operating Area  
6-6. TPS546D24S Safe Operating Area  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VPIN = VAVIN = 12 V, TA = 25°C, fsw = 325 kHz (unless otherwise specified). Safe operating area curves were measured using  
a Texas Instruments evaluation module (EVM).  
110  
100  
90  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
Nat conv  
100 LFM  
200 LFM  
400 LFM  
Nat conv  
100 LFM  
200 LFM  
400 LFM  
40  
30  
10  
15  
20  
25  
Phase Current (A)  
30  
35  
40  
45  
50  
10  
15  
20  
25  
Phase Current (A)  
30  
35  
40  
45  
50  
D007  
D008  
VIN = 12 V  
VOUT = 5 V  
L = 300 nH  
VIN = 12 V  
VOUT = 5 V  
L = 300 nH  
Snubber = 1 nF + 1 Ω  
RBOOT = 0 Ω  
Snubber = 1 nF + 1 Ω  
RBOOT = 0 Ω  
fSW = 325 kHz  
fSW = 550 kHz  
6-7. TPS546D24S Safe Operating Area  
6-8. TPS546D24S Safe Operating Area  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
95  
90  
85  
80  
75  
70  
65  
60  
0.8V  
1.0V  
1.2V  
3.3V  
0.8V  
1.0V  
1.2V  
3.3V  
0
5
10  
15  
Load Current (A)  
20  
25  
30  
35  
40  
0
5
10  
15  
Load Current (A)  
20  
25  
30  
35  
40  
D009  
D010  
VIN = 5 V  
fSW = 325 kHz  
L = 300 nH  
VIN = 5 V  
fSW = 550 kHz  
L = 300 nH  
Snubber = 1 nF + 1 Ω  
RBOOT = 0 Ω  
Snubber = 1 nF + 1 Ω  
RDCR = 0.15 mΩ  
RDCR = 0.15 mΩ RBOOT = 0 Ω  
6-9. TPS546D24S Efficiency vs Output Current  
6-10. TPS546D24S Efficiency vs Output Current  
100  
95  
90  
85  
80  
100  
95  
90  
85  
80  
75  
75  
0.8V  
1.0V  
1.2V  
3.3V  
5.0V  
0.8V  
1.0V  
1.2V  
3.3V  
5.0V  
70  
70  
65  
60  
65  
60  
0
5
10  
15  
Load Current (A)  
20  
25  
30  
35  
40  
0
5
10  
15  
Load Current (A)  
20  
25  
30  
35  
40  
D011  
D012  
VIN = 12 V  
L = 300 nH  
VIN = 12 V  
L = 300 nH  
Snubber = 1 nF + 1  
Ω
Snubber = 1 nF + 1 Ω  
RBOOT = 0 Ω  
fSW = 325 kHz  
RDCR = 0.15 mΩ  
fSW = 550 kHz  
RDCR = 0.15 mΩ  
RBOOT = 0 Ω  
6-11. TPS546D24S Efficiency vs Output Current  
6-12. TPS546D24S Efficiency vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VPIN = VAVIN = 12 V, TA = 25°C, fsw = 325 kHz (unless otherwise specified). Safe operating area curves were measured using  
a Texas Instruments evaluation module (EVM).  
9
1.65  
8.5  
1.55  
8
1.45  
7.5  
1.35  
1.25  
1.15  
1.05  
0.95  
0.85  
7
6.5  
6
5.5  
5
Vgate  
3.0V  
4.5V  
Vgate = 3.0V  
Vgate = 4.5V  
4.5  
4
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (èC)  
Temperature (èC)  
D013  
D014  
6-13. Low-Side MOSFET On-Resistance (RDS(on)  
)
6-14. High-Side MOSFET On-Resistance (RDS(on)  
)
vs Junction Temperature  
vs Junction Temperature  
1.003  
1.002  
1.001  
1
700  
650  
600  
550  
500  
450  
400  
350  
300  
0.999  
0.998  
325kHz  
550kHz  
250  
200  
VOUT = 1.00V  
0.997  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (èC)  
Temperature (èC)  
D015  
D016  
VOUT_COMMAND = 1 V  
6-15. Output Voltage vs Junction Temperature  
6-16. Switching Frequency  
vs Junction Temperature  
13.8  
13.6  
13.4  
13.2  
13  
4.75  
4.725  
4.7  
12.8  
12.6  
12.4  
12.2  
12  
4.675  
11.8  
4.65  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (èC)  
Temperature (èC)  
D017  
D018  
IVDD5 = 10 mA  
VPVIN = VAVIN= 12 V  
6-17. Non-Switching Input Current (IAVIN  
)
6-18. VDD5 Voltage vs Junction Temperature  
vs Junction Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VPIN = VAVIN = 12 V, TA = 25°C, fsw = 325 kHz (unless otherwise specified). Safe operating area curves were measured using  
a Texas Instruments evaluation module (EVM).  
1.55  
1.525  
1.5  
2.9  
2.85  
2.8  
2.75  
2.7  
1.475  
2.65  
1.45  
2.6  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (èC)  
Temperature (èC)  
D023  
D019  
IBP1V5 = 2 mA  
VPVIN = VAVIN= 12 V  
(35h) VIN_ON = 2.75 V  
6-19. BP1V5 Voltage vs Junction Temperature  
6-20. Turnon Voltage vs Junction Temperature  
2.65  
1.1  
2.6  
2.55  
2.5  
1.05  
1
2.45  
2.4  
0.95  
ON  
OFF  
2.35  
-40 -20  
0.9  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
0
20  
40  
60  
80 100 120 140 160  
Temperature (èC)  
Temperature (èC)  
D020  
D021  
6-22. EN/UVLO Thresholds vs Junction Temperature  
(36h) VIN_OFF = 2.5 V  
6-21. Turnoff Voltage vs Junction Temperature  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS546D24S uses a fixed-frequency, proprietary current-mode control. The switching frequency can be  
selected from pre-set values through pin-strapping and PMBus programming. The output voltage is sensed  
through a true differential remote sense amplifier and internal resistor divider, then compared to an internal  
voltage reference by an error amplifier. An internal oscillator initiates the turn-on of the high-side power switch.  
The error amplifier output is buffered and shared through VSHARE among stacked devices. This shared voltage  
is compared to the sensed switch node current to drive a linear voltage ramp modulator with input voltage,  
output voltage, and switching frequency feedforward to regulate the average switch-node current. As a  
synchronous buck converter, the device normally works in continuous conduction mode (CCM) under all load  
conditions. The compensation components are integrated into the TPS546D24S devices, and programmable  
through the PMBus command (B1h) USER_DATA_01 (COMPENSATION_CONFIG) or with the external pin  
MSEL1 to select pre-set values based on switching frequency and output LC filters.  
7.2 Functional Block Diagram  
SYNC  
MSEL2  
BP1V5  
VDD5  
EN/UVLO AVIN PVIN  
Auto-detection/  
PMBus  
SYNC  
_IN  
Linear  
Regulators  
Decoder  
(SS, OC, Phase  
Count)  
SYNC_  
OUT  
UVLO  
PLL  
BOOT  
BP1V8  
To  
Infrastructure  
Oscillator  
PVIN  
Driver  
Control  
PWM  
Decoder  
(Fsw, Comp)  
SW  
MSEL1  
VSEL  
Anti-Cross-  
Conduction  
On-Time  
Generator  
VDD5  
MSEL2/PMBus  
Pre-Bias  
Decoder  
(Vref, Divider  
Ratio)  
Soft-Start  
DAC  
PGND  
Output Current  
Sensing  
IMON  
AGND  
To Infrastructure and  
Selectable Divider Ratio  
R1  
VSHARE  
Error Amplifier with  
Internal Compensation  
VOSNS  
+
Fault  
Management  
VMON and  
R2  
VOUT/UV/OV  
Detection  
OV/UV  
TMON  
ADC, PMBus Interface, Back Channel  
Interface, Memory  
GOSNS/FLWR  
RESET Vout  
Die Temp  
Sensing  
Decoder  
(Addr, PH Pos,  
Det SYNC in/out)  
Follower  
Detection  
PGD/RST_B  
SMB_ALRT  
PMB_DATA BCX_CLK  
BCX_DAT  
DRTN  
PMB_CLK  
ADRSEL  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Average Current-Mode Control  
The TPS546D24S device uses an average current-mode control architecture with independently programmable  
current error integration and voltage error integration loops. This architecture provides similar performance to  
peak current-mode control without restricting the minimum on-time or minimum-off time control, allowing the gain  
selection of the current loop to effectively set the slope compensation. For help selecting compensation values,  
customers can use the TPS546x24S Compensation and Pin-Strap Resistor Calculator design tool.  
Voltage Feed Forward and Frequency Se ng  
Voltage Feed Forward  
Remote Sense with Internal  
Resistor Divider  
Switching Frequency  
Voltage Regula on Error Ampli er w/  
Internal Type-II Compensator  
VO_SNS  
High-Bandwidth Average  
Unity Gain  
Current Mode Control  
Ampli er w/ Internal  
Compensa on  
Remote  
Sense Amp  
Voltage Error  
Amp  
Sensed  
GMV  
+
VOUT  
VOUT err  
-
S
R
Q
Q
Icntrl  
GMI  
PWM  
+
IL err  
+
+
-
Vcntrl  
RVV  
VREF  
GND_SNS  
RVI  
TON  
Generator  
I_SNS  
Current Error  
Amp  
CPI  
Start  
CZV  
CPV  
CZI  
High-Frequency, Low Ji er  
On-Time Modulator  
Common Internal Ground for Regula on  
PLL Synchronizable  
PWM_CLK_EDGE  
VSHARE  
Regula on and Current Share Loop for  
Stackability  
7-1. Average Current Mode Control Block Diagram  
7.3.1.1 On-Time Modulator  
The input voltage feedforward modulator converts the integrated current error signal, ILerr, into an inductor on-  
time that provides a controlled volt-second balance across the inductor over each full switching period that  
simplifies the current error integration loop design. The modulator produces a full-cycle averaged small signal  
Vcntrl to dIL/dt transfer function given by 方程1:  
dIL  
VIN  
dt  
dVcntrl Vramp  
1
L
5.5  
L
=
ì
=
(1)  
Thus the inductor current modulator gain is given by 方程2:  
dIL  
VIN  
1
5.5  
ƒ =  
( )  
ì
=
dVcntrl  
Vramp L ì ƒ L ì ƒ  
(2)  
This natural integration 1/f function allows the current loop to be compensated by the mid-band gain of the error  
current integrator.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
20  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.3.1.2 Current Error Integrator  
The current error integrator adjusts the modulator control voltage to match the sensed inductor current, Isns, to  
the current voltage at the VSHARE pin. The integrator is tuned through the GMI, RVI, CZI, CPI, and CZI_MUL  
parameters in (B1h) USER_DATA_01 (COMPENSATION_CONFIG). Thanks to the natural integration of the 1/f  
function of the current control gain, the bandwidth of the current control loop can be adjusted with the mid-band  
gain of the integrator, GMI × RVI.  
The current loop crossover occurs at the frequency when the full loop gain is equal to 1 according to 方程3:  
VPVIN  
1
ILOOP ƒ ì  
( )  
ìCSA ì  
= 1  
V
1.7 ì pì ƒ ìL  
ramp  
(3)  
Solving for the mid-band gain of the current loop, you find 方程4:  
V
1.7  
ramp  
ILOOPMB = GMIìRVI =  
ì
ìL ì pì ƒcoi  
VPVIN CSA  
(4)  
While Nyquist Theorem suggests that a bandwidth of ½ fSW is possible, inductor tolerances and phase delays in  
the current sense, modulator, and H-bridge power FETs make fSW/4 a more practical target, which simplifies the  
target current loop midband gain to achieve a current loop bandwidth of fSW/4 to 方程5:  
V
ƒsw  
1.7  
1.7ìp  
4ì5.5ì6.155ì10-3  
ramp  
ILOOPMB = GMIìRVI =  
ì
ìLìpì  
=
ìLìƒsw = 39.4ìLìƒsw  
VPVIN CSA  
4
(5)  
An integrator from DC to the low-frequency zero, RVI × CZI, compensates for the valley voltage of the modulator  
ramp and the nominal offset of the output voltage. A high-frequency filter pole, RVI × CPI between half the  
switching frequency and the switching frequency reduces high-frequency noise from VSHARE and minimizes  
pulse-width jitter.  
To avoid loop interactions, the integrating zero frequency must be below the voltage loop cross-over frequency,  
while the high-frequency pole must be between ½ the switching frequency and the switching frequency to limit  
high-frequency noise and jitter in the current loop without imposing additional phase loss in the voltage loop.  
The closed loop average current mode control allows the current sense amplifier, on-time modulator, H-bridge  
power FETs, and inductor to operate as a transconductance amplifier with forward gain of 1/CSA or 162.5 A/V  
with a bandwidth equal to Fcoi.  
7.3.1.3 Voltage Error Integrator  
The voltage error integrator regulates the output voltage by adjusting the current control voltage, VSHARE,  
similar to any current mode control architecture. A transconductance amplifier compares the sense feedback  
voltage to a programmed reference voltage to set the current control voltage VSHARE to maintain the desired  
output voltage. While a regulated current source feeding an output capacitance provides a natural, stable  
integrator, mid-band gain is often desired to improve the loop bandwidth and transient response.  
With a transconductance set by the current sense gain, the voltage loop cross-over occurs when the full loop  
gain equal 1 according to 方程6.  
1
VOUT _SCALE_LOOPì VLOOP ƒ ì  
( )  
ì ZOUT ƒ = 1  
( )  
CSA  
(6)  
To prevent the current integration loop bandwdith from negatively impacting the phase margin of the voltage  
loop, the voltage loop must have a target bandwidth of Fcoi / 2.5. With a current mode loop of fSW/4, the voltage  
loop mid-band gain must be 方程7:  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
1
CSA  
VLOOPMB = GMV ì RVV =  
ì
f
VOUT _SCALE_LOOP  
SW  
ZOUT  
÷
10  
«
(7)  
An integrator pole is necessary to maintain accurate DC regulation, and the zero-frequency set by RVV × CZV  
must be set below the lowest cross-over frequency with the largest output capacitor intended to be supported at  
the output, but not more than 1/2 the target voltage loop crossover frequency fcov  
.
A high frequency noise pole, intended to keep switching noise out of the current loop must also be employed,  
with a high-frequency pole set by RVV × CPV must be set between fsw/4 and fsw.  
For pin programmed options of compensation components, see 7-9.  
For PMBus programming of compensation values, see (B1h) USER_DATA_01 (COMPENSATION_CONFIG).  
7.3.2 Linear Regulators  
The TPS546D24S devices have three internal linear regulators receiving power from AVIN and providing  
suitable bias (1.5 V, 1.8 V, and 5 V) for the internal circuitry of the device. External bypass pins for VDD5 and  
BP1V5 must be bypassed to their respective grounds for the converter to function properly. BP1V5 requires a  
minimum of 1 μF of capacitance connected to DRTN. VDD5 requires a minimum 4.7 μF of capacitance  
connected to PGND. After AVIN, 1.5-V, 1.8-V, and 5-V reach their respective UVLOs, the device initiates a  
power-on reset, after which the device can be communicated with through PMBus for configuration and users  
can store defaults to the NVM.  
The VDD5 has internally fixed undervoltage lockout of 3.9 V (typical) to enable power-stage conversion. The  
VDD5 regulator can also be fed by external supply to reduce internal power dissipation and improve efficiency by  
eliminating the loss in the internal LDO, or to allow operation with AVIN less than 4 V. The external supply must  
be higher voltage than the LDO regulation voltage programmed by (B5h) USER_DATA_05  
(POWER_STAGE_CONFIG).  
Place bypass capacitors as close as possible to the device pins, with a minimum return loop back to their  
respective ground. Keep the return loop away from fast switching voltage and the main current path see the  
layout for details. Poor bypassing can degrade the performance of the regulator.  
The use of the internal regulators to power other circuits is not recommended because the loads placed on the  
regulators can adversely affect operation of the controller.  
7.3.3 AVIN and PVIN Pins  
The device allows for a variety of applications by using the AVIN and PVIN pins together or separately. The AVIN  
pin voltage supplies the internal control circuits of the device. The PVIN pin voltage provides the input voltage to  
the switching power stage. When connected to a single supply, the input voltage for AVIN and PVIN can range  
from 4 V to 16 V. If the PVIN is connected to separate supply from AVIN, the PVIN voltage can be 2.95 V to 16 V,  
and AVIN has to meet 4-V minimum and 18-V maximum to drive the control and driver. If AVIN is connected to  
the same supply as PVIN or VDD5, TI recommends a minimum 10-µs R-C filter with a 1-Ωto 10-Ωresistor and  
AVIN bypass capacitor between AVIN and PVIN to reduce PVIN switching noise on the AVIN input.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
22  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
2.95 V œ 16 V  
PVIN  
VDD5  
PGND  
4.25 V œ 18 V  
AVIN  
AGND  
7-2. TPS546D24S Separate PVIN and AVIN Connections  
2.95 V œ 16 V  
PVIN  
VDD5  
PGND  
4 V œ 5.25 V  
AVIN  
AGND  
7-3. TPS546D24S Separate PVIN and AVIN Connections with VDD5  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
2.95 V œ 16 V  
PVIN  
4.75 V œ 5.25 V  
VDD5  
PGND  
2.95 V œ 18 V  
or PVIN  
AVIN  
AGND  
7-4. TPS546D24S Separate PVIN, AVIN, and VDD5 Connections  
7.3.4 Input Undervoltage Lockout (UVLO)  
The TPS546D24S provides four independent UVLO functions for the broadest range of flexibility in start-up  
control. While only the fixed AVIN UVLO is required to enable PMBus connectivity as well as VOUT and  
TEMPERATURE monitoring, all four UVLO functions must be met before switching can be enabled.  
7.3.4.1 Fixed AVIN UVLO  
The TPS546D24S has internally fixed UVLO of 2.5 V (typical) on AVIN to enable the digital core and initiate  
power on reset, including pin detection. The off-threshold on AVIN is 2.3 V (typical).  
7.3.4.2 Fixed VDD5 UVLO  
The TPS546D24S has an internally fixed UVLO of 3.9 V (typical) on VDD5 to enable drivers and output voltage  
conversion. The off-threshold on VDD5 is 3.5 V.  
7.3.4.3 Programmable PVIN UVLO  
Two PMBus commands ((35h) VIN_ON and (36h) VIN_OFF) allow the user to set PVIN voltage turn-on and turn-  
off thresholds independently, with 0.25-V resolution from 2.75 V to 15.75 V (6-bit) for (35h) VIN_ON and from 2.5  
V to 15.5 V (6-bit) for (36h) VIN_OFF.  
备注  
If (36h) VIN_OFF is programmed higher than (35h) VIN_ON, the TPS546D24S rapidly switches  
between enabled and disabled while PVIN remains below (36h) VIN_OFF. Propagation delays  
between enable and disable can result in the converter starting (61h) TON_RISE and (65h)  
TOFF_FALL in such conditions.  
7.3.4.4 EN/UVLO Pin  
The TPS546D24S also offers a precise threshold and hysteresis current source on the EN/UVLO pin so that it  
can be used to program an additional UVLO to any external voltage greater than 1.05 V (typ.), including AVIN,  
PVIN, or VDD5. For an added level of flexibility, the EN/UVLO pin can be disabled or its logic inverted through  
the PMBUS Command (02h) ON_OFF_CONFIG, which allows the pin to be connected to AGND to ensure the  
output is not enabled until PMBus programming has been completed.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
24  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
PVIN  
Ihys  
EN/UVLO  
CNTRL  
AGND  
7-5. TPS546D24S UVLO Voltage Divider  
7.3.5 Start-Up and Shutdown  
The start-up and shutdown of the device is controlled by several PMBus programmable values including:  
(01h) OPERATION  
(02h) ON_OFF_CONFIG  
(60h) TON_DELAY  
(61h) TON_RISE  
(64h) TOFF_DELAY  
(65h) TOFF_FALL  
With the default (02h) ON_OFF_CONFIG settings, the timing is as shown in 7-6. See the Supported PMBus  
Commands for full details on the implementation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
CNTRL  
VDD5_OK  
PVIN_OK  
VOUT  
TON_DELAY  
TON_RISE  
TOFF_DELAY  
TOFF_FALL  
7-6. TPS546D24S Start-up and Shutdown  
备注  
The TPS546D24S requires time between the AVIN and VDD5 reaching their UVLO levels for pin-  
detection and PMBus Communication and valid sensing of EN/UVLO and PVIN_OK. After AVIN and  
VDD5 exceed their lower UVLO thresholds (2.9-V typ.), the TPS546D24S starts its power-on-reset,  
self-calibration, and pin-detection. This time delay, tdelay(uvlo_PMBus) (8 ms typical) must be complete  
before PVIN_OK or EN/UVLO sensing is enabled.  
If VDD5PS_ON, PVIN_OK, and EN/UVLO are above their thresholds before the end of tdelay(uvlo_PMBus)  
,
(60h) TON_DELAY starts after tdelay(uvlo_PMBus) completes.  
If VDD5PS_ON, PVIN_OK, or EN/UVLO are below their thresholds when tdelay(uvlo_PMBus) completes,  
(60h) TON_DELAY starts when VDD5_OK, PVIN_OK, and EN/UVLO are all above their thresholds.  
7.3.6 Differential Sense Amplifier and Feedback Divider  
The TPS546D24S includes a fully integrated, internal, precision feedback divider and remote sense. Using both  
the selectable feedback divider and precision adjustable reference, output voltages up to 6.0 V can be obtained.  
The feedback divider can be programmed to divider ratios of 1:1, 1:2, 1:4, or 1:8 using the (29h)  
VOUT_SCALE_LOOP command.  
The recommended operating range of (21h) VOUT_COMMAND is dependent upon the feedback divider ratio  
configured (29h) VOUT_SCALE_LOOP as follows:  
7-1. (29h) VOUT_SCALE_LOOP and (21h)  
VOUT_COMMAND Recommended Range  
RECOMMENDED VOUT  
VOUT_SCALE_LOOP  
RANGE (V)  
1
0.25 to 0.75  
0.5 to 1.5  
1 to 3  
0.5  
0.25  
0.125  
2 to 6  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
26  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
Setting (21h) VOUT_COMMAND lower than the recommended range can negatively affect VOUT regulation  
accuracy while setting (21h) VOUT_COMMAND above the recommended range can limit the actual output  
voltage achieved.  
备注  
If the regulation output voltage is limited by the recommended range of the current (29h)  
VOUT_SCALE_LOOP value, VOUT can be below the intended (43h) VOUT_UV_WARN_LIMIT or  
(44h) VOUT_UV_FAULT_LIMIT without triggering their respective warning or faults due to the limited  
range of the reference voltage.  
7.3.7 Set Output Voltage and Adaptive Voltage Scaling (AVS)  
The initial output voltage can be set by the VSEL pin at AVIN power up. As part of power-on reset (POR), the  
VSEL pin senses both the resistance from the VSEL pin to AGND and the divider ratio of the VSEL pin between  
B1V5 and AGND. These values program (29h) VOUT_SCALE_LOOP, (21h) VOUT_COMMAND, (2Bh)  
VOUT_MIN, and (24h) VOUT_MAX and select the appropriate settings for the internal feedback divider and  
precision adjustable reference voltage. After the TPS546D24S completes its POR and enables PMBus  
communication, these initial values can be changed through PMBus communication.  
(20h) VOUT_MODE  
(21h) VOUT_COMMAND  
(29h) VOUT_SCALE_LOOP  
(22h) VOUT_TRIM  
(25h) VOUT_MARGIN_HIGH  
(26h) VOUT_MARGIN_LOW  
(01h) OPERATION  
(02h) ON_OFF_CONFIG  
The output voltage can be programmed through PMBus and its value is related to the following registers:  
(24h) VOUT_MAX  
(2Bh) VOUT_MIN  
(40h) VOUT_OV_FAULT_LIMIT  
(42h) VOUT_OV_WARN_LIMIT  
(43h) VOUT_UV_WARN_LIMIT  
(44h) VOUT_UV_FAULT_LIMIT  
The TPS546D24S defaults to the relative format for the following, but can be changed to use absolute format  
through the PMBus command (20h) VOUT_MODE:  
(25h) VOUT_MARGIN_HIGH  
(26h) VOUT_MARGIN_LOW  
(40h) VOUT_OV_FAULT_LIMIT  
(42h) VOUT_OV_WARN_LIMIT  
(43h) VOUT_UV_WARN_LIMIT  
(44h) VOUT_UV_FAULT_LIMIT  
Refer to the detailed description of (20h) VOUT_MODE for details.  
7.3.7.1 Reset Output Voltage  
The (21h) VOUT_COMMAND value and the corresponding output voltage can be reset to the last selected  
power-on reset value set by VSEL or EEPROM as selected in the (EEh) MFR_SPECIFIC_30  
(PIN_DETECT_OVERRIDE) command when the PGD/RST_B pin function is set to RESET# in the (EDh)  
MFR_SPECIFIC_29 (MISC_OPTIONS) PMBus command. To reset (21h) VOUT_COMMAND to its last Power-  
On Reset value, when the RESET# optional function is enabled, assert the PGD/RST_B pin low externally.  
While RESET# is asserted low, (21h) VOUT_COMMAND values received through PMBus is ACKed but no  
change in (21h) VOUT_COMMAND is made. When RESET# is selected in (EDh) MFR_SPECIFIC_29  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
(MISC_OPTIONS), an internal pullup on the PGD/RST_B pin can be selected by the PULLUP# bit in the same  
PMBus command to eliminate the need for an external pullup with the RESET# function.  
PGD/  
RST_B  
Boot VOUT (VSEL or NVM)  
Pre-AVS VOUT  
VOUT  
Slew Rate set by  
VOUT_TRANSITION_RATE  
AVS by  
VOUT_COMMAND  
RST_B Response Delay  
7-7. TPS546D24S Output Voltage Reset  
7.3.7.2 Soft Start  
To control the inrush current needed to charge the output capacitor bank during start-up, the TPS546D24S  
implements a soft-start time programmed by the (61h) TON_RISE command. When the device is enabled, the  
reference voltage ramps from 0 V to the final level defined by the following at a slew rate defined by the (61h)  
TON_RISE command:  
(21h) VOUT_COMMAND  
(29h) VOUT_SCALE_LOOP  
(22h) VOUT_TRIM  
(25h) VOUT_MARGIN_HIGH  
(26h) VOUT_MARGIN_LOW  
(01h) OPERATION  
The TPS546D24S devices support several soft-start times from 0 ms to 31.75 ms in 250-µs steps (7 bits)  
selected by the (61h) TON_RISE command. The tON_RISE time is selectable by pin-strapping through the MSEL2  
pin (eight options), PMBus programming, or both.  
During soft start, when the PWM pulse width is shorter than the minimum controllable on-time, pulse skipping  
can be seen and the output can show larger ripple voltage than normal operation.  
7.3.8 Prebiased Output Start-Up  
The TPS546D24S limits current from being discharged from a pre-biased output voltage during start-up by  
preventing the low-side FET from forcing the SW node low until after the first PWM pulse turns on the high-side  
FET. After the increasing reference voltage exceeds VOSNS voltage and high-side SW pulses start, the  
TPS546D24S limits the synchronous rectification during each SW period with a narrow on-time. The maximum  
low-side MOSFET on-time slowly increases on a cycle-by-cycle basis until 128 switch periods have elapsed and  
the synchronous rectifier runs fully complementary to the high-side MOSFET. This limits the sinking of current  
from a pre-biased output, and ensures the output voltage start-up and ramp-to regulation sequences are  
monotonically increasing.  
In the event of a pre-biased output voltage greater than (40h) VOUT_OV_FAULT_LIMIT, the TPS546D24S  
responds as soon as it completes POR and VDD5 is greater than its own 3.9-V UVLO, even if conversion is  
disabled by EN/UVLO or the PMBus (01h) OPERATION command.  
7.3.9 Soft Stop and (65h) TOFF_FALL Command  
When enabled by (02h) ON_OFF_CONFIG or (01h) OPERATION, the TPS546D24S implements (65h)  
TOFF_FALL command to force a controlled decrease of the output voltage from regulation to 0. There can be  
negative inductor current forced during the (65h) TOFF_FALL time to discharge the output voltage. The setting  
of (65h) TOFF_FALL of 0 ms means the unit to bring its output voltage down to 0 as quickly as possible, which  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
results in an effective (65h) TOFF_FALL time of 0.5 ms. When disabled in the (02h) ON_OFF_CONFIG for the  
turnoff controlled by EN/UVLO pin or bit 6 of (01h) OPERATION if the regulator is turned off by (01h)  
OPERATION command, both high-side and low-side FET drivers are turned off immediately and the output  
voltage slew rate is controlled by the discharge from the external load.  
This feature is disabled for EN/UVLO in (02h) ON_OFF_CONFIG by default.  
7.3.10 Power Good (PGOOD)  
When conversion is enabled and tON_RISE complete, if the output voltage remains between (43h)  
VOUT_UV_WARN_LIMIT and (42h) VOUT_OV_WARN_LIMIT, the PGOOD open-drain output is released and  
allowed to rise to an externally supplied logic level. Upon any fault condition with a shutdown response, the  
PGOOD open-drain output is asserted, forcing PGOOD low by default. See 7-4 for the possible sources to  
pull down the PGOOD pin.  
The PGOOD signal can be connected to the EN/UVLO pin of another device to provide additional controlled  
turnon and turnoff sequencing.  
7.3.11 Set Switching Frequency  
An internal oscillator generates a 225-kHz to 1.5-MHz clock for PWM switching with 16 discrete programmable  
options. The switching frequency is selectable by pin-strapping through the resistor divider of MSEL1 (8 options),  
PMBus programming (16 options), or both, using the (33h) FREQUENCY_SWITCH command, listed in 7-2.  
7-2. Oscillator fSW Options  
AVAILABLE fSW OPTIONS (kHz)  
fSW PIN-STRAPPING OPTIONS (kHz)  
225  
275  
325  
375  
450  
550  
650  
750  
900  
1100  
1300  
1500  
275  
325  
450  
550  
650  
900  
1100  
1500  
7.3.12 Frequency Synchronization  
The oscillator can be synchronized to external clock (SYNC IN) or output a clock to synchronize other devices  
(SYNC out) on the SYNC pin. To support phase shifted clock for both multi-rail interleaving and multi-phase  
operation, the internal oscillator can be phase-shifted from the SYNC pin by 0, 90, 120, 180, 240, or 270  
degrees for 1, 2, 3, or 4 phase operation. The SYNC IN or SYNC OUT function, and phase position of single  
phase or stand-alone devices can be selected by pin-strapping through resistor divider on at the ADRSEL pin, or  
by the resistor from the MSEL2 pin to AGND for multi-phase loop follower devices.  
In single output multi-phase stack configurations, the SYNC phase offset is programmed along with device count  
and phase position using the MSEL2 pin. Loop follower devices in multi-phase stacks are always configured as  
SYNC_IN while the loop controller device can be configured for auto-detect, SYNC_IN, or SYNC_OUT through  
the resistor divider on the ADRSEL pin.  
7-3. Pin Programmed Phase Positions through ADRSEL Resistor Divider (Single Phase Stand-Alone)  
RDIV CODE  
Open (no resistor to BP1V5)  
0, 1  
PHASE POSITION (DEGREE)  
SYNC IN, OUT  
Auto-detect in, out  
In  
0
0
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7-3. Pin Programmed Phase Positions through ADRSEL Resistor Divider (Single Phase Stand-Alone)  
(continued)  
RDIV CODE  
2, 3  
PHASE POSITION (DEGREE)  
SYNC IN, OUT  
90  
120  
180  
240  
270  
0
In  
In  
4, 5  
6, 7  
In  
8, 9  
In  
10,11  
12, 13  
14, 15  
In  
Out  
Out  
180  
After initial power up and pin detection, if SYNC IN/OUT is set as auto-detection configuration, the TPS546D24S  
senses the SYNC pin to determine if there is any external SYNC clock. Switching or a consistent pullup on the  
SYNC pin sets the device for SYNC_IN while a consistent pulldown on SYNC sets the device for SYNC_OUT.  
The TPS546D24S devices programmed to be loop followers are always programmed to be SYNC IN.  
When configured for SYNC_IN, if SYNC input pulses are missed for two cycles, or the oscillator frequency drops  
below 50% of the free-running switching frequency, the device determines that SYNC clock is lost. If the  
TPS546D24S is part of a multi-phase stack, the converter shuts down and remains disabled until a SYNC signal  
is reestablished to prevent damage due to the loss of synchronization. Single phase stand-alone devices  
continues to operate at approximately 50% of the nominal frequency.  
7.3.13 Loop Follower Detection  
The GOSNS/FLWR pin voltage is detected at power up. When it is pulled high to BP1V5, the device is  
recognized as loop follower. When the GOSNS/FLWR pin is connected to the Output Ground, the TPS546D24S  
is configured as a loop controller.  
7.3.14 Current Sensing and Sharing  
Both high-side and low-side FET use a SenseFET architecture for current sensing to achieve accurate and  
temperature compensated current monitoring. This SenseFET architecture uses the parasitic resistance of the  
FETs to achieve lossless current sense with no external components.  
When multiple (2×, 3×, or 4×) devices operate in multi-phase application, all devices share the same internal  
control voltage through VSHARE pin. The sensed current in each phase is regulated by the VSHARE voltage by  
internal transconductance amplifier, to achieve loop compensation and current balancing between different  
phases. The amplifier output voltage is compared with an internal PWM ramp to generate the PWM pulse.  
7.3.15 Telemetry  
The telemetry sub-system in the controller core supports direct measurements of input voltage, output voltage,  
output current, and die temperature. The ADC supports internal rolling window averaging with rolling windows up  
to 16 previous measurements for accurate measurements of these key system parameters. Each ADC  
conversion requires less than 500 µs, allowing each telemetry value to be updated within 2 ms.  
The current sense telemetry, which senses the low-side FET current at the start and end of each low-side FET  
on-time and averages the two measurements to monitor the average inductor current over-report current if the  
inductor current is non-linear during the low-side FET on-time, such as when the inductor is operating above its  
saturation current.  
7.3.16 Overcurrent Protection  
Both low-side overcurrent (OC) and high-side short circuit protection are implemented.  
The low-side overcurrent fault and warning thresholds are programmed through PMBus and sensed across  
cycle-by-cycle average current through the low-side MOSFET and compared to the set warning or fault threshold  
while High-side pulses are terminated on a cycle-by-cycle basis, if the peak current through the high-side  
MOSFET exceeds the 1.5× the programmed low-side threshold.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
30  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
When either a low-side overcurrent or high-side short circuit threshold is exceeded during a switching cycle, an  
OCP fault counter is incremented. If no overcurrent condition is detected in a switching cycle, the counter is  
decremented. If the counter exceeds the delay selected by the (47h) IOUT_OC_FAULT_RESPONSE PMBus  
value (default = 3) overcurrent fault condition is declared and the output shuts down. Restart and timing is also  
defined as part of (47h) IOUT_OC_FAULT_RESPONSE.  
The output OC fault thresholds and fault response are set through PMBUS. The OC fault response can be set to  
shutdown, restart, or ignore.  
7.3.17 Overvoltage/Undervoltage Protection  
The voltage on VOSNS pin is monitored to provide output voltage overvoltage (OV) and undervoltage (UV)  
protection. When VOSNS voltage is higher than OV fault threshold, OV fault is declared and the low-side FET is  
turned on to discharge the output voltage and eliminate the OV condition. The low-side FET remains on until the  
VOSNS voltage is discharged to 200 mV divided by the internal feedback divider as programmed by (29h)  
VOUT_SCALE_LOOP. After the output voltage is discharged, the output is disabled and the converter times out  
and restarts according to the (41h) VOUT_OV_FAULT_RESPONSE PMBus command. When VOSNS voltage is  
lower than UV fault threshold, UV fault is declared. After an initial delay programmed by the (45h)  
VOUT_UV_FAULT_RESPONSE PMBus command, the output is disabled and the converter times out and  
restarts according to the (45h) VOUT_UV_FAULT_RESPONSE PMBus command.  
The output UV/OV fault thresholds and fault response are set through PMBUS. The UV/OV fault response can  
be set to shutdown, restart, or continue operating without interruption.  
7.3.18 Overtemperature Management  
There are two schemes of overtemperature protections in the TPS546D24S device:  
1. On-chip die temperature sensor for monitoring and overtemperature protection (OTP)  
2. The bandgap based thermal shutdown (TSD) protection. TSD provides OT fail-safe protection in the event of  
a failure of the temperature telemetry system, but can be disabled through (50h) OT_FAULT_RESPONSE  
for high temperature testing  
The overtemperature protection (OTP) threshold is set through PMBus and compares the (8Dh)  
READ_TEMPERATURE_1 telemetry to the (51h) OT_WARN_LIMIT and (4Fh) OT_FAULT_LIMIT. The  
overtemperature (OT) fault response can be set to shutdown, restart, or continue operating without interruption.  
7.3.19 Fault Management  
For the response on OC fault, OT fault, and thermal shutdown for multi-phase stack, the shutdown response has  
the highest priority, followed by restart response. Continue operating without interruption response has the  
lowest priority.  
When multiple faults occur in rapid succession, the first fault to occur to masking the second fault is possible. If  
the first fault to be detected is configured to continue operating without interruption, and the second fault is  
configured to shutdown and restart, the second fault shuts down but can fail to restart as programmed.  
7-4. Fault Protection Summary  
FAULT OR  
WARNING  
FAULT RESPONSE  
ACTIVE DURING  
PROGRAMMING  
FET BEHAVIOR  
SMB_ALRT  
MASKABLE  
PGOOD LOGIC  
SETTING  
tON_RISE  
Shutdown  
Restart  
Ignore  
Both FETs off  
Low  
(4Fh)  
OT_FAULT_LIMIT  
Internal OT fault  
Internal OT warning  
TSD  
Both FETs off, restart  
Yes  
Yes  
Yes  
Y
Y
FETS still controlled by PWM  
High  
Shutdown or restart  
on Fault  
(51h)  
OT_WARN_LIMIT  
FETS still controlled by PWM  
Y
Y
Y
Y
High  
Ignore fault  
Shutdown  
Restart  
Both FETs off  
Low  
Threshold fixed  
internally  
Both FETs off, restart  
High  
Ignore  
FETS still controlled by PWM  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7-4. Fault Protection Summary (continued)  
FAULT OR  
WARNING  
FAULT RESPONSE  
ACTIVE DURING  
PROGRAMMING  
FET BEHAVIOR  
SMB_ALRT  
MASKABLE  
PGOOD LOGIC  
SETTING  
tON_RISE  
Shutdown  
3 PWM counts, then both FETs off  
(46h)  
IOUT_OC_FAULT_LI  
MIT  
Low  
High  
High  
3 PWM counts, then both FETs  
off, restart after [DELAY]*tON_RISE  
Low Side OC fault  
Restart  
Ignore  
Yes  
Y
Y
FETS still controlled by PWM  
Shutdown or restart  
on Fault  
(4Ah)  
IOUT_OC_WARN_LI  
MIT  
Low Side OC  
warning  
FETS still controlled by PWM  
Yes  
Yes  
Y
Y
Y
Y
Ignore fault  
Enable  
Negative OC fault  
(lower priority than  
OVF)  
Turn off LS FET  
Low  
N/A  
Disable  
FETS still controlled by PWM  
High  
3 cycles of pulse-by-pulse current  
limiting followed by both FETs off  
Shutdown  
(46h)  
IOUT_OC_FAULT_LI  
MIT  
Low  
3 cycles of pulse-by-pulse current  
limiting followed by both FETs off,  
restart after [DELAY]*tON_RISE  
High side OC fault  
Yes  
Y
Y
Restart  
Ignore  
FETS still controlled by PWM  
High  
LS FET latched ON or turned on  
till VOUTreaches 200 mV/  
VOUT_SCALE_LOOP; HS FET  
OFF  
Shutdown  
Restart  
(40h)  
VOUT_OV_FAULT_L  
IMIT  
Low  
High  
Low  
LS FET latched ON or turned on  
till VOUTreaches 200 mV/  
VOUT_SCALE_LOOP; HS FET  
OFF, restart after [DELAY] *  
tON_RISE  
Vout OV fault  
No  
Y
Y
Ignore  
FETS still controlled by PWM  
LS FET latched ON or turned on  
till VOUTreaches 200 mV/  
VOUT_SCALE_LOOP; HS FET  
OFF  
Shutdown  
(40h)  
VOUT_OV_FAULT_L  
IMIT  
LS FET latched ON or turned on  
till VOUTreaches 200 mV/  
VOUT_SCALE_LOOP; HS FET  
OFF, restart after  
VOUT OVF fix  
Yes  
Y
Y
Restart  
Ignore  
[DELAY]*tON_RISE  
FETS still controlled by PWM  
FETS still controlled by PWM  
Both FETs off  
High  
High  
Shutdown or restart  
on Fault  
(42h)  
VOUT_OV_WARN_L  
IMIT  
Vout OV warning  
Vout UV fault  
No  
No  
No  
Y
Y
Y
Y
Y
Y
Ignore Fault  
Shutdown  
(44h)  
VOUT_UV_FAULT_L  
IMIT  
Low  
High  
Low  
Both FETs off , restart after  
[DELAY]*tON_RISE  
Restart  
Ignore  
FETS still controlled by PWM  
FETS still controlled by PWM  
Both FETs off  
Shutdown or restart  
on Fault  
(43h)  
VOUT_UV_WARN_L  
IMIT  
Vout UV warning  
Ignore fault  
Shutdown  
(62h)  
TON_MAX_FAULT_L  
IMIT  
Low  
Both FETs off, restart after  
[DELAY]*tON_RISE  
tON MAX rault  
PVin UVLO  
Restart  
Ignore  
Yes  
Yes  
Y
Y
Y
Y
FETS still controlled by PWM  
Both FETs off  
High  
Low  
(35h) VIN_ON, (36h)  
VIN_OFF  
Shutdown  
Shutdown  
Restart  
Ignore  
Both FETs off  
(55h)  
VIN_OV_FAULT_LIM  
IT  
Low  
PVIN OV FAULT  
BCX_fault  
Both FETs off, restart  
Yes  
Yes  
Y
Y
Y
Y
FETS still controlled by PWM  
FETS still controlled by PWM  
High  
High  
N/A  
N/A  
N/A  
N/A  
VSEL  
MSEL1  
MSEL2  
ADRSEL  
Pin_Strap_NonConv  
erge  
No (active before  
Both FETs off, pull low VSHARE  
N
N
N/A  
N/A  
Low  
tON_RISE  
)
SYNC_Fault  
Loop controller or  
stand-alone device  
Yes  
High  
Low  
FETS still controlled by PWM  
Loop follower device  
Both FETs off, pull low VSHARE  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
32  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7-4. Fault Protection Summary (continued)  
FAULT OR  
WARNING  
FAULT RESPONSE  
ACTIVE DURING  
PROGRAMMING  
FET BEHAVIOR  
SMB_ALRT  
MASKABLE  
N/A  
PGOOD LOGIC  
SETTING  
tON_RISE  
SYNC_High/Low  
N/A  
Loop controller or  
stand-alone device  
Yes  
N
High  
Low  
FETS still controlled by PWM  
Loop follower device  
Both FETs off, pull low VSHARE  
7.3.20 Back-Channel Communication  
To allow multiple devices with a shared output to communicate through a single PMBus address and single  
PMBus loop follower, the TPS546D24S uses a back-channel communication implemented through BCX_CLK  
and BCX_DAT pins. During POR, all of the devices connected to VSHARE must also be connected to BCX_CLK  
and BCX_DAT and have appropriate (ECh) MFR_SPECIFIC_28 (STACK_CONFIG) settings. Any programming  
error among the devices of a stack results in a POR fault and prevent enabling of conversion.  
During POR, the loop controller reads the programmed values from the loop followers to ensure all expected  
loop followers are present and correctly phase-shifted. Then, the loop controller loads critical operating  
parameters such as the following to the loop follower devices to ensure correct operation of the STACK:  
(B1h) USER_DATA_01 (COMPENSATION_CONFIG)  
(33h) FREQUENCY_SWITCH  
(61h) TON_RISE  
(21h) VOUT_COMMAND  
During operation, the loop controller device receives and responds to all PMBus communication, and loop  
follower devices do not need to be connected to the PMBus. If the loop controller receives commands that  
require updates to the PMBus registers of the loop follower, the loop controller relays these commands to the  
loop followers. Additionally, the loop controller periodically polls loop follower devices for status and telemetry  
information to maintain an accurate record of the telemetry and STATUS information for the full stack of devices.  
Most PMBus communication must be directed to all phases by leaving the (04h) PHASE PMBus command at its  
Power On Reset default value of FFh. If a specific device must be communicated with, the (04h) PHASE  
command can be changed to address a specific device within the stack, as set by the order value of the (37h)  
INTERLEAVE command programmed during POR.  
When commands are directed to individual loop followers, write commands are queued by the loop controller to  
be sent to the loop followers through the BCX if other BCX communication is in progress. Queued write  
commands are written to the loop followers in the order the loop controller receives them. To avoid unnecessary  
delays on the PMBus and excessive clock stretching, read transactions targeting individual loop followers are not  
queued, and are processed as soon as the BCX bus is available. As a result, it is possible for a read command  
targeting an individual loop follower immediately following a write command can be processed before the  
preceding write command. To ensure accurate read-back, users must allow a minimum of 4 ms between writing  
a value to an individual loop follower and reading that same value back from the same loop follower.  
7.3.21 Switching Node (SW)  
The SW pin connects to the switching node of the power conversion stage. It acts as the return path for the  
highside gate driver. When configured as a synchronous buck stage, the voltage swing on SW normally  
traverses from below ground to well above the input voltage. Parasitic inductance in the high-side FET and the  
output capacitance (COSS) of both power FETs form a resonant circuit that can produce high frequency (> 100  
MHz) ringing on this node. The voltage peak of this ringing, if not controlled, can be significantly higher than the  
input voltage. Ensure that the peak ringing amplitude does not exceed the absolute maximum rating limit for the  
pin.  
In many cases, a series resistor and capacitor snubber network connected from the switching node to PGND  
can be helpful in damping the ringing and decreasing the peak amplitude. Provide provisions for snubber  
network components in the layout of the printed circuit board. If testing reveals that the ringing amplitude at the  
SW pin exceeds the limit, then include snubber components.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.3.22 PMBus General Description  
Timing and electrical characteristics of the PMBus interface specification can be found in the PMB Power  
Management Protocol Specification, Part 1, revision 1.3 available at http://pmbus.org. The TPS546D24S device  
supports both the 100-kHz, 400-kHz, and 1-MHz bus timing requirements.  
The TPS546D24S uses clock stretching during PMBus communication, but only stretches the clock during  
specific bits of the transaction.  
The TPS546D24S does not stretch the clock during the address byte of any transaction.  
The TPS546D24S can stretch the clock between bit 0 of the command byte and its ACK response.  
The TPS546D24S stretches the clock after bit 0 of the read address of a read transaction.  
The TPS546D24S stretches the clock between bit 0 of the last byte of data and its ACK response  
The TPS546D24S can stretch the clock between bit 1 and bit zero of every fourth byte of data for blocks with  
more than four bytes of data.  
Communication over the PMBus interface can either support the packet error checking (PEC) scheme or not. If  
the loop controller supplies clock (CLK) pulses for the PEC byte, PEC is used. If the CLK pulses are not present  
before a STOP, the PEC is not used. If PEC is always used, consider enabling Require PEC in (EDh)  
MFR_SPECIFIC_29 (MISC_OPTIONS) to configure the TPS546D24S to reject any write transaction that does  
not include CLK pulses for a PEC byte.  
The device supports a subset of the commands in the PMBus 1.3 Power Management Protocol Specification.  
See Supported PMBus Commands for more information  
The TPS546D24S also supports the SMB_ALERT response protocol. The SMB_ALERT response protocol is a  
mechanism by which the TPS546D24S can alert the bus loop controller that it has experienced an alert and has  
important information for the host. The host must process this event and simultaneously accesses all loop  
followers on the bus that support the protocol through the alert response address. All loop followers that are  
asserting SMB_ALERT must acknowledge this request with their PMBus Address. The host performs a modified  
receive byte operation to get the address of the loop follower. At this point, the loop controller can use the  
PMBus status commands to query the loop follower that caused the alert. For more information on the SMBus  
alert response protocol, see the system management bus (SMBus) specification. Persistent faults associated  
with status registers other than (7Eh) STATUS_CML reassert SMB_ALERT after responding to the host alert  
response address.  
The TPS546D24S contains non-volatile memory that is used to store configuration settings and scale factors.  
The settings programmed into the device are not automatically saved into this non-volatile memory. The (15h)  
STORE_USER_ALL command must be used to commit the current PMBus settings to non-volatile memory as  
device defaults. The settings that are capable of being stored in non-volatile memory are noted in their detailed  
descriptions.  
All pin programmable values can be committed to non-volatile memory. The POR default selection between pin  
programmable values and non-volatile memory can be selected by the manufacturer specific (EEh)  
MFR_SPECIFIC_30 (PIN_DETECT_OVERRIDE) command.  
7.3.23 PMBus Address  
The PMBus specification requires that each device connected to the PMBus have a unique address on the bus.  
The TPS546D24S PMBus address is determined by the value of the resistor connected between ADRSEL and  
AGND and is programmable over the range from 0x10 0x2F, providing 32 unique PMBus addresses.  
7.3.24 PMBus Connections  
The TPS546D24S supports the 100-kHz, 400-kHz, and 1-MHz bus speeds. Connection for the PMBus interface  
must follow the high power DC specifications given in section 3.1.3 in the SMBus specification V2.0 for the 400-  
kHz bus speed or the low power DC specifications in section 3.1.2. The complete SMBus specification is  
available from the SMBus web site, smiforum.org  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
34  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
The PMBus interface pins: PMB_CLK, PMB_DATA, and SMB_ALRT require external pullup resistors to a 1.8-V  
to 5.5-V termination. Pullup resistors must be sized to meet the minimize rise-time required for the desired  
PMBus clock speed but must not source more current than the lowest rated CLK, DATA, or SMB_ALRT pin on  
the bus when the bus voltage is forced to 0.4 V. The TPS546D24S supports a minimum of 20 mA of sink current  
on PMB_CLK, PMB_DATA, and SMB_ALRT.  
7.4 Device Functional Modes  
7.4.1 Programming Mode  
The TPS546D24S devices can operate in programming mode when AVIN and VDD5 are powered above their  
lower UVLO but VDD5 and PVIN are not powered above their UVLO to enable conversion. In programing mode,  
the TPS546D24S accepts and responds to PMBus commands but does not enable switching or conversion.  
While PMBus commands can be accepted and processed with VDD5 lower than 3 V, NVM programming through  
the (15h) STORE_USER_ALL command must not be used when VDD5 is less than 3 V.  
Programming mode allows the TPS546D24S to complete POR and to be configured through PMBus from a 3.3-  
V supply without PVIN present.  
7.4.2 Standalone, Loop Controller, Loop Follower Mode Pin Connections  
The TPS546D24S can be programmed as a standalone device (Single Output, Single Phase) loop controller  
device of a single-output multi-phase stack of devices, or a loop follower device to a loop controller of a mult-  
phase stack. The details of the recommended pin connects for each configuration is given in 7-5.  
7-5. Standalone, Loop Controller, Loop Follower Pin Connections  
PIN  
STANDALONE  
LOOP CONTROLLER  
LOOP FOLLOWER  
GOSNS  
Ground at Output Regulation Point  
Ground at Output Regulation Point  
BP1V5  
Float or connect to divider for other  
voltage to be monitored  
VOSNS  
Vout at Output Regulation Point  
Vout at Output Regulation Point  
Enable/Control or Resistor Divider  
from PVIN  
Enable/Control or Resistor Divider  
from PVIN  
Connect to EN/UVLO of the loop  
controller  
EN/UVLO  
MSEL1  
Programming MSEL1  
Programming MSEL1  
Short to PGND (Thermal Pad)  
Programming MSEL2 for a Loop  
Follower Device (GOSNS Tied to  
BP1V5)  
MSEL2  
Programming MSEL2  
Programming MSEL2  
VSEL  
Programming VSEL  
Programming VSEL  
Short to PGND (Thermal Pad)  
Short to PGND (Thermal Pad)  
ADRSEL  
Programming ADRSEL  
Programming ADRSEL  
Float or Bypass to AGND with  
capacitor  
Connect to VSHARE of the loop  
follower  
Connect to VSHARE of the loop  
controller  
VSHARE  
SYNC  
Float or External Sync  
External Sync or loop follower SYNC Connect to SYNC of the loop controller  
Connect to System PMBus or PGND  
(Thermal Pad) if not used  
Connect to System PMBus or PGND  
Short to PGND (Thermal Pad)  
(Thermal Pad) if not used  
PMB_CLK  
Connect to System PMBus or PGND  
(Thermal Pad) if not used  
Connect to System PMBus or PGND  
Short to PGND (Thermal Pad)  
(Thermal Pad) if not used  
PMB_DATA  
SMB_ALRT  
BCX_CLK  
Connect to System PMBus or PGND  
(Thermal Pad) if not used  
Connect to System PMBus or PGND  
Short to PGND (Thermal Pad)  
(Thermal Pad) if not used  
Connect to BCX_CLK of the loop  
Short to PGND (Thermal Pad)  
Short to PGND (Thermal Pad)  
Connect to loop followers BCX_CLK  
controller  
Connect to BCX_DAT of the loop  
BCX_DAT  
Connect to loop followers BCX_DAT  
controller  
Connect to System PGD or RESET#  
or PGND (Thermal Pad) if not used  
Connect to System PGD or RESET#  
Short to PGND (Thermal Pad)  
PGOOD/RST_B  
or PGND (Thermal Pad) if not used  
7.4.3 Continuous Conduction Mode  
The TPS546D24S devices operate in continuous conduction mode (CCM) at a fixed frequency, regardless of the  
output current. During soft start, some of the low-side MOSFET on-times are limited to prevent excessive current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
sinking in the event the device is started with a prebiased output. After the first PWM pulse, and with each  
successive PWM pulse, this limit is increased to allow more low-side FET on-time and transition to CCM. After  
this transition has completed, the low-side MOSFET and the high-side MOSFET on-times are fully  
complementary.  
7.4.4 Operation With CNTL Signal (EN/UVLO)  
According to the value in the (02h) ON_OFF_CONFIG register, the TPS546D24S devices can be commanded to  
use the EN/UVLO pin to enable or disable regulation, regardless of the state of the (01h) OPERATION  
command. The EN/UVLO pin can be configured as either active high or active low (inverted) logic. To use EN/  
UVLO pin as a programmable UVLO, the polarity set by (02h) ON_OFF_CONFIG must be positive logic.  
7.4.5 Operation with (01h) OPERATION Control  
According to the value in the (02h) ON_OFF_CONFIG register, the TPS546D24S devices can be commanded to  
use the (01h) OPERATION command to enable or disable regulation, regardless of the state of the CNTL signal.  
7.4.6 Operation with CNTL and (01h) OPERATION Control  
According to the value in the (02h) ON_OFF_CONFIG command, the TPS546D24S devices can be commanded  
to require both a CNTRL signal from the EN/UVLO pin, and the (01h) OPERATION command to enable or  
disable regulation.  
7.5 Programming  
7.5.1 Supported PMBus Commands  
The commands listed in 7-6 are implemented as described to conform to the PMBus 1.3 specification. 7-6  
also lists the default for the bit behavior and register values.  
7-6. Supported PMBus Commands and Default Values  
CMD CODE (HEX)  
COMMAND NAME (PMBus 1.3 SPEC)  
DEFAULT VALUE  
01h  
02h  
03h  
04h  
10h  
15h  
16h  
19h  
1Bh  
20h  
21h  
22h  
24h  
25h  
26h  
27h  
29h  
2Bh  
33h  
35h  
36h  
37h  
38h  
OPERATION  
04h  
ON_OFF_CONFIG  
CLEAR_FAULTS  
PHASE  
17h  
n/a  
FFh  
WRITE_PROTECT  
STORE_USER_ALL  
RESTORE_USER_ALL  
CAPABILITY  
00h  
n/a  
n/a  
D0h  
SMBALERT_MASK  
VOUT_MODE  
n/a  
97h  
VOUT_COMMAND  
VOUT_TRIM  
019Ah  
0000h  
0C00h  
021Ah  
01E6h  
E010h  
C840h  
0100h  
01C2h  
F00Bh  
F00Ah  
0020h  
C880h  
VOUT_MAX  
VOUT_MARGIN_HIGH  
VOUT_MARGIN_LOW  
VOUT_TRANSITION_RATE  
VOUT_SCALE_LOOP  
VOUT_MIN  
FREQUENCY_SWITCH  
VIN_ON  
VIN_OFF  
INTERLEAVE  
IOUT_CAL_GAIN  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
36  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7-6. Supported PMBus Commands and Default Values (continued)  
CMD CODE (HEX)  
COMMAND NAME (PMBus 1.3 SPEC)  
IOUT_CAL_OFFSET  
VOUT_OV_FAULT_LIMIT  
VOUT_OV_FAULT_RESPONSE  
VOUT_OV_WARN_LIMIT  
VOUT_UV_WARN_LIMIT  
VOUT_UV_FAULT_LIMIT  
VOUT_UV_FAULT_RESPONSE  
IOUT_OC_FAULT_LIMIT  
IOUT_OC_FAULT_RESPONSE  
IOUT_OC_WARN_LIMIT  
OT_FAULT_LIMIT  
DEFAULT VALUE  
39h  
E000h  
024Dh  
BDh  
40h  
41h  
42h  
022Eh  
01CCh  
01B2h  
BEh  
43h  
44h  
45h  
46h  
F0D0h  
FFh  
47h  
4Ah  
4Fh  
50h  
F0A0h  
0096h  
BCh  
OT_FAULT_RESPONSE  
OT_WARN_LIMIT  
51h  
007Dh  
0015  
55h  
VIN_OV_FAULT_LIMIT  
VIN_OV_FAULT_RESPONSE  
VIN_UV_WARN_LIMIT  
TON_DELAY  
56h  
3Ch  
58h  
F00Ah  
F800h  
F00Ch  
F800h  
3Bh  
60h  
61h  
TON_RISE  
62h  
TON_MAX_FAULIT_LIMIT  
TON_MAX_FAULT_RESPONSE  
TOFF_DELAY  
63h  
64h  
F800h  
F002h  
00h  
65h  
TOFF_FALL  
78h  
STATUS_BYTE  
79h  
STATUS_WORD  
00h  
7Ah  
7Bh  
7Ch  
7Dh  
7Eh  
7Fh  
80h  
STATUS_VOUT  
00h  
STATUS_IOUT  
00h  
STATUS_INPUT  
00h  
STATUS_TEMPERATURE  
STATUS_CML  
00h  
00h  
STATUS_OTHER  
00h  
STATUS_MFR_SPECIFIC  
READ_VIN  
00h  
88h  
n/a  
8Bh  
8Ch  
8Dh  
98h  
READ_VOUT  
n/a  
READ_IOUT  
n/a  
READ_TEMPERATURE_1  
PMBUS_REVISION  
n/a  
33h  
99h  
MFR_ID  
00 00 00h  
00 00 00h  
00 00 00h  
00 00 00h  
54 49 54 6D 24 62h  
41 00h  
22 18 C2 1D 06h  
70h  
9Ah  
9Bh  
9Eh  
ADh  
AEh  
B1h  
B5h  
D0h  
MFR_MODEL  
MFR_REVISION  
MFR_SERIAL  
IC_DEVICE_ID  
IC_DEVICE_REV  
USER_DATA_01 (COMPENSATION_CONFIG)  
USER_DATA_05 (POWER_STAGE_CONFIG)  
MFR_SPECIFIC_00 (TELEMETRY_CONFIG)  
03 03 03 03 03 00h  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7-6. Supported PMBus Commands and Default Values (continued)  
CMD CODE (HEX)  
COMMAND NAME (PMBus 1.3 SPEC)  
DEFAULT VALUE  
DAh  
DBh  
E4h  
ECh  
EDh  
EEh  
EFh  
F0h  
F1h  
FAh  
FBh  
FCh  
FDh  
MFR_SPECIFIC_10 (READ_ALL)  
n/a  
n/a  
MFR_SPECIFIC_11 (STATUS_ALL)  
MFR_SPECIFIC_20 (SYNC_CONFIG)  
MFR_SPECIFIC_28 (STACK_CONFIG)  
MFR_SPECIFIC_29 (MISC_OPTIONS)  
MFR_SPECIFIC_30 (PIN_DETECT_OVERRIDE)  
MFR_SPECIFIC_31 (DEVICE_ADDRESS)  
MFR_SPECIFIC_32 (NVM_CHECKSUM)  
MFR_SPECIFIC_33 (SIMULATE FAULTS)  
MFR_SPECIFIC_42 (PASSKEY)  
F0h  
0000h  
0000h  
1F2Fh  
24h  
E9E0h  
0000h  
0000h  
MFR_SPECIFIC_43 (EXT_WRITE_PROTECT)  
MFR_SPECIFIC_44 (FUSION_ID0)  
0000h  
02C0h  
54 49 4C 4F 43 4Bh  
MFR_SPECIFIC_45 (FUSION_ID1)  
7.5.2 Pin Strapping  
The TPS546D24S provides four IC pins that allow the initial PMBus programming value on critical PMBus  
commands to be selected by the resistors connected to that pin without requiring PMBus communication.  
Whether a specific PMBus command is initialized to the value selected by the detected resistance or stored  
NVM memory is determined by the commands bit in the PIN_DETECT_OVERRIDE PMBus Command. The four  
pins and the commands they program for a loop controller or Stand-alone device (GOSNS connected to Ground)  
are provided in 7-7.  
Each pin can be programmed in one of four ways:  
Pin shorted to AGND with less than 20 Ω  
Pin floating or tied to BP1V5 with more than 1 MΩ  
Pin bypassed to AGND through a resistor according to R2G code only (16 Resistor Options)  
Pin bypassed to AGND through a resistor according to R2G code and to BP1V5 according to Divider Code  
(16 Resistor x 16 Resistor Divider Options)  
Due to the flexibility of programming options with up to 274 configurations per pin, it is recommended that  
designers consider using one of the available design tools, such as TPS546x24S Compensation and Pin-Strap  
Resistor Calculator to assist with proper programming resistor selection.  
7-7. TPS546D24S Pin Programming Summary  
PIN  
RESISTORS  
PMBus REGISTERS  
MSEL1  
MSEL2  
Resistor to AGND  
COMPENSATION_CONFIG  
Resistor Divider  
Resistor to AGND  
Resistor Divider  
Both  
COMPENSATION_CONFIG, FREQUENCY_SWITCH  
IOUT_OC_WARN_LIMIT, IOUT_OC_FAULT_LIMIT, STACK_CONFIG  
TON_RISE  
VSEL  
VOUT_COMMAND, VOUT_SCALE_LOOP, VOUT_MAX, VOUT_MIN  
DEVICE_ADDRESS  
ADRSEL  
Resistor to AGND  
Resistor Divider  
DEVICE_ADDRESS, SYNC_CONFIG, INTERLEAVE  
备注  
Resistor divider values of "none" can be implemented with no resistor to BP1V5 or use a 1-MΩ  
resistor to BP1V5 for improved reliability and noise immunity.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
38  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
Loop follower with GOSNS tied to BP1V5 only use the resistor from MSEL2 to AGND to program the following:  
(4Ah) IOUT_OC_WARN_LIMIT  
(46h) IOUT_OC_FAULT_LIMIT  
(ECh) MFR_SPECIFIC_28 (STACK_CONFIG)  
(37h) INTERLEAVE  
The loop follower receives all other pin programmed values from the loop controller over BCX as part of the  
power-on reset function.  
备注  
The high precision Pin-Detection programming which provides 8-bit resolution for each pin in the  
TPS546D24S can be sensitive to PCB contamination from flux, moisture, and debris. As such, users  
must consider committing Pin Programmed values to User Non-Volatile memory and disable future  
use of Pin Strapped values as part of the product flow. The programming sequence to commit Pin  
Programmed PMBus register values to NVM and disable future use of Pin Strapped programming is:  
Select MSEL1, MSEL2, VSEL and ADRSEL programming resistors to program the desired PMBus  
register values.  
Power AVIN and VDD5 above their UVLOs to initiate pin detection and enable PMBus  
communication.  
Update any PMBus register values not programmed to their final value by Pin Detection.  
Write the value 0000h using the Write Word protocol to (EEh) MFR_SPECIFIC_30  
(PIN_DETECT_OVERRIDE).  
Send the command code 15h using the Send Byte protocol to initialize a (15h)  
STORE_USER_ALL function.  
Allow a minimum 100 ms for the device to complete a burn of NVM User Store. Loss of AVIN or  
VDD5 power during this 100 ms can compromise the integrity of the NVM. Failure to complete the  
NVM burn can result in a corruption of NVM and a POR fault on subsequent power on resets.  
7.5.2.1 Programming MSEL1  
The  
MSEL1  
pin  
programs  
(B1h)  
USER_DATA_01  
(COMPENSATION_CONFIG)  
and  
(33h)  
FREQUENCY_SWITCH. The resistor divider ratio for MSEL1 selects the nominal switching frequency using 表  
7-8:  
7-8. MSEL1 Divider Code for Programming  
RESISTOR  
DIVIDER  
CODE  
COMPENSATION_CONFIG (CONFIG #)  
FREQUENCY_SWITCH VALUE (kHz)  
None (No  
Resistor to  
BP1V5)  
7 - 25 (Select Values)  
550  
0
1
2
3
4
5
6
7
8
9
0-15  
16-31  
0-15  
275  
325  
450  
550  
650  
16-31  
0-15  
16-31  
0-15  
16-31  
0-15  
16-31  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7-8. MSEL1 Divider Code for Programming (continued)  
RESISTOR  
DIVIDER  
CODE  
COMPENSATION_CONFIG (CONFIG #)  
FREQUENCY_SWITCH VALUE (kHz)  
10  
11  
12  
13  
14  
15  
0-15  
16-31  
0-15  
900  
1100  
1500  
16-31  
0-15  
16-31  
The resistor to ground for MSEL1 selects the (B1h) USER_DATA_01 (COMPENSATION_CONFIG) values to  
program the following voltage loop and current loop gains. For options other than the EEPROM code (MSEL1  
shorted to AGND or MSEL1 to AGND resistor code 0), the Current and Voltage loop zero and pole frequencies  
are scaled with the programmed switching frequency. The current loop pole frequency is located at  
approximately the switching frequency, while the current loop zero is located at approximately 1/20 the switching  
frequency. The voltage loop pole is located at approximately ½ the switching frequency and the voltage loop  
zero is located at approximately 1/100 the switching frequency.  
7-9. MSEL1 Resistor to AGND Code with no Divider Programming  
COMPENSATION (NO DIVIDER)  
COMPENSATION (EVEN DIVIDER)  
COMPENSATION (ODD DIVIDER)  
RESISTOR  
CODE  
I LOOP  
GAIN  
V LOOP  
GAIN  
I LOOP  
GAIN  
V LOOP  
GAIN  
I LOOP  
GAIN  
V LOOP  
GAIN  
CONFIG #  
CONFIG #  
CONFIG #  
Short  
Float  
0
3
2
2
N/A  
N/A  
0
N/A  
N/A  
N/A  
N/A  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
20  
30  
31  
N/A  
N/A  
5
N/A  
N/A  
0.5  
1
EEPROM  
EEPROM  
EEPROM  
N/A  
N/A  
7
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
1
2
4
8
1
2
4
8
1
2
4
8
1
2
4
8
EEPROM  
EEPROM  
1
8
1
2
2
2
2
2
3
3
3
3
3
4
4
4
4
4
0.5  
1
5
2
9
2
5
2
3
10  
12  
13  
14  
15  
17  
18  
19  
20  
22  
23  
24  
25  
3
2
5
4
4
4
4
5
8
5
5
8
6
0.5  
1
6
6
0.5  
1
6
7
7
6
2
8
8
2
6
4
9
9
4
6
8
10  
11  
12  
13  
14  
15  
10  
11  
12  
13  
14  
15  
8
7
0.5  
1
0.5  
1
7
7
2
2
7
4
4
7
8
8
10  
2
With both the resistor to ground code and the resistor divider code, use the look-up table to select the  
appropriate resistors.  
7.5.2.2 Programming MSEL2  
The resistor divider on MSEL2 pin programs the (61h) TON_RISE value to select the soft-start time used by the  
TPS546D24S.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
40  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7-10. MSEL2 Divider Code for Programming  
RESISTOR DIVIDER CODE  
TON_RISE VALUE (ms)  
None (No Resistor to BP1V5)  
Short to AGND  
3
Float  
0
1
2
3
4
5
6
7
0.5  
1
3
5
7
10  
20  
31.75  
The resistor to ground for MSEL2 selects the (4Ah) IOUT_OC_WARN_LIMIT, (46h) IOUT_OC_FAULT_LIMIT,  
and (ECh) MFR_SPECIFIC_28 (STACK_CONFIG) values using 7-11.  
7-11. MSEL2 Resistor to AGND Code for IOUT_OC_WARN/FAULT_LIMIT and  
STACK Programming  
RESISTOR TO  
AGND CODE  
STACK_CONFIG(NUMBER OF  
LOOP FOLLWOERS / # OF  
PHASES)  
OC_WARN (A) / OC_FAULT (A)  
Short  
0000h (0 loop followers, Stand-  
alone)  
40/52  
40/52  
Float  
0
0001h (1 loop follower, 2-phase)  
0000h (0 loop followers, Stand-  
alone)  
1
2
3
4
0001h (1 loop follower, 2-phase)  
0002h (2 loop followers, 3-phase)  
0003h (3 loop followers, 4-phase)  
40/52  
30/39  
20/26  
10/14  
0000h (0 loop followers, Stand-  
alone)  
5
6
7
8
0001h (1 loop follower, 2-phase)  
0002h (2 loop followers, 3-phase)  
0003h (3 loop followers, 4-phase)  
0000h (0 loop followers, Stand-  
alone)  
9
0001h (1 loop follower, 2-phase)  
0002h (2 loop followers, 3-phase)  
0003h (3 loop followers, 4-phase)  
10  
11  
12  
0000h (0 loop followers, Stand-  
alone)  
13  
14  
15  
0001h (1 loop follower, 2-phase)  
0002h (2 loop followers, 3-phase)  
0003h (3 loop followers, 4-phase)  
7.5.2.3 Programming VSEL  
The resistor divider ratio for VSEL programs the (21h) VOUT_COMMAND range, (29h) VOUT_SCALE_LOOP  
divider, (2Bh) VOUT_MIN, and (24h) VOUT_MAX levels according to the following tables.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
Select the resistor divider code that contains the desired nominal boot voltage within the range of VOUT between  
minimum VOUT and maximum VOUT. For voltages from 0.5 V to 1.25 V, a single resistor to ground or a resistor  
divider can be used.  
7-12. VSEL Resistor Divider Code for Programming  
NOMINAL BOOT VOLTAGE RANGE  
RESISTOR DIVIDER  
CODE  
MINIMUM VOUT  
MAXIMUM VOUT  
RESOLUTION  
EEPROM (0.8V)  
EEPROM (0.8V)  
N/A  
Float  
None  
0
0.5  
0.6  
0.75  
0.9  
1.05  
1.2  
1.5  
1.8  
2.1  
2.4  
3.0  
3.6  
4.2  
3.6  
4.2  
4.8  
5.4  
1.25  
0.75  
0.9  
1.05  
1.2  
1.5  
1.8  
2.1  
2.4  
3.0  
3.6  
4.2  
4.8  
4.2  
4.8  
5.4  
6.0  
0.050  
0.010  
0.010  
0.010  
0.010  
0.020  
0.020  
0.020  
0.020  
0.040  
0.040  
0.040  
0.040  
0.040  
0.040  
0.040  
0.040  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
With the resistor divider code selected for the range of VOUT, select the bottom resistor code with the (21h)  
VOUT_COMMAND Offset and (21h) VOUT_COMMAND step from Programming VSEL.  
7-13. VSEL Resistor to AGND Code for Programming  
RESISTOR DIVIDER VOUT_SCALE  
VOUT_MIN  
VOUT_MAX  
VOUT_COMMAND  
VOUT_COMMAND STEP (V)  
CODE  
_LOOP  
OFFSET (V)  
0.5  
EEPROM (0.5)  
EEPROM (1.5)  
EEPROM  
(0.80)  
1.0  
Short to AGND  
N/A  
Float  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
3
N/A  
None  
0
0.50  
0.6  
0.050  
0.010  
0.010  
0.010  
0.010  
0.020  
0.020  
0.020  
0.020  
0.040  
0.040  
0.040  
0.040  
0.040  
0.5  
1
0.5  
0.75  
0.9  
2
0.5  
3
0.5  
1.05  
1.2  
4
0.25  
0.25  
0.25  
0.25  
0.125  
0.125  
0.125  
0.125  
0.125  
5
1
3
1.5  
6
1
3
1.8  
7
1
3
2.1  
8
2
6
2.4  
9
2
6
3.0  
10  
11  
12  
2
6
3.6  
2
6
4.2  
2
6
3.6  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
42  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7-13. VSEL Resistor to AGND Code for Programming (continued)  
RESISTOR DIVIDER VOUT_SCALE  
VOUT_MIN  
VOUT_MAX  
VOUT_COMMAND  
VOUT_COMMAND STEP (V)  
CODE  
_LOOP  
0.125  
0.125  
0.125  
OFFSET (V)  
13  
2
2
2
6
6
6
4.2  
4.8  
5.4  
0.040  
0.040  
0.040  
14  
15  
To calculate the resistor to AGND code, subtract the (21h) VOUT_COMMAND offset from the target output  
voltage and divide by the (21h) VOUT_COMMAND step.  
VOUT - VOUT_COMMAND(Offset)  
Code =  
VOUT _COMMAND(Step)  
(8)  
7.5.2.4 Programming ADRSEL  
The resistor divider for the ADRSEL pin selects the range of PMBus Addresses and SYNC direction for the  
TPS546D24S. For Stand Alone devices with only one device supporting a single output voltage, the ADRSEL  
divider also selects the Phase Shift between SYNC and the switch node.  
7-14. ADRSEL Resistor Divider Code for and SYNC_IN Programming  
RESISTOR DIVIDER  
CODE  
DEVICE_ADDRESS  
SYNC IN / SYNC OUT  
STACK_CONFIG = 0x0000 (STAND-ALONE  
ONLY)  
Range  
0x7F (127d)  
EEPROM (0x24h / 36d)  
16d - 31d  
PHASE SHIFT  
INTERLEAVE  
0x0020  
0x0020  
0x0020  
0x0040  
0x0040  
0x0041  
0x0041  
0x0031  
0x0031  
0x0042  
0x0042  
0x0032  
0x0032  
0x0043  
0x0043  
0x0020  
0x0020  
0x0042  
0x0042  
Short to AGND  
Auto Detect  
Auto Detect  
Auto detect  
Sync in  
0
Float  
None  
0
0
0
16d - 31d  
0
1
32d - 47d  
Sync in  
0
2
16d - 31d  
Sync in  
90  
3
32d - 47d  
Sync in  
90  
4
16d - 31d  
Sync in  
120  
120  
180  
180  
240  
240  
270  
270  
0
5
32d - 47d  
Sync in  
6
16d - 31d  
Sync in  
7
32d - 47d  
Sync in  
8
16d - 31d  
Sync in  
9
32d - 47d  
Sync in  
10  
11  
12  
13  
14  
15  
16d - 31d  
Sync in  
32d - 47d  
Sync in  
16d - 31d  
Sync out  
Sync out  
Sync out  
Sync out  
32d - 47d  
0
16d - 31d  
180  
180  
32d - 47d  
The resistor to AGND for ADRSEL programs the device PMBus loop follower address according to 7-15:  
7-15. ADRSEL Resistor to AGND Code for Programming  
RESISTOR TO AGND CODE  
DEVICE ADDRESS (16-31  
RANGE)  
DEVICE ADDRESS (32-47  
RANGE)  
0
1
2
0x10h (16d)  
0x11h (17d)  
0x12h (18d)  
0x20h (32d)  
0x21h (33d)  
0x22h (34d)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7-15. ADRSEL Resistor to AGND Code for Programming (continued)  
RESISTOR TO AGND CODE  
DEVICE ADDRESS (16-31  
RANGE)  
DEVICE ADDRESS (32-47  
RANGE)  
3
4
0x13h (19d)  
0x14h (20d)  
0x15h (21d)  
0x16h (22d)  
0x17h (23d)  
0x18h (24d)  
0x19h (25d)  
0x1Ah (26d)  
0x1Bh (27d)  
0x1Ch (28d)  
0x1Dh (29d)  
0x1Eh (30d)  
0x1Fh (31d)  
0x23h (35d)  
0x24h (36d)  
0x25h (37d)  
0x26h (38d)  
0x27h (39d)  
0x48h (72d)  
0x29h (41d)  
0x2Ah (42d)  
0x2Bh (43d)  
0x2Ch (44d)  
0x2Dh (45d)  
0x2Eh (46d)  
0x2Fh (47d)  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
备注  
When a TPS546D24S device is configured as the loop controller of a multi-phase stack, the device  
always occupies the zero-degree position in (37h) INTERLEAVE, but the ADRSEL resistor divider can  
still be used to select Auto Detect, Forced SYNC_IN, and Forced SYNC_OUT. When the loop  
controller of a multi-phase stack is configured for SYNC_IN, all devices of the stack remain disabled  
until a valid external SYNC signal is provided.  
7.5.2.5 Programming MSEL2 for a Loop Follower Device (GOSNS Tied to BP1V5)  
Configuring a TPS546D24S device as a loop follower disables all pinstraps except MSEL2, which programs  
(37h)  
INTERLEAVE  
for  
stacking  
and  
(ECh)  
MFR_SPECIFIC_28  
(STACK_CONFIG),  
(4Ah)  
IOUT_OC_WARN_LIMIT, and (46h) IOUT_OC_FAULT_LIMIT with a single resistor to AGND. Note that the loop  
controller is always device 0.  
7-16. Loop Follower MSEL2 Resistor to AGND Code for and Programming  
RESISTOR TO AGND  
CODE  
DEVICE NUMBER, NUMBER OF  
PHASES  
IOUT_OC_WARN_LIMIT (A) /  
IOUT_OC_FAULT_LIMIT (A)  
Short  
Float  
6
Device 1, 2-phase  
Device 1, 2-phase  
Device 1, 2-phase  
Device1, 2-phase  
Device 1, 3-phase  
Device 1, 3-phase  
Device 2, 3-phase  
Device 2, 3-phase  
Device 1, 4-phase  
Device 1, 4-phase  
Device 2, 4-phase  
Device 2, 4-phase  
Device 3, 4-phase  
Device 3, 4-phase  
40/52  
30/39  
40/52  
30/39  
40/52  
30/39  
40/52  
30/39  
40/52  
30/39  
40/52  
30/39  
40/52  
30/39  
7
4
5
8
9
2
3
14  
15  
10  
11  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
备注  
During the power-on sequence, device 0 (stack loop controller) reads back phase information from all  
connected loop followers, if any loop follower phase response does not match the (ECh)  
MFR_SPECIFIC_28 (STACK_CONFIG) results of the loop controller, the converter sets the POR fault  
bit in (80h) STATUS_MFR_SPECIFIC but does not allow conversion. After all connected devices  
respond to Device 0, Device 0 passes remaining pin-strap information to the loop followers to ensure  
matched programming during operation. Adding an additional phase requires adjusting the MSEL2  
resistors on the loop controller device and the MSEL2 resistor to ground on all other loop follower  
devices.  
7.5.2.6 Pin-Strapping Resistor Configuration  
7-17 and 7-18 provide the bottom resistor (pin to AGND) values in ohms, and the top resistor (pin to  
BP1V5) values in ohms. Select the column with the desired R2G code in the top row and the row with the  
desired resistor divider code in the left most column. The Pin-to-AGND resistor value is the resistor value in the  
highlighted row in the first column under the desired R2G code. The Pin-to-BP1V5 resistor value, if used, is the  
resistor value in the row starting with the desired divider code in the left most column under the desired R2G  
code and resistor.  
7-17. Pin-Strapping Resistor (Ω) Table for R2G Codes 0-7  
R2G code  
0
1
2
3
4
5
6
7
4640  
5620  
6810  
8250  
10000  
12100  
14700  
17800  
Rbot →  
Divider Code  
Resistor to BP1V5 Value (Ω)  
()  
0
1
21500  
15400  
11500  
9090  
7150  
5620  
4640  
3830  
3160  
2610  
2050  
1620  
1270  
953  
26100  
18700  
14000  
11000  
8660  
6810  
5620  
4640  
3830  
3160  
2490  
1960  
1540  
1150  
866  
31600  
22600  
16900  
13300  
10500  
8250  
6810  
5620  
4640  
3830  
3010  
2370  
1870  
1400  
1050  
750  
38300  
27400  
20500  
16200  
12700  
10000  
8250  
6810  
5620  
4640  
3650  
2870  
2260  
1690  
1270  
909  
46400  
33200  
24900  
19600  
15400  
12100  
10000  
8250  
56200  
40200  
30100  
23700  
18700  
14700  
12100  
10000  
8250  
68100  
48700  
36500  
28700  
22600  
17800  
14700  
12100  
10000  
8250  
82500  
59000  
44200  
34800  
27400  
21500  
17800  
14700  
12100  
10000  
7870  
2
3
4
5
6
7
8
6810  
9
5620  
6810  
10  
11  
12  
13  
14  
15  
4420  
5360  
6490  
3480  
4220  
5110  
6190  
2740  
3320  
4020  
4870  
2050  
2490  
3010  
3650  
715  
1540  
1870  
2260  
2740  
511  
619  
1100  
1330  
1620  
1960  
7-18. Pin-Strapping Resistor (Ω) Table for R2G Codes 8-15  
R2G code  
8
9
10  
11  
12  
13  
14  
15  
21500  
26100  
31600  
38300  
46400  
56200  
68100  
82500  
Rbot →  
Divider Code  
Resistor to BP1V5 Value (Ω)  
()  
0
1
2
3
100000  
71500  
53600  
42200  
121000  
86600  
64900  
51100  
147000  
105000  
78700  
61900  
178000  
127000  
95300  
75000  
215000  
154000  
115000  
90900  
261000  
187000  
140000  
110000  
316000  
226000  
169000  
133000  
402000  
274000  
205000  
162000  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7-18. Pin-Strapping Resistor (Ω) Table for R2G Codes 8-15 (continued)  
4
5
33200  
26100  
21500  
17800  
14700  
12100  
9530  
40200  
31600  
26100  
21500  
17800  
14700  
11500  
9090  
48700  
38300  
31600  
26100  
21500  
17800  
14000  
11000  
8660  
59000  
46400  
38300  
31600  
26100  
21500  
16900  
13300  
10500  
7870  
71500  
56200  
46400  
38300  
31600  
26100  
20500  
16200  
12700  
9530  
86600  
68100  
56200  
46400  
38300  
31600  
24900  
19600  
15400  
11500  
8660  
105000  
82500  
68100  
56200  
46400  
38300  
30100  
23700  
18700  
14000  
10500  
7500  
127000  
100000  
82500  
68100  
56200  
46400  
26500  
28700  
22600  
16900  
12700  
9090  
6
7
8
9
10  
11  
12  
13  
14  
15  
7500  
5900  
7150  
4420  
5360  
6490  
3320  
4020  
4870  
5900  
7150  
2370  
2870  
3480  
4220  
5110  
6190  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
46  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6 Register Maps  
7.6.1 Conventions for Documenting Block Commands  
According to the SMBus specification, block commands are transmitted across the PMBus interface in  
ascending order. The description below shows the convention this document follows for documenting block  
commands.  
This document follows the convention for byte ordering of block commands:  
When block values are listed as register map tables, they are listed in byte order from top to bottom starting with  
Byte N and ending with Byte 0.  
Byte 0 (first byte sent) corresponds to bits 7:0.  
Byte 1 (second byte sent) corresponds to bits 15:8.  
Byte 2 (third byte sent) corresponds to bits 23:16.  
and so on  
When block values are listed as text in hexadecimal, they are listed in byte order, from left to right, starting with  
Byte 0 and ending with Byte N with a space between each byte of the value. In block 54 49 54 6D 24 41h, the  
byte order is:  
Byte 0, bits 7:0, = 54h  
Byte 1, bits 15:8, = 49h  
Byte 2, bits 23:16, = 6Dh  
Byte 3, bits 31:24, = 24h  
Byte 4, bits 39:32, = 41h  
7-8. Block Command Byte Ordering  
47  
46  
45  
44  
43  
42  
41  
40  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Byte N  
Byte …  
Byte 3  
Byte 2  
Byte 1  
Byte 0  
39  
38  
37  
36  
35  
34  
33  
32  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
31  
30  
29  
28  
27  
26  
25  
24  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
23  
22  
21  
20  
19  
18  
17  
16  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.2 (01h) OPERATION  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
01h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
Phased:  
No  
NVM Back-up:  
Updates:  
No  
On-the-fly  
The (01h) OPERATION command is used to enable or disable power conversion, in conjunction input from the  
enable pins, according to the configuration of the (02h) ON_OFF_CONFIG command. It is also used to set the  
output voltage to the upper or lower MARGIN levels, and select soft-stop.  
7-9. (01h) OPERATION Register Map  
7
6
5
4
3
2
1
0
R
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ON_OFF  
SOFT_OFF  
MARGIN  
TRANSITION  
LEGEND: R/W = Read/Write; R = Read only  
7-19. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
ON_ OFF  
RW  
0b  
Enable/disable power conversion when the (02h) ON_OFF_CONFIG command is  
configured to require input from the CMD bit for output control. Note that there can  
be several other requirements that must be satisfied before the power conversion  
can begin (for example, input voltages above UVLO thresholds, enable pins high if  
required by (02h) ON_OFF_CONFIG and so forth).  
0b: Disable power conversion.  
1b: Enable power conversion and enable Ignore Faults on MARGIN.  
6
SOFT_ OFF  
RW  
RW  
0b  
This bit controls the turnoff profile when (02h) ON_OFF_CONFIG is configured to  
require input from the CMD bit for output voltage control and OPERATION bit 7  
transitions from 1b to 0b is ignored when bit 7 is 1b.  
0b: Immediate Off. Power conversion stops immediately and the power stage is  
forced to a high-Z state.  
1b: Soft Off. Power conversion continues for the TOFF_ DELAY time, then the  
output voltage is ramped down to 0 V at a slew rate according to TOFF_ FALL.  
After the output voltage reaches 0 V, power conversions stops.  
5:2  
MARGIN  
0000b  
Sets the margin state.  
0000b, 0001b, 0010b: Margin OFF. Output voltage target is (21h)  
VOUT_COMMAND, OV/UV faults behave normally per their respective fault  
response settings 0.  
0101b: Margin Low (Ignore Fault if bit 7 is 1b). Output voltage target is  
VOUT_MARGIN_LOW. OV/UV faults are ignored and do not trigger shut-down or  
STATUS updates.  
0110b: Margin Low (Act on Fault). Output voltage target is (26h)  
VOUT_MARGIN_LOW. OV/UV faults trigger per their respective fault response  
settings.  
1001b: Margin High (Ignore Fault). Output voltage target is VOUT_MARGIN_HIGH.  
OV/UV trigger are ignored and do not trigger shut-down or STATUS update.  
1010b: Margin High (Act on Fault). Output voltage target is (25h)  
VOUT_MARGIN_HIGH. OV/UV trigger per their respective fault response settings.  
Other: Invalid/Unsupported data  
1
0
TRANSITIO  
N
R
R
0b  
0b  
Not used and always set to 0.  
Reserved  
Not used and always set to 0.  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
Attempts to write (01h) OPERATION to any value other than those listed above will be considered invalid/  
unsupported data and cause the TPS546D24S to respond by flagging the appropriate status bits, and notifying  
the host according to the PMBus 1.3.1 Part II specification, section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.3 (02h) ON_OFF_CONFIG  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
02h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
No  
Phased:  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The (02h) ON_OFF_CONFIG command configures the combination of enable pin input and serial bus  
commands needed to enable/disable power conversion. This includes how the unit responds when power is  
applied to PVIN.  
7-10. (02h) ON_OFF_CONFIG Register Map  
7
R
0
6
R
0
5
R
0
4
3
2
1
0
RW  
PU  
RW  
CMD  
RW  
CP  
RW  
RW  
POLARITY  
DELAY  
LEGEND: R/W = Read/Write; R = Read only  
7-20. Register Field Descriptions  
Bit  
7:5  
4
Field  
Reserved  
PU  
Access  
R
Reset  
000b  
NVM  
Description  
Not used and always set to 0.  
RW  
0b: Unit starts power conversion any time the input power is present regardless of  
the state of the CONTROL pin.  
1b: Act on CONTROL. (01h) OPERATION command to start/stop power  
conversion, or both.  
3
2
CMD  
CP  
RW  
RW  
NVM  
NVM  
0b: Ignore (01h) OPERATION Command to start/stop power conversion.  
1b: Act on (01h) OPERATION Command (and CONTROL pin if configured by CP)  
to start/stop power conversion.  
0b: Ignore CONTROL pin to start/stop power conversion. The UVLO function of the  
EN/UVLO pin is not active when CONTROL pin is ignored.  
1b: Act on CONTROL pin (and (01h) OPERATION Command if configured by bit  
[3]) to start/stop power conversion.  
1
0
POLARITY  
DELAY  
RW  
RW  
NVM  
NVM  
0b: CONTROL pin has active low polarity. The UVLO function of the EN/UVLO pin  
cannot be used when CONTROL has active load polarity.  
1b: CONTROL pin has active high polarity.  
0b: When power conversion is commanded OFF by the CONTROL pin (must be  
configured to respect the CONTROL pin as above), continue regulating for the  
(64h) TOFF_DELAY time, then ramp the output voltage to 0 V, in the time defined  
by (65h) TOFF_FALL.  
1b: When power conversion is commanded OFF by the CONTROL pin (must be  
configured to respect the CONTROL pin as above), stop power conversion  
immediately.  
For the purposes of (02h) ON_OFF_CONFIG, the device pin EN/UVLO is the CONTROL pin.  
Attempts to write (02h) ON_OFF_CONFIG to any value other than those explicitly listed above will be  
considered invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status  
bits, and notifying the host according to the PMBus 1.3.1 Part II specification, section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
50  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.4 (03h) CLEAR_FAULTS  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
03h  
Send Byte  
N/A  
Data-less  
Yes  
Phased:  
NVM Back-up:  
Updates:  
No  
On-the-fly  
CLEAR_FAULTS is a phased command used to clear any fault bits that have been set. This command  
simultaneously clears all bits in all status registers of the selected phase, or all phases if PHASE = FFh. At the  
same time, the device releases its SMB_ALERT# signal output if SMB_ALERT# is asserted. CLEAR_FAULTS is  
a write-only command with no data.  
The CLEAR_FAULTS command does not cause a unit that has latched off for a fault condition to restart. If the  
fault is still present when the bit is cleared, the fault bit is immediately set again and the host is notified by the  
usual means.  
If the device responds to an Alert Response Address (ARA) from the host, it will clear SMB_ALERT# but not the  
offending status bit or bits (as it has successfully notified the host and then expects the host to handle the  
interrupt appropriately). The original fault and any from other sources that occur between the initial assertion of  
SMB_ALERT# and the successful response of the device to the ARA are cleared (through CLEAR_FAULTS,  
OFF-ON toggle, or power reset) before any of these sources are allowed to re-trigger SMB_ALERT#. However,  
fault sources which only become active post-ARA trigger SMB_ALERT#.  
7-11. (03h) CLEAR_FAULTS Register Map  
7
6
5
4
3
2
1
0
W
W
W
W
W
W
W
W
CLEAR_FAULTS  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.5 (04h) PHASE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
04h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
Phased:  
No  
NVM Back-up:  
Updates:  
No  
On-the-fly  
The PHASE command provides the ability to configure, control, and monitor individual phases. Each PHASE  
contains the Operating Memory and User Store and Default Store for each phase output. The phase selected by  
the PHASE command will be used for all subsequent phase-dependent commands. The phase configuration  
needs to be established before any phase-dependent command can be successfully executed.  
In the TPS546D24S, each PHASE is a separate device. The loop and PMBus loop controller device, GOSNS/  
FLWR connected to ground, will always be PHASE = 00h. loop follower devices, GOSNS/FLWR connected to  
BP1V5, have their phase assignment defined by their phase position, as defined by INTERLEAVE or MSEL2  
7-12. (04h) PHASE Register Map  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
PHASE  
LEGEND: R/W = Read/Write; R = Read only  
7-21. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:0  
PHASE  
RW  
FFh  
00h: All commands address Phase 1.  
01h: All commands address Phase 2.  
02h: All commands address Phase 3.  
03h: All commands address Phase 4.  
04h-FEh: Unsupported/Invalid data  
FFh: Commands are addressed to all phases as a single entity. See the following  
text for more information.  
The range of valid data for PHASE also depends on the phase configuration. Attempts to write (04h) PHASE to  
a value not supported by the current phase configuration will be considered invalid/unsupported data and cause  
the TPS546D24S to respond by flagging the appropriate status bits and notifying the host according to the  
PMBus 1.3.1 Part II specification, section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
52  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.6 (10h) WRITE_PROTECT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
10h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
No  
Phased:  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The WRITE_PROTECT command controls writing to the PMBus device. The intent of this command is to  
provide protection against accidental changes; it has one data byte that is described below. This command does  
NOT provide protection against deliberate or malicious changes to a configuration or operation of the device. All  
supported commands can have their parameters read, regardless of the WRITE_PROTECT settings.  
7-13. (10h) WRITE_PROTECT Register Map  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
WRITE_PROTECT  
LEGEND: R/W = Read/Write; R = Read only  
7-22. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:0  
WRITE_  
RW  
NVM  
00h: Enable writes to all commands.  
PROTECT  
20h: Disables all write access except to the WRITE_ PROTECT, OPERATION,  
ON_ OFF_ CONFIG, STORE_USER_ALL, and VOUT_ COMMAND commands.  
40h: Disables all WRITES except to the WRITE_ PROTECT, OPERATION, and  
STORE_USER_ALL commands.  
80h: Disables all WRITES except to the WRITE_ PROTECT and  
STORE_USER_ALL commands.  
Other: Invalid/Unsupported data  
Attempts to write (10h) WRITE_PROTECT to any invalid value as specified above will be considered invalid/  
unsupported data and cause the TPS546D24S to respond by flagging the appropriate status bits, and notifying  
the host according to the PMBus 1.3.1 Part II specification, section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.7 (15h) STORE_USER_ALL  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
15h  
Send Byte  
N/A  
Data-less  
Phased:  
No, PHASE = FFh only  
NVM Back-up:  
Updates:  
No  
Not recommended for on-the-fly-use, but not explicitly blocked  
The STORE_USER_ALL command instructs the PMBus device to copy the entire contents of the Operating  
Memory to the matching locations in the non-volatile User Store memory. Any items in Operating Memory that do  
not have matching locations in the User Store are ignored.  
NVM Store operations are not recommended while the output voltages are in regulation, although the user is not  
explicitly prevented from doing so, as interruption can result in a corrupted NVM. PMBus commands issued  
during this time can cause long clock stretch times, or simply be ignored. TI recommends disabling regulation,  
and waiting a minimum of 100 ms before continuing, following issuance of NVM store operations.  
To prevent storing mismatched register values to NVM, STORE_USER_ALL must not be used unless PHASE =  
FFh.  
7-14. (15h) STORE_USER_ALL Register Map  
7
6
5
4
3
2
1
0
W
W
W
W
W
W
W
W
STORE_USER_ALL  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
54  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.8 (16h) RESTORE_USER_ALL  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
16h  
Send Byte  
N/A  
Data-less  
Phased:  
No, PHASE = FFh only  
NVM Back-up:  
Updates:  
No  
Disables Regulation during RESTORE  
The RESTORE_USER_ALL command instructs the PMBus device to disable operation and copy the entire  
contents of the non-volatile User Store memory to the matching locations in the Operating Memory, then  
Overwrite Operating Memory of any commands selected in PIN_DETECT_OVERRIDE with their last read pin-  
detected values. The values in the Operating Memory are overwritten by the value retrieved from the User Store  
and Pin Detection. Any items in User Store that do not have matching locations in the Operating Memory are  
ignored.  
To prevent storing mismatched register values to NVM, RESTORE_USER_ALL must not be used unless PHASE  
= FFh.  
7-15. (16h) RESTORE_USER_ALL Register Map  
7
6
5
4
3
2
1
0
W
W
W
W
W
W
W
W
RESTORE_USER_ALL  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.9 (19h) CAPABILITY  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
19h  
N/A  
Read Byte  
Unsigned Binary (1 byte)  
Phased:  
No  
NVM Back-up:  
Updates:  
No  
N/A  
This command provides a way for the host to determine the capabilities of this PMBus device. This command is  
read-only and has one data byte formatted as below.  
7-16. (19h) CAPABILITY Register Map  
7
R
6
5
4
3
2
1
R
0
0
R
0
R
R
R
R
R
PEC  
SPEED  
ALERT  
FORMAT  
AVSBUS  
LEGEND: R/W = Read/Write; R = Read only  
7-23. Register Field Descriptions  
Bit  
7
Field  
PEC  
Access  
Reset  
Description  
R
R
R
1b  
1b: Packet Error Checking is supported.  
10b: Maximum supported bus speed is 1 MHz.  
6:5  
4
SPEED  
ALERT  
10b  
1b  
1b: The device has an SMB_ALERT# pin and supports the SMBus Alert Response  
Protocol.  
3
2
FORMAT  
AVSBUS  
Reserved  
R
R
R
0b  
0b  
0b: Numeric format is LINEAR or DIRECT.  
0b: AVSBus is NOT supported.  
1:0  
00b  
Reserved and always set to 0.  
Attempts to write (19h) CAPABILITY to any value will be considered invalid/unsupported data and cause the  
TPS546D24S to respond by flagging the appropriate status bits and notifying the host according to the PMBus  
1.3.1 Part II specification, section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
56  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.10 (1Bh) SMBALERT_MASK  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
1Bh  
Write Word  
Block-Write/Block-Read Process Call  
Write: Unsigned Binary (2 bytes)Read: Unsigned Binary (1 byte)  
No, Only PHASE = FFh is supported  
EEPROM  
Phased:  
NVM Back-up:  
Updates:  
On-the-fly  
The SMBALERT_MASK command can be used to prevent a warning or fault condition from asserting the  
SMBALERT# signal. Setting a MASK bit does not prevent the associated bit in the STATUS_CMD from being  
set, but prevents the associated bit in the STATUS_CMD from asserting SMB_ALERT#. See Reference [3] for  
more information on the command format. The following register descriptions describe the individual mask bits  
available.  
SMBALERT_MASK Write Transaction = Write Word. CMD = 1Bh, Low =STATUS_CMD, High=MASK  
SMBALERT_MASK Read Transaction = Block-Write/Block-Read Process Call. Write 1 byte block with  
STATUS_CMD, read 1 byte block.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.11 (1Bh) SMBALERT_MASK_VOUT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
1Bh (with CMD byte = 7Ah)  
Write Word  
Block-Write/Block-Read Process Call  
Unsigned Binary (1 byte)  
No, Only PHASE = FFh is supported  
EEPROM  
Phased:  
NVM Back-up:  
Updates:  
On-the-fly  
SMBALERT_MASK bits for the STATUS_VOUT command  
7-17. (1Bh) SMBALERT_MASK_VOUT Register Map  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
R
R
mVOUT_MINM  
AX  
mVOUT_OVF mVOUT_OVW mVOUT_UVW mVOUT_UVF  
LEGEND: R/W = Read/Write; R = Read only  
mTON_MAX  
0
0
7-24. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
mVOUT_  
OVF  
RW  
NVM  
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
6
5
mVOUT_  
OVW  
RW  
RW  
RW  
RW  
RW  
R
NVM  
NVM  
NVM  
NVM  
NVM  
00b  
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
mVOUT_  
UVW  
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
4
mVOUT_  
UVF  
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
3
mVOUT_  
MINMAX  
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
2
mTON_  
MAX  
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
1:0  
Not  
Not supported and always set to 00b.  
supported  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
58  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.12 (1Bh) SMBALERT_MASK_IOUT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
1Bh (with CMD byte = 7Bh)  
Write Word  
Block-Write/Block-Read Process Call  
Unsigned Binary (1 byte)  
No, Only PHASE = FFh is supported  
EEPROM  
Phased:  
NVM Back-up:  
Updates:  
On-the-fly  
SMBALERT_MASK bits for STATUS_IOUT  
7-18. (1Bh) SMBALERT_MASK_IOUT Register Map  
7
6
R
0
5
4
3
R
0
2
R
0
1
R
0
0
R
0
RW  
RW  
R
mIOUT_OCF  
mIOUT_OCW  
mIOUT_UCF  
LEGEND: R/W = Read/Write; R = Read only  
7-25. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
mIOUT_  
OCF  
RW  
NVM  
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
6
5
Not  
supported  
R
0b  
NVM  
NVM  
0b  
Not supported  
mIOUT_  
OCW  
RW  
RW  
R
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
4
mIOUT_UC  
F
1b: SMBALERT can NOT assert due to this condition.  
3
Not  
supported  
Not supported  
Not supported  
2:0  
Not  
RW  
0b  
supported  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.13 (1Bh) SMBALERT_MASK_INPUT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
1Bh (with CMD byte = 7Ch)  
Write Word  
Block-Write/Block-Read Process Call  
Unsigned Binary (1 byte)  
No, Only PHASE = FFh is supported  
EEPROM  
Phased:  
NVM Back-up:  
Updates:  
On-the-fly  
SMBALERT_MASK bits for STATUS_INPUT  
7-19. (1Bh) SMBALERT_MASK_INPUT Register Map  
7
6
5
4
R
0
3
2
R
0
1
R
0
0
R
0
R
0
R
0
R
0
RW  
mLOW_VIN  
LEGEND: R/W = Read/Write; R = Read only  
7-26. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
Not  
R
0b  
Not supported  
supported  
6
5
4
3
2
1
0
Not  
supported  
R
R
0b  
0b  
Not supported  
Not supported  
Not supported  
Not  
supported  
Not  
supported  
R
0b  
mLOW_ VIN  
RW  
R
NVM  
0b  
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
Not  
supported  
Not supported  
Not supported  
Not supported  
Not  
supported  
R
0b  
Not  
R
0b  
supported  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
60  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.14 (1Bh) SMBALERT_MASK_TEMPERATURE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
1Bh (with CMD byte = 7Dh)  
Write Word  
Block-Write/Block-Read Process Call  
Unsigned Binary (1 byte)  
No, Only PHASE = FFh is supported  
EEPROM  
Phased:  
NVM Back-up:  
Updates:  
On-the-fly  
SMBALERT_MASK bits for STATUS_TEMPERATURE  
7-20. (1Bh) SMBALERT_MASK_TEMPERATURE Register Map  
7
6
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
R
0
RW  
RW  
mOTF  
mOTW  
LEGEND: R/W = Read/Write; R = Read only  
7-27. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
mOTF  
RW  
NVM  
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
6
mOTW  
RW  
R
NVM  
0d  
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
5:0  
Not  
Not supported and always set to 000000b.  
supported  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.15 (1Bh) SMBALERT_MASK_CML  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
1Bh (with CMD byte = 7Eh)  
Write Word  
Block-Write/Block-Read Process Call  
Unsigned Binary (1 byte)  
No, Only PHASE = FFh is supported  
EEPROM  
Phased:  
NVM Back-up:  
Updates:  
On-the-fly  
SMBALERT_MASK bits for STATUS_CML  
7-21. (1Bh) SMBALERT_MASK_CML Register Map  
7
6
5
4
3
2
R
0
1
0
R
0
RW  
RW  
RW  
RW  
R
RW  
mIVC  
mIVD  
mPEC  
mMEM  
0
mCOMM  
LEGEND: R/W = Read/Write; R = Read only  
7-28. Register Field Descriptions  
Bit  
Field  
mIVC  
Access  
Reset  
Description  
7
6
RW  
NVM  
NVM  
NVM  
NVM  
00b  
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
mIVD  
mPEC  
mMEM  
RW  
RW  
RW  
R
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
5
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
4
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
3:2  
1
Not  
supported  
Not supported  
mCOMM  
RW  
R
NVM  
0b  
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
0
Not  
Not supported  
supported  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
62  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.16 (1Bh) SMBALERT_MASK_OTHER  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
1Bh (with CMD byte = 7Fh)  
Write Word  
Block-Write/Block-Read Process Call  
Unsigned Binary (1 byte)  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
SMBALERT_MASK bits for STATUS_OTHER  
7-22. (1Bh) SMBALERT_MASK_OTHER Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
mFIRST_  
TO_ALERT  
0
0
0
0
0
0
0
LEGEND: R/W = Read/Write; R = Read only  
7-29. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:1  
Not  
R
0h  
Not supported  
supported  
0
mFIRST_  
TO_ ALERT  
R
1b  
The FIRST_ TO_ ALERT bit does not in itself generate SMBALERT assertion,  
hence this bit is hard-coded to 1b (source is masked).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.17 (1Bh) SMBALERT_MASK_MFR  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
1Bh (with CMD byte = 80h)  
Write Word  
Block-Write/Block-Read Process Call  
Unsigned Binary (1 byte)  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
SMBALERT_MASK bits for STATUS_MFR  
7-23. (1Bh) SMBALERT_MASK_MFR Register Map  
7
6
5
R
0
4
R
0
3
2
1
0
R
0
RW  
RW  
RW  
RW  
RW  
mPOR  
mSELF  
mRESET  
mBCX  
mSYNC  
LEGEND: R/W = Read/Write; R = Read only  
7-30. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
mPOR  
RW  
NVM  
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
6
mSELF  
RW  
NVM  
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
Due to variations in AVIN UVLO, unmasking this bit can result in SMBALERT being  
asserted on power up.  
5
4
3
2
1
Not  
supported  
R
0b  
Not supported  
Not  
supported  
R
0b  
Not supported  
mRESET  
RW  
RW  
RW  
NVM  
NVM  
NVM  
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
mBCX  
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
mSYNC  
0b: SMBALERT can assert due to this condition.  
1b: SMBALERT can NOT assert due to this condition.  
When the loop controller device of a multi-phase stack is programmed for Auto  
Detect SYNC, unmasking this bit can result in a momentary assertion of  
SMBALERT when the multi-phase stack is enabled.  
0
Not  
R
0b  
Not supported  
supported  
Copyright © 2023 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.18 (20h) VOUT_MODE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
20h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
Conversion Disabled: on-the-fly, Conversion Enabled: Read Only  
The data byte for the VOUT_MODE command is one byte that consists of a three bit Mode and a five bit  
Parameter as shown in 7-24. The three bit Mode sets whether the device uses the ULINEAR16, Half-  
precision IEEE 754 floating point, or VID or DIRECT modes for output voltage related commands. The five bit  
Parameter provides more information about the selected mode, such as the ULINEAR16 Exponent or which  
manufacturer's VID codes are being used.  
7-24. (20h) VOUT_MODE Register Map  
7
6
5
4
3
2
1
0
RW  
REL  
R
R
RW  
RW  
RW  
RW  
RW  
MODE  
PARAMETER  
LEGEND: R/W = Read/Write; R = Read only  
7-31. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
REL  
RW  
NVM  
0b: Absolute Data Format  
1b: Relative Data Format  
6:5  
4:0  
MODE  
R
00b  
00b: Linear Format (ULINEAR16, SLINEAR16)  
Other: Unsuported/Invalid  
PARAMETE  
R
RW  
NVM  
MODE = 00b (Linear Format): Specifies the exponent Nto use with output  
voltage related commands, in twos complement format. Supported exponent  
values in the linear mode range from -4 (62.5 mV/LSB) to -12 (0.244 mV/LSB).  
Refer to the following text for more information.  
Changing VOUT_MODE  
Changing VOUT_MODE will force an update to the values of many VOUT related commands to conform to the  
updated VOUT_MODE value including Relative versus Absolute mode and the linear Exponent value. When  
programming VOUT_MODE in conjunction with other VOUT related commands, VOUT related commands will  
be interpreted with the current VOUT_MODE value and converted if VOUT_MODE is later changed.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.19 (21h) VOUT_COMMAND  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
21h  
Write Word  
Read Word  
ULINEAR16, Absolute Only per VOUT_MODE  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM or Pin Detection  
on-the-fly  
VOUT_COMMAND causes the device to set its output voltage to the commanded value with two data bytes.  
Output voltage changes due to VOUT_COMMAND occur at the rate specified by VOUT_TRANSITION_RATE.  
When PGD/RST_B is configured as a RESET# pin in MISC_OPTIONS, assertion of the PGD/RST_B pin causes  
the output voltage to return to the VBOOT value, and causes the VOUT_COMMAND value to be updated  
accordingly.  
7-25. (21h) VOUT_COMMAND Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_COMMAND (High Byte)  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_COMMAND (Low Byte)  
LEGEND: R/W = Read/Write; R = Read only  
7-32. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:0  
VOUT_  
RW  
NVM  
Sets the output voltage target via the PMBus interface.  
COMMAND  
At power up, the reset value of VOUT_COMMAND is derived from either pin-detection on the VSEL pin, or from  
the NVM, depending on the VOUT_COMMAND bit in PIN_DETECT_OVERRIDE.  
When the VOUT_COMMAND bit in PIN_DETECT_OVERRIDE = 0b, the default value of VOUT_COMMAND is  
restored from NVM at Power On Reset or RESTORE_USER_ALL.  
When the VOUT_COMMAND bit in PIN_DETECT_OVERRIDE = 1b, the default value of VOUT_COMMAND is  
derived from pin-detection on the VSEL pin, at Power-On Reset or RESTORE_USER_ALL.  
This default value, whether derived from pin detection, or NVM becomes the defaultoutput voltage (also  
referred to as VBOOT), and is stored in RAM separately from the current value of VOUT_COMMAND.  
BOOT Voltage Behavior  
The RESET_FLT bit in MISC_OPTIONS selects the VOUT_COMMAND behavior following a fault-related  
shutdown. When RESET_FLT = 0b, the device will retain the current value of VOUT_COMMAND during  
HICCUP after a fault. When RESET_FLT = 1b, VOUT_COMMAND will reset to the last detected VSEL voltage  
or the NVM STORED value for VOUT_COMMAND as selected by the VOUT_COMMAND bit in  
MISC_OPTIONS.  
Data Validity  
Writes to VOUT_COMMAND for which the resulting value, including any offset from VOUT_TRIM is greater than  
the current VOUT_MAX, or less than the current VOUT_MIN, causes the reference DAC to move to the value  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
66  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
specified by VOUT_MIN or VOUT_MAX respectively, and causes the VOUT_MAX_MIN_WARNING fault  
condition, setting the appropriate bits in STATUS_WORD, STATUS_VOUT and notifying the host per the PMBus  
1.3.1 Part II specification, section 10.2.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.20 (22h) VOUT_TRIM  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
22h  
Write Word  
Read Word  
SLINEAR16, Absolute Only per (20h) VOUT_MODE.  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
on-the-fly  
VOUT_TRIM is used to apply a fixed offset voltage to the output voltage command value. Output voltage  
changes due to VOUT_TRIM occur at the rate specified by (27h) VOUT_TRANSITION_RATE.  
7-26. (22h) VOUT_TRIM Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_TRIM (High Byte)  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_TRIM (Low Byte)  
LEGEND: R/W = Read/Write; R = Read only  
7-33. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:0  
VOUT_  
TRIM  
RW  
See Below  
Output voltage offset. SLINEAR16 (twos complement) format  
Limited NVM Back-up  
Only 8 bits of NVM backup are provided for this command. While the VOUT_TRIM command follows the (20h)  
VOUT_MODE exponent, NVM back-up is stored with an exponent -12 and stored values will be limited to +127  
to -128 with an exponent -12 irrespective of (20h) VOUT_MODE.  
Data Validity  
Referring to the data validity table in (21h) VOUT_COMMAND (reproduced below), the output voltage value  
(including any offset from VOUT_TRIM, VOUT_COMMAND, VOUT_MARGIN, ) can not exceed the values  
supported by the DAC hardware.  
Programming a (21h) VOUT_COMMAND + (22h) VOUT_TRIM value greater than the maximum value  
supported by the DAC hardware but less than (24h) VOUT_MAX will result in the regulated output voltage  
clamping at the maximum value supported by the DAC hardware without setting the VOUT_MAX_MIN bit in  
(7Ah) STATUS_VOUT.  
7-34. VOUT_COMMAND/VOUT_MARGIN + VOUT_TRIM data validity (Linear Format)  
VOUT_SCALE_LOOP  
INTERNAL DIVIDER  
VALID VOUT_COMMAND /MARGIN +  
VOUT_TRIM VALUES  
1.0  
0.5  
None  
1:1  
0.000V to 0.700 V  
0.000 V to 1.400 V  
0.000 V to 2.800 V  
0.000 V to 6.000 V  
0.25  
0.125  
1:3  
1:7  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
68  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
The minimum and maximum valid data values for VOUT_TRIM follow the description in (21h)  
VOUT_COMMAND. Attempts to write VOUT_TRIM to any value outside those specified as valid, will be  
considered invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status  
bits, and notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Writes to VOUT_TRIM for which the resulting output voltage is greater than the current (24h) VOUT_MAX, or  
less than the current (2Bh) VOUT_MIN, cause the reference DAC to move to the value specified by (2Bh)  
VOUT_MIN or (24h) VOUT_MAX, respectively, and cause the VOUT_MAX_MIN_WARNING fault condition,  
setting the appropriate bits in (79h) STATUS_WORD, (7Ah) STATUS_VOUT and notifying the host per the  
PMBus 1.3.1 Part II specification, section 10.2.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.21 (24h) VOUT_MAX  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
24h  
Write Word  
Read Word  
ULINEAR16, Absolute Only per VOUT_MODE  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM or Pin Detection  
On-the-fly  
The VOUT_MAX command sets an upper limit on the output voltage the unit and can command regardless of  
any other commands or combinations. The intent of this command is to provide a safeguard against a user  
accidentally setting the output voltage to a possibly destructive level.  
7-27. (24h) VOUT_MAX Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_MAX (High Byte)  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_MAX (Low Byte)  
LEGEND: R/W = Read/Write; R = Read only  
7-35. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:0  
VOUT_  
MAX  
RW  
NVM  
Maximum output voltage. ULINEAR16 absolute per the setting of VOUT_ MODE.  
Refer to the following description for data validity.  
While conversion is enabled, any output voltage change (including VOUT_COMMAND, VOUT_TRIM, margin  
operations) that causes the new target voltage to be greater than the current value of VOUT_MAX will cause the  
VOUT_MAX_MIN_WARNING fault condition. This result causes the TPS546D24S to:  
Set to the output voltage to current value of VOUT_MAX, at the slew rate defined by  
VOUT_TRANSITION_RATE.  
Set the NONE OF THE ABOVE bit in the STATUS_BYTE.  
Set the VOUT bit in the STATUS_WORD.  
Set the VOUT_MIN_MAX warning bit in STATUS_VOUT.  
Notify the host per PMBus 1.3.1 Part II specification, section 10.2.  
Although the scenario is uncommon, note that the same response results if the user attempted to program  
VOUT_MAX less than the current output voltage target.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
70  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.22 (25h) VOUT_MARGIN_HIGH  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
25h  
Write Word  
Read Word  
ULINEAR16, per VOUT_MODE  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The VOUT_MARGIN_HIGH command loads the unit with the voltage to which the output is to be changed when  
the OPERATION command is set to Margin High. Output voltage transitions during margin operation occur  
at the slew rate defined by VOUT_TRANSITION_RATE.  
When the MARGIN bits in the OPERATION command indicate Margin High,the output voltage is updated to  
the value of VOUT_MARGIN_HIGH + VOUT_TRIM.  
7-28. (25h) VOUT_MARGIN_HIGH Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_MARGH (High Byte)  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_MARGH (Low Byte)  
LEGEND: R/W = Read/Write; R = Read only  
7-36. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:0  
VOUT_  
MARGH  
RW  
NVM  
Margin High output voltage. ULINEAR16 relative or absolute per the setting of  
VOUT_ MODE  
The minimum and maximum valid data values for VOUT_MARGIN_HIGH follow the description in  
VOUT_COMMAND. That is, the total combined output voltage, including VOUT_MARGIN_HIGH and  
VOUT_TRIM, follow the values allowed by the current VOUT_MAX setting.  
Attempts to write (25h) VOUT_MARGIN_HIGH to any value outside those specified as valid will be considered  
invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status bits and  
notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.23 (26h) VOUT_MARGIN_LOW  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
26h  
Write Word  
Read Word  
ULINEAR16, per VOUT_MODE  
Phased:  
No  
NVM Back-up:  
EEPROM  
The VOUT_MARGIN_LOW command loads the unit with the voltage to which the output is to be changed when  
the OPERATION command is set to Margin Low. Output voltage transitions during margin operation occur  
at the slew rate defined by VOUT_TRANSITION_RATE.  
When the MARGIN bits in the OPERATION command indicate Margin Low,the output voltage is updated to  
the value of VOUT_MARGIN_LOW + VOUT_TRIM.  
7-29. (26h) VOUT_MARGIN_LOW Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_MARGIN_LOW (High Byte)  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_MARGIN_LOW (Low Byte)  
LEGEND: R/W = Read/Write; R = Read only  
7-37. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:0  
VOUT_  
MARGL  
RW  
NVM  
Margin Low output voltage. ULINEAR16 relative or absolute per the setting of  
VOUT_ MODE  
The minimum and maximum valid data values for VOUT_MARGIN_LOW follow the description in  
VOUT_COMMAND. Attempts to write (26h) VOUT_MARGIN_LOW to any value outside those specified as valid  
will be considered invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate  
status bits and notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
72  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.24 (27h) VOUT_TRANSITION_RATE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
27h  
Write Word  
Read Word  
SLINEAR11 per CAPABILITY  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The VOUT_TRANSITION_RATE sets the slew rate at which any output voltage changes during normal power  
conversion occur. This commanded rate of change does not apply when the unit is commanded to turn on or to  
turn off. The units are mV/μs.  
7-30. (27h) VOUT_TRANSITION_RATE Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOTR_EXP  
VOTR_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOTR_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-38. Register Field Descriptions  
Bit  
Field  
Reset  
Description  
Access  
RW  
15:11  
10:0  
VOTR_ EXP  
11100b  
NVM  
Linear format twos complement exponent. Exponent = -4, LSB = 0.0625 mV/μs  
Linear format twos complement mantissa  
VOTR_  
MAN  
RW  
Per the TPS546D24S product specification, the following slew rates are supported (see the table below). Note  
that every binary value between the minimum and maximum values is writeable and readable, but that the actual  
output voltage slew rate is set to the nearest supported value.  
VOUT_TRANSITION RATE can be programmed from 0.067 mV/µs to 15.933 mV/µs.  
Attempts to write (27h) VOUT_TRANSITION_RATE to any value outside those specified as valid will be  
considered invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status  
bits and notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.25 (29h) VOUT_SCALE_LOOP  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
29h  
Write Word  
Read Word  
SLINEAR11 per CAPABILITY  
No  
Phased:  
Conversion Disable: on-the-fly. Conversion Enable: hardware update blocked. To update hardware  
after write while enabled, store to NVM with STORE_USER_ALL and RESTORE_USER_ALL or  
cycle AVIN below UVLO.  
Updates:  
NVM Back-up:  
EEPROM or Pin Detection  
VOUT_SCALE_LOOP allows PMBus devices to map between the commanded voltage and the voltage at the  
control circuit input. In the TPS546D24S, VOUT_SCALE_LOOP also programs an internal precision resistor  
divider so no external divider is required.  
7-31. (29h) VOUT_SCALE_LOOP Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOSL_EXP  
VOSL_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOSL_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-39. Register Field Descriptions  
Bit  
Field  
Access  
RW  
Reset  
11001b  
NVM  
Description  
15:11  
10:0  
VOSL_ EXP  
Linear format twos complement exponent  
Linear format twos complement mantissa  
RW  
VOSL_  
MAN  
Data Validity  
Every binary value between the minimum and maximum supported values is writeable and readable. However,  
not every combination is supported in hardware. Refer to 7-40:  
7-40. Accepted Values  
VOUT_SCALE_LOOP (DECODED)  
Less than or equal to 0.125  
0.125 < VOSL 0.25  
INTERNAL DIVIDER SCALING FACTOR  
0.125  
0.25  
0.5  
0.25 < VOSL 0.5  
Greater than 0.5  
1.0  
Attempts to write (29h) VOUT_SCALE_LOOP to any value outside those specified as valid will be considered  
invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status bits and  
notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
If a (29h) VOUT_SCALE_LOOP value other than a supported Internal Divider Scaling Factor is programmed into  
(29h) VOUT_SCALE_LOOP, (21h) VOUT_COMMAND to VREF scale factors are calculated based on the actual  
(29h) VOUT_SCALE_LOOP value. (29h) VOUT_SCALE_LOOP values other than supported Internal Divider  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
74  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
Scaling Factors can produce a mismatch between (21h) VOUT_COMMAND and the actual commanded output  
voltage.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.26 (2Bh) VOUT_MIN  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
2Bh  
Write Word  
Read Word  
ULINEAR16,Absolute Only per VOUT_MODE  
Phased:  
No  
Updates:  
on-the-fly  
NVM Back-up:  
EEPROM or Pin Detection  
The VOUT_MIN command sets a lower limit on the output voltage the unit can command regardless of any other  
commands or combinations. The intent of this command is to provide a safeguard against a user accidentally  
setting the output voltage to a level which will render the load inoperable.  
7-32. (2Bh) VOUT_MIN Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_MIN (High Byte)  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_MIN (Low Byte)  
LEGEND: R/W = Read/Write; R = Read only  
7-41. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:0  
VOUT_ MIN  
RW  
NVM  
Minimum output voltage. ULINEAR16 absolute per the setting of VOUT_ MODE.  
During power conversion, any output voltage change (including VOUT_COMMAND, VOUT_TRIM, margin  
operations) that causes the new target voltage to be less than the current value of VOUT_MIN will cause the  
VOUT_MAX_MIN_WARNING fault condition. These results cause the TPS546D24S to:  
Set to the output voltage to current value of VOUT_MIN at the slew rate defined by  
VOUT_TRANSITION_RATE.  
Set the NONE OF THE ABOVE in the STATUS_BYTE.  
Set the VOUT bit in the STATUS_WORD.  
Set the VOUT_MIN_MAX warning bit in STATUS_VOUT.  
Notify the host per PMBus 1.3.1 Part II specification, section 10.2.  
Although the scenario is uncommon, note that the same response results if the user attempted to program  
VOUT_MAX greater than the current output voltage target.  
Data Validity  
The minimum and maximum valid data values for VOUT_MIN follow those of VOUT_MAX. Attempts to write  
(2Bh) VOUT_MIN to any value outside those specified as valid will be considered invalid/unsupported data and  
cause the TPS546D24S to respond by flagging the appropriate status bits and notifying the host according to the  
PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
76  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.27 (33h) FREQUENCY_SWITCH  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
33h  
Write Word  
Read Word  
SLINEAR11, per CAPABILITY  
No  
Phased:  
Conversion Disable: on-the-fly. Conversion Enable: hardware update blocked. To update hardware  
after write while enabled, store to NVM with STORE_USER_ALL and RESTORE_USER_ALL or  
cycle AVIN below UVLO.  
Updates:  
NVM Back-up:  
EEPROM or Pin Detection  
FREQUENCY_SWITCH sets the switching frequency of the active channel in kHz.  
7-33. (33h) FREQUENCY_SWITCH Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
FSW_EXP  
FSW_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
FSW_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-42. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:11  
FSW_ EXP  
RW  
NVM  
Linear format twos complement exponent  
On reset, FSW_EXP is auto-generated based on the switching frequency stored in  
NVM.  
10:0  
FSW_ MAN  
RW  
NVM  
Linear format twos complement mantissa. Refer to 7-43.  
7-43. Supported Switching Frequency Settings  
FREQUENCY_SWITCH (Decoded)  
Effective Switching Frequency (kHz)  
Less than 250 kHz  
225  
275  
325  
375  
450  
550  
650  
750  
900  
1100  
1300  
1500  
251 FSW < 300 kHz  
301 FSW < 350 kHz  
351 FSW < 410 kHz  
411 FSW < 500 kHz  
501 FSW < 600 kHz  
601 FSW < 700 kHz  
701 FSW < 820 kHz  
821 FSW < 1000 kHz  
1001 FSW < 1200 kHz  
1201 FSW < 1400 kHz  
1401 FSW < 1650 kHz  
FREQUENCY_SWITCH values greater than 1100 kHz can require higher VDD5 current than can be provided by  
the internal AVIN to VDD5 linear regulator. Programming FREQUENCY_SWITCH to a value greater than 1100  
kHz without an external source to VDD5 can result in repeated start-up and shut-down attempt.  
FRQUENCY_SWITCH values greater than 1100 kHz are not recommended for Stacked Multi-phase operation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.28 (35h) VIN_ON  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
35h  
Write Word  
Read Word  
SLINEAR11, per CAPABILITY  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
VIN_ON command sets the value of the input voltage, in Volts, at which the unit must start power conversion.  
7-34. (35h) VIN_ON Register Map  
15  
14  
13  
RW  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VON_EXP  
VON_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VON_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-44. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:11  
VON_ EXP  
RW  
11110b  
Linear format twos complement exponent, -2  
10:0  
VON_ MAN  
RW  
NVM  
Linear format twos complement mantissa. Refer to the following text for more  
information.  
Attempts to write (35h) VIN_ON to any value outside those specified as valid will be considered invalid/  
unsupported data and cause the TPS546D24S to respond by flagging the appropriate status bits and notifying  
the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Command Resolution and NVM Store/Restore Behavior  
(35h) VIN_ON and (36h) VIN_OFF have limited hardware range and resolution as well as limited NVM  
allocation. While the command will accept any binary value within the valid range, values not exactly represented  
by the hardware resolution will be rounded down to the next lower supported threshold for implementation or  
upon restore from NVM during Power-On Reset or (16h) RESTORE_USER_ALL. (35h) VIN_ON hardware  
supports all values from 2.50 V to 18.25 in 0.25-V steps.  
Note that the LOW_VIN fault condition is masked until the sensed input voltage exceeds the VIN_ON threshold  
for the first time following a power-on reset. Control/Enable pin toggles and EEPROM store/restore operations  
do not reset this masking.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
78  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.29 (36h) VIN_OFF  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
36h  
Write Word  
Read Word  
SLINEAR11, per CAPABILITY  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
(36h) VIN_OFF command sets the value of the PVIN input voltage, in Volts, at which the unit must stop power  
conversion. If the Power Conversion Enable conditions as defined by (02h) ON_OFF_CONFIG are met and  
PVIN is less than (36h) VIN_OFF, the output off due to low VIN bit in (7Ch) STATUS_INPUT is set.  
7-35. (36h) VIN_OFF Register Map  
15  
14  
13  
RW  
12  
11  
10  
9
8
RW  
RW  
RW  
R
RW  
RW  
RW  
VOFF_EXP  
VOFF_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOFF_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-45. Register Field Descriptions  
Bit  
Field  
Access  
RW  
Reset  
11110b  
NVM  
Description  
Linear format twos complement exponent  
Linear format twos complement mantissa. Refer to the following text.  
15:11  
10:0  
VOFF_ EXP  
VOFF_  
MAN  
RW  
Attempts to write (36h) VIN_OFF to any value outside those specified as valid will be considered invalid/  
unsupported data and cause the TPS546D24S to respond by flagging the appropriate status bits and notifying  
the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Command Resolution and NVM Store/Restore Behavior  
(35h) VIN_ON and (36h) VIN_OFF have limited hardware range and resolution as well as limited NVM  
allocation. While the command will accept any binary value within the valid range, values not exactly represented  
by the hardware resolution will be rounded down to the next lower supported threshold for implementation or  
upon restoration from NVM during Power-On Reset or (16h) RESTORE_USER_ALL. (36h) VIN_OFF hardware  
supports all values from 2.25 V to 18.25 in 0.25-V steps.  
While it is possible to set (36h) VIN_OFF equal to or greater than (35h) VIN_ON, it is not advisable and can  
produce rapid enabling and disabling of conversion and undesirable operation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.30 (37h) INTERLEAVE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
37h  
Write Word (Single Phase Only)  
Read Word  
Four Hexadecimal values  
No, Read only in Multi-phase stack  
On-th-fly  
Phased:  
Updates:  
NVM Back-up:  
EEPROM or Pin Detection  
INTERLEAVE sets the phase delay between the external SYNC (IN or OUT) and the internal PMW oscillator.  
7-36. (37h) INTERLEAVE Register Map  
15  
R
14  
R
13  
12  
11  
10  
9
8
R
R
RW  
RW  
RW  
RW  
Not Used  
GROUPID  
ORDER  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
NUM_GROUP  
LEGEND: R/W = Read/Write; R = Read only  
7-46. Register Field Descriptions  
Bit  
15:12  
11:8  
7:4  
Field  
Access  
R
Reset  
Description  
Not Used  
GROUPID  
0h  
Not used, set to b'0000.  
Group ID Number. Set to 0h to Fh.  
RW  
NVM  
NVM  
NUM_GRO  
UP  
RW  
Number in Group, sets the number of phases positions and the phase shift for  
each value of ORDER. Set to value 1h to 4h.  
3:0  
ORDER  
RW  
NVM  
Order within the group. Each value of ORDER adds a phase shift equal to 360° /  
NUM_GROUP. Set to value 0h to NUM_GROUP - 1.  
7-47. Supported INTERLEAVE Settings  
Number in Group  
Order  
Phase Position (°)  
1
2
2
3
3
3
4
4
4
4
0
0
1
0
1
2
0
1
2
3
0
0
180  
0
120  
240  
0
90  
180  
270  
The (37h) INTERLEAVE command is used to arrange multiple devices sharing a common SYNC signal in time.  
The phase delay added to each device is equal to 360° / Number in Group × Order. To prevent misaligning the  
phases of a multi-phase stack, (37h) INTERLEAVE is read only when the TPS546D24S is configured as part of  
a multi-phase stack. The Read/Write status of the (37h) INTERLEAVE command is set based on the state of the  
(ECh) MFR_SPECIFIC_28 (STACK_CONFIG) command at power-on and is not updated if (ECh)  
MFR_SPECIFIC_28 (STACK_CONFIG) is later changed. If (37h) INTERLEAVE will be used to program the  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
80  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
phase position of a stand-alone device, the TPS546D24S must be configured as a stand-alone device at power-  
on to ensure write capability of the (37h) INTERLEAVE command.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.31 (38h) IOUT_CAL_GAIN  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
38h  
Write Word  
Read Word  
SLINEAR11, per CAPABILITY  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
(38h) IOUT_CAL_GAIN is used to trim the gain of the output current reported by the READ_IOUT command.  
The value is a unitless gain factor applied to the internally sensed current measurement. It defaults to a value of  
1.  
7-37. (38h) IOUT_CAL_GAIN Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IOCG_EXP  
IOCG_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IOCG_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-48. Register Field Descriptions  
Bit  
Field  
Access  
RW  
Reset  
11001b  
NVM  
Description  
15:11  
10:0  
IOCG_ EXP  
IOCG_ MAN  
Linear format, twos complement exponent  
Linear format, twos complement mantissa  
RW  
Attempts to write (38h) IOUT_CAL_GAIN to any value outside those specified as valid will be considered invalid/  
unsupported data and cause the TPS546D24S to respond by flagging the appropriate status bits and notifying  
the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Command Resolution and NVM Store/Restore Behavior  
The (38h) IOUT_CAL_GAIN command is implemented using the TPS546D24S internal telemetry system. As a  
result, the value of this command can be programmed with very high resolution using the linear format. However,  
the TPS546D24S provides only limited NVM-backed options for this command. Following a power-cycle or NVM  
Store/Restore operation, the value will be rounded to the nearest 1/64 with a maximum supported value of 1.984  
(1 63/64).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
82  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.32 (39h) IOUT_CAL_OFFSET  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
39h  
Write Word  
Read Word  
SLINEAR11, per CAPABILITY  
Yes  
Phased:  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
IOUT_CAL_OFFSET is used to compensate for offset errors in the READ_IOUT command. Each PHASE in a  
stack can apply an independent IOUT_CAL_OFFSET value. The effective IOUT_CAL_OFFSET value for a  
stack is equal to the sum of the IOUT_CAL_OFFSET values from all devices in the stack.  
7-38. (39h) IOUT_CAL_OFFSET Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IOCOS_EXP  
IOCOS_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IOCOS_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-49. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:11  
IOCOS_  
EXP  
RW  
11100b  
Linear format, twos complement exponent  
Linear format, twos complement mantissa  
10:0  
IOCOS_  
MAN  
RW  
NVM  
(39h) IOUT_CAL_OFFSET has a programmable range from -8A to +7.9375A for each phase. Attempts to write  
(39h) IOUT_CAL_OFFSET to any value outside those specified as valid will be considered invalid/unsupported  
data and cause the TPS546D24S to respond by flagging the appropriate status bits and notifying the host  
according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Command Resolution and NVM Store/Restore Behavior  
The (39h) IOUT_CAL_OFFSET command is implemented using the TPS546D24S internal telemetry system. As  
a result, the value of this command can be programmed with very high resolution using the linear format.  
However, the TPS546D24S only provides limited NVM-backed options for this command. Following a power-  
cycle or NVM Store/Restore operation, the value will be restored to one of the supported values, according to the  
value present during the last NVM store operation. During operation, updates to this command with higher  
resolution, will be supported, and accepted as long as they fall between the minimum and maximum supported  
values given.  
Phased Command Behavior  
PHASE = 00h to 03h: Writes to (39h) IOUT_CAL_OFFSET modify the current sense offset for individual phases.  
Reads to (39h) IOUT_CAL_OFFSET return the configured current sense offset for individual phases.  
PHASE = FFh: Writes to (39h) IOUT_CAL_OFFSET modify the total current sense offset for all individual  
phases. Individual phases will be assigned an IOUT_CAL_OFFSET value equal to the written value divided by  
the number of phases. Reads to (39h) IOUT_CAL_OFFSET return the configured current sense offset for  
PHASE = 00h times the number of phases.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.33 (40h) VOUT_OV_FAULT_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
40h  
Write Word  
Read Word  
ULINEAR16 Relative or Absolute per VOUT_MODE  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The VOUT_OV_FAULT_LIMIT command sets the value of the output voltage measured at the sense or output  
pins that causes an output overvoltage fault. VOUT_OV_FAULT_LIMIT sets an over-voltage threshold relative to  
the current VOUT_COMMAND. Updates to VOUT_COMMAND do not update the value of  
VOUT_OV_FAULT_LIMIT when the absolute format is used. Note that even with VOUT_MODE configured in  
absolute format, the true overvoltage fault limit remains relative to the current VOUT_COMMAND.  
VOUT_OV_FAULT_LIMIT is active as soon as the TPS546D24S completes its Power-On Reset, even if output  
conversion is disabled.  
Following  
an  
overvoltage  
fault  
condition,  
the  
TPS546D24S  
responds  
according  
to  
VOUT_OV_FAULT_RESPONSE.  
7-39. (40h) VOUT_OV_FAULT_LIMIT Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_OVF (High Byte)  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_OVF (Low Byte)  
LEGEND: R/W = Read/Write; R = Read only  
7-50. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:0  
VOUT_ OVF  
RW  
See Below Sets the overvoltage fault limit. Format is per VOUT_ MODE.  
Hardware Support and Value Mapping  
The Hardware for VOUT_OV_FAULT_LIMIT is implemented as a fixed percentage of the current output voltage  
target. Depending on the VOUT_MODE setting, the value written to VOUT_OV_FAULT_LIMIT must be mapped  
to the hardware percentage.  
Programmed values not exactly equal to one of the hardware relative values shall be rounded up to the next  
available relative value supported by hardware. The hardware supports values from 105% to 140% of  
VOUT_COMMAND in 2.5% steps. When output conversion is disabled, the hardware supports values from  
110% to 140% of VOUT_COMMAND in 10% steps.  
Attempts to write VOUT_OV_FAULT_LIMIT to any value outside those specified as valid will be considered  
invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status bits and  
notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
84  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.34 (41h) VOUT_OV_FAULT_RESPONSE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
41h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
No  
Phased:  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The VOUT_OV_FAULT_RESPONSE instructs the device on what action to take in response to an output  
overvoltage fault. Upon triggering the overvoltage fault, the controller TPS546D24S responds according to the  
data byte below, and the following actions are taken:  
Set the VOUT_OV_FAULT bit in the STATUS_BYTE.  
Set the VOUT bit in the STATUS_WORD.  
Set the VOUT_OVF bit in the STATUS_VOUT register.  
Notify the host per PMBus 1.3.1 Part II specification, section 10.2.  
7-40. (41h) VOUT_OV_FAULT_RESPONSE Register Map  
7
6
5
4
3
2
1
RW  
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VO_OV_RESP  
VO_OV_RETRY  
VO_ OV_ DELAY  
LEGEND: R/W = Read/Write; R = Read only  
7-51. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:6  
VO_OV_RE  
SP  
RW  
NVM  
Output overvoltage response  
00b: Ignore. Continue operating without interruption.  
01b: Shutdown. Shutdown and retry according to VO_OV_RETRY.  
10b: Shutdown. Shutdown and retry according to VO_ OV_ RETRY.  
11b: Invalid/Unsupported  
5:3  
2:0  
VO_OV_RE  
TRY  
RW  
RW  
NVM  
NVM  
0d: Do not attempt to restart (latch off).  
1d-6d: After shutting down, wait one HICCUP period, and attempt to restart up to 1  
- 6 times. After 1 - 6 failed restart attempts, do not attempt to restart (latch off).  
7d: After shutting down, wait one HICCUP period, and attempt to restart  
indefinitely, until commanded OFF, or a successful start-up occurs.  
VO_OV_DE  
LAY  
0d: VO_OV HICCUP period is equal to TON_RISE.  
1d - 7d: VO_OV HICCUP period is equal to 1 - 7 times TON_RISE.  
Attempts to write VOUT_OV_FAULT_RESPONSE to any value outside those specified as valid, will be  
considered invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status  
bits and notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
A Restart Attempt is successful and the restart limit counter is reset to 0 when no fault with a shut-down  
response is observed after one (61h) TON_RISE time after completing (61h) TON_RISE or after (62h)  
TON_MAX_FAULT_LIMIT if (62h) TON_MAX_FAULT_LIMIT is not set to 0 ms (Disabled).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.35 (42h) VOUT_OV_WARN_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
42h  
Write Word  
Read Word  
ULINEAR16 Relative or Absolute per VOUT_MODE  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The VOUT_OV_WARN_LIMIT command sets the value of the output voltage at the sense or output pins that  
causes an output voltage high warning. This value is typically less than the output overvoltage threshold. The  
OV_WARN_LIMIT sets an overvoltage threshold relative to the current VOUT_COMMAND. Updates to  
VOUT_COMMAND do not update the value of VOUT_OV_FAULT_LIMIT when the absolute format is used.  
When the sensed output voltage exceeds the VOUT_OV_WARN_LIMIT threshold, the following actions are  
taken:  
Set the VOUT bit in the STATUS_WORD.  
Set the VOUT_OVW bit in the STATUS_VOUT register.  
Notify the host per PMBus 1.3.1 Part II specification, section 10.2.  
7-41. (42h) VOUT_OV_WARN_LIMIT Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_OVW (High Byte)  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_OVW (Low Byte)  
LEGEND: R/W = Read/Write; R = Read only  
7-52. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:0  
VOUT_  
OVW  
RW  
NVM  
Sets the overvoltage warning limit. Format is per VOUT_ MODE.  
Hardware Support and Value Mapping  
The Hardware for VOUT_OV_WARN_LIMIT is implemented as a fixed percentage of the current output voltage  
target. Depending on the VOUT_MODE setting, the value written to VOUT_OV_WARN_LIMIT must be mapped  
to a hardware percentage.  
Programmed values not exactly equal to one of the hardware relative values shall be rounded up to the next  
available relative value supported by hardware. The hardware supports values from 103% to 116%  
VOUT_COMMAND in 1% steps.  
Attempts to write (42h) VOUT_OV_WARN_LIMIT to any value outside those specified as valid, will be  
considered invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status  
bits and notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
86  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.36 (43h) VOUT_UV_WARN_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
43h  
Write Word  
Read Word  
ULINEAR16 Relative or Absolute per VOUT_MODE  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The VOUT_UV_WARN_LIMIT command sets the value of the output voltage at the sense or output pins that  
causes an output voltage low warning. The VOUT_UV_WARN_LIMIT sets an undervoltage threshold relative to  
the current VOUT_COMMAND. Updates to VOUT_COMMAND do not update VOUT_UV_WARN_LIMIT when  
the absolute format is used.  
When the sensed output voltage exceeds the VOUT_UV_WARN_LIMIT threshold, the following actions are  
taken:  
Set the VOUT bit in the STATUS_WORD.  
Set the VOUT_UVW bit in the STATUS_VOUT register.  
Notify the host per PMBus 1.3.1 Part II specification, section 10.2.  
7-42. (43h) VOUT_UV_WARN_LIMIT Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_UVW (High Byte)  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_UVW (Low Byte)  
LEGEND: R/W = Read/Write; R = Read only  
7-53. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:0  
VOUT_  
UVW  
RW  
NVM  
Sets the undervoltage warning limit. Format is per VOUT_ MODE.  
Hardware Mapping and Supported Values  
The Hardware for VOUT_UV_WARN_LIMIT is implemented as a fixed percentage relative to the current output  
voltage target. Depending on the VOUT_MODE setting, the value written to VOUT_UV_WARN_LIMIT must be  
mapped to the hardware percentage.  
Programmed values not exactly equal to one of the hardware relative values is rounded down to the next  
available relative value supported by hardware. The hardware supports values from 84% to 97%  
VOUT_COMMAND in 1% steps.  
Attempts to write (43h) VOUT_UV_WARN_LIMIT to any value outside those specified as valid, will be  
considered invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status  
bits and notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.37 (44h) VOUT_UV_FAULT_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
44h  
Write Word  
Read Word  
ULINEAR16 Absolute per VOUT_MODE  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The VOUT_UV_FAULT_LIMIT command sets the value of the output voltage at the sense or output pins that  
causes an output voltage fault. The VOUT_UV_FAULT_LIMIT sets an undervoltage threshold relative to the  
current VOUT_COMMAND. Updates to VOUT_COMMAND do not update VOUT_UV_FAULT_LIMIT when the  
absolute format is used.  
When the undervoltage fault condition is triggered, the TPS546D24S responds according to  
VOUT_UV_FAULT_RESPONSE.  
7-43. (44h) VOUT_UV_FAULT_LIMIT Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_UVF (High Byte)  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VOUT_UVF (Low Byte)  
LEGEND: R/W = Read/Write; R = Read only  
7-54. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:0  
VOUT_  
UVW  
RW  
NVM  
Sets the undervoltage fault limit. Format is per VOUT_ MODE  
Hardware Mapping and Supported Values  
The Hardware for VOUT_UV_FAULT_LIMIT is implemented as a fixed percentage relative to the current output  
voltage target. Depending on the VOUT_MODE setting, the value written to VOUT_UV_FAULT_LIMIT must be  
mapped to the hardware percentage.  
Programmed values not exactly equal to one of the hardware relative values are rounded down to the next  
available relative value supported by hardware. The hardware supports values from 60% to 95% of  
VOUT_COMMAND in 2.5% steps.  
Attempts to write (44h) VOUT_UV_FAULT_LIMIT to any value outside those specified as valid will be considered  
invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status bits and  
notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
88  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.38 (45h) VOUT_UV_FAULT_RESPONSE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
45h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
No  
Phased:  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The VOUT_UV_FAULT_RESPONSE instructs the device on what action to take in response to an output  
undervoltage fault.  
The VOUT_UV_FAULT_RESPONSE instructs the device on what action to take in response to an output  
undervoltage fault. Upon triggering the overvoltage fault, the TPS546D24S responds according to the data byte  
below, and the following actions are taken:  
Set the NONE OF THE ABOVE bit in the STATUS_BYTE.  
Set the VOUT bit in the STATUS_WORD.  
Set the VOUT_UVF bit in the STATUS_VOUT register.  
Notify the host per PMBus 1.3.1 Part II specification, section 10.2.  
7-44. (45h) VOUT_UV_FAULT_RESPONSE Register Map  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VO_UV_RESP  
VO_UV_RETRY  
VO_UV_DLY  
LEGEND: R/W = Read/Write; R = Read only  
7-55. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:6  
VO_ UV_  
RESP  
RW  
NVM  
Output undervoltage response  
00b: Ignore. Continue operating without interruption.  
01b: Shutdown after Delay, as set by VO_UV_DELY  
10b: Shutdown Immediately  
Other: Invalid/Unsupported  
5:3  
2:0  
VO_ UV_  
RETRY  
RW  
RW  
NVM  
NVM  
Output undervoltage retry  
0d: Do not attempt to restart (latch off).  
1d-6d: After shutting down, wait one HICCUP period, and attempt to restart upto 1 -  
6 times. After 1 - 6 failed restart attempts, do not attempt to restart (latch off).  
7d: After shutting down, wait one HICCUP period, and attempt to restart  
indefinitely, until commanded OFF, or a successful start-up occurs.  
VO_ UV_  
DLY  
Output undervoltage delay time for respond after delay and HICCUP  
0d: Shutdown delay of one PWM_CLK, HICCUP equal to TON_RISE  
1d: Shutdown delay of one PWM_CLK, HICCUP equal to TON_RISE  
2d - 4d: Shutdown delay of three PWM_CLK, HICCUP equal to 2 - 4 times  
TON_RISE  
5d - 7d: Shutdown delay of seven PWM_CLK, HICCUP equal to 5 - 7 times  
TON_RISE  
Attempts to write (45h) VOUT_UV_FAULT_RESPONSE to any value outside those specified as valid will be  
considered invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status  
bits and notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.39 (46h) IOUT_OC_FAULT_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
46h  
Write Word  
Read Word  
SLINEAR11 per CAPABILITY  
Yes  
Phased:  
NVM Back-up:  
Updates:  
EEPROM or Pin Detection  
On-the-fly  
The IOUT_OC_FAULT_LIMIT command sets the value of the output current that causes the overcurrent detector  
to indicate an overcurrent fault condition. While each TPS546D24S device in a multi-phase stack has its own  
IOUT_OC_FAULT_LIMIT and comparator, the effective current limit of the multi-phase stack is equal to the  
lowest IOUT_OC_FAULT_LIMIT setting times the number of phases in the stack.  
When  
the  
overcurrent  
fault  
is  
triggered,  
the  
TPS546D24S  
responds  
according  
to  
IOUT_OC_FAULT_RESPONSE.  
7-45. (46h) IOUT_OC_FAULT_LIMIT Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IO_OCF_EXP  
IO_OCF_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IO_OCF_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-56. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:11  
IO_OCF_  
EXP  
RW  
11110b  
Linear format twos complement exponent  
10:0  
IO_OCF_  
MAN  
RW  
NVM  
Linear format twos complement mantissa. Refer to the table below.  
Multi-phase Stack Current Limit up to 62 A x Number of Phases (PHASE = FFh)  
Per Phase OCL: up to 62 A (PHASE != FFh)  
Attempts to write (46h) IOUT_OC_FAULT_LIMIT to any value outside those specified as valid, will be considered  
invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status bits and  
notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Command Resolution and NVM Store/Restore Behavior  
The Per-PHASE (PHASE != FFh) IOUT_OC_FAULT_LIMIT is implemented in analog hardware. The analog  
hardware supports current limits from 8 A to 62 A in 2-A steps. Programmed values not exactly equal to  
hardware supported values will be rounded up to the next available supported value. Values less than 8 A per  
device can be written to IOUT_OC_FAULT_LIMIT, but values less than 8 A per device will be implemented as 8  
A in hardware. The TPS546D24S provides only limited NVM-backed options for this command. Following a  
power-cycle or NVM Store/Restore operation, the value will be rounded to the nearest NVM supported value.  
The NVM supports values up to 62 A in 0.25-A steps.  
Phased Command Behavior  
Write when PHASE = FFh: Set IOUT_OC_FAULT_LIMIT for each phase to the written value divided by the  
number of phases.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
90  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
Read when PHASE = FFh: Report the IOUT_OC_FAULT_LIMIT value of PHASE = 00h (Loop Controller) times  
the number of phases.  
Write when PHASE != FFh: Set IOUT_OC_FAUL_LIMIT for the current phase to the written value.  
Read when PHASE != FFh: Report the IOUT_OC_FAULT_LIMIT value of the current phase.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.40 (47h) IOUT_OC_FAULT_RESPONSE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
47h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
No  
Phased:  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The IOUT_OC_FAULT_RESPONSE instructs the device on what action to take in response to an overcurrent  
fault. Upon triggering the overcurrent fault, the TPS546D24S responds according to the data byte below, and the  
following actions are taken:  
Set the IOUT_OC bit in the STATUS_BYTE.  
Set the IOUT bit in the STATUS_WORD.  
Set the IOUT_OCF bit in the STATUS_IOUT register.  
Notify the host per PMBus 1.3.1 Part II specification, section 10.2.  
7-46. (47h) IOUT_OC_FAULT_RESPONSE Register Map  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
R
R
R
IO_OC_RESP  
IO_OC_RETRY  
IO_OC_DELAY  
LEGEND: R/W = Read/Write; R = Read only  
7-57. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:6  
IO_OC_RE  
SP  
RW  
NVM  
Output ovecurrent response  
00b: Ignore. Continue operating without interruption.  
01b: Ignore. Continue operating without interruption.  
10b: Shutdown after Delay, as set by IO_OC_DELAY  
11b: Shutdown Immediately  
5:3  
2:0  
IO_OC_RET  
RY  
RW  
RW  
NVM  
NVM  
Output overcurrent retry  
0d: Do not attempt to restart (latch off).  
1d-6d: After shutting down, wait one HICCUP period, and attempt to restart upto 1 -  
6 times. After 1 - 6 failed restart attempts, do not attempt to restart (latch off).  
7d: After shutting down, wait one HICCUP period, and attempt to restart  
indefinitely, until commanded OFF, or a successful start-up occurs.  
IO_OC_DEL  
AY  
Output overcurrent delay time for respond after delay and HICCUP  
0d: Shutdown delay of one PWM_CLK, HICCUP equal to TON_RISE  
1d: Shutdown delay of one PWM_CLK, HICCUP equal to TON_RISE  
2d - 4d: Shutdown delay of three PWM_CLK, HICCUP equal to 2 - 4 times  
TON_RISE  
5d - 7d: Shutdown delay of seven PWM_CLK, HICCUP equal to 5 - 7 times  
TON_RISE  
Attempts to write (47h) IOUT_OC_FAULT_RESPONSE to any value outside those specified as valid will be  
considered invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status  
bits and notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
92  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.41 (4Ah) IOUT_OC_WARN_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
4Ah  
Write Word  
Read Word  
SLINEAR11 per CAPABILITY  
Yes  
Phased:  
NVM Back-up:  
Updates:  
EEPROM or Pin Detection  
On-the-fly  
The IOUT_OC_WARN_LIMIT command sets the value of the output current, in amperes, that causes the  
overcurrent detector to indicate an overcurrent warning condition. The units are amperes.  
IOUT_OC_WARN_LIMIT is a phased command. Each phase will report an output current overcurrent warning  
independently.  
In response to an overcurrent warning condition, the TPS546D24S takes the following action:  
Set the NONE OF THE ABOVE bit in the STATUS_BYTE.  
Set the IOUT bit in the STATUS_WORD.  
Set the IOUT_OCW bit in the STATUS_IOUT register.  
Notify the host per PMBus 1.3.1 Part II specification, section 10.2.  
7-47. (4Ah) IOUT_OC_WARN_LIMIT Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IOOCW_EXP  
IOOCW_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IOOCW_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-58. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:11  
IOOCW_  
EXP  
RW  
11110b  
Linear format twos complement exponent  
10:0  
IOOCW_  
MAN  
RW  
NVM  
Linear format twos complement mantissa  
Supported values up to 62 A times the number of phases.  
Attempts to write (4Ah) IOUT_OC_WARN_LIMIT to any value outside those specified as valid will be considered  
invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status bits and  
notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Command Resolution and NVM Store/Restore Behavior  
The Per-PHASE (PHASE != FFh) IOUT_OC_WARN_LIMIT is implemented in analog hardware. The analog  
hardware supports current limits from 8 A to 62 A in 2-A steps. Programmed values not exactly equal to  
hardware supported values will be rounded up to the next available supported value. Values less than 8 A per  
device can be written to IOUT_OC_FAULT_LIMIT, but values less than 8 A per device will be implemented as 8  
A in hardware. The TPS546D24S provides only limited NVM-backed options for this command. Following a  
power-cycle or NVM Store/Restore operation, the value will be rounded to the nearest NVM supported value.  
The NVM supports values up to 62 A in 0.25-A steps.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.42 (4Fh) OT_FAULT_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
4Fh  
Write Word  
Read Word  
SLINEAR11 per CAPABILITY  
Yes  
Phased:  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The OT_FAULT_LIMIT command sets the value of the temperature limit, in degrees Celsius, that causes an  
overtemperature fault condition.  
The converter response to an overtemperature event is described in OT_FAULT_RESPONSE.  
7-48. (4Fh) OT_FAULT_LIMIT Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OTF_EXP  
OTF_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OTF_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-59. Register Field Descriptions  
Bit  
Field  
Access  
RW  
Reset  
00000b  
NVM  
Description  
Linear format twos complement exponent  
Linear format twos complement mantissa. Refer to the following text.  
15:11  
10:0  
OTF_ EXP  
OTF_ MAN  
RW  
Attempts to write (4Fh) OT_FAULT_LIMIT to any value outside those specified as valid will be considered  
invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status bits and  
notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Command Resolution and NVM Store/Restore Behavior  
The (4Fh) OT_FAULT_LIMIT command is implemented using the TPS546D24S internal telemetry system. As a  
result, the value of this command can be programmed with very high resolution using the linear format. However,  
the TPS546D24S provides only limited NVM-backed options for this command. Following a power-cycle or NVM  
Store/Restore operation, the value will be restored to the nearest NVM supported value. The NVM supports  
values from 0°C to 160°C in 1°C steps. Programming a value of 255°C will disable Programmable  
Overtemperature Fault Limit without disabling the on-die Bandgap thermal shutdown.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
94  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.43 (50h) OT_FAULT_RESPONSE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
50h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
No  
Phased:  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The OT_FAULT_RESPONSE command instructs the device on what action to take in response to an  
Overtemperature Fault. Upon triggering the overtemperature fault, the converter responds per the data byte  
below, and the following actions are taken:  
Set the TEMP bit in the STATUS_BYTE.  
Set the OTF bit in the STATUS_TEMPERATURE register.  
Notify the host per PMBus 1.3.1 Part II specification, section 10.2.  
Note: the OT Fault hysteresis is set by the (51h) OT_WARN_LIMIT. When (8Dh) READ_TEMPERATURE_1 falls  
below (51h) OT_WARN_LIMIT, the overtemperature fault condition will be released and restart will be allowed if  
selected by (50h) OT_FAULT_RESPONSE. If (51h) OT_WARN_LIMIT is programmed higher than (4Fh)  
OT_FAULT_LIMIT, a default hysteresis of 20°C will be used instead.  
7-49. (50h) OT_FAULT_RESPONSE Register Map  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OTF_RESP  
OT_RETRY  
OT_DELAY  
LEGEND: R/W = Read/Write; R = Read only  
7-60. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:6  
OTF_RESP  
RW  
NVM  
Overtemperature fault response  
00b: Ignore. Continue operating without interruption.  
01b: Delayed Shutdown Continue Operating for 10ms x OT_DELAY. If OT_FAULT  
is still present, shut down and restart according to OT_RETRY.  
10b: Immediate Shutdown. Shut down and restart according to OT_RETRY.  
11b: Shutdown until Temperature is below OT_WARN_LIMIT, then restart  
according to OT_RETRY*.  
5:3  
OT_RETRY  
RW  
RW  
NVM  
Overtemperature retry  
0d: Do not attempt to restart (latch off).  
1d-6d: After shutting down, wait one HICCUP period, and attempt to restart up to 1  
- 6 times. After 1 - 6 failed restart attempts, do not attempt to restart (latch off).  
Restart attempts that occur while temperature is above OT_WARN_LIMIT will not  
be observable but will be counted.  
7d: After shutting down, wait one HICCUP period, and attempt to restart  
indefinitely, until commanded OFF or a successful start-up occurs.  
2:0  
OT_DELAY  
NVM  
Overtemperature delay time for respond after delay and HICCUP  
0d: Shutdown delay of 10 ms, HICCUP equal to TON_RISE, HICCUP delay equal  
to TON_RISE  
1d - 7d: Shutdown delay of 1-7 ms, HICCUP equal to 2-4 times TON_RISE  
Attempts to write (50h) OT_FAULT_RESPONSE to any value outside those specified as valid will be considered  
invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status bits and  
notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
*When (50h) OT_FAULT_RESPONSE OTF_RESP (Bits 7:6) are set to 11b - shut down until temperature is  
below (51h) OT_WARN_LIMIT, issuing a (03h) CLEAR_FAULTS command while the temperature is between  
(4Fh) OT_FAULT_LIMIT and (51h) OT_WARN_LIMIT can result in the TPS546D24S remaining in the OT FAULT  
state until the temperature rises above (4Fh) OT_FAULT_LIMIT or disabled and enabled according to (02h)  
ON_OFF_CONFIG.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
96  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.44 (51h) OT_WARN_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
51h  
Write Word  
Read Word  
SLINEAR11 per CAPABILITY  
Yes  
Phased:  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The OT_WARN_LIMIT command sets the temperature, in degrees Celsius, of the unit at which it must indicate  
an Overtemperature Warning alarm. The units are degrees C.  
Upon triggering the overtemperature fault, the converter responds per the data byte below, and the following  
actions are taken:  
Set the TEMP bit in the STATUS_BYTE.  
Set the OTW bit in the STATUS_TEMPERATURE register.  
Notify the host per PMBus 1.3.1 Part II specification, section 10.2.  
7-50. (51h) OT_WARN_LIMIT Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OTW_EXP  
OTW_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OTW_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-61. Register Field Descriptions  
Bit  
Field  
Access  
RW  
Reset  
00000b  
NVM  
Description  
Linear format twos complement exponent  
Linear format twos complement mantissa. Refer to the following text.  
15:11  
10:0  
OTW_ EXP  
OTW_ MAN  
RW  
Attempts to write (51h) OT_WARN_LIMIT to any value outside those specified as valid will be considered invalid/  
unsupported data and cause the TPS546D24S to respond by flagging the appropriate status bits and notifying  
the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Command Resolution and NVM Store/Restore Behavior  
The (51h) OT_WARN_LIMIT command is implemented using the TPS546D24S internal telemetry system. As a  
result the value of this command can be programmed with very high resolution using the linear format. However,  
the TPS546D24S provides only limited NVM-backed options for this command. Following a power-cycle or NVM  
Store/Restore operation, the value will be restored to the nearest NVM supported value. The NVM supports  
values from 0°C to 160°C in 1°C steps. Programming OT_WARN_LIMIT to a value of 255°C will disable the  
OT_WARN_LIMIT function.  
OT_WARN_LIMIT is used to provide hysteresis to OT_FAULT_LIMIT faults. If OT_WARN_LIMIT is programmed  
greater than OT_FAULT_LIMIT, including disabling OT_WARN_LIMIT with a value of 255°C, a default hysteresis  
of 20°C will be used instead.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.45 (55h) VIN_OV_FAULT_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
55h  
Write Word  
Read Word  
SLINEAR11 per CAPABILITY  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The (55h) VIN_OV_FAULT_LIMIT command sets the PVIN voltage, in volts, when a VIN_OV_FAULT is  
declared. The response to a detected VIN_OV_FAULT is determined by the settings of (56h)  
VIN_OV_FAULT_RESPONSE. (55h) VIN_OV_FAULT_LIMIT is typically used to stop switching in the event of  
excessive input voltage, which can result in over-stress damage to the power FETs due to ringing on the SW  
node.  
7-51. (55h) VIN_OV_FAULT_LIMIT Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VINOVF_EXP  
VINOVF_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VINOVF_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-62. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:11  
VINOVF_  
EXP  
RW  
11110b  
Linear format twos complement exponent  
Linear format twos complement mantissa  
10:0  
VINOVF_  
MAN  
RW  
NVM  
Attempts to write (55h) VIN_OV_FAULT_LIMIT beyond the supported range will be considered invalid/  
unsupported data and cause the TPS546D24S to respond by flagging the appropriate status bits and notifying  
the host according to the PMBus 1.3.1 Part II specification section 10.9.3. (55h) VIN_OV_FAULT_LIMIT supports  
values from 4 V to 20 V in 0.25-V steps. Following a Power Cycle or STORE/RESTORE, (55h)  
VIN_OV_FAULT_LIMIT will be restored to the nearest supported value.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
98  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.46 (56h) VIN_OV_FAULT_RESPONSE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
56h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
No  
Phased:  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The VIN_OV_FAULT_RESPONSE command instructs the device on what action to take in response to a PVIN  
Overvoltage Fault. Upon triggering the PVIN overvoltage fault, the converter responds per the data byte below,  
and the following actions are taken:  
Set the NONE OF THE ABOVE bit in the STATUS_BYTE register.  
Set the INPUT bit in the upper byte of the STATUS_WORD register.  
Set the VIN_OV bit in the STATUS_INPUT register.  
Notify the host per PMBus 1.3.1 Part II specification, section 10.2.  
7-52. (56h) VIN_OV_FAULT_RESPONSE Register Map  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VINOVF_RESP  
VINOVF_RETRY  
VIN_OVF_DLY  
LEGEND: R/W = Read/Write; R = Read only  
7-63. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:6  
VIN_OVF_  
RESP  
RW  
NVM  
PVIN Overvoltage fault response  
00b: Ignore. Continue operating without interruption.  
01b: Delayed Shutdown Continue Operating for a number of switching cycles  
defined by VIN_OVF_DLY, then if fault persists, shut down and restart according to  
VIN_OV_RETRY.  
10b: Immediate Shutdown. Shut down and restart according to VIN_OV_RETRY.  
11b: Invalid / Not Supported  
5:3  
VIN_OVF_  
RETRY  
RW  
RW  
NVM  
PVIN Overvoltage retry  
0d: Do not attempt to restart (latch off).  
1d-6d: After shutting down, wait one HICCUP period, and attempt to restart up to 1  
- 6 times. After 1 - 6 failed restart attempts, do not attempt to restart (latch off).  
Restart attempts that occur while PVIN voltage is above VIN_OV_FAULT_LIMIT  
will not be observable but will be counted  
7d: After shutting down, wait one HICCUP period, and attempt to restart  
indefinitely, until commanded OFF, or a successful start-up occurs.  
2:0  
VIN_OVF_  
DLY  
NVM  
PVIN Overvoltage delay time for respond after delay and HICCUP  
0d: Shutdown delay of one PWM_CLK, HICCUP equal to TON_RISE  
1d: Shutdown delay of one PWM_CLK, HICCUP equal to TON_RISE  
2d - 4d: Shutdown delay of three PWM_CLK, HICCUP equal to 2 - 4 times  
TON_RISE  
5d - 7d: Shutdown delay of seven PWM_CLK, HICCUP equal to 5 - 7 times  
TON_RISE  
Attempts to write (56h) VIN_OV_FAULT_RESPONSE to any value outside those specified as valid will be  
considered invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status  
bits and notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.47 (58h) VIN_UV_WARN_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
58h  
Write Word  
Read Word  
SLINEAR11 per CAPABILITY  
Yes  
Phased:  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The (58h) VIN_UV_WARN_LIMIT command sets the value of the PVIN pin voltage, in volts, that causes the  
input voltage detector to indicate an input undervoltage warning.  
The (58h) VIN_UV_WARN_LIMIT is a phase command, each phase within a stack will independently detect and  
report input undervoltage warnings.  
In response to an input undervoltage warning condition, the TPS546D24S takes the following action:  
Set the NONE OF THE ABOVE bit in the STATUS_BYTE.  
Set the INPUT bit in the STATUS_WORD.  
Set the VIN_UVW bit in the STATUS_INPUT register.  
Notify the host per PMBus 1.3.1 Part II specification, section 10.2.  
7-53. (58h) VIN_UV_WARN_LIMIT Register Map  
15  
14  
13  
12  
11  
10  
9
RW  
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VINUVW_EXP  
VINUVW_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
VINUVW_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-64. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:11  
VINUVW_  
EXP  
RW  
11110b  
Linear format twos complement exponent  
10:0  
VINUVW_  
MAN  
RW  
NVM  
Linear format twos complement mantissa  
Supported values 2.5 V to 15.5 V  
Attempts to write (58h) VIN_UV_WARN_LIMIT to any value outside those specified as valid will be considered  
invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status bits and  
notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
100 Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.48 (60h) TON_DELAY  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
60h  
Write Word  
Read Word  
SLINEAR11 per CAPABILITY  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The TON_DELAY command sets the time, in milliseconds, from when a start condition is received (as  
programmed by the ON_OFF_CONFIG command) until the output voltage starts to rise.  
7-54. (60h) TON_DELAY Register Map  
15  
14  
13  
12  
11  
10  
9
RW  
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
TONDLY_EXP  
TONDLY_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
TONDLY_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-65. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:11  
TONDLY_  
EXP  
RW  
11111b  
Linear format twos complement exponent.  
10:0  
TONDLY_  
MAN  
RW  
NVM  
Linear format twos complement mantissa.  
Note, a minimum turn-on delay of approximately 100 μs is observed even when  
TON_DELAY during which the device initializes itself at every power-on.  
Attempts to write (60h) TON_DELAY beyond the supported range will be considered invalid/unsupported data  
and cause the TPS546D24S to respond by flagging the appropriate status bits and notifying the host according  
to the PMBus 1.3.1 Part II specification section 10.9.3. TON_DELAY supports values from 0ms to 127.5 ms in  
0.5-ms steps. Following a Power Cycle or STORE/RESTORE, TON_DELAY will be restored to the nearest  
supported value.  
Refer to the Start-Up and Shutdown behavior section for handling of corner cases with respect to interrupted  
TON_DELAY, TON_RISE , TOFF_FALL, and TOFF_DELAY times.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.49 (61h) TON_RISE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
61h  
Write Word  
Read Word  
SLINEAR11 per CAPABILITY  
No  
Phased:  
NVM Back-up:  
Updates:  
EEPROM or Pin Detection  
On-the-fly  
The TON_RISE command sets the time, in milliseconds, from when the output starts to rise until the voltage has  
entered the regulation band. This effectively sets the slew rate of the reference DAC during the soft-start period.  
Note that the rise time is equal to TON_RISE regardless of the value of the target output voltage or  
VOUT_SCALE_LOOP.  
Due to hardware limitations in the resolution of the reference DAC slew-rate control, longer TON_RISE times  
with higher VOUT_COMMAND voltages can result in some quantization error in the programmed TON_RISE  
times with several TON_RISE times producing the same VOUT slope and TON_RISE time even with different  
TON_RISE settings or different TON_RISE times for the same TON_RISE setting and different  
VOUT_COMMAND voltages.  
7-55. (61h) TON_RISE Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
TONR_EXP  
TONR_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
TONR_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-66. Register Field Descriptions  
Bit  
Field  
Access  
RW  
Reset  
11110b  
NVM  
Description  
15:11  
10:0  
TONR_ EXP  
Linear format twos complement exponent  
Linear format twos complement mantissa  
TONR_  
MAN  
RW  
Attempts to write (61h) TON_RISE beyond the supported range will be considered invalid/unsupported data and  
cause the TPS546D24S to respond by flagging the appropriate status bits and notifying the host according to the  
PMBus 1.3.1 Part II specification section 10.9.3. TON_RISE will support the range from 0ms to 31.75 ms in 0.25-  
ms steps. Values less than 0.5 ms are supported as 0.5 ms.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
102 Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.50 (62h) TON_MAX_FAULT_LIMIT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
62h  
Write Word  
Read Word  
SLINEAR11 per CAPABILITY  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The TON_MAX_FAULT_LIMIT command sets an upper limit, in milliseconds, on how long the unit can attempt to  
power up the output without reaching the target voltage.  
The TON_MAX time is defined as the maximum allowable amount of time from the end of TON_DELAY, until the  
output voltage reaches 85% of the programmed output voltage, as sensed by the READ_VOUT telemetry at  
VOSNS - GOSNS.  
Note that for the TPS546D24S, the undervoltage fault limit is enabled at the end of TON_RISE. As a  
consequence, unless VOUT_UV_FAULT_RESPONSE is set to ignore, in the case of a realTON_MAX fault  
(for example, output voltage did not rise quickly enough), UV faults / associated response will always precede  
TON_MAX.  
The converter response to a TON_MAX fault event is described in TON_MAX_FAULT_RESPONSE.  
7-56. (62h) TON_MAX_FAULT_LIMIT Register Map  
15  
14  
13  
12  
11  
10  
9
RW  
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
TONMAXF_EXP  
TONMAXF_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
TONMAXF_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-67. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:11  
TONMAXF_  
EXP  
RW  
11111b  
Linear format twos complement exponent  
Linear format twos complement mantissa  
10:0  
TONMAXF_  
MAN  
RW  
NVM  
Attempts to write (62h) TON_MAX_FAULT_LIMIT will be considered an invalid/unsupported command and  
cause the TPS546D24S to respond by flagging the appropriate status bits and notifying the host according to the  
PMBus 1.3.1 Part II specification section 10.9.3. TON_MAX_FAULT_LIMIT supports values from 0 ms to 127 ms  
in 0.5-ms steps.  
*Note: programming TON_MAX_FAULT to 0 ms disables the TON_MAX functionality.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.51 (63h) TON_MAX_FAULT_RESPONSE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
63h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
No  
Phased:  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The TON_MAX_FAULT_RESPONSE instructs the device on what action to take in response to TON_MAX fault.  
Upon triggering the input TON_MAX fault, the converter responds per the byte below and the following actions  
are taken:  
Set the NONE OF THE ABOVE bit in the STATUS_BYTE.  
Set the VOUT bit in the STATUS_WORD.  
Set the TON_MAX bit in STATUS_VOUT.  
Notify the host per PMBus 1.3.1 Part II specification, section 10.2.  
7-57. (63h) TON_MAX_FAULT_RESPONSE Register Map  
7
6
5
4
3
2
1
RW  
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
TONMAX_RESP  
TONMAX_RETRY  
TONMAX_DELAY  
LEGEND: R/W = Read/Write; R = Read only  
7-68. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:6  
TONMAX_  
RESP  
RW  
NVM  
TON_ MAX Fault Response  
00b: Ignore. Continue operating without interruption.  
01b: Continue Operating for the delay time specified by TONMAX_DELAY, if the  
fault is still present, shutdown and restart according to TONMAX_RETRY.  
10b: Shutdown Immediately and restart according to TONMAX_RETRY.Other:  
Invalid/Unsupported  
5:3  
2:0  
TONMAX_  
RETRY  
RW  
RW  
NVM  
NVM  
TON_MAX Fault Retry  
0d: Do not attempt to restart (latch off).  
1d-6d: After shutting down, wait one HICCUP period, and attempt to restart up to 1  
- 6 times.  
7d: After shutting down, wait one HICCUP period, and attempt to restart  
indefinitely, until commanded OFF, or a successful start-up occurs.  
TONMAX_  
DELAY  
TON_MAX delay time for respond after delay and HICCUP  
0d: Shutdown delay of 1 ms, HICCUP equal to TON_RISE  
1d - 7d: Shutdown delay of 1-7 ms, HICCUP equal to 2-7 times TON_RISE  
Attempts to write (63h) TON_MAX_FAULT_RESPONSE to any value outside those specified as valid, will be  
considered invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate status  
bits and notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
104 Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.52 (64h) TOFF_DELAY  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
64h  
Write Word  
Read Word  
SLINEAR11 per CAPABILITY  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The TOFF_DELAY command sets the time, in milliseconds, from when a stop condition is received (as  
programmed by the ON_OFF_CONFIG command) until the unit stops transferring energy to the output.  
7-58. (64h) TOFF_DELAY Register Map  
15  
14  
13  
12  
11  
10  
9
RW  
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
TOFFDLY_EXP  
TOFFDLY_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
TOFFDLY_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-69. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:11  
TOFFDLY_  
EXP  
RW  
11111b  
Linear format twos complement exponent  
Linear format twos complement mantissa  
10:0  
TOFFDLY_  
MAN  
RW  
NVM  
Attempts to write (64h) TOFF_DELAY beyond the supported range will be considered invalid/unsupported data  
and cause the TPS546D24S to respond by flagging the appropriate status bits and notifying the host according  
to the PMBus 1.3.1 Part II specification section 10.9.3. TOFF_DELAY supports values from 0 ms to 127.5 ms in  
0.5-ms steps. An internal delay of up to 50 µs will be added to TOFF_DELAY, even if TOFF_DELAY is equal to 0  
ms.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.53 (65h) TOFF_FALL  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
65h  
Write Word  
Read Word  
SLINEAR11 per CAPABILITY  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
The TOFF_FALL command sets the time, in milliseconds, from the end of the turnoff delay time until the voltage  
is commanded to zero. Note that this command can only be used with a device whose output can sink enough  
current to cause the output voltage to decrease at a controlled rate. This effectively sets the slew rate of the  
reference DAC during the soft-off period. Note that the fall time is equal to TOFF_FALL regardless of the value of  
the target output voltage or VOUT_SCALE_LOOP for the purposes of slew rate selection based on the target  
output voltage.  
7-59. (65h) TOFF_FALL Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
TOFFF_EXP  
TOFFF_MAN  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
TOFFF_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-70. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:11  
TOFFF_  
EXP  
RW  
11110b  
Linear format twos complement exponent. Exponent = -2, LSB = 0.25 ms  
Linear format twos complement mantissa  
10:0  
TOFFF_  
MAN  
RW  
NVM  
Attempts to write (65h) TOFF_FALL beyond the supported range will be considered invalid/unsupported data  
and cause the TPS546D24S to respond by flagging the appropriate status bits and notifying the host according  
to the PMBus 1.3.1 Part II specification section 10.9.3. (65h) TOFF_FALL supports values from 0.5 ms to 31.75  
ms in 0.25-ms steps. Values less than 0.5 ms will be implemented as 0.5 ms.  
Due to hardware limitations in the resolution of the reference DAC slew-rate control, longer TOFF_FALL times  
with higher (21h) VOUT_COMMAND voltages can result in some quantization error in the programmed  
TOFF_FALL times with several TOFF_FALL times producing the same VOUT slope and TOFF_FALL time even  
with different TOFF_FALL settings, or different TOFF_FALL times for the same TOFF_FALL setting and different  
(21h) VOUT_COMMAND voltages.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
106 Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.54 (78h) STATUS_BYTE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
78h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
Phased:  
Yes  
NVM Back-up:  
Updates:  
No  
On-the-fly  
The STATUS_BYTE command returns one byte of information with a summary of the most critical faults, such as  
overvoltage, overcurrent, overtemperature, and so forth. The supported STATUS_BYTE message content is  
described in the following table. The STATUS_BYTE is equal the low byte of STATUS_WORD. The conditions in  
the STATUS_BYTE are summary information only. They are asserted to inform the host as to which other  
STATUS registers must be checked in the event of a fault. Setting and clearing of these bits must be done in the  
individual status registers. For example, Clearing VOUT_OVF in STATUS_VOUT also clears VOUT_OV in  
STATUS_BYTE.  
7-60. (78h) STATUS_BYTE Register Map  
7
6
5
4
3
2
1
0
RW  
R
R
R
R
R
R
R
NONE OF THE  
ABOVE  
BUSY  
OFF  
VOUT_OV  
IOUT_OC  
VIN_UV  
TEMP  
CML  
LEGEND: R/W = Read/Write; R = Read only  
7-71. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
BUSY  
RW  
0b  
0b: A fault was NOT declared because the device was busy and unable to  
respond.  
1b. A fault was declared because the device was busy and unable to respond.  
6
OFF  
R
0b  
LIVE (unlatched) status bit  
0b. The unit is enabled and converting power.  
1b: The unit is NOT converting power for any reason including simply not being  
enabled.  
5
4
3
2
VOUT_ OV  
IOUT_ OC  
VIN_ UV  
TEMP  
R
R
R
R
0b  
0b  
0b  
0b  
0b: An output overvoltage fault has NOT occurred.  
1b: An output overvoltage fault has occurred.  
0b: An output overcurrent fault has NOT occurred.  
1b: An output overcurrent fault has occurred.  
0b: An input undervoltage fault has NOT occurred.  
1b: An input undervoltage fault has occurred.  
0b: A temperature fault/warning has NOT occurred.  
1b: A temperature fault/warning has occurred, the host must check  
STATUS_TEMPERATURE for more information.  
1
0
CML  
R
R
0b  
0b  
0b: A communication, memory, logic fault has NOT occurred.  
1b: A communication, memory, logic fault has occurred, the host must check  
STATUS_ CML for more information.  
NONE OF  
THE  
ABOVE  
0b: A fault other than those listed above has NOT occurred.  
1b: A fault other than those listed above has occurred. The host must check the  
STATUS_ WORD for more information.  
Writing 80h to STATUS_BYTE will clear the BUSY bit, if set.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.55 (79h) STATUS_WORD  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
79h  
Write Word  
Read Word  
Unsigned Binary (2 bytes)  
Phased:  
Yes  
NVM Back-up:  
Updates:  
No  
On-the-fly  
The STATUS_WORD command returns two bytes of information with a summary of the most critical faults, such  
as overvoltage, overcurrent, overtemperature, and so forth. The low byte of the STATUS_WORD is the same  
register as the STATUS_BYTE. The supported STATUS_WORD message content is described in the following  
table. The conditions in the STATUS_BYTE are summary information only.  
7-61. (79h) STATUS_WORD Register Map  
15  
R
14  
R
13  
12  
11  
10  
9
R
8
R
0
R
R
R
R
VOUT  
IOUT  
INPUT  
MFR  
PGOOD  
0
OTHER  
7
6
5
4
3
2
1
0
RW  
R
R
R
R
R
R
R
STATUS_BYTE  
LEGEND: R/W = Read/Write; R = Read only  
7-72. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15  
VOUT  
R
0b  
0b: An output voltage related fault has NOT occurred.  
1b: An output voltage fault has occurred. The host must check STATUS_ VOUT for  
more information  
14  
13  
12  
11  
IOUT  
INPUT  
MFR  
R
R
R
R
0b  
0b  
0b  
0b  
0b: An output current related fault has NOT occurred.  
1b: An output current fault has occurred. The host must check STATUS_ IOUT for  
more information  
0b: An input related fault has NOT occurred.  
1b: An input fault has occurred. The host must check STATUS_ INPUT for more  
information  
0b: A Manufacturer-defined fault has NOT occurred.  
1b: A Manufacturer-defined fault has occurred. The host must check STATUS_  
MFR_ SPECIFIC for more information.  
PGOOD  
LIVE (unlatched) status bit. Should follow always the value of the PGOOD/  
RESET_B pin is asserted.  
0b: The output voltage is within the regulation window. PGOOD pin is de-asserted.  
1b: The output voltage is NOT within the regulation window. PGOOD pin is  
asserted.  
10  
9
Not  
Supported  
R
R
0b  
0b  
Not supported and always set to 0b  
OTHER  
0b: An OTHER fault has not occurred.  
1b: An OTHER fault has occurred, the host must check STATUS_ OTHER for more  
information.  
8
Not  
R
0b  
Not supported and always set to 0b.  
Supported  
7:0  
STATUS_  
BYTE  
RW  
00h  
Always equal to the STATUS_ BYTE value.  
Copyright © 2023 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
All bits which can trigger SMBALERT have a corresponding bit in SMBALERT_MASK.  
Writing 0080h to STATUS_WORD will clear the BUSY bit, if set. Writing 0180h to STATUS_WORD will clear both  
the BUSY bit and UNKNOWN bit, if set.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.56 (7Ah) STATUS_VOUT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
7Ah  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
Phased:  
No  
NVM Back-up:  
Updates:  
No  
On-the-fly  
The STATUS_VOUT command returns one data byte with contents as follows. All supported bits can be cleared  
either by CLEAR_FAULTS, or individually by writing 1b to the (7Ah) STATUS_VOUT register in their position, per  
the PMBus 1.3.1 Part II specification section 10.2.4.  
7-62. (7Ah) STATUS_VOUT Register Map  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
R
R
VOUT_MIN_MA  
X
VOUT_OVF  
VOUT_OVW  
VOUT_UVW  
VOUT_UVF  
TON_MAX  
0
0
LEGEND: R/W = Read/Write; R = Read only  
7-73. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
VOUT_ OVF  
RW  
0b  
0b: Latched flag indicating VOUT OV fault has NOT occurred.  
1b: Latched flag indicating a VOUT OV fault has occurred.  
Note: the mask bits for VOUT_ OVF will mask fixed, tracking, and pre-biased OVP.  
These can be individually controlled in SMBALERT_ MASK_ EXTENDED.  
6
VOUT_  
OVW  
RW  
0b  
0b: Latched flag indicating VOUT OV warn has NOT occurred.  
1b: Latched flag indicating a VOUT OV warn has occurred.  
Note: the mask bits for VOUT_ OVF will mask fixed and tracking Overvoltage  
Protection.  
5
4
VOUT_  
UVW  
RW  
RW  
RW  
RW  
R
0b  
0b  
0b: Latched flag indicating VOUT UV warn has NOT occurred.  
1b: Latched flag indicating a VOUT UV warn has occurred.  
VOUT_ UVF  
0b: Latched flag indicating VOUT UV fault has NOT occurred.  
1b: Latched flag indicating a VOUT UV fault has occurred.  
3
VOUT_  
MIN_MAX  
0b  
0b: Latched flag indicating a VOUT_ MIN_MAX has NOT occurred.  
1b: Latched flag indicating a VOUT_ MIN_MAX has occurred.  
2
TON_ MAX  
0b  
0b: Latched flag indicating a TON_ MAX has NOT occurred.  
1b: Latched flag indicating a TON_ MAX has occurred.  
1:0  
Not  
00b  
Not supported and always set to 00b.  
supported  
All bits which can trigger SMBALERT have a corresponding bit in SMBALERT_MASK.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
110  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.57 (7Bh) STATUS_IOUT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
7Bh  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
Phased:  
Yes  
NVM Back-up:  
Updates:  
No  
On-the-fly  
The STATUS_IOUT command returns one data byte with contents as follows. All supported bits can be cleared  
either by CLEAR_FAULTS, or individually by writing 1b to the (7Bh) STATUS_IOUT register in their position, per  
the PMBus 1.3.1 Part II specification section 10.2.4.  
7-63. (7Bh) STATUS_IOUT Register Map  
7
6
R
0
5
4
RW  
0
3
R
0
2
R
0
1
R
0
0
R
0
RW  
RW  
IOUT_OCF  
IOUT_OCW  
LEGEND: R/W = Read/Write; R = Read only  
7-74. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
IOUT_ OCF  
RW  
0b  
0b: Latched flag indicating IOUT OC fault has NOT occurred.  
1b: Latched flag indicating IOUT OC fault has occurred.  
6
5
Not  
Supported  
R
RW  
R
0b  
0b  
0b  
Not supported and always set to 0b.  
IOUT_ OCW  
0b: Latched flag indicating IOUT OC warn has NOT occurred.  
1b: Latched flag indicating IOUT OC warn has occurred.  
4:0  
Not  
Not supported and always set to 00000b  
supported  
All bits which can trigger SMBALERT have a corresponding bit in SMBALERT_MASK.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.58 (7Ch) STATUS_INPUT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
7Ch  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
Phased:  
Yes  
NVM Back-up:  
Updates:  
No  
On-the-fly  
The STATUS_INPUT command returns one data byte with contents as follows. All supported bits can cleared  
either by CLEAR_FAULTS, or individually by writing 1b to the (7Ch) STATUS_INPUT register in their position,  
per the PMBus 1.3.1 Part II specification section 10.2.4.  
7-64. (7Ch) STATUS_INPUT Register Map  
7
6
0
5
4
R
0
3
2
R
0
1
R
0
0
R
0
RW  
R
RW  
RW  
VIN_OVF  
VIN_UVW  
LOW_VIN  
LEGEND: R/W = Read/Write; R = Read only  
7-75. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
VIN_OVF  
RW  
0b  
0b: Latched flag indicating PVIN OV fault has NOT occurred.  
1b: Latched flag indicating PVIN OV fault has occurred.  
6
5
VIN_OVW  
VIN_UVW  
RW  
0b  
0b  
Not supported and always set to 0b  
0b: Latched flag indicating PVIN UV warn occurred.  
1b: Latched flag indicating PVIN UV warn has occurred.  
4
3
Not  
Supported  
R
0b  
0b  
Not supported and always set to 0b.  
LOW_ VIN  
RW  
LIVE (unlatched) status bit. Showing the value of PVIN relative to VIN_ON and  
VIN_OFF.  
0b: PVIN is ON.  
1b: PVIN is OFF.  
2:0  
Not  
R
000b  
Not supported and always set to 000b.  
Supported  
All bits which can trigger SMBALERT have a corresponding bit in SMBALERT_MASK .  
LOW_VIN vs VIN_UVW  
The LOW_VIN bit is an information only (will not assert SMBALERT) flag which indicates that the device is not  
converting power because its PVIN voltage is less than VIN_ON or the VDD5 voltage is less than its UVLO to  
enable conversion. LOW_VIN asserts initially at reset but does not assert SMBALERT.  
The VIN_UVW bit is a latched status bit, can assert SMBALERT if it is triggered to alert the host of an input  
voltage issue. VIN_UVW IS masked until the first time the sensed input voltage exceeds the VIN_ON threshold.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
112  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.59 (7Dh) STATUS_TEMPERATURE  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
7Dh  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
Phased:  
Yes  
NVM Back-up:  
Updates:  
No  
On-the-fly  
The STATUS_TEMPERATURE command returns one data byte with contents as follows. All supported bits can  
be cleared either by CLEAR_FAULTS, or individually by writing 1b to the (7Dh) STATUS_TEMPERATURE  
register in their position, per the PMBus 1.3.1 Part II specification section 10.2.4.  
7-65. (7Dh) STATUS_TEMPERATURE Register Map  
7
6
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
R
0
RW  
OTF  
RW  
OTW  
LEGEND: R/W = Read/Write; R = Read only  
7-76. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
OTF  
RW  
0b  
0b: Latched flag indicating OT fault has NOT occurred.  
1b: Latched flag indicating OT fault has occurred.  
6
OTW  
RW  
R
0b  
0d  
0b: Latched flag indicating OT warn has NOT occurred.  
1b: Latched flag indicating OT warn has occurred  
5:0  
Not  
Not supported and always set to 000000b.  
supported  
All bits which can trigger SMBALERT have a corresponding bit in SMBALERT_MASK.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.60 (7Eh) STATUS_CML  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
7Eh  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
Phased:  
Yes  
NVM Back-up:  
Updates:  
No  
On-the-fly  
The STATUS_CML command returns one data byte with contents relating to communications, logic, and  
memory as follows. All supported bits can be cleared either by CLEAR_FAULTS, or individually by writing 1b to  
the (7Eh) STATUS_CML register in their position, per the PMBus 1.3.1 Part II specification section 10.2.4.  
7-66. (7Eh) STATUS_CML Register Map  
7
6
5
4
3
2
R
0
1
0
R
0
RW  
IVC  
RW  
IVD  
RW  
PEC  
RW  
MEM  
RW  
RW  
PROC_FLT  
COMM  
LEGEND: R/W = Read/Write; R = Read only  
7-77. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
IVC  
RW  
0b  
0b: Latched flag indicating invalid or unsupported command was NOT received.  
1b: Latched flag indicating an invalid or unsupported command was received.  
6
5
4
3
2
1
0
IVD  
PEC  
RW  
RW  
RW  
RW  
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b: Latched flag indicating invalid or unsupported data was NOT received.  
1b: Latched flag indicating an invalid or unsupported data was received.  
0b: Latched flag indicating NO packet error check has failed.  
1b: Latched flag indicating a packet error check has failed.  
MEM  
0b: Latched flag indicating NO memory error was detected.  
1b: Latched flag indicating a memory error was detected.  
PROC_FLT  
0b: Latched flag indicating NO logic core error was detected.  
1b: Latched flag indicating a logic core error was detected.  
Not  
supported  
Not supported and always set to 0b.  
COMM  
RW  
R
0b: Latched flag indicating NO communication error detected.  
1b: Latched flag indicating communication error detected.  
Not  
Not supported and always set to 0b.  
supported  
All bits which can trigger SMBALERT have a corresponding bit in SMBALERT_MASK.  
Loop followers will report a Back-Channel communications issue as a CML fault on their phase.  
The corresponding bit STATUS_BYTE is an ORing of the supported bits in this command. When a fault  
condition in this command occurs, the corresponding bit in STATUS_BYTE is updated. Likewise, if this byte is  
individually cleared (for example, by a write of 1 to a latched condition), it must clear the corresponding bit in  
STATUS_BYTE.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
114  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.61 (7Fh) STATUS_OTHER  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
7Fh  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
Phased:  
No  
NVM Back-up:  
Updates:  
No  
On-the-fly  
The STATUS_OTHER command returns one data byte with information not specified in the other STATUS bytes.  
7-67. (7Fh) STATUS_OTHER Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
RW  
FIRST_  
TO_ALERT  
0
0
0
0
0
0
0
LEGEND: R/W = Read/Write; R = Read only  
7-78. Register Field Descriptions  
Bit  
7:1  
0
Field  
Access  
R
Reset  
Description  
Reserved  
0h  
Reserved  
FIRST_ TO_  
ALERT  
RW  
0b  
0b: Latched flag indicating that this device was NOT the first to assert SMBALERT.  
This can mean either that the SMBALERT signal is not asserted (or has since been  
cleared), or that it is asserted, but this device was not the first on the bus to assert  
it.  
1b: Latched flag indicating that this device was the first to assert SMBALERT.  
The corresponding bit STATUS_BYTE is an ORing of the supported bits in this command. When a fault  
condition in this command occurs, the corresponding bit in STATUS_BYTE is updated. Likewise, if this byte is  
individually cleared (for example, by a write of 1 to a latched condition), it must clear the corresponding bit in  
STATUS_BYTE.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.62 (80h) STATUS_MFR_SPECIFIC  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
80h  
Write Byte  
Read Byte  
Unsigned Binary (1 byte)  
Phased:  
Yes  
NVM Back-up:  
Updates:  
No  
On-the-fly  
The STATUS_MFR_SPECIFIC command returns one data byte with contents regard of communications, logic,  
and memory as follows. All supported bits can be cleared either by CLEAR_FAULTS, or individually by writing 1b  
to the (80h) STATUS_MFR_SPECIFIC register in their position, per the PMBus 1.3.1 Part II specification section  
10.2.4.  
7-68. (80h) STATUS_MFR_SPECIFIC Register Map  
7
6
R
5
R
0
4
R
0
3
2
1
0
R
0
RW  
POR  
RW  
RW  
BCX  
RW  
SELF  
RESET  
SYNC  
LEGEND: R/W = Read/Write; R = Read only  
7-79. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
POR  
RW  
0b  
0: No Power-On Reset Fault has been detected.  
1: A Power-On Reset Fault has been detected.  
This bit must be set if: Power-On Self-Check of Internal Trim values,  
USER_STORE NVM check-sum, or Pin Detection reports an invalid result.  
6
SELF  
R
0b  
LIVE (unlatched) status bit. Showing the status of the Power-On Self-Check.  
0b: Power On Self-Check is complete. All expected BCX loop followers have  
responded.  
1b: Power-On Self-Check is in progress. One or more BCX loop followers have not  
responded.  
5:4  
3
Not  
supported  
R
00b  
0b:  
0b  
Not supported and always set to 00b.  
RESET  
RW  
RW  
RW  
R
0b: A RESET_ VOUT event has NOT occurred.  
1b: A RESET_ VOUT event has occurred.  
2
BCX  
0b: A BCX fault event has NOT occurred.  
1b: A BCX fault event has occurred.  
1
SYNC  
0b  
0b: No SYNC fault has been detected.  
1b: A SYNC fault has been detected.  
0
Not  
0b  
Not supported and always set to 0b.  
supported  
Per the PMBus Spec writing a 1 to any bit in a STATUS register shall clear that bit if it is set. All bits which can  
trigger SMBALERT have a corresponding bit in SMBALERT_MASK.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
116  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.63 (88h) READ_VIN  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
88h  
N/A  
Read Word  
SLINEAR11 per CAPABILITY  
Phased:  
Yes  
NVM Back-up:  
Update Rate:  
Supported Range:  
No  
1ms  
0 - 24 V  
The READ_VIN command returns the output current in amperes.  
7-69. (88h) READ_VIN Register Map  
15  
14  
13  
12  
11  
10  
9
8
R
R
R
R
R
R
R
R
READ_VIN_EXP  
READ_VIN_MAN  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_VIN_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-80. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:11  
READ_  
VIN_ EXP  
RW  
Input  
voltage  
Linear format twos complement exponent  
Linear format twos complement mantissa  
10:0  
READ_  
RW  
Input  
VIN_ MAN  
voltage  
Attempts to write read-only commands cause the CML: invalid command (IVC) fault condition, the TPS546D24S  
responds as follows:  
Set the CML bit in STATUS_BYTE.  
Set the CML_IVC (bit 7) bit in STATUS_CML.  
Notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
PHASE Behavior  
When PHASE = FFh, READ_VIN returns the PVIN voltage of the Loop Controller device.  
When PHASE != FFh, READ_VIN returns the PVIN voltage of the device assigned to the current PHASE.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.64 (8Bh) READ_VOUT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
8Bh  
N/A  
Read Word  
ULINEAR16 per VOUT_MODE.  
Phased:  
Yes  
NVM Back-up:  
Update Rate:  
Supported Range  
No  
1 ms  
0 V to 6.0 V  
The READ_VOUT command returns the actual, measured output voltage.  
7-70. (8Bh) READ_VOUT Register Map  
15  
R
14  
R
13  
12  
11  
10  
9
8
R
R
R
R
R
R
READ_VOUT  
READ_VOUT  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only  
7-81. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:0  
READ_  
VOUT  
RW  
Current  
Status  
Output voltage reading, per VOUT_ MODE  
READ_VOUT will report the voltage at the VOSNS pin with respect to AGND when a device is configured as a  
loop follower (GOSNS = BP1V5). In this configuration, VOUT_SCALE_LOOP is ignored and VOSNS must be  
externally scaled to maintain a voltage between 0 V and 0.75 V for proper reporting of the VOSNS voltage.  
Attempts to write read-only commands cause the CML: invalid command (IVC) fault condition, the TPS546D24S  
responds as follows:  
Set the CML bit in STATUS_BYTE.  
Set the CML_IVC (bit 7) bit in STATUS_CML.  
Notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
118  
Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.65 (8Ch) READ_IOUT  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
8Ch  
N/A  
Read Word  
SLINEAR11 per CAPABILITY  
Phased:  
Yes  
NVM Back-up:  
Update Rate:  
Supported Range:  
No  
1 ms  
-15 A to 90 A per Phase  
The READ_IOUT command returns the output current in amperes.  
7-71. (8Ch) READ_IOUT Register Map  
15  
14  
13  
12  
11  
10  
9
8
R
R
R
R
R
R
R
R
READ_IOUT_EXP  
READ_IOUT_MAN  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_IOUT_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-82. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:11  
READ_  
IOUT_ EXP  
RW  
Current  
Status  
Linear format twos complement exponent  
Linear format twos complement mantissa  
10:0  
READ_  
IOUT_ MAN  
RW  
Current  
Status  
Attempts to write read-only commands cause the CML: invalid command (IVC) fault condition, the TPS546D24S  
responds as follows:  
Set the CML bit in STATUS_BYTE.  
Set the CML_IVC (bit 7) bit in STATUS_CML.  
Notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
PHASE Behavior  
When PHASE = FFh, READ_IOUT returns the total current for the stack of devices supporting a single output.  
When PHASE != FFh, READ_IOUT returns the measured current of the device assigned to the current PHASE.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.66 (8Dh) READ_TEMPERATURE_1  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
8Dh  
N/A  
Read Word  
SLINEAR11 per CAPABILITY  
Phased:  
Yes  
NVM Back-up:  
Update Rate:  
Supported Range:  
No  
300 μs  
-40°C to 175°C  
The READ_TEMPERATURE_1 command returns the maximum power stage temperature in degrees Celsius.  
7-72. (8Dh) READ_TEMPERATURE_1 Register Map  
15  
R
14  
R
13  
12  
11  
10  
9
8
R
R
R
R
R
R
READ_T1_EXP  
READ_T1_MAN  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
READ_T1_MAN  
LEGEND: R/W = Read/Write; R = Read only  
7-83. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:11  
READ_ T1_  
EXP  
RW  
Current  
Status  
Linear format twos complement exponent. LSB = 1°C  
Linear format twos complement mantissa  
10:0  
READ_ T1_  
MAN  
RW  
Current  
Status  
Attempts to write read-only commands cause the CML: invalid command (IVC) fault condition, the TPS546D24S  
responds as follows:  
Set the CML bit in STATUS_BYTE.  
Set the CML_IVC (bit 7) bit in STATUS_CML.  
Notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
PHASE Behavior  
When PHASE = FFh, READ_TEMPERATURE_1 returns the temperature of the hottest of device in the stack of  
devices supporting a single output.  
When PHASE ! = FFh, READ_TEMPERATURE_1 returns the measured temperature of the device assigned to  
the current PHASE.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
120 Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.67 (98h) PMBUS_REVISION  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
98h  
N/A  
Read Byte  
Unsigned Binary (1 byte)  
Phased:  
No  
Max Transaction Time:  
0.25 ms  
The PMBUS_REVISION command reads the revision of the PMBus to which the device is compliant.  
7-73. (98h) PMBUS_REVISION Register Map  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
PART_I  
PART_II  
LEGEND: R/W = Read/Write; R = Read only  
7-84. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:4  
R
0011b  
0011b: Compliant to PMBus Rev 1.3, Part 1  
0011b: Compliant to PMBus Rev 1.3, Part 2  
PART_ I  
PART_ II  
3:0  
R
0011b  
Attempts to write read-only commands cause the CML: invalid command (IVC) fault condition, the TPS546D24S  
responds as follows:  
Set the CML bit in STATUS_BYTE.  
Set the CML_IVC (bit 7) bit in STATUS_CML.  
Notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.68 (99h) MFR_ID  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
99h  
Write Block  
Read Block  
Unsigned Binary (3 bytes)  
No  
Phased:  
NVM Back-up:  
EEPROM  
The MFR_ID command loads the unit with 3 bytes that contains the manufacturers ID. This is typically done  
once at the time of manufacture.  
7-74. (99h) MFR_ID Register Map  
23  
22  
21  
20  
19  
18  
17  
16  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
MFR_ID  
MFR_ID  
MFR_ID  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only  
7-85. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
23:0  
MFR_ ID  
RW  
NVM  
3 bytes of arbitrarily writable user-store NVM for manufacturer ID information.  
Copyright © 2023 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.69 (9Ah) MFR_MODEL  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
9Ah  
Write Block  
Read Block  
Unsigned Binary (3 bytes)  
No  
Phased:  
NVM Back-up:  
EEPROM  
The MFR_MODEL command loads the unit with 3 bytes that contains the manufacturers ID. This is typically  
done once at the time of manufacture.  
7-75. (9Ah) MFR_MODEL Register Map  
23  
22  
21  
20  
19  
18  
17  
16  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
MFR_MODEL  
MFR_MODEL  
MFR_MODEL  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only  
7-86. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
23:0  
MFR_  
RW  
NVM  
3 bytes of arbitrarily writable user-store NVM for manufacturer model information  
MODEL  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.70 (9Bh) MFR_REVISION  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
9Bh  
Write Block  
Read Block  
Unsigned Binary (3 bytes)  
No  
Phased:  
NVM Back-up:  
EEPROM  
The MFR_REVISION command loads the unit with 3 bytes that contains the power supply manufacturers  
revision number. This is typically done once at the time of manufacture.  
7-76. (9Bh) MFR_REVISION Register Map  
23  
22  
21  
20  
19  
18  
17  
16  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
MFR_REV  
MFR_REV  
MFR_REV  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only  
7-87. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
23:0  
MFR_ REV  
RW  
NVM  
3 bytes of arbitrarily writable user-store NVM for manufacturer revision information  
Copyright © 2023 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.71 (9Eh) MFR_SERIAL  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
9Eh  
Write Block  
Read Block  
Unsigned Binary (3 bytes)  
No  
Phased:  
NVM Back-up:  
EEPROM  
The MFR_SERIAL command loads the unit with 3 bytes that contains the power supply manufacturers serial  
number. This is typically done once at the time of manufacture.  
7-77. (9Eh) MFR_SERIAL Register Map  
23  
22  
21  
20  
19  
18  
17  
16  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
MFR_SERIAL  
MFR_SERIAL  
MFR_SERIAL  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only  
7-88. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
23:00  
MFR_  
RW  
NVM  
Arbitrary 3-byte Serial Number assigned by manufacturer  
SERIAL  
Note: Because the value for MFR_SERIAL is included in the NVM memory store used to calculate the  
NVM_CHECKSUM, assigning a unique MFR_SERIAL value will also result in a unique NVM_CHECKSUM  
value.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.72 (ADh) IC_DEVICE_ID  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
ADh  
N/A  
Read Block  
Unsigned Binary (6 bytes)  
No  
Phased:  
The IC_DEVICE_ID command is used to either set or read the type or part number of an IC embedded within a  
PMBus that is used for the PMBus interface.  
7-78. (ADh) IC_DEVICE_ID Register Map  
47  
R
46  
R
45  
44  
43  
42  
41  
R
40  
R
R
R
R
R
IC_DEVICE_ID[47:40]  
39  
R
38  
R
37  
R
36  
R
35  
R
34  
R
33  
R
32  
R
IC_DEVICE_ID[39:32]  
31  
R
30  
R
29  
R
28  
R
27  
R
26  
R
25  
R
24  
R
IC_DEVICE_ID[31:24]  
23  
R
22  
R
21  
R
20  
R
19  
R
18  
R
17  
R
16  
R
IC_DEVICE_ID[23:16]  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
8
R
R
IC_DEVICE_ID[15:8]  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
IC_DEVICE_ID[7:0]  
LEGEND: R/W = Read/Write; R = Read only  
7-89. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
47:0  
IC_  
R
See text. See the table below.  
DEVICE_ ID  
7-90. IC_DEVICE_ID Values  
Byte Number (Bit  
Indices)  
Byte 0 (7:0)  
54h  
Byte 1 (15:8)  
Byte 2 (23:16)  
Byte 3 (31:24)  
Byte 4 (39:32)  
Byte 5 (47:40)  
TPS546D24S  
49h  
54h  
6Bh  
24h  
62h  
Attempts to write read-only commands cause the CML: invalid command (IVC) fault condition, TPS546D24S  
responds as follows:  
Set the CML bit in STATUS_BYTE.  
Set the CML_IVC (bit 7) bit in STATUS_CML.  
Notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
126 Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.73 (AEh) IC_DEVICE_REV  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
AEh  
N/A  
Read Block  
Unsigned Binary (2 bytes)  
No  
Phased:  
The IC_DEVICE_REV command is used to either set or read the revision of the IC.  
7-79. (AEh) IC_DEVICE_REV Register Field Descriptions  
15  
R
14  
R
13  
12  
11  
10  
9
8
R
R
R
R
R
R
MAJOR_REV  
MINOR_REV  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
SUB_MINOR_REV  
LEGEND: R/W = Read/Write; R = Read only  
Attempts to write read-only commands cause the CML: invalid command (IVC) fault condition, the TPS546D24S  
responds as follows:  
Set the CML bit in STATUS_BYTE.  
Set the CML_IVC (bit 7) bit in STATUS_CML.  
Notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.74 (B1h) USER_DATA_01 (COMPENSATION_CONFIG)  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
B1h  
Write Block  
Read Block  
Unsigned Binary (5 bytes)  
No  
Phased:  
NVM Back-up:  
EEPROM or Pin Detection  
Conversion Disable: on-the-fly. Conversion Enable: hardware update blocked. To update hardware  
after write while enabled, store to NVM with (15h) STORE_USER_ALL and (16h)  
RESTORE_USER_ALL or cycle AVIN below UVLO.  
Updates:  
Configure the control loop compensation.  
7-80. (B1h) USER_DATA_01 (COMPENSATION_CONFIG) Register Map  
39  
38  
37  
36  
35  
34  
33  
32  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
SEL_CZI[1:0]  
SEL_CPI[4:0]  
SEL_CZI_MUL  
31  
R
30  
29  
28  
27  
26  
25  
24  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
SEL_RVI[5:0]  
SEL_CZI[3:2]  
23  
22  
21  
20  
19  
18  
17  
16  
RW  
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
SEL_CZV[1:0]  
SEL_CPV[4:0]  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
SEL_RVV[5:0]  
SEL_CZV[3:2]  
SEL_GMI[1:0]  
7
RW  
0
6
RW  
0
5
4
3
RW  
0
2
RW  
0
1
0
RW  
RW  
RW  
RW  
SEL_GMV[1:0]  
LEGEND: R/W = Read/Write; R = Read only  
7-91. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
25:24,39:38 SEL_CZI[3:  
0]  
RW  
NVM  
Selects the value of current loop integrating capacitor.  
CZI = 6.66 pF x CZI_MUL x 2SEL_GMI[1:0] x SEL_CZI[3:0]  
37:33  
SEL_CPI[4:  
0]  
RW  
RW  
NVM  
NVM  
Selects the value of current loop filter capacitor.  
CPI = 3.2 pF x SEL_CPI[4:0]  
32  
SEL_CZI_M  
UL  
Selects the value of current loop integrating capacitor multiplier.  
0b: CZI_MUL = 1  
1b: CZI_MUL = 2  
31:26  
SEL_RVI[5:  
0]  
RW  
RW  
RW  
NVM  
NVM  
NVM  
Selects the value of current loop mid-band gain resistor.  
RVI = 5 kΩx SEL_RVI[5:0]  
9:8, 23:22 SEL_CZV[3:  
0]  
Selects the value of voltage loop integrating capacitor.  
CZV = 125 pF x 2SEL_GMV[1:0] x SEL_CZV[3:0]  
21:17  
SEL_CPV[4:  
0]  
Selects the value of voltage loop filter capacitor.  
CPV = 6.25 pF x SEL_CPV[4:0]  
16  
Reserved  
RW  
RW  
NVM  
NVM  
Reserved, set to 0b  
15:10  
SEL_RVV[5:  
0]  
Selects the value of voltage loop mid-band gain resistor.  
RVV = 5 kΩx SEL_RVV[5:0]  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
128 Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7-91. Register Field Descriptions (continued)  
Bit  
7:6  
5:4  
Field  
Access  
Reset  
NVM  
NVM  
Description  
Reserved  
RW  
Reserved, set to 00b  
SEL_GMV[1  
:0]  
RW  
Selects the value of voltage error transconductance.  
GMV = 25 µS x 2SEL_GMV[1:0]  
3:2  
1:0  
Reserved  
RW  
RW  
NVM  
NVM  
Reserved, set to 00b  
SEL_GMI[1:  
0]  
Selects the value of current error transconductance.  
GMI = 25 µS x 2SEL_GMI[1:0]  
(B1h) USER_DATA_01 (COMPENSATION_CONFIG) can be written to while output conversion is enabled, but  
updating those values to hardware will be blocked. To update the value used by the control loop:  
Disable conversion, then write to (B1h) USER_DATA_01 (COMPENSATION_CONFIG).  
Write to (B1h) USER_DATA_01 (COMPENSATION_CONFIG) while conversion is enabled, store PMBus  
values to NVM using (15h) STORE_USER_ALL, clear the (B1h) USER_DATA_01  
(COMPENSATION_CONFIG) bit in (EEh) MFR_SPECIFIC_30 (PIN_DETECT_OVERRIDE), then cycle AVIN  
or use the (16h) RESTORE_USER_ALL command.  
Due to the complexity of translating the 5-byte HEX value of (B1h) USER_DATA_01  
(COMPENSATION_CONFIG) into analog compensation values, users are recommended to use the tools  
available on the TPS546D24S product folder such as the TPS546x24S Compensation and Pin-Strap Resistor  
Calculator design tool.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.75 (B5h) USER_DATA_05 (POWER_STAGE_CONFIG)  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
B5h  
Write Block (per PMBus Spec, even though 1 data byte)  
Read Block (per PMBus Spec, even though 1 data byte)  
Unsigned Binary (1 byte)  
No  
Phased:  
NVM Back-up:  
Updates:  
EEPROM  
On-the-fly  
Max Transaction Time:  
Max Action Delay:  
1.0 ms  
1.0 ms (not time critical)  
POWER_STAGE_CONFIG allows the user to adjust the VDD5 regulator voltage.  
7-81. (B5h) USER_DATA_05 (POWER_STAGE_CONFIG) Register Map  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
R
R
R
R
SEL_VDD5  
Reserved  
LEGEND: R/W = Read/Write; R = Read only  
7-92. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:4  
SEL_VDD5  
RW  
NVM  
3h: VDD5 = 3.9 V (Not Recommended for Production)  
4h: VDD5 = 4.1 V  
5h: VDD5 = 4.3 V  
6h: VDD5 = 4.5 V  
7h: VDD5 = 4.7 V  
8h: VDD5 = 4.9 V  
9h: VDD5 = 5.1 V  
Ah: VDD5 = 5.3 V  
Other: Invalid  
3:0  
Reserved  
R
0000b  
Reserved. Set to 0000b.  
Setting 30h is not recommended for production use unless an external VDD5 voltage is provided because the  
3.9-V LDO setting can result in a VDD5 voltage less than the VDD5 undervoltage lockout required to enable  
conversion and can result in the TPS546D24S device being unable to enable conversion without an external  
VDD5 voltage.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
130 Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.76 (D0h) MFR_SPECIFIC_00 (TELEMETRY_CONFIG)  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
D0h  
Write Block  
Read Block  
Unsigned Binary (6 bytes)  
No  
Phased:  
NVM Back-up:  
Updates:  
EEPROM  
On-The-Fly  
Configure the priority and averaging for each channel of the internal telemetry system.  
The internal telemetry system shares a single ADC across each measurement. The priority setting allows the  
user to adjust the relative rate of measurement of each telemetry value. The ADC will first measure each value  
with a priority A value. With each pass through all priority A measurements, one priority B measurement will be  
taken. With each pass through all priority B measurements, one priority C measurement will be taken.  
Example: If output voltage has priority A and output current has priority B, and temperature has priority C, the  
telemetry sequence will be VOUT IOUT VOUT TEMPERATURE VOUT IOUT VOUT TEMPERATURE.  
7-82. (D0h) MFR_SPECIFIC_00 (TELEMETRY_CONFIG) Register Map  
47  
46  
45  
44  
43  
42  
41  
40  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Reserved priority  
Reserved  
Reserved averaging  
39  
38  
37  
36  
RW  
35  
34  
33  
RW  
32  
RW  
RW  
RW  
RW  
RW  
RW  
Reserved priority  
Reserved  
Reserved averaging  
31  
R
30  
29  
28  
RW  
27  
26  
25  
RW  
24  
RW  
RW  
RW  
RW  
RW  
RD_VI_PRI  
Reserved  
RD_VI_AVG  
23  
22  
21  
20  
RW  
19  
18  
17  
RW  
16  
RW  
RW  
RW  
RW  
RW  
RW  
RD_TMP_PRI  
Reserved  
RD_TMP_AVG  
15  
14  
13  
12  
RW  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RD_IO_PRI  
Reserved  
RD_IO_AVG  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RD_VO_PRI  
Reserved  
RD_VO_AVG  
LEGEND: R/W = Read/Write; R = Read only  
7-93. Register Field Descriptions  
Bit  
Field  
Access  
R
Reset  
Description  
47:40  
39:32  
31:30  
Not used  
Not used  
RD_VI_PRI  
00h  
Reserved. Set values to 00h.  
Reserved. Set values to 03h.  
RW  
NVM  
NVM  
RW  
00b: Assign priority A to input voltage telemetry.  
01b: Assign priority B to input voltage telemetry.  
10b: Assign priority C to input voltage telemetry.  
11b: Disable input voltage telemetry.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7-93. Register Field Descriptions (continued)  
Bit  
Field  
Access  
Reset  
Description  
31:24  
RD_VI_AVG  
RW  
NVM  
0d - 5d: READ_VIN Rolling average of 2N samples  
6d-7d: Invalid  
23:22  
RD_TMP_P  
RI  
RW  
NVM  
00b: Assign priority A to temperature telemetry.  
01b: Assign priority B to temperature telemetry.  
10b: Assign priority C to temperature telemetry.  
11b: Invalid  
21:19  
18:16  
Reserved  
RW  
RW  
NVM  
NVM  
Reserved. Set to 000b.  
RD_TMP_A  
VG  
0d - 5d: READ_TEMPERATURE_1 Rolling average of 2N samples  
6d-7d: Invalid  
15:14  
RD_IO_PRI  
RW  
NVM  
00b: Assign priority A to output current telemetry.  
01b: Assign priority B to output current telemetry.  
10b: Assign priority C to output current telemetry.  
11b: Disable output current telemetry.  
13:11  
10:8  
Reserved  
RW  
RW  
NVM  
NVM  
Reserved. Set to 000b.  
RD_IO_AVG  
0d - 5d: READ_IOUT Rolling average of 2N samples  
6d-7d: Invalid  
7:6  
RD_VO_PRI  
RW  
NVM  
00b: Assign priority A to output voltage telemetry.  
01b: Assign priority B to output voltage telemetry.  
10b: Assign priority C to output voltage telemetry.  
11b: Disable output voltage telemetry.  
5:3  
2:0  
Reserved  
RW  
RW  
NVM  
NVM  
Reserved. Set to 000b.  
RD_VO_AV  
G
0d - 5d: READ_VOUT Rolling average of 2N samples  
6d-7d: Invalid  
Disabling any telemetry value will force the associated READ PMBus command to report 0000h.  
Because temperature telemetry is used for Overtemperature Protection, temperature telemetry cannot be  
disabled.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
132 Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.77 (DAh) MFR_SPECIFIC_10 (READ_ALL)  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
DAh  
NA  
Read Block  
Unsigned Binary (14 bytes)  
Phased:  
No  
No  
NVM Back-up:  
READ_ALL provides for a 14-byte BLOCK read of STATUS_WORD and telemetry values to improve bus usage  
for poling by combining multiple READ functions into a single command, eliminating the need for multiple  
address and command code bytes.  
7-83. (DAh) MFR_SPECIFIC_10 (READ_ALL) Register Map  
111  
R
110  
R
109  
108  
107  
106  
105  
R
104  
R
R
R
R
R
Not Supported = 00h  
103  
R
102  
R
101  
R
100  
R
99  
R
98  
R
97  
R
96  
R
Not Supported = 00h  
95  
R
94  
R
93  
R
92  
R
91  
R
90  
R
89  
R
88  
R
Not Supported = 00h  
87  
R
86  
R
85  
R
84  
R
83  
R
82  
R
81  
R
80  
R
Not Supported = 00h  
79  
R
78  
R
77  
R
76  
R
75  
R
74  
R
73  
R
72  
R
READ_VIN (MSB)  
71  
R
70  
R
69  
R
68  
R
67  
R
66  
R
65  
R
64  
R
READ_VIN (LSB)  
63  
R
62  
R
61  
R
60  
R
59  
R
58  
R
57  
R
56  
R
READ_TEMPERATURE1 (MSB)  
55  
R
54  
R
53  
R
52  
R
51  
R
50  
R
49  
R
48  
R
READ_TEMPERATURE1 (LSB)  
47  
R
46  
R
45  
R
44  
R
43  
R
42  
R
41  
R
40  
R
READ_IOUT (MSB)  
39  
R
38  
R
37  
R
36  
R
35  
R
34  
R
33  
R
32  
R
READ_IOUT (LSB)  
28 27  
31  
30  
29  
26  
25  
24  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
R
R
R
R
R
R
R
R
READ_VOUT (MSB)  
23  
R
22  
R
21  
R
20  
R
19  
R
18  
R
17  
R
16  
R
READ_VOUT (LSB)  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
8
R
R
STATUS_WORD (High Byte)  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
STATUS_BYTE  
LEGEND: R/W = Read/Write; R = Read only  
7-94. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
111:96  
READ_  
DUTY_CYC  
LE  
R
0000h  
Not supported = 0000h  
95:80  
79:64  
63:48  
READ_ IIN  
READ_ VIN  
R
R
R
0000h  
0000h  
0000h  
Not supported = 0000h  
READ_VIN (Linear Format)  
READ_  
TEMPERAT  
URE1  
READ_ TEMPERATURE1 (Linear Format)  
47:32  
31:16  
15:0  
READ_  
IOUT  
R
R
R
0000h  
0000h  
0000h  
READ_ IOUT (Linear Format)  
READ_VOU  
T
READ_ VOUT (ULinear16 Format, Per VOUT_MODE)  
STATUS_WORD  
STATUS_W  
ORD  
Attempts to write read-only commands cause the CML: invalid command (IVC) fault condition, the TPS546D24S  
responds as follows:  
Set the CML bit in STATUS_BYTE.  
Set the CML_IVC (bit 7) bit in STATUS_CML.  
Notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
134 Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.78 (DBh) MFR_SPECIFIC_11 (STATUS_ALL)  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
DBh  
NA  
Read Block  
Unsigned Binary (7 bytes)  
Phased:  
No  
No  
NVM Back-up:  
STATUS_ALL provides for a 7-byte block of STATUS command codes. This can reduce bus usage to read  
multiple faults.  
7-84. (DBh) MFR_SPECIFIC_11 (STATUS_ALL) Register Map  
55  
R
54  
R
53  
52  
51  
50  
49  
R
48  
R
R
R
R
R
STATUS_MFR  
47  
R
46  
R
45  
R
44  
R
43  
R
42  
R
41  
R
40  
R
STATUS_OTHER  
39  
R
38  
R
37  
R
36  
35  
R
34  
R
33  
R
32  
R
R
STATUS_CML  
31  
R
30  
R
29  
R
28  
R
27  
R
26  
R
25  
R
24  
R
STATUS_TEMPERATURE  
23  
R
22  
R
21  
R
20  
R
19  
R
18  
R
17  
R
16  
R
STATUS_INPUT  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
8
R
R
STATUS_IOUT  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
STATUS_VOUT  
LEGEND: R/W = Read/Write; R = Read only  
7-95. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
55:48  
STATUS_  
MFR  
R
Current  
Status  
STATUS_ MFR  
47:40  
39:32  
31:24  
STATUS_  
OTHER  
R
R
R
Current  
Status  
STATUS_ OTHER  
STATUS_  
CML  
Current  
Status  
STATUS_ CML  
STATUS_  
TEMPERAT  
URE  
Current  
Status  
STATUS_ TEMPERATURE  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7-95. Register Field Descriptions (continued)  
Bit  
Field  
Access  
Reset  
Description  
23:16  
STATUS_  
INPUT  
R
Current  
Status  
STATUS_ INPUT  
15:8  
7:0  
STATUS_  
IOUT  
R
R
Current  
Status  
STATUS_ IOUT  
STATUS_ VOUT  
STATUS_  
VOUT  
Current  
Status  
Attempts to write read-only commands cause the CML: invalid command (IVC) fault condition, the TPS546D24S  
responds as follows:  
Set the CML bit in STATUS_BYTE.  
Set the CML_IVC (bit 7) bit in STATUS_CML.  
Notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Writes to STATUS_ALL do not clear asserted status bits.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
136 Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.79 (DCh) MFR_SPECIFIC_12 (STATUS_PHASE)  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
DCh  
Write Word  
Read Word  
Unsigned Binary (2 bytes)  
Phased:  
Yes  
Updates:  
On-the-fly  
No  
NVM Back-up:  
When PHASE = FFh or 80h, reads to this command return a data word detailing which phases have  
experienced fault conditions. When PHASE != FFh, reads to this command return a data worddetailing which  
faults the current PHASE has experienced. PHASE number assignment is per PHASE_CONFIG. Bits  
corresponding to unused (unassigned or disabled) phase numbers are always equal to 0b.  
7-85. (DCh) MFR_SPECIFIC_12 (STATUS_PHASE)  
15  
R
14  
R
13  
R
12  
R
11  
RW  
0
10  
RW  
0
9
RW  
0
8
RW  
0
7
RW  
0
6
RW  
0
5
RW  
0
4
RW  
0
3
2
1
0
RW  
PH3  
RW  
PH2  
RW  
PH1  
RW  
PH0  
0
0
0
0
LEGEND: R/W = Read/Write; R = Read only  
7-96. Register Field Descriptions  
Bit  
15:4  
3
Field  
Reserved  
PH3  
Access  
R
Reset  
Description  
0b  
Reserved  
RW  
0b  
0b: The TPS546D24S assigned to PHASE = 3d has NOT experienced a fault.  
1b: The TPS546D24S assigned to PHASE = 3d has experienced a fault. Set  
PHASE = 3d, and read STATUS_WORD or STATUS_ALL for more information.  
2
1
0
PH2  
PH1  
PH0  
RW  
RW  
RW  
0b  
0b  
0b  
0b: The TPS546D24S assigned to PHASE = 2d has NOT experienced a fault.  
1b: The TPS546D24S assigned to PHASE = 2d has experienced a fault. Set  
PHASE = 2d, and read STATUS_WORD or STATUS_ALL for more information.  
0b: The TPS546D24S assigned to PHASE = 1d has NOT experienced a fault.  
1b: The TPS546D24S assigned to PHASE = 1d has experienced a fault. Set  
PHASE = 1d, and read STATUS_WORD or STATUS_ALL for more information.  
0b: The TPS546D24S assigned to PHASE = 0d has NOT experienced a fault.  
1b: The TPS546D24S assigned to PHASE = 0d has experienced a fault. Set  
PHASE = 0d, and read STATUS_WORD or STATUS_ALL for more information.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.80 (E3h) MFR_SPECIFIC_19 (PGOOD_CONFIG)  
CMD Address  
Write Transaction:  
Read Transaction:  
Format  
E3h  
Write Word  
Read Word  
Unsigned Word  
Phased:  
No  
NVM Backup:  
Updates:  
EEPROM or Pin Detect  
Conversion Disable: see below. Conversion Enable: Read-Only  
7-86. (E3h) MFR_SPECIFIC_19 (PGOOD_CONFIG) Register Map  
15  
R
14  
13  
12  
11  
10  
9
8
R
R
R
R
R
R
R
PGOOD_OFF_DELAY[3:0]  
PGOOD_ON_DELAY[3:0]  
7
R
6
R
5
R
4
R
3
2
1
0
RW  
RW  
RW  
RW  
pgmOVF  
pgmOVW  
pgmUVW  
pgmUVF  
pgmOCW  
pgmOCF  
pgmINOVW  
pgmINOVF  
LEGEND: R/W = Read/Write; R = Read only  
7-97. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
NVM  
15:12  
PGOOD_OF  
F_DELAY[3:  
0]  
RW  
Sets Delay from the detection of an unmasked Fault or Warning event to the  
assertion of PGOOD low.  
0d: Delay PGOOD high-low 1 PWM CLK  
1d-15d: Delay PGOOD high-low 2N+1 PWM CLKs  
NVM  
11:8  
PGOOD_O  
N_DELAY[3:  
0]  
RW  
Sets Delay from the detection of no unmasked Fault or Warning events to the  
release of PGOOD low.  
0d: Delay PGOOD low-hight to 1 PWM CLK  
1d-15d: Delay PGOOD low-high 2N+1 PWM CLKs  
7
6
5
4
3
2
1
0
pgmOVF  
pgmOVW  
pgmUVF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
NVM  
NVM  
NVM  
NVM  
NVM  
NVM  
NVM  
NVM  
0b: Output Overvoltage Fault can assert PGOOD low.  
1b: Output Overvoltage Fault cannot assert PGOOD low.  
0b: Output Overvoltage Warning can assert PGOOD low.  
1b: Output Overvoltage Warning cannot assert PGOOD low.  
0b: Output Undervoltage Fault can assert PGOOD low.  
1b: Output Undervoltage Fault cannot assert PGOOD low.  
pgmUVW  
pgmOCW  
pgmOCF  
0b: Output Undervoltage Warning can assert PGOOD low.  
1b: Output Undervoltage Warning cannot assert PGOOD low.  
0b: Output Overcurrent Warning can assert PGOOD low.  
1b: Output Overcurrent Warning cannot assert PGOOD low.  
0b: Output Overcurrent Fault can assert PGOOD low.  
1b: Output Overcurrent Fault cannot assert PGOOD low.  
pgmINOVW  
pgmINOVF  
0b: Input Overvoltage Warning can assert PGOOD low.  
1b: Input Overvoltage Warning cannot assert PGOOD low.  
0b: Input Overvoltage Fault can assert PGOOD low.  
1b: Input Overvoltage Fault cannot assert PGOOD low.  
Power Good indicates the status of the converter. (E3h) MFR_SPECIFIC_19 (PGOOD_CONFIG) provides  
control of the delays asserting and releasing Power Good. Power Good is always low while conversion is  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
138 Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
disabled, during (60h) TON_DELAY, (61h) TON_RISE, (65h) TOFF_FALL, and during a fault shut-down or  
hiccup delay. PGOOD_OFF_DELAY is bypassed during (65h) TOFF_FALL and during a fault shut-down or  
hiccup. Power Good will still be asserted on an unmasked fault event unless that fault's RESPONSE command  
is configured to Continue Operating without Interruption.  
PGOOD_OFF_DELAY and PGOOD_ON_DELAY are sensed and timed independently from each other. If  
PGOOD_ON_DELAY is less than PGOOD_OFF_DELAY and an unmasked fault or warning event lasts less than  
PGOOD_OFF_DELAY - PGOOD_ON_DELAY, Power Good will not be asserted low during the fault or warning  
events.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.81 (E4h) MFR_SPECIFIC_20 (SYNC_CONFIG)  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
E4h  
Write Byte  
Read Byte  
Unsigned Binary  
No  
Phased:  
NVM Back-up:  
Updates:  
EEPROM or Pin Detect  
On-the-fly  
7-87. (E4h) MFR_SPECIFIC_20 (SYNC_CONFIG) Register Map  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
SYNC_ DIR  
SYNC_EDGE  
10000b  
LEGEND: R/W = Read/Write; R = Read only  
7-98. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7:6  
SYNC_DIR  
RW  
NVM  
00b: SYNC disabled  
01b: Enable SYNC OUT.  
10b: Enable SYNC IN.  
11b: Enable Auto Detect SYNC  
5
SYNC_EDG  
E
RW  
RW  
NVM  
0b: Synchronize to falling edge of SYNC.  
1b: Synchronize to rising edge of SYNC.  
4:0  
Not  
10000b  
Not supported. Set to 10000b.  
supported  
Attempts to write (E4h) MFR_SPECIFIC_E4 (SYNC_CONFIG) to any value outside those specified as valid will  
be considered invalid/unsupported data and cause the TPS546D24S to respond by flagging the appropriate  
status bits and notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
When SYNC_DIR = 11b - Enable Auto Detect, the TPS546D24S will select SYNC_IN or SYNC_OUT based on  
the state of the SYNC pin when the Enable Condition, as defined by ON_OFF_CONFIG is met. If the SYNC_PIN  
is >2 V or switching faster than 75% of FRQUENCY_SWITCH, SYNC_IN shall be enabled. If the SYNC_PIN is  
less than 0.8 V and not switching, SYNC_OUT will be selected.  
Changing SYNC_DIR from SYNC_IN to SYNC_OUT on a multi-phase stack while conversion is enabled but  
prevented due to a SYNC_FAULT results in the internal oscillator operating at 70% of its nominal frequency.  
Because this result is outside of the ensured SYNC_IN range of the loop follower device, this can result in  
unsynchronized operation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
140 Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.82 (ECh) MFR_SPECIFIC_28 (STACK_CONFIG)  
CMD Address  
Write Transaction:  
Read Transaction:  
Format  
ECh  
Write Word  
Read Word  
Unsigned Word  
Phased:  
No  
NVM Backup:  
Updates:  
EEPROM or Pin Detect  
Conversion Disable: see below. Conversion Enable: Read-Only  
7-88. (ECh) MFR_SPECIFIC_28 (STACK_CONFIG) Register Map  
15  
R
14  
13  
12  
11  
10  
9
8
R
R
R
R
R
R
R
Reserved 0000h  
7
6
5
4
3
2
1
0
R
R
R
R
RW  
RW  
RW  
RW  
BCX_START  
BCX_STOP  
LEGEND: R/W = Read/Write; R = Read only  
7-99. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:8  
Not  
R
0000h  
Reserved. Equal 0000h.  
supported  
7:4  
3:0  
BCX_STAR  
T
R
0000b  
NVM  
BCX_Address for Stack Loop Controller. Equal to 0000b.  
BCX_STOP  
RW  
0000b: Stand Alone, Single-phase  
0001b: One Loop Follower, 2-phase  
0010b: Two Loop Followers, 3-phase  
0011b: Three Loop Followers, 4-phase  
Other: Not supported / Invalid  
Attempts to write (ECh) MFR_SPECIFIC_28 (STACK_CONFIG) to any value outside those specified as valid,  
will be considered invalid/unsupported data and cause TPS546D24S to respond by flagging the appropriate  
status bits and notifying the host according to the PMBus 1.3.1 Part II specification section 10.9.3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.83 (EDh) MFR_SPECIFIC_29 (MISC_OPTIONS)  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
EDh  
Write Word  
Read Word  
Unsigned Binary (2 bytes)  
No  
Phased:  
NVM Backup:  
Updates:  
EEPROM  
on-the-fly  
MFR_SPECIFIC_29 is used to configure miscellaneous settings.  
7-89. (EDh) MFR_SPECIFIC_29 (MISC_OPTIONS) Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Reserv  
ed  
PEC  
RESET_CNT  
RESET_FLT  
RESET#  
Reserved  
Reserved  
Reserved  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Reserv  
ed  
Reserved  
Reserved  
Reserved  
PULLUP#  
FLT_CNT  
ADC_RES  
LEGEND: R/W = Read/Write; R = Read only  
7-100. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15  
PEC  
RW  
NVM  
0b: PEC Optional. Transactions received without PEC byte will be processed.  
1b: PEC Required. Transactions received without PEC byte will be rejected as  
invalid PEC.  
14  
13  
12  
RESET_CN  
T
RW  
RW  
RW  
NVM  
NVM  
NVM  
0b: VOUT_COMMAND will be unchanged following a shutdown.  
1b: VOUT_COMMAND will be changed to VBOOT on a Control or OPERATION  
shutdown.  
RESET_FLT  
RESET#  
0b: VOUT_COMMAND will be unchanged following a Fault Restart.  
1b: VOUT_COMMAND will be changed to VBOOT on Restart from a Fault when  
Fault Retry is set to Retry after Fault.  
Sets the function of the PGD/RESET_B pin.  
0b: PGD/RESET_B functions as PGOOD and internal pullup is disabled.  
1b: PGD/RESET_B functions as RESET# and internal pullup is set by bit 3  
PULLUP#.  
11:3  
3
Reserved  
PULLUP#  
RW  
RW  
NVM  
NVM  
Reserved. Must be 000000000b  
Sets the pullup of the PGD/RESET_B pin when RESET# = 1b.  
0b: Internal pullup of PGD/RESET_B pin enabled when RESET# = 1b.  
1b: Internal pullup of PGD/RESET_B pin disabled when RESET# = 1b.  
2
FLT_CNT  
ADC_RES  
RW  
RW  
NVM  
NVM  
0b: Fault Counter counts down one cycle on PWM cycle without fault  
1b: Fault Counter resets counter to 0 on PWM cycle without fault  
1:0  
ADC Resolution Control  
00b: Set ADC Resolution to 12-bit  
01b: Set ADC Resolution to 10-bit  
10b: Set ADC Resolution to 8-bit  
11b: Set ADC Resolution to 6-bit  
Copyright © 2023 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.84 (EEh) MFR_SPECIFIC_30 (PIN_DETECT_OVERRIDE)  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
EEh  
Write Word  
Read Word  
Unsigned Binary (1 byte)  
Phased:  
No  
NVM Backup:  
Updates:  
EEPROM  
on-the-fly (pin detection occurs on POR only).  
PMBUS specified that NVM (Default or User) stored values will overwrite Pin Programmed Values. Setting a  
1in each bit of this register will prevent DEFAULT or USER STORE values from overwriting the Pin-  
Programmed Value associated that bit.  
7-90. (EEh) MFR_SPECIFIC_30 (PIN_DETECT_OVERRIDE) Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
STACK_CONFI  
G
COMP_CONFI  
G
Reserved  
SYNC_CONFIG  
Reserved  
ADDRESS  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Reserved  
INTERLEAVE  
Reserved  
TON_RISE  
IOUT_OC  
FREQ  
VOUT  
LEGEND: R/W = Read/Write; R = Read only  
7-101. Register Field Descriptions  
Bit  
15:13  
12  
Field  
Access  
RW  
Reset  
NVM  
NVM  
Description  
Reserved  
Not used and set to 000b.  
STACK_CO  
NFIG  
RW  
0b: At power-up or RESTORE, STACK_CONFIG will be reset to NVM value.  
1b: At power-up or RESTORE, STACK_CONFIG will be reset to pin-detected  
value.  
11  
SYNC_CON  
FIG  
RW  
NVM  
0b: At power-up or RESTORE, SYNC_CONFIG will be reset to NVM value.  
1b: At power-up or RESTORE, SYNC_CONFIG will be reset to pin-detected value.  
10  
9
Reserved  
RW  
RW  
NVM  
NVM  
Not used and set to 0b or 1b.  
COMP_CO  
NFIG  
0b: At power-up or RESTORE, COMPENSATION_CONFIG will be reset to NVM  
value.  
1b: At power-up or RESTORE, COMPENSATION_CONFIG will be reset to pin-  
detected value.  
8
ADDRESS  
RW  
NVM  
0b: At power-up or RESTORE, DEVICE_ADDRESS will be reset to NVM value.  
1b: At power-up or RESTORE, DEVICE_ADDRESS will be reset to pin-detected  
value.  
7:6  
5
Reserved  
RW  
RW  
NVM  
NVM  
Not used and set to 00b.  
INTERLEAV  
E
0b: At power-up or RESTORE, INTERLEAVE will be reset to NVM value.  
1b: At power-up or RESTORE, INTERLEAVE will be reset to pin-detected value.  
4
3
Reserved  
RW  
RW  
NVM  
NVM  
Not used and set to 0b or 1b.  
TON_RISE  
0b: At power-up or RESTORE, TON_RISE will be reset to NVM value.  
1b: At power-up or RESTORE, TON_RISE will be reset to pin-detected value.  
2
IOUT_OC  
FREQ  
RW  
NVM  
0b: At power-up or RESTORE, IOUT_OC_FAULT_LIMIT and  
IOUT_OC_WARN_LIMIT will be reset to NVM value.  
1b: At power-up or RESTORE, IOUT_OC_FAULT_LIMIT and  
IOUT_OC_WARN_LIMIT will be reset to pin-detected value.  
1
RW  
NVM  
0b: At power-up or RESTORE, FREQUENCY_SWITCH will be reset to NVM value.  
1b: At power-up or RESTORE, FREQUENCY_SWITCH will be reset to pin-  
detected value.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7-101. Register Field Descriptions (continued)  
Bit  
Field  
Access  
Reset  
Description  
0
VOUT  
RW  
NVM  
0b: At power-up or RESTORE, VOUT_COMMAND, VOUT_SCALE_LOOP,  
VOUT_MAX, and VOUT_MIN will be reset to NVM value.  
1b: At power-up or RESTORE, VOUT_COMMAND, VOUT_SCALE_LOOP,  
VOUT_MAX, and VOUT_MIN will be reset to pin-detected value.  
PIN_DETECT_OVERRIDE allows the user to force Pin Detected values to override the User Store NVM value  
for various PMBus commands during Power On Reset and RESTORE_USER_ALL.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
144 Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.85 (EFh) MFR_SPECIFIC_31 (DEVICE_ADDRESS)  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
EFh  
Write Byte  
Read Byte  
Unsigned Binary (1 bytes)  
No  
Phased:  
NVM Backup:  
Updates:  
EEPROM or Pin Detect  
on-the-fly  
The DEVICE_ADDRESS command can be used to program or read-back the device address of digital  
communication. Note, when a device address is updated, the TPS546D24S starts responding to the new  
address immediately.  
7-91. (EFh) MFR_SPECIFIC_31 (DEVICE_ADDRESS) Register Map  
7
R
0
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ADDR_PMBUS  
LEGEND: R/W = Read/Write; R = Read only  
7-102. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
7
Not  
R
0b  
Not supported. Set to b'0.  
supported  
6:0  
ADDR_  
PMBUS  
RW  
NVM/  
Pinstrap  
PMBus device address  
There are a number of device address values which are reserved in the SMBus specification. The following  
reserved addresses are invalid and can not be programmed:  
0x0C  
0x28  
0x37  
0x61  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.86 (F0h) MFR_SPECIFIC_32 (NVM_CHECKSUM)  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
F0h  
NA  
Read Word  
Unsigned Binary (2 bytes)  
Phased:  
No  
NVM Back-up:  
Updates:  
EEPROM  
At boot-up, and following NVM Store/Restore operations.  
NVM_CHECKSUM reports the CRC-16 (polynomial 0x8005) checksum for the current NVM settings.  
7-92. (F0h) MFR_SPECIFIC_32 (NVM_CHECKSUM) Register Map  
15  
R
14  
13  
12  
11  
10  
9
8
R
R
R
R
R
R
R
NVM_CHECKSUM  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
NVM_CHECKSUM  
LEGEND: R/W = Read/Write; R = Read only  
7-103. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:0  
NVM_  
CHECKSU  
M
R
Per NVM CRC16 for EEPROM settings.  
Settings  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
146 Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.87 (F1h) MFR_SPECIFIC_33 (SIMULATE_FAULT)  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
F1h  
Write Word  
Read Word  
Unsigned Binary (2 bytes)  
Phased:  
Yes  
No  
NVM Back-up:  
SIMULATE_FAULT will allow the user to simulate fault and warning conditions by triggering the output of the  
detection circuit for that controls it. Multiple faults and or can be simulated at once.  
7-93. (F1h) MFR_SPECIFIC_F1 (SIMULATE_FAULT) Register Map  
15  
14  
13  
12  
11  
10  
9
8
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
FAULT_PERSI SIM_TEMP_OT  
SIM_IOUT_OC  
F
SIM_VOUT_UV SIM_VOUT_OV  
Reserved  
SIM_VIN_OFF SIM_VIN_OVF  
ST  
F
F
F
7
6
5
4
3
2
1
0
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
WARN_PERSIS  
T
SIM_IOUT_OC  
W
SIM_VOUT_UV SIM_VOUT_OV  
Reserved  
Reserved  
SIM_VIN_UVW  
Reserved  
W
W
LEGEND: R/W = Read/Write; R = Read only  
7-104. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15  
FAULT_PER  
SIST  
W/R  
0b  
0b: Simulated faults are automatically removed after one fault response.  
1b: Simulated faults persist until SIMULATE_FAULTS is written again.  
14  
13  
12  
11  
10  
9
SIM_TEMP_  
OTF  
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b: No change  
1b: Simulate overtemperature fault  
Reserved  
0b: No change  
1b: Not used  
SIM_IOUT_  
OCF  
0b: No change  
1b: Simulate output current overcurrent fault.  
SIM_VIN_O  
FF*  
0b: No change  
1b: Simulate PVIN undervoltage lockout.  
SIM_VIN_O  
VF  
0b: No change  
1b: Simulate PVIN overvoltage fault.  
SIM_VOUT_  
UVF  
0b: No change  
1b: Simulate VOUT undervoltage fault.  
8
SIM_VOUT_  
OVF*  
0b: No change  
1b: Simulate VOUT overvoltage fault.  
7
WARN_PER  
SIST  
Default  
Settings  
0b: Simulated warnings are automatically removed after one Fault response.  
1b: Simulated warnings persist until SIMULATE_FAULTS is written again.  
6
Reserved  
Default  
Settings  
0b: No change  
1b: Not used  
5
Reserved  
Default  
Settings  
0b: No change  
1b: Not used  
4
SIM_IOUT_  
OCW  
Default  
Settings  
0b: No change  
1b: Simulate output current overcurrent warning.  
3
SIM_VIN_U  
VW  
Default  
Settings  
0b: No change  
1b: Simulate PVIN undervoltage warning.  
2
Reserved  
Default  
Settings  
0b: No change  
1b: Not used  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7-104. Register Field Descriptions (continued)  
Bit  
Field  
Access  
Reset  
Description  
1
SIM_VOUT_  
UVW  
W/R  
Default  
Settings  
0b: No change  
1b: Simulate VOUT undervoltage warning.  
0
SIM_VOUT_  
OVW  
W/R  
Default  
Settings  
0b: No change, 1b: Simulate VOUT overvoltage warning.  
*Only SIM_VIN_OFF and SIM_VOUT_OVF are allowed to trigger their analog comparator while conversion is  
disabled. All other faults, including SIM_TEMP_OTF and SIM_VIN_OVF will only simulate while conversion is  
enabled to allow these faults to simulate repeated shut-down and restart responses when FAULT_PERSIST is  
selected.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
148 Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.88 (FAh) MFR_SPECIFIC_42 (PASSKEY)  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
FAh  
Write Word  
Read Word  
Unsigned Binary (2 bytes)  
No  
Phased:  
NVM Back-up:  
Updates:  
EEPROM  
At Boot-up  
PASSKEY sets a User Programmable 16-bit passkey to disable write access to EXT_WRITE_PROTECT and  
User Store Non-Volatile Memory (NVM). When PASSKEY is set to 0000h, access to STORE_USER_ALL is  
enabled and writes to PASSKEY will update the active register value for PASSKEY. When PASSKEY is set to a  
value other than 0000h during boot-up, write access to EXT_WRITE_PROTECT and STORE_USER_ALL is  
disabled until the 16-bit word stored in NVM at boot-up is written to PASSKEY.  
If 3 writes to PASSKEY are received that do not match the passkey without receiving a write that does match the  
passkey, PASSKEY access will be locked and all future writes to PASSKEY will be treated as invalid until the  
device receives a Power On Reset  
To protect against unauthorized access to PASSKEY, reading PASSKEY will not respond with the passkey value  
but a fixed 16-bit word response based on the state of the PASSKEY  
1. 0000h - PASSKEY is Unlocked  
2. 000Fh - PASSKEY is Locked and no invalid writes have been made  
3. 001Fh - PASSKEY is Locked and one invalid write has been made  
4. 002Fh - PASSKEY is Locked and two invalid writes have been made  
5. 00FFh - PASSKEY is Locked and three or more invalid writes have been made  
7-94. (FAh) MFR_SPECIFIC_42 (PASSKEY) Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
PASSKEY  
PASSKEY  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
LEGEND: R/W = Read/Write; R = Read only  
7-105. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:0  
PASSKEY  
RW  
NVM  
Write: PASSKEY passkey  
Read:  
0000h - PASSKEY is Unlocked  
000Fh - PASSKEY is Locked and no invalid writes have been made  
001Fh - PASSKEY is Locked and one invalid write has been made  
002Fh - PASSKEY is Locked and two invalid writes have been made  
00FFh - PASSKEY is Locked and three or more invalid writes have been made  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.89 (FBh) MFR_SPECIFIC_43 (EXT_WRITE_PROTECT)  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
FBh  
Write Word  
Read Word  
Unsigned Binary (2 bytes)  
No  
Phased:  
NVM Back-up:  
Updates:  
EEPROM  
At Boot-up  
EXT_WRITE_PROTECT provides the user with greater resolution to Write Protect features than the Standard  
PMBus Function. Each bit in the EXT_WRITE_PROTECT provides individual and independent  
WRITE_PROTECTION.  
7-95. (FBh) MFR_SPECIFIC_43 (EXT_WRITE_PROTECT) Register Map  
15  
14  
13  
12  
11  
10  
9
8
RW  
RW  
WP  
RW  
RW  
RW  
VOF  
RW  
WN  
RW  
ITF  
RW  
MAR  
HWP  
TRIM  
VOUT  
7
6
5
4
3
2
1
0
RW  
OP  
RW  
CFG  
RW  
VIN  
RW  
SEQ  
RW  
DAT  
RW  
BOT  
RW  
PSK  
RW  
STR  
LEGEND: R/W = Read/Write; R = Read only  
7-106. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
HWP  
NVM  
Command List: EXT_WRITE_PROTECT (This command), PASSKEY  
0b: Commands are Writable unless:  
15  
RW  
a. EXT_WRITE_PROTECT is Write Protected by PASSKEY  
b. PASSKEY is Write Protected by EXT_WRITE_PROTECT[1]  
1b: Commands are Read Only (if stored to NVM, this will permanently lock  
EXT_WRITE_PROTECT)  
14  
13  
WP  
RW  
RW  
NVM  
NVM  
Command List: WRITE_PROTECT (Standard PMBus Command)  
0b: Commands are Writable (No other command controls write access to  
WRITE_PROTECT  
1b: Commands are Read Only  
TRIM  
Command List: VOUT_TRIM, VOUT_SCALE_LOOP, IOUT_CAL_GAIN,  
IOUT_CAL_OFFSET  
0b: Commands are Writable unless Write Protected by WRITE_PROTECT  
1b: Commands are Read Only  
12  
11  
VOUT  
VOF  
RW  
RW  
NVM  
NVM  
Command List: VOUT_MODE, VOUT_COMMAND  
0b: Commands are Writable unless Write Protected by WRITE_PROTECT  
1b: Commands are Read Only  
Command List: VOUT_MAX, VOUT_OV_FAULT_LIMIT,  
VOUT_OV_FAULT_RESPONSE, VOUT_UV_FAULT_LIMIT,  
VOUT_UV_FAULT_RESPONSE, VOUT_MIN  
0b: Commands are Writable unless Write Protected by WRITE_PROTECT  
1b: Commands are Read Only  
10  
9
WN  
ITF  
RW  
RW  
NVM  
NVM  
Command List: VOUT_OV_WARN_LIMIT, VOUT_UV_WARN_LIMIT,  
IOUT_OC_WARN_LIMIT, OT_WARN_LIMIT, SMBALERT_MASK  
0b: Commands are Writable unless Write Protected by WRITE_PROTECT  
1b: Commands are Read Only  
Command List: IOUT_OC_FAULT_LIMIT, IOUT_OC_FAULT_RESPONSE,  
OT_FAULT_LIMIT, OT_FAULT_RESPONSE, SIMULATE_FAULTS  
0b: Commands are Writable unless Write Protected by WRITE_PROTECT  
1b: Commands are Read Only  
Copyright © 2023 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7-106. Register Field Descriptions (continued)  
Bit  
Field  
Access  
Reset  
Description  
8
MAR  
RW  
NVM  
Command List: VOUT_MARGIN_HIGH, VOUT_MARGIN_LOW,  
VOUT_TRANSITION_RATE  
0b: Commands are Writable unless Write Protected by WRITE_PROTECT  
1b: Commands are Read Only  
7
6
OP  
RW  
RW  
NVM  
NVM  
Command List: OPERATION  
0b: Commands are Writable unless Write Protected by WRITE_PROTECT  
1b: Commands are Read Only  
CFG  
Command List: FREQUENCY_SWITCH, INTERLEAVE,  
COMPENSATION_CONFIG, TRANSIENT_REDUCTION_CONFIG,  
TELEMETRY_CONFIG, POWER_STAGE_CONFIG, PGOOD_CONFIG,  
SYNC_CONFIG, MISC_OPTIONS, STACK_CONFIG  
0b: Commands are Writable unless Write Protected by WRITE_PROTECT  
1b: Commands are Read Only  
5
4
VIN  
RW  
RW  
NVM  
NVM  
Command List: VIN_UV_WARN_LIMIT, VIN_OV_FAULT_LIMIT,  
VIN_OV_WARN_LIMIT, VIN_OV_FAULT_RESPONSE  
0b: Commands are Writable unless Write Protected by WRITE_PROTECT  
1b: Commands are Read Only  
SEQ  
Command List: TON_DELAY, TON_RISE, TON_MAX_FAULT_LIMIT,  
TON_MAX_FAULT_RESPONSE, TOFF_DELAY, TOFF_FALL, and  
ON_OFF_CONFIG, VIN_ON, VIN_OFF  
0b: Commands are Writable unless Write Protected by WRITE_PROTECT  
1b: Commands are Read Only  
3
2
1
DAT  
BOT  
PSK  
RW  
RW  
RW  
NVM  
NVM  
NVM  
Command List: MFR_ID, MFR_MODEL, MFE_REVISION, MFR_SERIAL  
0b: Commands are Writable unless Write Protected by WRITE_PROTECT  
1b: Commands are Read Only  
Command List: PIN_DETECT_OVERRIDE, PMBUS_ADDRESS  
0b: Command are Writable unless Read Only from WRITE_PROTECT  
1b: Commands are Read Only  
Command List: PASSKEY  
0b: Commands are Writable unless Write Protected by WRITE_PROTECT  
1b: Commands are Read Only  
备注  
Because PASSKEY write protects EXT_WRITE_PROTECT when  
PASSKEY != 0000h, setting this bit when PASSKEY != 0000h and  
storing to NVM permanently locks access to EXT_WRITE_PROTECT.  
Setting this bit when PASSKEY is set to 0000h prevents the  
programming of a PASSKEY value.  
0
STR  
RW  
NVM  
Command List: STORE_USER_ALL  
0b @ Power On Reset: Commands are Writable unless Read Only from  
WRITE_PROTECT or PASSKEY  
0b @ RESTORE: Commands are Writable unless Read Only from  
WRITE_PROTECT or PASSKEY  
0b at All other Times: Commands are Writable unless Read Only from  
WRITE_PROTECT or PASSKEY  
1b @ Power On Reset: Commands are Read Only  
1b @ RESTORE: Commands are Read Only  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.90 (FCh) MFR_SPECIFIC_44 (FUSION_ID0)  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
FCh  
Write Word (writes accepted but otherwise ignored)  
Read Word  
Unsigned Binary (2 bytes)  
Phased:  
No  
No  
NVM Back-up:  
FUSION_ID0 provides a platform level Identification code to be used by Texas Instruments Digital Power  
Designer for identifying a TI device.  
Writes to this command will be accepted, but ignored otherwise (the readback value of this command does not  
change following a write attempt). This command is writeable for some TI devices, so to maintain cross-  
compatibility, the TPS546D24S accepts write transactions to this command as well. No STATUS_CML bits are  
set as a result of the receipt of a write attempt to this command.  
7-96. (FCh) MFR_SPECIFIC_44 (FUSION_ID0) Register Map  
15  
R
14  
R
13  
12  
11  
10  
9
8
R
R
R
R
R
R
FUSION_ID0  
FUSION_ID0  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only  
7-107. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
15:0  
FUSION_  
ID0  
R
02C0h  
Hard Coded to 02C0h  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
152 Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7.6.91 (FDh) MFR_SPECIFIC_45 (FUSION_ID1)  
CMD Address  
Write Transaction:  
Read Transaction:  
Format:  
FDh  
Block Write (writes accepted but otherwise ignored)  
Block Read  
Unsigned Binary (6 bytes)  
Phased:  
No  
No  
NVM Back-up:  
FUSION_ID1 provides a platform level Identification code to be used by Texas Instruments Digital Power  
Designer for identifying a TI device.  
Writes to this command will be accepted, but ignored otherwise (the readback value of this command does not  
change following a write attempt). This command is writeable for some TI devices, so to maintain cross-  
compatibility, the TPS546D24S accepts write transactions to this command as well. No STATUS_CML bits are  
set as a result of the receipt of a write attempt to this command.  
7-97. (FDh) MFR_SPECIFIC_45 (FUSION_ID1) Register Map  
47  
R
46  
R
45  
44  
43  
42  
41  
R
40  
R
R
R
R
R
FUSION_ID1  
39  
R
38  
R
37  
R
36  
R
35  
R
34  
R
33  
R
32  
R
FUSION_ID1  
FUSION_ID1  
31  
30  
29  
28  
27  
26  
25  
24  
23  
R
22  
R
21  
R
20  
R
19  
R
18  
R
17  
R
16  
R
FUSION_ID1  
FUSION_ID1  
FUSION_ID1  
15  
R
14  
R
13  
R
12  
R
11  
R
10  
R
9
8
R
R
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only  
7-108. Register Field Descriptions  
Bit  
Field  
Access  
Reset  
Description  
47:40  
FUSION_  
ID1  
R
4Bh  
Hard coded to 4Bh  
39:32  
31:24  
23:16  
15:8  
FUSION_  
ID1  
R
R
R
R
43h  
4Fh  
4Ch  
49h  
Hard coded to 43h  
Hard coded to 4Fh  
Hard coded to 4Ch  
Hard coded to 49h  
FUSION_  
ID1  
FUSION_  
ID1  
FUSION_  
ID1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
7-108. Register Field Descriptions (continued)  
Bit  
Field  
Access  
Reset  
Description  
7:0  
FUSION_  
ID1  
R
54h  
Hard coded to 54h  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
154 Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TPS546D24S is a highly integrated, synchronous step-down DC/DC converter. This device is used to  
convert a higher DC-input voltage to a lower DC-output voltage, with a maximum output current of 40 A for a  
single device. Use the following design procedures to select key component values for single phasethrough four-  
phase designs. The appropriate behavioral options can be set through PMBus.  
8.2 Typical Application  
U1  
R1  
PVIN  
C1  
21  
22  
23  
24  
25  
7
VIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
BOOT  
R2  
10  
0
8
SW  
SW  
SW  
SW  
SW  
C2  
100uF  
C3  
100uF  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
0.1uF  
9
22uF 22uF  
22uF 22uF 6800pF 6800pF 6800pF  
1uF  
10  
11  
12  
L1  
26  
27  
28  
AGND  
AVIN  
GND  
GND  
VOUT  
CNTL  
EN/UVLO  
VDD5  
300nH  
VDD5  
13  
14  
15  
16  
17  
18  
19  
20  
41  
C12  
1000pF  
GND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PAD  
C16  
470uF  
C17  
470uF  
C18  
47uF  
C13  
47uF  
C14  
47uF  
C15  
47uF  
AGND  
C19  
4.7uF  
R3  
NT1  
1.0  
Net-Tie  
GND  
GND  
GND  
R4  
33  
BP1V5  
VOSNS  
4
49.9  
R5  
BP1V5  
C20  
100pF  
34  
35  
36  
38  
GOSNS/SLAVE  
VSHARE  
NC  
R6  
R7  
R8  
R9  
49.9  
C21  
2.2uF  
9.09k  
78.7k  
TBD  
44.2k  
MSEL2  
VSEL  
29  
30  
31  
32  
MSEL2  
VSEL  
MSEL2  
GND  
DRTN  
VSEL  
ADRSEL  
ADRSEL  
MSEL1  
ADRSEL  
MSEL1  
SYNC  
SYNC  
MSEL1  
39  
40  
BCX_CLK  
BCX_DAT  
R10  
4.64k  
R11  
31.6k  
R12  
TBD  
R13  
17.8k  
1
5
PG  
PGD/RST  
DRTN  
PGD  
2
3
PMB_DATA  
PMB_CLK  
PMB_DATA  
PMB_CLK  
R14  
10.0k  
DRTN  
VDD5  
6
37 AGND  
SMB_ALRT  
SMB_ALRT  
AGND  
AGND  
TPS546D24SRVFR  
8-1. TPS546D24S Standalone Application  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
8.2.1 Design Requirements  
For this design example, use the input parameters listed in 8-1.  
8-1. Design Parameters  
DESIGN PARAMETER  
Input voltage  
TEST CONDITIONS  
MIN  
TYP  
12  
MAX UNIT  
VIN  
5
16  
V
V
V
VIN(ripple)  
VOUT  
Input ripple voltage  
VIN =12 V, IOUT = 20 A  
0.3  
1.0  
Output voltage  
Line regulation  
0.5%  
0.5%  
ΔVO(ΔVI)  
ΔVO(ΔIO)  
VPP  
5 V VIN 16 V  
0 V IOUT 35 A  
IOUT = 35 A  
Load regulation  
Output ripple voltage  
VOUT deviation during load transient  
Output current  
20  
50  
mV  
mV  
A
VOUT  
IOUT  
IOUT = 10 A, VIN = 12 V  
5 V VIN 16 V  
0
35  
IOCP  
Output overcurrent protection threshold  
Switching frequency  
Full load efficiency  
40  
325  
90%  
3
A
FSW  
VIN = 12 V  
kHz  
VIN = 12 V, IOUT = 35 A  
ηFull load  
tSS  
Soft-start time (TON_RISE  
)
ms  
8.2.2 Detailed Design Procedure  
The TPS546D24S provides four pins to program critical PMBus register values without requiring PMBus  
communication. Please refer to 7-7 for the pin-strapping options. Some equations include a variable N, which  
is the number of devices stacked together. In this stand-alone device example, the value of N is equal to 1.  
The TPS546x24S Compensation and Pin-Strap Resistor Calculator can also be used to aid in design  
calculations and pin-strap resistor selection.  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS546D24S device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Switching Frequency  
The MSEL1 pin programs USER_DATA_01 (COMPENSATION_CONFIG) and FREQUENCY_SWITCH. The  
resistor divider ratio for MSEL1 selects the nominal switching frequency. In the design procedure for MSEL1,  
switching frequency is configured first, compensation is chosen after output capacitance is determined.  
There is a tradeoff between higher and lower switching frequencies for buck converters. Higher switching  
frequencies can produce smaller solution size using lower valued inductors and smaller output capacitors  
compared to a power supply that switches at a lower frequency. However, the higher switching frequency causes  
extra switching losses, which decrease efficiency and impact thermal performance.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
156 Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
In this design, a moderate switching frequency of 325 kHz achieves both a small solution size and a high-  
efficiency operation. Use the MSEL1 pin program table to select the frequency option. See 7-8 for resistor  
divider code selection. Resistor divider code 2 or 3 is needed to set the switching frequency to 325 kHz.  
8.2.2.3 Inductor Selection  
Use 方程式 9 to calculate the value of the output inductor (L). The coefficient, KIND, represents the amount of  
inductor-ripple current relative to the maximum output current. The output capacitor filters the inductor-ripple  
current. Therefore, selecting a high inductor-ripple current impacts the selection of the output capacitor because  
the output capacitor must have a ripple-current rating equal to or greater than the inductor-ripple current.  
Generally, the KIND coefficient must be kept between 0.2 and 0.3 for balanced performance. Additionally the  
product of KIND and IOUT(Max) must be kept above 2 Ato prevent the inductance from being too large. Using this  
target ripple current, the required inductor size can be calculated as shown in 方程9.  
V
- VOUT  
(
)
16 V -1 V  
35 A  
ì0.3  
1
IN Max  
VOUT  
(
)
IOUT Max  
(
)
= 275 nH  
1 V  
L =  
ì
=
ì
V
) ì fSW Min  
)
16 V ì325 kHz  
(
N
)
IN Max  
(
(
ìKIND  
(9)  
Selecting a value of 0.3 for the KIND coefficient, the target inductance, L, is 275 nH. An inductance of 300 nH is  
selected. Use 方程式 10, 方程式 11, and 方程式 12 to calculate the inductor-ripple current (IRIPPLE), RMS current  
(IL(rms)), and peak current (IL(peak)), respectively. Use these values to select an inductor with approximately the  
target inductance value, and current ratings that allow normal operation with some margin.  
V
IN(Max) - VOUT  
VOUT  
ì fSW(Min)  
1 V ì (16 V -1 V)  
16V ì 325 kHz ì 300 nH  
IRIPPLE  
=
ì
=
= 9.62 A  
V
L1  
IN(Max)  
(10)  
2
2
I
OUT Max  
1
35 A  
1
1
(
N
)
2
2
«
÷
÷
IL rms  
=
+
I
(
=
+
9.62 A = 35.1A  
)
(
)
RIPPLE  
«
÷
(
)
12  
12  
(11)  
(12)  
IOUT Max  
1
2
35 A  
1
1
2
(
)
IL peak  
=
+
I
=
+
ì 9.62 A = 39.8 A  
(
)
(
)
RIPPLE  
(
)
N
Considering the required inductance, RMS current and peak current, the 300-nH inductor, SLC1480-301ML,  
from Coilcraft was selected for this application.  
8.2.2.4 Output Capacitor Selection  
Consider the following when selecting the value of the output capacitor:  
The output-voltage deviation during load transient  
The output-voltage ripple  
8.2.2.4.1 Output Voltage Deviation During Load Transient  
The desired response to a load transient is the first criterion for output capacitor selection. The output capacitor  
must supply the load with the required current when not immediately provided by the regulator. When the output  
capacitor supplies load current, the impedance of the capacitor affects the magnitude of the voltage deviation  
during the transient.  
To meet the requirements for control-loop stability, the device requires the addition of compensation components  
in the design of the error amplifier. While these compensation components provide for a stable control loop, they  
often also reduce the speed with which the regulator can respond to load transients. The delay in the regulator  
response to load changes can be two or more clock cycles before the control loop reacts to the change. During  
that time, the difference (delta) between the old and the new load current must be supplied (or absorbed) by the  
output capacitance. The output capacitor impedance must be designed to supply or absorb the delta current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
while maintaining the output voltage within acceptable limits. 方程式 13 and 方程式 14 show the relationship  
between the transient response overshoot (VOVER), the transient response undershoot (VUNDER), and the  
required output capacitance (COUT).  
2
(ITRAN  
)
ì L  
VOVER  
<
VOUT ì COUT  
(13)  
(14)  
2
(ITRAN  
) ì L  
VUNDER  
<
(VIN - VOUT ) ì COUT  
If  
VIN(min) > 2 × VOUT, use overshoot to calculate minimum output capacitance.  
VIN(min) < 2 × VOUT, use undershoot to calculate minimum output capacitance.  
In this case, the minimum designed input voltage, VIN(min), is greater than 2 × VOUT, so VOVER dictates the  
minimum output capacitance. Therefore, using 方程式 15, the minimum output capacitance required to meet the  
transient requirement is 600 µF.  
I
2 ìL  
10 A 2 ì300 nH  
(
)
(
)
TRAN  
COUT Min  
=
=
= 600 µF  
(
)
VOUT ì VOVER  
1 V ì50 mV  
(15)  
The bandwidth of the voltage loop must also be considered when calculating the minimum output capacitance.  
The voltage loop can typically be compensated to have a bandwidth of 1/10th the fSW. 方程式 16 calculates the  
minimum output capacitance to be 979 µF.  
1
1
COUT Min  
=
=
= 979 µF  
(
)
fSW VTRAN  
325 kHz 50 mV  
2pì  
ì
2pì  
ì
10  
10 A  
10 ITRAN  
(16)  
8.2.2.4.2 Output Voltage Ripple  
The output-voltage ripple is the second criterion for output capacitor selection. Use 方程式 17 to calculate the  
minimum output capacitance required to meet the output-voltage ripple specification.  
IRIPPLE  
9.62 A  
COUT(Min)  
=
=
= 185 F  
8ì fSW ì VOUT RIPPLE  
8ì325 kHzì20 mV  
(
)
(17)  
In this case, the target maximum output-voltage ripple is 20 mV. Under this requirement, the minimum output  
capacitance for ripple is 185 µF. This capacitance value is smaller than the output capacitance required for the  
transient response, so select the output capacitance value based on the transient requirement. Considering the  
variation and derating of capacitance, in this design, two 470-µF low-ESR tantalum polymer bulk capacitors and  
four 47-µF ceramic capacitors were selected to meet the transient specification with sufficient margin. Therefore  
the selected nominal COUT is equal to 1128 µF.  
With the output capacitance value selected the ESR must be considered. This is an important consideration in  
this example because it uses mixed output capacitor types. First use 方程式 18 to calculate the maximum  
allowable impedance for the output capacitor bank at the switching frequency to meet the output voltage ripple  
specification. 程式 18 indicates the output capacitor bank impedance must be less than 2.1 mΩ. The  
impedance of the ceramic capacitors is calculated with 方程式 19 and the impedance of the bulk capacitor is  
calculated with 方程式 20. The result from 方程式 20 shows the impedance of the bulk capacitor at the switching  
frequency is dominated by its ESR.方程式 21 calculates the total output impedance of the output capacitor bank  
at the switching frequency to be 1.7 mΩwhich meets the 2.1 mΩrequirement.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
158 Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
VOUT RIPPLE  
20 mV  
9.62 A  
(
IRIPPLE  
)
ZCOUT Max _ f  
=
=
= 2.1 m  
(
)
SW  
(18)  
(19)  
1
1
ZCER_ f  
=
=
= 2.6 m  
SW  
2pì fSW ìCCER 2pì325 kHzì 4ì 47 F  
(
)
2
2
2
«
÷
1
10 m  
1
2
ZBULK _ f = ESRBULK  
+
=
+
= 5.0 mꢀ  
÷
÷
«
÷
SW  
2pì fSW ìCBULK ◊  
2
2pì325 kHzì 2ì 470 F  
(
)
«
(20)  
Z
ì Z  
BULK _ fSW  
2.6 mì5.0 mꢀ  
2.6 m+ 5.0 mꢀ  
CER_ fSW  
ZCOUT _ f  
=
=
= 1.7 mꢀ  
SW  
ZCER_ f + ZBULK _ f  
SW  
SW  
(21)  
8.2.2.5 Input Capacitor Selection  
The power-stage input-decoupling capacitance (effective capacitance at the PVIN and PGND pins) must be  
sufficient to supply the high switching currents demanded when the high-side MOSFET switches on, while  
providing minimal input-voltage ripple as a result. This effective capacitance includes any DC-bias effects. The  
voltage rating of the input capacitor must be greater than the maximum input voltage with derating. The capacitor  
must also have a ripple-current rating greater than the maximum input-current ripple to the device during full  
load. Use 方程22 to estimate the input RMS current.  
V
- VOUT  
IOUT Max  
(
)
4.5 V -1 V  
IN Min  
(
VOUT  
)
(
)
= 14.6 A  
35 A  
1
1 V  
(
N
)
I
=
ì
ì
=
ì
ì
IN rms  
(
)
V
V
4.5 V  
4.5 V  
IN Min  
(
IN Min  
(
)
)
(22)  
The minimum input capacitance and ESR values for a given input voltage-ripple specification, VIN(ripple), are  
shown in 方程式 23 and 方程式 24. The input ripple is composed of a capacitive portion (VRIPPLE(cap)) and a  
resistive portion (VRIPPLE(esr)).  
IOUT Max  
35 A  
1
(
)
ì VOUT  
ì1V  
N
CIN Min  
=
=
= 67.3 F  
(
)
VRIPPLE cap ì V  
)
ì fSW 0.1V ì16 V ì325 kHz  
IN Max  
(
(
)
(23)  
VRIPPLE ESR  
0.2 V  
(
)
ESRC  
=
=
= 5.5 m  
IN Max  
(
)
IOUT Max  
35 A  
1
1
2
1
2
(
N
)
+
ì9.62 A  
+
IRIPPLE  
(24)  
The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the  
capacitor. The capacitance variations because of temperature can be minimized by selecting a dielectric material  
that is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power-regulator  
capacitors because these components have a high capacitance-to-volume ratio and are fairly stable over  
temperature. The input capacitor must also be selected with consideration of the DC bias. For this example  
design, a ceramic capacitor with at least a 25-V voltage rating is required to support the maximum input voltage.  
For this design, allow 0.1-V input ripple for VRIPPLE(cap) and 0.2-V input ripple for VRIPPLE(esr). Using 方程式 23  
and 方程式 24, the minimum input capacitance for this design is 67.3 µF, and the maximum ESR is 5.5 mΩ. For  
this design example, four 22-μF, 25-V ceramic capacitors, three 6800-pF, 25-V ceramic capacitors, and  
twoadditional 100-μF, 25-V low-ESR electrolytic capacitors in parallel were selected for the power stage with  
sufficient margin. For all designs a minimum input capacitance of 10 µF is required and a maximum input ripple  
of 500 mV is recommended.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
 
 
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
To minimize the high frequency ringing, the high frequency 6800-pF PVIN bypass capacitors must be placed  
close to power stage.  
8.2.2.6 AVIN, BP1V5, VDD5 Bypass Capacitor  
The BP1V5 pin requires a minimum capacitance of 1 μF connected to DRTN. The VDD5 pin must have  
approximately 4.7 μF of capacitance connected to PGND. The AVIN pin must have approximately 1 μF of  
capacitance connected to AGND. To filter switching noise on the AVIN pin, a small value resistor of typically 10-  
Ω is recommended to be placed between PVIN and AVIN. If using split rail inputs and if the AVIN pin is  
connected to the VDD5 pin, a small value resistor is recommended to be placed between AVIN and VDD5.  
8.2.2.7 Bootstrap Capacitor Selection  
A ceramic capacitor with a value of 0.1 μF must be connected between the BOOT and SW pins for proper  
operation. TI recommends using a ceramic capacitor with X5R or better grade dielectric with a voltage rating of  
25 V or higher. Lower voltage rating capacitors can be used as long as the capacitance is greater than 0.08 µF  
after AC and DC bias derating.  
8.2.2.8 R-C Snubber  
An R-C snubber must be placed between the switching node and PGND to reduce voltage spikes on the  
switching node. The power rating of the resistor must be larger than the power dissipation on the resistor with  
sufficient margin. To balance efficiency and voltage spike amplitude, a 1-nF capacitor and a 1-Ω resistor were  
selected for this design. In this example, an 0805 resistor was selected, which is rated for 0.125 W.  
8.2.2.9 Output Voltage Setting (VSEL Pin)  
The output voltage can be set using the VSEL pin. The resistor divider ratio for VSEL programs the  
VOUT_COMMAND range, VOUT_SCALE_LOOP divider, VOUT_MIN, and VOUT_MAX levels according to 表  
7-12. Select the resistor divider code for the range of VOUT desired. For this 1-V output example, resistor divider  
code 2, a single resistor to AGND or floating the VSEL pin can be used.  
With the resistor divider code selected for the range of VOUT, select the resistor to AGND code with the  
VOUT_COMMAND Offset and VOUT_COMMAND step from 7-13. To calculate the resistor to AGND code  
subtract the VOUT_COMMAND offset from the target output voltage and divide by the VOUT_COMMAND step.  
For this example, a single resistor to AGND was used and the result is code 10. A 31.6-kΩ resistor to AGND at  
VSEL programs the desired setting.  
VOUT - VOUT _COMMAND(Offset  
1- 0.5  
0.05  
)
Code =  
=
= 10  
VOUT _COMMAND(STEP  
)
(25)  
8.2.2.10 Compensation Selection (MSEL1 Pin)  
The resistor to AGND for MSEL1 selects the (B1h) USER_DATA_01 (COMPENSATION_CONFIG) values to  
program the following voltage loop and current loop gains. For options other than the EEPROM code (MSEL1  
shorted to AGND or MSEL1 to AGND resistor code 0), the current and voltage loop zero and pole frequencies  
are scaled with the programmed switching frequency.  
Based on Current Error Integrator, calculate the mid-band current loop gain with 方程26.  
V
fSW  
4
1.7  
1.7ìp  
4ì5.5ì6.155ì10-3  
ramp  
ILOOPMB = GMIìRVI =  
ì
ìLìpì  
=
ìLì fSW = 39.4ìLì fSW = 39.4ì300nHì325kHz = 3.842  
VPVIN CSA  
(26)  
Find the smaller value closest to 3.8 in 7-9 and this is 3.  
To calculate the target voltage loop gain, first use 程式 27 through 程式 29 to calculate the output  
impedance. Use 方程30 to calculate the target voltage loop gain.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
160 Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
1
1
ZCER _ f  
=
=
= 26 m  
BW  
fSW  
325 kHz  
10  
2pì  
ì 4ì 47 F  
2pì  
ìCCER  
(
)
10  
.
(27)  
2
2
2
÷
÷
÷
1
10 m  
1
2
ZBULK _ f = ESRBULK  
+
=
+
= 7.2 mꢀ  
÷
«
÷
BW  
fSW  
325 kHz  
10  
2
«
÷
÷
÷
÷
2pì  
ì 2ì 470 F  
2pì  
ìCBULK  
(
)
«
10  
(28)  
Z
ì Z  
26 mì7.2 mꢀ  
26 m+ 7.2 mꢀ  
CER _ fBW  
BULK _ fBW  
ZCOUT _ f  
=
=
= 5.6 mꢀ  
BW  
ZCER _ f + ZBULK _ f  
BW  
BW  
(29)  
(30)  
mV  
A
6.155  
1
CSA  
1
VLOOPMB = GMV ìRVV =  
ì
=
ì
= 2.2  
VOUT _SCALE_LOOP Nì ZCOUT _ f  
0.5 1ì5.6 mW  
BW  
Find the smaller value closest to 2.2 in 7-9 for voltage loop gain and this is 2. This setting gives a stable  
design but through bench evaluation the voltage loop gain was reduced to 1 to improve the gain and phase  
margin. The calculated current and voltage loop gain correspond to compensation setting 7. To use this  
compensation setting resistor to AGND code 7 is needed. With this compensation code the even resistor divider  
code must be used to set the switching frequency. Divider code 2 sets the fsw to 325 kHz. Resistor to AGND  
code 9 and resistor divider code 2 is selected using an MSEL1 resistor divider of RTOP = 44.2 kΩ and RBOT  
17.8 kΩ.  
=
The procedure given is meant to give a stable design. Further optimization of the compensation is often possible  
through testing the design on the bench. Increasing the voltage loop gain increases the loop bandwidth to  
improve the transient response but make sure to verify there is still sufficient gain and phase margin. The  
maximum voltage loop bandwidth possible is limited by these stability margins. Decreasing the current loop gain  
can help to minimize pulse-width jitter but this typically comes with a tradeoff of decreased phase margin. Lastly,  
the pole and zero locations can also be adjusted through PMBus. For example, it can be beneficial to use the  
CPV capacitor in the voltage loop to add a pole at the same frequency of the ESR zero when using high ESR  
output capacitors.  
When using a larger inductance, the current loop gain that can be selected through pin strapping can be much  
lower than the calculated target value. If this happens, the voltage loop gain must also be scaled back by about  
the same amount to keep sufficient phase margin. For higher voltage loop bandwidth, the inductance can be  
decreased to reduce the current loop gain needed or higher current loop gain can be programmed through the  
PMBus command USER_DATA_01 (COMPENSATION_CONFIG).  
8.2.2.11 Soft Start, Overcurrent Protection, and Stacking Configuration (MSEL2 Pin)  
Soft-start time, overcurrent protection thresholds, and stacking configuration can be configured using the MSEL2  
pin. The TPS546D24S device support several soft-start times from 0 to 31.75 ms in 250-µs steps (7 bits)  
selected by the TON_RISE command. Eight times are selectable using the MSEL2 pin. The TPS546D24S  
device support several low-side overcurrent warn and fault thresholds from 8 to 62 A selected by the  
IOUT_OC_WARN_LIMIT and IOUT_OC_FAULT_LIMIT commands. Four thresholds are selectable using the  
MSEL2 pin. The response to an OC fault can be changed through PMBus. Lastly, the number of devices stacked  
is set using the MSEL2 pin.  
The resistor divider code for MSEL2 selects the soft-start values. The resistor to AGND determines the number  
of devices sharing common output and the overcurrent thresholds. Use 7-11 and 7-10 to select the resistor  
to AGND code and resistor divider code needed for the desired configuration.  
In this single phase design, resistor divider code 3 is selected for 5-ms soft start and resistor to AGND code 0 is  
selected for the highest current limit thresholds and stand alone configuration.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
8.2.2.12 Enable and UVLO  
The ON_OFF_CONFIG command is used to select the turnon behavior of the converter. For this example, the  
EN/UVLO pin or CONTROL pin was used to enable or disable the converter, regardless of the state of  
OPERATION, as long as the input voltage is present and above the UVLO threshold. The EN/UVLO pin is pulled  
low internally if it is floating.  
A resistor divider can be added the EN/UVLO pin to program an additional UVLO. Additionally 0.1 µF can be  
placed on this pin to filter noise or short glitches. Use 方程式 31 and 方程式 32 to calculate the resistor values to  
target a 4.75-V turnon and a 4.25-V turnoff. Standard resistor values of 30.1 kΩ and 7.50 kΩ are selected for  
this example. Use 方程33 and 方程34 to calculate the thresholds based on selected resistor values.  
VON ì VENFALL - VOFF ì VENRISE  
NìIENHYS ì VENRISE  
5.25 V ì0.98 V - 4.75 V ì1.05 V  
1ì5.5 µA ì1.05 V  
RENTOP  
=
=
= 27.3 k  
(31)  
(32)  
(33)  
RENTOP ì VENFALL  
30.1kWì0.98 V  
RENBOT  
=
=
= 7.50 k  
VOFF - VENFALL +NìIENHYS ìRENTOP 4.75 V - 0.98 V +1ì5.5 µAì30.1kW  
VENRISE ì R  
+ RENTOP  
1.05 V ì 7.50 kW + 30.1 kW  
(
)
(
)
= 5.26 V  
ENBOT  
VON  
=
=
RENBOT  
7.50 kW  
VENFALL ì R  
+ RENTOP  
0.98 V ì 8.66 kW + 30.1 kW  
(
)
(
)
-1ì5.5 µA ì30.1 kW = 4.22 V  
ENBOT  
VOFF  
=
-NìIENHYS ìRENTOP  
=
RENBOT  
8.66 kW  
(34)  
8.2.2.13 ADRSEL  
In this example, the ADRSEL pin is left floating. This sets the PMBus device address to the EEPROM value,  
0x24h (36d) by default, and the SYNC pin to auto detect with 0 degrees phase shift. Use 7-14 and 7-15 to  
select the resistor to AGND code and resistor divider code needed for the desired configuration.  
If through pin-strapping, the desired address is not possible with the SYNC pin set to auto detect and  
synchronization is not needed in the application, configure the SYNC pin for SYNC_OUT. The device still  
regulates normally with the SYNC pin configured for SYNC_IN, however, if there is not clock input to the SYNC  
pin, the device declares a SYNC fault in the STATUS_MFR_SPECIFIC command.  
8.2.2.14 Pin-Strapping Resistor Selection  
The following tables provide the resistor to AGND values, in ohms, in the highlighted top rows and the top  
resistor (pin to BP1V5) values, in ohms, in the unhighlighted cells. Select the column associated with the desired  
resistor to AGND code and the row with the desired resistor divide code in 7-17 and 7-18.  
8.2.2.15 BCX_CLK and BCX_DAT  
For a stand-alone device, the BCX_CLK and BCX_DAT pins are not used. As shown in 7-5, TI recommends  
ground them to the thermal pad.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
162 Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
8.2.3 Application Curves  
100  
1.002  
1.001  
1
PVIN = 5V  
PVIN = 12V  
90  
80  
70  
60  
0.999  
0.998  
PVIN = 5V  
PVIN = 9V  
PVIN = 12V  
0
5
10  
15  
20 25  
Load Current (A)  
30  
35  
40  
45  
0
5
10  
15  
20 25  
Load Current (A)  
30  
35  
40  
45  
AP03  
AP04  
VOUT = 1.0 V  
fSW = 325 kHz  
L = 300 nH  
Snubber = 1 nF + 1 Ω  
RBOOT = 0 Ω  
VVIN = 12 V  
VOUT = 1.0 V  
RDCR = 0.2 mΩ  
8-3. Load Regulation  
8-2. Efficiency vs Output Current  
40  
30  
200  
150  
100  
50  
VIN = 10 V / div  
20  
CNTL = 5 V / div  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-100  
-150  
-200  
VO = 1 V / div  
Gain (dB)  
Phase (°)  
PGOOD = 5 V / div  
1000  
10000  
100000  
1000000  
Frequency (Hz)  
AP02  
Time = 500 μsec / div  
VOUT = 1.0 V  
VIN = 12 V  
IOUT = 20 A  
VIN = 12 V VOUT = 1.0 V  
IOUT = 20 A  
8-5. Start-Up from EN/UVLO  
8-4. Total-Loop Bode Plot  
VIN = 10 V / div  
VIN = 10 V / div  
CNTL = 5 V / div  
CNTL = 5 V / div  
VO = 1 V / div  
VO = 1 V / div  
PGOOD = 5 V / div  
PGOOD = 5 V / div  
Time = 500 μsec / div  
VOUT = 1.0 V  
Time = 50 msec / div  
VOUT = 1.0 V  
VIN = 12 V  
IOUT = 0 A  
VIN = 12 V  
IOUT = 20 A  
8-7. Shutdown from CNTL  
8-6. Shutdown from CNTL  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
ILOAD= 10 A / div  
ILOAD= 10 A / div  
VO = 100 mV / div  
SW = 5 V / div  
VO = 100 mV / div  
SW = 5 V / div  
Time = 20 μsec / div  
VOUT = 1.0 V IOUT = 15 A to 25 A, 2.5 A/µs  
Time = 20 μsec / div  
VOUT = 1.0 V IOUT = 25 A to 15 A, 2.5 A/µs  
VIN = 12 V  
VIN = 12 V  
8-8. Load Transient Response  
8-9. Load Transient Response  
VO = 10 mV / div  
SW = 5 V / div  
Time = 2 μsec / div  
VIN = 12 V  
VOUT = 1.0 V  
IOUT = 20 A  
8-10. VOUT Steady-State Ripple  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
164 Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
8.3 Two-Phase Application  
Use the following design procedure to select key component values for two-phase design. The appropriate  
behavioral options can be set through PMBus. Refer to 8.2.2 for the equations used to calculate the  
component values in this example. The only difference is to increase value of N to 2 because there are two  
devices stacked for a two-phase design. This procedure can also be used as reference for three-phase and four-  
phase designs. Again the only difference is to increase the value of N to 3 and 4 for a three-phase and four-  
phase design, respectively.  
WEBENCH includes support for creating two-phase designs. The SLUC686 calculator can also be used to aid in  
design calculations and pin-strap resistor selection.  
8.3.1 Design Requirements  
For this design example, use the input parameters listed in 8-1.  
8-2. Design Parameters  
DESIGN PARAMETER  
Input voltage  
TEST CONDITIONS  
MIN  
TYP  
12  
MAX UNIT  
VIN  
5
16  
V
V
V
VIN(ripple)  
VOUT  
Input ripple voltage  
VIN =12 V, IOUT = 40 A  
0.3  
0.8  
Output voltage  
Line regulation  
0.5%  
0.5%  
ΔVO(ΔVI)  
ΔVO(ΔIO)  
VPP  
5 V VIN 16 V  
0 V IOUT 80 A  
IOUT = 80 A  
Load regulation  
Output ripple voltage  
VOUT deviation during load transient  
Output current  
10  
32  
mV  
mV  
A
VOUT  
IOUT  
IOUT = 20 A, VIN = 12 V  
5 V VIN 16 V  
0
80  
IOCP  
Output overcurrent protection threshold  
Switching frequency  
Full load efficiency  
104  
550  
85%  
3
A
FSW  
VIN = 12 V  
kHz  
VIN = 12 V, IOUT = 80 A  
ηFull load  
tSS  
Soft-start time (TON_RISE  
)
ms  
U1  
R1  
PVIN  
C1  
21  
22  
23  
24  
25  
7
PVIN  
BOOT  
R2  
10  
PVIN  
PVIN  
PVIN  
PVIN  
0
8
9
10  
11  
12  
SW  
C2  
100uF  
C3  
22uF  
C4  
22uF  
C5  
22uF  
C6  
22uF  
C7  
C8  
C9  
C10  
0.1uF  
SW  
SW  
SW  
SW  
6800pF 6800pF 6800pF  
1uF  
L1  
26  
27  
28  
AGND  
AVIN  
150nH  
CNTL  
EN/UVLO  
VDD5  
VDD5  
13  
14  
15  
16  
17  
18  
19  
20  
41  
C11  
1000pF  
GND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PAD  
C12  
470uF  
C13  
470uF  
C14  
47uF  
C15  
47uF  
C16  
47uF  
C17  
47uF  
C18  
47uF  
C19  
47uF  
C20  
47uF  
C21  
47uF  
AGND  
C22  
4.7uF  
R3  
1.0  
NT1  
Net-Tie  
GND  
GND  
R4  
33  
VOSNS  
SNS+  
BP1V5  
4
49.9  
R5  
BP1V5  
C23  
100pF  
34  
VIN  
GOSNS/SLAVE  
VSHARE  
NC  
SNS-  
R6  
9.09k  
R7  
78.7k  
R8  
TBD  
R9  
44.2k  
49.9  
C24  
2.2uF  
MSEL2  
VSEL  
29  
30  
31  
32  
35  
C25  
100uF  
C26  
100uF  
MSEL2  
VSEL  
VSHARE  
MSEL2  
36 GND  
38  
DRTN  
GND  
GND  
VSEL  
ADRSEL  
ADRSEL  
MSEL1  
ADRSEL  
MSEL1  
SYNC  
SYNC  
MSEL1  
39  
40  
BCX_CLK  
BCX_DAT  
BCX_CLK  
BCX_DAT  
GND  
R10  
4.64k  
R11  
14.7k  
R12  
TBD  
R13  
5.62k  
SNS+  
1
PG  
PGD/RST  
DRTN  
PGD  
2
3
PMB_DATA  
PMB_CLK  
PMB_DATA  
PMB_CLK  
R14  
10.0k  
5
DRTN  
VDD5  
VOUT  
GND  
C27  
33pF  
6
37 AGND  
C28  
47uF  
C29  
47uF  
C30  
47uF  
C31  
47uF  
C32  
47uF  
C33  
47uF  
C34  
47uF  
C35  
47uF  
C36  
47uF  
C37  
47uF  
SMB_ALRT  
SMB_ALRT  
AGND  
AGND  
TPS546D24SRVFR  
SNS-  
GND  
U2  
R15  
0
PVIN  
21  
22  
23  
24  
25  
7
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
BOOT  
R16  
10  
C38  
1uF  
8
SW  
SW  
SW  
SW  
SW  
C39  
100uF  
C40  
22uF  
C41  
22uF  
C42  
22uF  
C43  
22uF  
C44  
C45  
C46  
C47  
0.1uF  
9
6800pF 6800pF 6800pF  
10  
11  
12  
L2  
26  
27  
28  
AGND_S  
AVIN  
150nH  
CNTL  
EN/UVLO  
VDD5  
VDD5_S  
13  
14  
15  
16  
17  
18  
19  
20  
41  
C48  
1000pF  
GND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PAD  
C49  
470uF  
C50  
470uF  
C51  
47uF  
C52  
47uF  
C53  
47uF  
C54  
47uF  
C55  
47uF  
C56  
47uF  
C57  
47uF  
C58  
47uF  
AGND_S  
C59  
4.7uF  
R17  
1.0  
NT2  
Net-Tie  
GND  
GND  
33  
VOSNS  
BP1V5_S  
4
BP1V5  
R18  
10.0k  
34  
BP1V5_S  
GOSNS/SLAVE  
VSHARE  
NC  
R19  
9.09k  
C60  
2.2uF  
MSEL2_S  
29  
30  
31  
32  
35  
MSEL2  
VSEL  
VSHARE  
SYNC  
36 GND  
38  
DRTN_S  
MSEL2_S  
ADRSEL  
MSEL1  
SYNC  
39  
40  
BCX_CLK  
BCX_DAT  
BCX_CLK  
BCX_DAT  
R20  
0
1
5
GND  
PGD/RST  
DRTN  
2
3
PMB_DATA  
PMB_CLK  
DRTN_S  
C61  
33pF  
AGND_S  
GND  
6
37 AGND_S  
SMB_ALRT  
AGND  
TPS546D24SRVFR  
8-11. TPS546D24S Two-Phase Application  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
8.3.2 Switching Frequency  
Only the loop controller device (U1) needs a resistor divider at the MSEL1 pin to program USER_DATA_01  
(COMPENSATION_CONFIG) and FREQUENCY_SWITCH. The MSEL1 pin of loop follower devices are not  
used. In this design, a moderate switching frequency of 550 kHz achieves both a small solution size and a high-  
efficiency operation. Use MSEL1 pin program table to select the frequency option. See 7-8 for resistor divider  
code selection. With 550 kHz switching frequency a single resistor to AGND can be used to program  
compensation settings 7 to 25. To program all 32 compensation settings possible through MSEL1, resistor  
divider code 6 or 7 sets the switching frequency to 550 kHz.  
8.3.3 Inductor Selection  
Use 方程式 9 to calculate the value of the output inductor (L) for each phase. The current is shared between  
each phase so the output current used in this calculation is divided by the number of phases.  
Selecting a value of 0.3 for the KIND coefficient, the target inductance, L, is 120 nH. An inductance of 150 nH is  
selected. Use 方程式 10, 方程式 11, and 方程式 12 to calculate the inductor-ripple current (IRIPPLE), RMS current  
(IL(rms)), and peak current (IL(peak)), respectively. The resulting values are IRIPPLE = 9.2 A, IL(rms) = 40.1 A and  
IL(peak) = 44.6 A. Use these values to select an inductor with approximately the target inductance value and  
current ratings that allow normal operation with some margin.  
Considering the required inductance, RMS current and peak current, the 150-nH inductor, SLC1480-151ML,  
from Coilcraft was selected for this application.  
8.3.4 Output Capacitor Selection  
In this example the target output voltage deviation with a 20 A step is 40 mV. Using 方程式 16, assuming the  
voltage loop is compensated to 1/10th the fSW, the minimum output capacitance needed to meet the transient  
response specification is 1810 µF.  
The target maximum output-voltage ripple is 10 mV. Under this requirement, the minimum output capacitance for  
ripple is 210 µF. Depending on the duty cycle and the number of phases there can also be some inductor ripple  
current cancellation. This will reduce the amount of ripple current the capacitors need to absorb reducing the  
output voltage ripple. This capacitance value is smaller than the output capacitance required for the transient  
response, so select the output capacitance value based on the transient requirement. Considering the variation  
and derating of capacitance, in this design, four 470-µF low-ESR tantalum polymer bulk capacitors and twenty-  
six 47-µF ceramic capacitors were selected to meet the transient specification with sufficient margin. The  
selected nominal COUT is equal to 3102 µF. The 470-µF capacitors selected have an ESR of 10 mΩ.  
With the output capacitance value selected the ESR must be considered because this example uses mixed  
output capacitor types. First use 方程式 18 to calculate the maximum allowable impedance for the output  
capacitor bank at the switching frequency to meet the output voltage ripple specification. 方程式 18 indicates the  
output capacitor bank impedance must be less than 1.1 mΩ. The impedance of the ceramic capacitors alone is  
calculated with 方程式 19 to be 0.2 mΩ. This is much less than the calculated maximum so the ESR of tantalum  
polymer capacitors does not need to be considered for the output ripple specification.  
8.3.5 Input Capacitor Selection  
Using 方程22 the maximum input RMS current is 14.7 A and the input capacitors must be rated to handle this.  
When calculating this, the maximum output current must be divided by the number of phases. The output current  
is divided by the number of phases because the switching nodes are interleaved. Interleaving the switching node  
effectively divides the amplitude of the current pulses the input capacitor by the number of phases. With the 16-V  
maximum input in this example a ceramic capacitor with at least a 25-V voltage rating is required to support the  
maximum input voltage.  
For this design, allow 0.1-V input ripple for VRIPPLE(cap) and 0.2-V input ripple for VRIPPLE(esr). Using 方程式 23  
and 方程式 24, the minimum input capacitance for this design is 36 µF and the maximum ESR is 4.5 mΩ  
respectively. Again the maximum output current must be divided by the number of phases and the calculated  
capacitance must be placed near the loop controller converter and all of the loop follower converters. Eight 22-  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
166 Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
μF, 25-V ceramic capacitors and six 6800-pF, 25-V ceramic capacitors in parallel were selected to bypass the  
power stage with sufficient margin. Additionally four 100-μF, 25-V low-ESR electrolytic capacitors were placed  
on the input to minimize deviations on the input during transients. These capacitors are distributed equally  
between the phases. To minimize the high frequency ringing, the high frequency 6800-pF PVIN bypass  
capacitors must be placed close to power stage.  
When stacking converters the amount of input RMS current and the amount if input capacitance required can be  
further reduced. The amount of ripple cancellation depends on the number of phases and the duty cycle. PCB  
inductance between the phases can also reduce the effects of ripple cancellation. The calculations given in this  
example ignore the effects of ripple cancellation.  
8.3.6 AVIN, BP1V5, VDD5 Bypass Capacitor  
See AVIN, BP1V5, VDD5 Bypass Capacitor.  
8.3.7 Bootstrap Capacitor Selection  
See Bootstrap Capacitor Selection.  
8.3.8 R-C Snubber  
See R-C Snubber.  
8.3.9 Output Voltage Setting (VSEL Pin)  
Only the loop controller device (U1) needs a resistor divider at the VSEL pin to program the output voltage. The  
VSEL pin of loop follower devices are not used. The resistor divider code selected for this 0.8-V output example  
using 7-12 is a single resistor to AGND. With the resistor divider code selected for the range of VOUT, select  
the resistor to AGND code with the VOUT_COMMAND Offset and VOUT_COMMAND step from the 7-13.  
With VOUT = 0.8 V, VOUT_COMMAND(Offset) = 0.5 V and VOUT_COMMAND(STEP) = 0.05, the result is code 6. A  
14.7-kΩresistor to AGND at VSEL programs the desired setting.  
8.3.10 Compensation Selection (MSEL1 Pin)  
Only the loop controller device (U1) uses the resistor to AGND for MSEL1 to program the (B1h)  
USER_DATA_01 (COMPENSATION_CONFIG) values to set the following voltage loop and current loop gains.  
The MSEL1 pin of loop follower devices are not used. For options other than the EEPROM code (MSEL1  
shorted to AGND or MSEL1 to AGND resistor code 0) the current and voltage loop zero and pole frequencies  
are scaled with the programmed switching frequency.  
Calculate the mid-band current loop gain with 方程式 26. The resulting value is 3.3. Find the smaller value  
closest in the look-up table 7-9 and this is 3.  
To calculate the target voltage loop gain, first use 程式 27 through 程式 29 to calculate the output  
impedance. Use 方程式 30 to calculate the target voltage loop gain. With an estimated 85% derating, the  
ceramic capacitor impedance is 2.4 mΩ. The bulk capacitor impedance is 2.9 mΩ. The total output impedance  
is 1.3 mΩ. When using a stacked configuration, the CSA gain must be divided by the number of phases when  
calculating the target voltage loop gain. The resulting target voltage loop gain is 4.7. Find the smaller value  
closest in the look-up 7-9 for voltage loop gain and this is 4.  
These settings gives a stable design but through bench evaluation the voltage loop gain was reduced to 2 to  
improve the gain and phase margin. The current loop and voltage loop gains are selected with compensation  
setting 8. With (33h) FREQUENCY_SWITCH of 550 kHz, this compensation setting can be selected using a  
single resistor to AGND. A 5.62-kΩresistor to AGND at MSEL1 programs the desired settings.  
8.3.11 GOSNS/FLWR Pin of Loop Follower Devices  
Loop follower devices must have their GOSNS/FLWR pin tied to BP1V5 through a resistor. A 10-kΩ resistor is  
recommended.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
8.3.12 Soft Start, Overcurrent Protection, and Stacking Configuration (MSEL2 Pin)  
The resistor divider code for MSEL2 pin of the loop controller device (U1) selects the soft-start values. The  
resistor to AGND determines the number of devices sharing common output and the overcurrent thresholds. Use  
the following tables, 7-11 and 7-10 to select the resistor values. In this two-phase design, the desired  
settings can be selected by floating the MSEL2 pin. This selects 3-ms soft-start time, the highest current limit  
thresholds and two-phase configuration.  
In stackable configuration, loop follower devices use the resistor from MSEL2 to AGND to program  
IOUT_OC_WARN_LIMIT,  
IOUT_OC_FAULT_LIMIT,  
MFR_SPECIFIC_28  
(STACK_CONFIG),  
and  
INTERLEAVE. The loop follower receives all other pin programmed values from the loop controller over the  
back-channel communication (BCX_CLK and BCX_DAT) as part of the Power On Reset function. In this two-  
phase design, the desired settings can be selected by shorting the MSEL2 pin of the loop follower device to  
AGND. This selects the highest current limit thresholds and programs the loop follower device to be the 180° out  
of phase from the loop controller device.  
8.3.13 Enable, UVLO  
TI recommends connecting the EN/UVLO pins of stacked devices together. When this is done, the hysteresis  
current is multiplied by the number devices stacked. This increased hysteresis current must be included in  
calculations for a resistor divider to the EN/UVLO pins. See 8.2.2.12 for more details.  
8.3.14 VSHARE Pin  
When using a stacked configuration, bypass the VSHARE pin of each device to AGND with a 33 pF or larger  
capacitor. This capacitor is used to prevent external noise from adding to the VSHARE signal between stacked  
devices.  
8.3.14.1 ADRSEL Pin  
Only the loop controller device (U1) needs a resistor divider at the ADRSEL pin. In this example the ADRSEL pin  
is left floating. This sets the PMBus device address to the EEPROM value, 0x24h (36d) by default, and the  
SYNC pin to auto detect with 0 degrees phase shift. Use the following tables, 7-14 and 7-15, to select the  
resistor to AGND code and resistor divider code needed for the desired configuration.  
8.3.15 SYNC Pin  
The SYNC pins of stacked devices must be connected together. Loop follower devices are always configured for  
SYNC_IN while the loop controller device (U1) can be configured for auto-detect, SYNC_IN or SYNC_OUT.  
8.3.16 VOSNS Pin of Loop Follower Devices  
The VOSNS pin of loop follower devices can be used to monitor voltages other than VOUT through the  
READ_VOUT command. A resistor divider must be used to scale to voltage at VOSNS to be less than 0.75 V.  
The appropriate phase must be selected using the PHASE command.  
8.3.17 Unused Pins of Loop Follower Devices  
Multiple pins of loop follower devices are not used and TI recommends grounding to the thermal pad. See 7-5  
for more information.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
168 Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
8.3.18 Two-phase Application Curves  
100  
90  
80  
70  
60  
50  
40  
0.805  
0.804  
0.803  
0.802  
0.801  
0.8  
0.799  
0.798  
0.797  
0.796  
0.795  
VIN = 5 V  
VIN = 12 V  
VIN = 16 V  
VIN = 5 V  
VIN = 12 V  
VIN = 16 V  
0
10  
20  
30  
Output Current (A)  
40  
50  
60  
70  
80  
0
10  
20  
30  
Output Current (A)  
40  
50  
60  
70  
80  
VOUT = 0.8 V  
fSW = 550 kHz  
L = 150 nH  
VOUT = 0.8 V  
fSW = 550 kHz  
Snubber = 1 nF + 1 Ω  
RBOOT = 0 Ω  
RDCR = 0.2 mΩ  
8-13. Load Regulation  
8-12. Efficiency vs Output Current  
0.805  
0.804  
0.803  
0.802  
0.801  
0.8  
60  
40  
180  
120  
60  
20  
0
0
0.799  
0.798  
-20  
-40  
-60  
-60  
-120  
-180  
0.797  
IOUT = 0 A  
IOUT = 40 A  
IOUT = 80 A  
Gain  
Phase  
0.796  
0.795  
5
6
7
8
9
10 11 12 13 14 15 16  
1000 2000 5000 10000  
100000  
1000000  
Input Voltage (V)  
Frequency (Hz)  
VOUT = 0.8 V  
fSW = 550 kHz  
VIN = 12 V  
fSW = 550 kHz  
VOUT = 0.8 V  
IOUT = 40 A  
8-14. Load Regulation  
8-15. Total-Loop Bode Plot  
VOUT(AC) = 10 mV/div  
VOUT(AC) = 20 mV/div  
SWU2 = 5 V/div  
IOUT(STEP) = 10 A/div  
SWU1 = 5 V/div  
Time = 200 µs/div  
Time = 1 µs/div  
VIN = 12 V  
VOUT = 0.8 V  
IOUT(DC) = 30 A  
VIN = 12 V  
VOUT = 0.8 V  
IOUT = 40 A  
IOUT(STEP) = 20 A IOUT(SLEW) > 3 A/µs  
8-17. VOUT Steady-State Ripple  
8-16. Load Transient Response  
8.4 Four-Phase Application  
PMP21814 gives an example four-phase design using the TPS546D24S.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
8.5 Power Supply Recommendations  
The TPS546D24S devices are designed to operate from split input voltage supplies. AVIN is designed to operate  
from 2.95 V to 18 V. AVIN must be powered to enable POR, PMBus communication, or output conversion. For  
AVIN voltages less than 4 V, VDD5 must be supplied with an input voltage greater than 4 V to enable switching.  
PVIN is designed to operate from 2.95 V to 16 V. PVIN must be powered to enable switching, but not for POR or  
PMBus communication. The TPS546D24S can be operated from a single 4-V or higher supply voltage by  
connecting AVIN to PVIN. TI recommends a 10-Ωresistor between AVIN and PVIN to reduce switching noise on  
AVIN. See the recommendations in Layout.  
8.6 Layout  
8.6.1 Layout Guidelines  
Layout is critical for good power-supply design. 8-18 shows the recommended PCB-layout configuration. A list  
of PCB layout considerations using these devices is listed as follows:  
As with any switching regulator, several power or signal paths exist that conduct fast switching voltages or  
currents. Minimize the loop area formed by these paths and their bypass connections.  
Bypass the PVIN pins to PGND with a low-impedance path. Place the input bypass capacitors of the power-  
stage as close as physically possible to the PVIN and PGND pins. Additionally, a high-frequency bypass  
capacitor in a 0402 package on the PVIN pins can help reduce switching spikes. This capacitor can be  
placed on the other side of the PCB directly underneath the device to keep a minimum loop.  
The VDD5 bypass capacitor carries a large switching current for the gate driver. Bypassing the VDD5 pin to  
AGND at the thermal pad with a low-impedance path is very critical to the stable operation of the  
TPS546D24S devices. Place the VDD5 high-frequency bypass capacitors as close as possible to the device  
pins, with a minimum return loop back to the Thermal Pad.  
The AVIN bypass capacitor must be placed close to the AVIN pin and provide a low-impedance path to  
PGND at the thermal pad. If AVIN is powered from PVIN for single supply operation, AVIN and PVIN must be  
seperated with a 10-µs R-C filter to reduce PVIN switching noise on AVIN.  
The BP1V5 bypass capacitor must be placed close to the BP1V5 pin and provide a low-impedance path to  
DRTN. DRTN must not be connected to any other pin or node. DRTN is internally connected to AGND and by  
external connection to System Ground. Connecting DRTN to PGND or AGND can introduce a ground loop  
and errant operation.  
Keep signal components local to the device, and place them as close as possible to the pins to which they  
are connected. These components include the VOSNS and GOSNS series resistors and differential filter  
capacitor as well as MSEL1, MSEL2, VSEL, and ADRSEL resistors. Those components can be terminated to  
AGND with a minimum return loop or bypassed to the copper area of a separate low-impedance analog  
ground (AGND) that is isolated from fast switching voltages and current paths and has single connection to  
PGND on the thermal pad through the AGND pin. For placement recommendations, see 8-18.  
The PGND pin (pin 26) must be directly connected to the thermal pad of the device on the PCB, with a low-  
noise, low-impedance path.  
Minimize the SW copper area for best noise performance. Route sensitive traces away from the SW and  
BOOT pins as these nets contain fast switching voltages and lend easily to capacitive coupling.  
Snubber component placement is critical for effective ringing reduction. These components must be on the  
same layer as the TPS546D24S devices, and be kept as close as possible to the SW and PGND copper  
areas.  
Route the VOSNS and GOSNS lines from the output capacitor bank at the load back to the device pins as a  
tightly coupled differential pair. These traces must be kept away from switching or noisy areas which can add  
differential-mode noise.  
Use caution when routing of the SYNC, VSHARE, BCX_CLK, and BCX_DAT traces for stackable  
configurations. The SYNC trace carries a rail-to-rail signal and must be routed away from sensitive analog  
signals, including the VSHARE, VOSNS, and GOSNS signals. The VSHARE traces must also be kept away  
from fast switching voltages or currents formed by the PVIN, AVIN, SW, BOOT, and VDD5 pins.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
170 Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
8.6.2 Layout Example  
(Not to scale)  
Place PVIN bypass capacitors as close  
as possible to IC, with best high frequency  
capacitor closest to PVIN/PGND pins  
Bypass for internal regulators, AVIN.  
Use multiple vias to reduce parasitic inductance  
EN Signal  
Internal AGND Plane to  
reduce the VDD5/BP1V5  
bypass parasitics.  
Keep  
feedback  
and pin-strap  
components  
localized to  
the IC.  
PGND  
PVIN  
Kelvin Connect  
to  
IC VOSNS and  
GOSNS pins  
GOSNS/FLWR  
If needed,  
place node  
breaking  
Place best  
high  
frequency  
output  
RSNS–  
resistor here  
capacitor  
between  
sense points  
AGND and  
PGND are only  
connected  
together on  
Thermal Pad.  
Optional  
RC  
Snubber  
VOUT  
RSNS+  
CBOOT  
RBOOT  
AGND  
VOSNS  
Sense point  
should be  
directly at the  
load  
L1  
Minimize SW area  
for least noise. Keep  
For best efficiency, use a  
heavy weight copper and  
place these planes on multiple  
PCB layers  
PMBus  
Communica  
tion  
sensitive traces  
away from SW and  
BOOT on all layers  
8-18. PCB Layout Recommendation  
8.6.3 Mounting and Thermal Profile Recommendation  
Proper mounting technique adequately covers the exposed thermal pad with solder. Excessive heat during the  
reflow process can affect electrical performance. 8-19 shows the recommended reflow-oven thermal profile.  
Proper post-assembly cleaning is also critical to device performance. Refer to QFN and SON PCB Attachment  
application report for more information.  
tP  
TP  
TL  
TS(max)  
TS(min)  
tL  
rRAMP(up)  
rRAMP(down)  
tS  
t25P  
Time (s)  
8-19. Recommended Reflow-Oven Thermal Profile  
25  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
8-3. Recommended Thermal Profile Parameters  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
RAMP UP AND RAMP DOWN  
rRAMP(up)  
Average ramp-up rate, TS(max) to TP  
Average ramp-down rate, TP to TS(max)  
3
6
°C/s  
°C/s  
rRAMP(down)  
PRE-HEAT  
TS  
Preheat temperature  
150  
60  
200  
180  
°C  
s
tS  
Preheat time, TS(min) to TS(max)  
REFLOW  
TL  
TP  
tL  
Liquidus temperature  
217  
°C  
°C  
s
Peak temperature  
260  
150  
40  
Time maintained above liquidus temperature, TL  
Time maintained within 5°C of peak temperature, TP  
Total time from 25°C to peak temperature, TP  
60  
20  
tP  
s
t25P  
480  
s
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
172 Submit Document Feedback  
Product Folder Links: TPS546D24S  
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
9.1.2 Development Support  
9.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS546D24S device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.1.2.2 Texas Instruments Fusion Digital Power Designer  
The TPS546x24x devices are supported by Texas Instruments Digital Power Designer. Fusion Digital Power  
Designer is a graphical user interface (GUI) which can be used to configure and monitor the devices via PMBus  
using a Texas Instruments USB-to-GPIO adapter.  
Click this link to download the Texas Instruments Fusion Digital Power Designer software package.  
9.2 Documentation Support  
9.2.1 Related Documentation  
Texas Instruments, QFN and SON PCB Attachment application report  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.5 Trademarks  
SWIFTand TI E2Eare trademarks of Texas Instruments.  
PMBus® is a registered trademark of System Management Interface Forum, Inc..  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 173  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
 
 
 
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
9.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSF26  
174 Submit Document Feedback  
Product Folder Links: TPS546D24S  
 
 
TPS546D24S  
ZHCSQY3 MARCH 2023  
www.ti.com.cn  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. These data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 175  
Product Folder Links: TPS546D24S  
English Data Sheet: SLUSF26  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS546D24SRVFR  
ACTIVE  
LQFN-CLIP  
RVF  
40  
2500  
RoHS-Exempt  
& Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 150  
TPS546D24S  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
RVF0040A  
LQFN-CLIP - 1.52 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
A
B
PIN 1 INDEX AREA  
7.1  
6.9  
C
1.52  
1.32  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.3 0.1  
EXPOSED  
THERMAL PAD  
36X 0.5  
13  
20  
12  
21  
41  
SYMM  
2X  
5.3 0.1  
5.5  
32  
1
0.3  
40X  
0.2  
40  
33  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
40X  
4222989/B 10/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
4. Reference JEDEC registration MO-220.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RVF0040A  
LQFN-CLIP - 1.52 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.3)  
6X (1.4)  
40  
33  
40X (0.6)  
1
32  
40X (0.25)  
2X  
(1.12)  
36X (0.5)  
6X  
(1.28)  
(6.8)  
(5.3)  
41  
SYMM  
(R0.05) TYP  
(
0.2) TYP  
VIA  
12  
21  
13  
20  
SYMM  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:12X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222989/B 10/2017  
NOTES: (continued)  
5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RVF0040A  
LQFN-CLIP - 1.52 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.815) TYP  
40  
33  
40X (0.6)  
1
41  
32  
40X (0.25)  
(1.28)  
TYP  
36X (0.5)  
(0.64)  
TYP  
SYMM  
(6.8)  
(R0.05) TYP  
8X  
(1.08)  
12  
21  
METAL  
TYP  
20  
13  
8X (1.43)  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
71% PRINTED SOLDER COVERAGE BY AREA  
SCALE:18X  
4222989/B 10/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS54719

2.95 V to 6 V Input, 7-A Synchronous Step Down SWIFT™ Converter
TI

TPS54719RTE

2.95 V to 6 V Input, 7-A Synchronous Step Down SWIFT™ Converter
TI

TPS54719RTER

2.95 V to 6 V Input, 7-A Synchronous Step Down SWIFT™ Converter
TI

TPS54719RTET

2.95 V to 6 V Input, 7-A Synchronous Step Down SWIFT™ Converter
TI

TPS54719_16

2.95 V To 6 V Input, 7-A Synchronous Step Down Converter
TI

TPS54810

4-V TO 6-V INPUT, 8-A OUTPUT SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETS
TI

TPS54810PWP

4-V TO 6-V INPUT, 8-A OUTPUT SYNCHRONOUS BUCK PWM SWITCHER WITH INTEGRATED FETS
TI

TPS54810PWPG4

4.5 to 5.5V Input, 8A Synchronous Step-Down Converter 28-HTSSOP -40 to 85
TI

TPS54810PWPR

输入电压为 4.5 至 5.5V 的 8A 同步降压转换器 | PWP | 28 | -40 to 85
TI

TPS54810PWPRG4

4.5 to 5.5V Input, 8A Synchronous Step-Down SWIFT&trade; Converter 28-HTSSOP -40 to 85
TI

TPS54821

4.5 V to 17 V Input, 8 A Synchronous Step Down SWIFT™ Converter With Hiccup
TI

TPS54821RHLR

4.5 V to 17 V Input, 8 A Synchronous Step Down SWIFT™ Converter With Hiccup
TI