TPS55289RYQR [TI]

36V、8A 完全集成式降压/升压转换器 | RYQ | 21 | -40 to 125;
TPS55289RYQR
型号: TPS55289RYQR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

36V、8A 完全集成式降压/升压转换器 | RYQ | 21 | -40 to 125

升压转换器
文件: 总48页 (文件大小:3553K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS55289  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
TPS55289 I2C 接口30V8A 降压/升压转换器  
TPS55289 采用平均电流模式控制方案。开关频率可通  
过外部电阻在 200 kHz 2.2 MHz 之间进行编程并  
且可与外部时钟同步。TPS55289 还提供展频选项从  
而更大限度地减少峰EMI。  
1 特性  
• 可编程电(PPS) USB (USB PD)  
3.0V 30V 的宽输入电压范围  
– 可编程输出电压范围0.8V 22V阶跃10  
mV  
TPS55289 提供输出过压保护、平均电感器电流限制、  
逐周期峰值电流限制和输出短路保护功能。TPS55289  
还具有可选输出电流限制和断续模式保护功能确保在  
持续过载情况下安全运行。  
±1% 基准电压精度  
– 电缆上压降的可调输出电压补偿  
– 可编程输出电流限值高6.35A阶跃50mA  
±5% 精密输出电流监测  
I2C 接口  
TPS55289 可在高开关频率下使用小型电感器和小型电  
容器。此器件采3.0mm × 5.0mm QFN 封装。  
• 在整个负载范围内具有高效率  
VIN = 12VVOUT = 20V IOUT = 3A 时效率为  
96%  
– 轻负载状态下的可编PFM FPWM 模式  
• 避免频率干扰和串扰  
器件信息  
封装(1)  
器件型号  
封装尺寸  
TPS55289  
VQFN-HR  
3.0mm × 5.0mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 可选的时钟同步  
– 可编程开关频率范围200 kHz 2.2 MHz  
• 降EMI  
L1  
4.7µH  
C5  
C4  
– 可选可编程扩展频谱  
– 无引线封装  
• 丰富的保护特性  
BOOT1 SW1  
SW2 BOOT2  
VIN = 3V to 30V  
R4  
VOUT = 0.8V to 22V  
VIN  
VOUT  
C1  
C2  
VCC  
PGND  
ISP  
4 x 22µF  
– 输出过压保护  
– 利用断续模式实现输出短路保护  
– 热关断保护  
C3  
AGND  
ON  
EN/UVLO  
SCL  
ISN  
TPS55289  
OFF  
Internal Vcc  
External Vcc  
FB/INT  
COMP  
SDA  
8A 平均电感器电流限值  
• 小解决方案尺寸  
EXTVCC  
74h  
DITH/SYNC  
FSW  
MODE  
CDC  
R3  
C7  
75h  
C8  
– 开关频率高2.2 MHz最大值)  
3.0mm × 5.0mm HotRodQFN 封装  
C6  
R2  
R1  
2 应用  
典型应用电路  
无线充电器  
USB PD  
集线站  
PC  
移动电源  
显示器  
3 说明  
TPS55289 同步降压/升压转换器经优化可将电池电  
压或适配器电压转换为电源轨。TPS55289 集成了四个  
MOSFET 开关USB 电力输(USB PD) 应用提  
供紧凑型解决方案。  
TPS55289 的输入电压高达 30V。通过 I2C 接口,  
TPS55289 的输出电压可以在 0.8V 22V 之间阶跃  
10mV进行编程。在升压模式下输入电压为 12V  
该器件可提供 60W 的输出功率。它能够通过 9V  
输入电压提45W 的功率。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGA9  
 
 
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
Table of Contents  
7.5 Programming............................................................ 22  
7.6 Register Maps...........................................................25  
8 Application and Implementation..................................33  
8.1 Application Information............................................. 33  
8.2 Typical Application.................................................... 33  
9 Power Supply Recommendations................................41  
10 Layout...........................................................................41  
10.1 Layout Guidelines................................................... 41  
10.2 Layout Example...................................................... 42  
11 Device and Documentation Support..........................43  
11.1 Device Support........................................................43  
11.2 接收文档更新通知................................................... 43  
11.3 支持资源..................................................................43  
11.4 Trademarks............................................................. 43  
11.5 Electrostatic Discharge Caution..............................43  
11.6 术语表..................................................................... 43  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................6  
6.6 I2C Timing Characteristics.......................................... 9  
6.7 Typical Characteristics..............................................10  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................15  
7.3 Feature Description...................................................15  
7.4 Device Functional Modes..........................................21  
Information.................................................................... 43  
4 Revision History  
Changes from Revision * (March 2022) to Revision A (August 2022)  
Page  
• 将文档状态从“预告信息”更改为“量产数据”................................................................................................ 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS55289  
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
5 Pin Configuration and Functions  
EN/UVLO  
MODE  
1
2
3
4
17 AGND  
16  
15  
CDC  
SCL  
COMP  
SDA  
14 FB/INT  
5-1. 21-Pin VQFN-HR RYQ Package (Transparent Top View)  
5-1. Pin Functions  
Pin  
Name  
I/O  
Description  
NO.  
Enable logic input and programmable input voltage undervoltage lockout (UVLO) input. Logic high  
level enables the device. Logic low level disables the device and turns it into shutdown mode. After  
the voltage at the EN/UVLO pin is above the logic high voltage of 1.15 V, this pin acts as  
programmable UVLO input with 1.23-V internal reference.  
EN/UVLO  
1
I
I
I2C target address selection. When it is connected to the logic high voltage, the I2C target address is  
74H. When it is connected to the logic low voltage, the I2C target address is 75H.  
MODE  
2
SCL  
SDA  
3
4
I
Clock of I2C interface  
Data of I2C interface  
I/O  
Dithering frequency setting and synchronous clock input. Use a capacitor between this pin and  
ground to set the dithering frequency. When this pin is short to ground or pulled above 1.2 V, there is  
no dithering function. An external clock can be applied at this pin to synchronize the switching  
frequency.  
DITH/SYNC  
5
I
FSW  
VIN  
6
7
I
The switching frequency is programmed by a resistor between this pin and the AGND pin.  
Input of the buck-boost converter  
PWR  
The switching node pin of the buck side. It is connected to the drain of the internal buck low-side  
power MOSFET and the source of internal buck high-side power MOSFET.  
SW1  
PGND  
SW2  
8
9
PWR  
PWR  
PWR  
PWR  
Power ground of the IC  
The switching node pin of the boost side. It is connected to the drain of the internal boost low-side  
power MOSFET and the source of internal boost high-side power MOSFET.  
10  
11  
VOUT  
Output of the buck-boost converter  
Positive input of the current sense amplifier. An optional current sense resistor connected between  
the ISP pin and the ISN pin can limit the output current. If the sensed voltage reaches the current  
limit setting value in the register, a slow constant current control loop becomes active and starts to  
regulate the voltage between the ISP pin and the ISN pin. Connecting the ISP pin and the ISN pin  
together with the VOUT pin can disable the output current limit function.  
ISP  
12  
I
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS55289  
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
5-1. Pin Functions (continued)  
Pin  
Name  
I/O  
Description  
NO.  
Negative input of the current sense amplifier. An optional current sense resistor connected between  
the ISP pin and the ISN pin can limit the output current. If the sensed voltage reaches the current  
limit setting value in the register, a slow constant current control loop becomes active and starts to  
regulate the voltage between the ISP pin and the ISN pin. Connecting the ISP pin and the ISN pin  
together with the VOUT pin can disable the output current limit function.  
ISN  
13  
I
When the device is set to use external output voltage feedback, connect to the center tap of a  
resistor divider to program the output voltage. When the device is set to use internal feedback, this  
pin is a fault indicator output. When there is an internal fault happening, this pin outputs logic low  
level.  
FB/INT  
14  
I/O  
Output of the internal error amplifier. Connect the loop compensation network between this pin and  
the AGND pin.  
COMP  
CDC  
15  
16  
O
O
Voltage output proportional to the sensed voltage between the ISP pin and the ISN pin. Use a  
resistor between this pin and AGND to increase the output voltage to compensate voltage droop  
across the cable caused by the cable resistance.  
AGND  
VCC  
17  
18  
Signal ground of the IC  
Output of the internal regulator. A ceramic capacitor of more than 4.7 μF is required between this  
pin and the AGND pin.  
O
Power supply for high-side MOSFET gate driver in boost side. A 0.1-µF ceramic capacitor must be  
connected between this pin and the SW2 pin.  
BOOT2  
BOOT1  
EXTVCC  
19  
20  
21  
O
O
I
Power supply for high-side MOSFET gate driver in buck side. A 0.1-µF ceramic capacitor must be  
connected between this pin and the SW1 pin.  
Select the internal LDO or external 5 V for VCC. When it is connected to logic high voltage, select  
the internal LDO. When it is connected to logic low voltage, select the external 5 V for VCC.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS55289  
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1)  
MIN  
0.3  
MAX  
35  
UNIT  
V
VIN, SW1  
BOOT1  
SW1 + 6  
V
SW1 0.3  
VCC, SCL, SDA, FSW, COMP, FB/INT, MODE, CDC, DITH/SYNC,  
EXTVCC  
6
V
0.3  
Voltage range  
VOUT, SW2, ISP, ISN  
at pins (2)  
25  
20  
V
V
V
0.3  
0.3  
EN/UVLO  
BOOT2  
SW2 + 6  
SW2 0.3  
SCL, SDA, FSW, COMP, FB/INT, MODE, CDC, DITH/SYNC,  
EXTVCC  
VCC + 0.3  
V
0.3  
(3)  
TJ  
Junction temperature, TJ  
Storage temperature  
150  
150  
°C  
°C  
40  
65  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to network ground pin.  
(3) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows  
safe manufacturing with a standard ESD control process.  
(2) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe  
manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
3.0  
0.8  
1
NOM  
MAX  
30  
UNIT  
V
VIN  
VOUT  
L
Input voltage range  
Output voltage range  
22  
V
Effective inductance range  
Effective input capacitance range  
Effective output capacitance range  
Operating junction temperature  
4.7  
22  
10  
µH  
µF  
µF  
°C  
CIN  
COUT  
TJ  
4.7  
10  
100  
1000  
125  
40  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS55289  
 
 
 
 
 
 
 
 
 
TPS55289  
www.ti.com.cn  
UNIT  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
6.4 Thermal Information  
RYQ (VQFN)  
26 PINS  
Standard  
43.4  
RYQ (VQFN)  
26 PINS  
EVM (2)  
27.5  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
22.3  
N/A  
7.4  
N/A  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.7  
0.7  
ΨJT  
YJB  
7.2  
11.1  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Measured on TPS55289EVM-093, 4-layer, 2-oz/1-oz/1-oz/2-oz copper 91-mmx66-mm PCB.  
6.5 Electrical Characteristics  
TJ = 40°C to 125°C, VIN = 12 V and VOUT = 20 V. Typical values are at TJ = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VIN  
Input voltage range  
3.0  
2.8  
2.6  
30  
3.0  
2.7  
V
V
V
VIN rising  
2.9  
VVIN_UVLO  
Under voltage lockout threshold  
VIN falling  
2.65  
IC enabled, no load, no switching. VIN  
= 3.0 V to 24 V, VOUT = 0.8 V, VFB  
VREF + 0.1 V, RFSW = 100 k, TJ up to  
125°C  
=
Quiescent current into VIN pin  
Quiescent current into VOUT pin  
760  
760  
860  
860  
µA  
µA  
IQ  
IC enabled, no load, no switching, VIN  
= 3.0 V, VOUT = 3 V to 20 V, VFB  
=
VREF + 0.1 V, RFSW = 100 k, TJ up to  
125°C  
IC disabled, VIN = 3.0 V to 14 V, TJ up  
to 125°C  
ISD  
Shutdown current into VIN pin  
Internal regulator output  
0.8  
5.2  
3
µA  
V
VCC  
IVCC = 50 mA, VIN = 8 V, VOUT = 20 V  
5.0  
5.4  
EN/UVLO  
VEN_H  
EN logic high threshold  
EN logic low threshold  
Enable threshold hysteresis  
VCC = 3.0 V to 5.5 V  
VCC = 3.0 V to 5.5 V  
VCC = 3.0 V to 5.5 V  
1.15  
V
V
V
VEN_L  
0.4  
VEN_HYS  
0.04  
UVLO rising threshold at the EN/UVLO  
pin  
VUVLO  
VCC = 3.0 V to 5.5 V  
VCC = 3.0 V to 5.5 V  
1.20  
1.23  
1.26  
5.5  
V
VUVLO_HYS  
IUVLO  
UVLO threshold hysteresis  
10  
5
mV  
µA  
Sourcing current at the EN/UVLO pin VEN/UVLO = 1.3 V  
4.5  
OUTPUT  
VOUT  
Output voltage range  
0.8  
22  
V
V
Output overvoltage protection  
threshold  
VOVP  
22.5  
23.5  
1
24.5  
VOVP_HYS  
IFB_LKG  
Overvoltage protection hysteresis  
V
Leakage current at FB pin  
Leakage current into VOUT pin  
Output discharge current  
Tj up to 125°C  
100  
20  
nA  
IC disabled, VOUT = 20 V, VSW2 = 0 V,  
TJ up to 125°C  
IVOUT_LKG  
IDISCHG  
1
µA  
VOUT = 20 V, VCC = 5.2 V  
40  
100  
170  
mA  
INTERNAL REFERENCE DAC  
Resolution of reference voltage DAC  
11  
bits  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS55289  
 
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to 125°C, VIN = 12 V and VOUT = 20 V. Typical values are at TJ = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOUT_FS=03h, REF=0780h, VREF  
1.129 V  
=
=
=
=
=
=
=
=
19.7  
20  
20.3  
V
VOUT_FS=02h, REF=0780h, VREF  
1.129 V  
14.78  
9.85  
4.93  
0.74  
0.55  
0.36  
0.18  
15  
10  
15.22  
10.15  
5.07  
0.86  
0.65  
0.44  
0.22  
V
V
V
V
V
V
V
Output voltage when VREF is set to  
1.129 V  
VOUT_FULL  
VOUT_FS=01h, REF=0780h, VREF  
1.129 V  
VOUT_FS=00h, REF=0780h, VREF  
1.129 V  
5
VOUT_FS=03h, REF=0000h, VREF  
45 mV  
0.8  
0.6  
0.4  
0.2  
VOUT_FS=02h, REF=0000h, VREF  
45 mV  
Output voltage when VREF is set to 45  
mV  
VOUT_ZERO  
VOUT_FS=01h, REF=0000h, VREF  
45 mV  
VOUT_FS=00h, REF=0000h, VREF  
45 mV  
REFERENCE VOLTAGE  
External feedback with REF=0780H  
External feedback with REF=058CH  
External feedback with REF=0334H  
External feedback with REF=01A4H  
1.117  
0.837  
0.502  
0.276  
1.129  
0.846  
0.508  
0.282  
1.141  
0.855  
0.514  
0.288  
V
V
V
V
Reference voltage at the FB/INT pin  
when using external feedback  
VREF  
POWER SWITCH  
Low-side MOSFET on resistance on  
VOUT = 20 V, VCC = 5.2 V  
VOUT = 20 V, VCC = 5.2 V  
VOUT = 20 V, VCC = 5.2 V  
VOUT = 20 V, VCC = 5.2 V  
22  
14  
11  
11  
mΩ  
mΩ  
mΩ  
mΩ  
buck side  
High-side MOSFET on resistance on  
buck side  
RDS(on)  
Low-side MOSFET on resistance on  
boost side  
High-side MOSFET on resistance on  
boost side  
INTERNAL CLOCK  
RFSW = 100 k  
RFSW = 8.4 k  
Boost mode  
Buck mode  
180  
200  
2200  
90  
220  
2400  
145  
kHz  
kHz  
ns  
fSW  
Switching frequency  
2000  
tOFF_min  
tON_min  
VSW  
Minimum off time  
Minimum on time  
90  
130  
ns  
Voltage at the FSW pin  
1
V
CURRENT LIMIT  
VIN = 8 V, VOUT = 20 V, fSW = 400 kHz,  
FPWM  
6.7  
6.7  
8
8
A
A
ILIM_AVG  
ILIM_PK  
VSNS  
Average inductor current limit  
VIN = 8 V, VOUT = 20 V, fSW = 400 kHz,  
PFM  
VIN = 8 V, VOUT = 20 V, fSW = 400 kHz,  
FPWM  
13  
13  
30  
50  
A
Peak inductor current limit at boost  
high side  
VIN = 8 V, VOUT = 20 V, fSW = 400 kHz,  
PFM  
A
VISN = 2 V to 21 V, IOUT_LIMIT  
register = 10111100b  
28.5  
48  
31.5  
52  
mV  
mV  
Current loop regulation voltage  
between ISP and ISN pin  
VISN = 2 V to 21 V, IOUT_LIMIT  
register = 11100100b  
CABLE VOLTAGE DROP COMPENSATION  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS55289  
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to 125°C, VIN = 12 V and VOUT = 20 V. Typical values are at TJ = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RCDC = 20 kor floating, VISP VISN  
= 50 mV  
0.93  
1
1.05  
V
VCDC  
Voltage at the CDC pin  
RCDC = 20 kor floating, VISP VISN  
= 2 mV  
40  
700  
30  
100  
20  
7.5  
0
75  
750  
60  
mV  
mV  
mV  
mV  
mV  
µA  
Internal output feedback,  
CDC[2:0]=111, VISP VISN = 50 mV  
650  
70  
Internal output feedback,  
CDC[2:0]=111, VISP VISN = 2 mV  
VOUT increase for cable drop  
compensation  
VOUT_CDC  
Internal output feedback,  
CDC[2:0]=001, VISP VISN = 50 mV  
130  
40  
Internal output feedback,  
CDC[2:0]=001, VISP VISN = 10 mV  
External output feedback, RCDC = 20  
k, VISP VISN = 50 mV  
7.23  
7.87  
0.3  
0.3  
External output feedback, RCDC = 20  
k, VISP VISN = 0 mV  
IFB_CDC  
FB/INT pin sinking current  
µA  
External output feedback, RCDC  
floating, VISP VISN = 50 mV  
=
0
µA  
ERROR AMPLIFIER  
VFB = VREF + 400 mV, VCOMP = 1.1 V,  
VCC = 5 V  
ISINK  
COMP pin sink current  
20  
60  
µA  
µA  
VFB = VREF 400 mV, VCOMP = 1.1 V,  
VCC = 5 V  
ISOURCE  
COMP pin source current  
VCCLPH  
VCCLPL  
GEA  
High clamp voltage at the COMP pin  
Low clamp voltage at the COMP pin  
Error amplifier transconductance  
1.2  
0.7  
V
V
190  
µA/V  
SOFT START  
tSS  
Soft-start time  
2.5  
3.6  
5
ms  
SPREAD SPECTRUM  
IDITH_CHG Dithering charge current  
IDITH_DIS  
VDITH/SYNC = 1.0 V; RFSW = 49.9 kΩ;  
voltage rising from 0.9 V  
2
2
µA  
µA  
VDITH/SYNC = 1.0 V; RFSW = 49.9 kΩ;  
voltage falling from 1.1 V  
Dithering discharge current  
VDITH_H  
VDITH_L  
Dither high threshold  
Dither low threshold  
1.07  
0.93  
V
V
SYNCHRONOUS CLOCK  
VSNYC_H  
VSYNC_L  
tSYNC_MIN  
HICCUP  
tHICCUP  
Sync clock high voltage threshold  
1.2  
V
V
Sync clock low voltage threshold  
Minimum sync clock pulse width  
0.4  
50  
ns  
Hiccup off time  
76  
ms  
MODE  
VMODE_H  
VMODE_L  
EXTVCC  
VEXTVCC_H  
VEXTVCC_L  
MODE logic high threshold  
MODE logic low threshold  
VCC = 3.0 V to 5.5 V  
VCC = 3.0 V to 5.5 V  
1.2  
1.2  
V
V
0.4  
0.4  
EXTVCC logic high threshold  
EXTVCC logic low threshold  
VCC = 3.0 V to 5.5 V  
VCC = 3.0 V to 5.5 V  
V
V
LOGIC INTERFACE  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS55289  
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to 125°C, VIN = 12 V and VOUT = 20 V. Typical values are at TJ = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VI2C_IO  
VI2C_H  
VI2C_L  
IO voltage range for I2C  
I2C input high threshold  
I2C input low threshold  
1.7  
5.5  
V
V
V
VCC = 3.0 V to 5.5 V  
1.2  
VCC = 3.0 V to 5.5 V  
VFB/INT = 5 V  
0.4  
Leakage current into FB/INT pin when  
outputting high impedance  
IFB/INT_H  
VFB/INT_L  
100  
0.1  
nA  
V
Output low voltage range of the FB/  
INT pin  
Sinking 4-mA current  
0.03  
PROTECTION  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
175  
20  
°C  
°C  
TSD_HYS  
TJ falling below TSD  
6.6 I2C Timing Characteristics  
TJ = -40°C to 125°C, VIN = 12 V and VOUT = 20 V. Typical values are at TJ = 25°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I2C TIMING  
fSCL  
SCL clock frequency  
100  
0.5  
1000  
kHz  
µs  
Bus free time between a STOP and  
START condition  
tBUF  
Fast mode plus  
tHD(STA)  
tLOW  
Hold time (repeated) START condition  
Low period of the SCL clock  
260  
0.5  
ns  
µs  
ns  
tHIGH  
High period of the SCL clock  
260  
Setup time for a repeated START  
condition  
tSU(STA)  
260  
ns  
tSU(DAT)  
tHD(DAT)  
tRCL  
Data setup time  
50  
0
ns  
µs  
ns  
Data hold time  
Rise time of SCL signal  
120  
120  
Rise time of SCL signal after a  
repeated START condition and after  
an ACK bit  
tRCL1  
ns  
tFCL  
Fall time of SCL signal  
120  
120  
120  
ns  
ns  
ns  
ns  
pF  
tRDA  
tFDA  
tSU(STO)  
CB  
Rise time of SDA signal  
Fall time of SDA signal  
Setup time of STOP condition  
Capacitive load for SDA and SCL  
260  
200  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS55289  
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
6.7 Typical Characteristics  
VIN = 12 V, TA = 25°C, fSW = 400 kHz, unless otherwise noted  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 20 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 20 V  
20  
10  
0
0.0001  
0.001  
0.01  
0.1 0.2 0.5 1 2 3 5 710  
0.0001  
0.001  
0.01  
0.1 0.2 0.5 1 2 3 5 710  
Output Current (A)  
Output Current (A)  
6-1. Efficiency vs Output Current,  
6-2. Efficiency vs Output Current,  
VOUT = 5 V, FPWM  
VOUT = 5 V, PFM  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 20 V  
0.0001  
0.001  
0.01  
0.1 0.2 0.5 1 2 3 5 710  
Output Current (A)  
6-3. Efficiency vs Output Current,  
6-4. Efficiency vs Output Current,  
VOUT = 9 V, FPWM  
VOUT = 9 V, PFM  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 20 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 20 V  
0
0.0001  
0.001  
0.01  
0.1 0.2 0.5 1 2 3 5 710  
0.0001  
0.001  
0.01  
0.1 0.2 0.5 1 2 3 5 710  
Output Current (A)  
Output Current (A)  
6-5. Efficiency vs Output Current,  
6-6. Efficiency vs Output Current,  
VOUT = 12 V, FPWM  
VOUT = 12 V, PFM  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS55289  
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
6.7 Typical Characteristics (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 20 V  
20  
10  
VIN = 9 V  
VIN = 12 V  
VIN = 20 V  
0
0.0001  
0.001  
0.01  
0.1 0.2 0.5 1 2 3 5 710  
0.0001  
0.001  
0.01  
0.1 0.2 0.5 1 2 3 5 710  
Output Current (A)  
Output Current (A)  
6-7. Efficiency vs Output Current,  
6-8. Efficiency vs Output Current,  
VOUT = 15 V, FPWM  
VOUT = 15 V, PFM  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 20 V  
0
0.0001  
0.001  
0.01  
0.1 0.2 0.5 1 2 3 5 710  
Output Current (A)  
6-9. Efficiency vs Output Current,  
6-10. Efficiency vs Output Current,  
VOUT = 20 V, FPWM  
VOUT = 20 V, PFM  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
0.2865  
0.285  
0.2835  
0.282  
0.2805  
0.279  
600  
400  
200  
0.2775  
0
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Temperature (°C)  
Resistance (k)  
6-12. Reference Voltage vs Temperature (VREF = 0.282 V)  
6-11. Switching Frequency vs Setting Resistance  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS55289  
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
6.7 Typical Characteristics (continued)  
0.514  
0.855  
0.852  
0.849  
0.846  
0.843  
0.84  
0.512  
0.51  
0.508  
0.506  
0.504  
0.502  
0.837  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
6-13. Reference Voltage vs Temperature (VREF = 0.508 V)  
6-14. Reference Voltage vs Temperature (VREF = 0.846 V)  
1.146  
800  
1.14  
1.134  
1.128  
1.122  
1.116  
1.11  
790  
780  
770  
760  
750  
Into VIN, VIN = 24 V, VOUT = 3 V  
Into VOUT, VIN = 3.1 V, VOUT = 20 V  
740  
-40  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
6-15. Reference Voltage vs Temperature (VREF = 1.129 V)  
6-16. Quiescent Current vs Temperature  
1.2393  
1.2383  
1.2373  
1.2363  
1.2353  
1.2343  
1.2333  
1.2323  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
6-18. ENABLE/UVLO Rising Threshold vs Temperature  
6-17. Shutdown Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS55289  
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
6.7 Typical Characteristics (continued)  
2500  
1.2  
1.1  
1
2000  
1500  
1000  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
fSW = 2200 kHz  
fSW = 200 kHz  
500  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Temperature (°C)  
Output Current (A)  
6-19. Switching Frequency vs Temperature  
6-20. CDC Voltage vs Output Current with RSENSE = 10 mΩ  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS55289  
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
7 Detailed Description  
7.1 Overview  
The TPS55289 is a 8-A buck-boost DC-to-DC converter with the four integrated MOSFETs. The TPS55289 can  
operate over a wide range of 3.0-V to 30-V input voltage and 0.8-V to 22-V output voltage. The device can  
smoothly transition amongst buck mode, buck-boost mode, and boost mode according to the input voltage and  
the set output voltage. The TPS55289 operates in buck mode when the input voltage is greater than the output  
voltage and in boost mode when the input voltage is less than the output voltage. When the input voltage is  
close to the output voltage, the TPS55289 alternates between one-cycle buck mode and one-cycle boost mode.  
The TPS55289 uses an average current mode control scheme. Current mode control provides simplified loop  
compensation, rapid response to the load transients, and inherent line voltage rejection. An error amplifier  
compares the feedback voltage with the internal reference voltage. The output of the error amplifier determines  
the average inductor current.  
An internal oscillator can be configured to operate over a wide range of frequency from 200 kHz to 2.2 MHz. The  
internal oscillator can also synchronize to an external clock applied to the DITH/SYNC pin. To minimize EMI, the  
TPS55289 can dither the switching frequency at ±7% of the set frequency.  
The TPS55289 works in fixed-frequency PWM mode at moderate to heavy load currents. In light load condition,  
the TPS55289 can be configured to automatically transition to PFM mode or be forced in PWM mode by setting  
the corresponding bit in an internal register.  
The output voltage of the TPS55289 is adjustable by setting the internal register through I2C interface. An  
internal 11-bit DAC adjusts the reference voltage related to the value written into the REF register. The device  
can also limit the output current by placing a current sense resistor in the output path. These two functions  
support the programmable power supply (PPS) feature of the USB PD.  
The TPS55289 provides average inductor current limit of 8 A typically. In addition, the device provides cycle-by-  
cycle peak inductor current limit during transient to protect the device against overcurrent condition beyond the  
capability of the device.  
A precision voltage threshold of 1.23 V with 5-µA sourcing current at the EN/UVLO pin supports programmable  
input undervoltage lockout (UVLO) with hysteresis. The output overvoltage protection (OVP) feature turns off the  
high-side FETs to prevent damage to the devices powered by the TPS55289.  
The device provides a hiccup mode option to reduce the heating in the power components when the output short  
circuit happens. When the hiccup mode is enabled, the TPS55289 turns off for 76 ms and restarts at soft-start–  
up.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS55289  
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
7.2 Functional Block Diagram  
L1  
C4  
BOOT1  
C5  
SW1  
BOOT2  
SW2  
R4  
VOUT  
VIN  
VOUT  
C2  
VIN  
VCC  
Current  
Sense  
C1  
VIN VOUT  
CDC  
R2  
I-V  
EXTVCC  
VCC  
VCC  
SELECT  
LDO  
I_limit  
Iref  
Buck-Boost  
Control  
ISP  
ISN  
C3  
FB/INT  
COMP  
Gm  
Gm  
BOOST  
BUCK  
MODE  
R3  
Vref  
DAC  
SDA  
SCL  
Logic Core  
C6  
EN/UVLO  
PGND  
AGND  
Iref  
DAC  
VSYNC/DITH  
1.0V  
VCC  
VIN UVLO  
VOUT OVP  
Thermal  
VIN  
VOUT  
FSW  
fMOD  
R1  
DITH/SYNC  
C7  
7.3 Feature Description  
7.3.1 VCC Power Supply  
An internal LDO to supply the TPS55289 outputs regulated 5.2-V voltage at the VCC pin. When VIN is less than  
VOUT, the internal LDO selects the power supply source by comparing VIN to a rising threshold of 6.2 V with 0.3-  
V hysteresis. When VIN is higher than 6.2 V, the supply for LDO is VIN. When VIN is lower than 5.9 V, the supply  
for LDO is VOUT. When VOUT is less than VIN, the internal LDO selects the power supply source by comparing  
VOUT to a rising threshold of 6.2 V with 0.3-V hysteresis. When VOUT is higher than 6.2 V, the supply for LDO is  
VOUT. When VOUT is lower than 5.9 V, the supply for LDO is VIN. 7-1 shows the supply source selection for the  
internal LDO.  
7-1. VCC Power Supply Logic  
VIN  
VOUT  
Input for VCC LDO  
VIN > 6.2 V  
VIN < 5.9 V  
VIN > VOUT  
VOUT > VIN  
VOUT > VIN  
VOUT > 6.2 V  
VIN  
VOUT  
VOUT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS55289  
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
7-1. VCC Power Supply Logic (continued)  
VIN  
VOUT  
Input for VCC LDO  
VIN > VOUT  
VOUT < 5.9 V  
VIN  
7.3.2 EXTVCC Power Supply  
To minimize the power dissipation of the internal LDO when both input voltage and output voltage are high, an  
external 5-V power source can be applied at the VCC pin to supply the TPS55289. The external 5-V power  
supply must have at least 100-mA output current capability and must be within the 4.75-V to 5.5-V regulation  
range. When the EXTVCC pin is connected to logic low, the device selects the external power supply to supply  
the device through VCC pin. When the EXTVCC pin is connected to logic high, the device selects internal LDO.  
7.3.3 Operation Mode Setting  
By configuring the MODE pin logic status, the TPS55289 selects two different I2C addresses. 7-2 shows the  
I2C target address setting.  
7-2. I2C Target Address Setting  
MODE Pin  
Low  
I2C Target Address  
75h  
74h  
High  
7.3.4 Input Undervoltage Lockout  
When the input voltage is below 2.6 V, the TPS55289 is disabled. When the input voltage is above 3 V, the  
TPS55289 can be enabled by pulling the EN pin to a high voltage above 1.3 V.  
7.3.5 Enable and Programmable UVLO  
The TPS55289 has a dual function enable and undervoltage lockout (UVLO) circuit. When the input voltage at  
the VIN pin is above the input UVLO rising threshold of 3 V and the EN/UVLO pin is pulled above 1.15 V but less  
than the enable UVLO threshold of 1.23 V, the TPS55289 is enabled but still in standby mode. The TPS55289  
starts to detect the MODE pin logic status and select the I2C target address.  
The EN/UVLO pin has an accurate UVLO voltage threshold to support programmable input undervoltage lockout  
with hysteresis. When the EN/UVLO pin voltage is greater than the UVLO threshold of 1.23 V, the TPS55289 is  
enabled for I2C communication and switching operation. A hysteresis current, IUVLO_HYS, is sourced out of the  
EN/UVLO pin to provide hysteresis that prevents on/off chattering in the presence of noise with a slowly  
changing input voltage.  
By using resistor divider as shown in 7-1, the turn-on threshold is calculated using 方程1.  
R1  
8
= 8  
× (1 +  
)
+0(78.1 _10)  
78.1  
4
2  
(1)  
where  
VUVLO is the UVLO threshold of 1.23 V at the EN/UVLO pin.  
The hysteresis between the UVLO turn-on threshold and turn-off threshold is set by the upper resistor in the EN/  
UVLO resistor divider and is given by 方程2.  
¿8  
= +78.1_*;5 × 41  
+0(78.1)  
(2)  
where  
IUVLO_HYS is the sourcing current from the EN/UVLO pin when the voltage at the EN/UVLO pin is above  
VUVLO  
.
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS55289  
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
VIN  
IUVLO_HYS  
R1  
EN/UVLO  
Enable  
R2  
C1  
UVLO Comparator  
1.23V  
7-1. Programmable UVLO With Resistor Divider at the EN/UVLO Pin  
Using an NMOSFET together with a resistor divider can implement both logic enable and programmable UVLO  
as shown in 7-2. The EN logic high level must be greater than the enable threshold plus the Vth of the  
NMOSFET Q1. The Q1 also eliminates the leakage current from VIN to ground through the UVLO resistor  
divider during shutdown mode.  
VIN  
R1  
IUVLO_HYS  
EN  
EN/UVLO  
Enable  
R2  
C1  
UVLO Comparator  
1.23V  
7-2. Logic Enable and Programmable UVLO  
7.3.6 Soft Start  
When the input voltage is above the UVLO threshold and the voltage at the EN/UVLO pin is above the enable  
UVLO threshold, the TPS55289 is ready to accept the command from the I2C controller device. An I2C controller  
device can configure the internal registers of the TPS55289 before setting the OE bit of the register 06h. Once  
an I2C controller device sets the OE bit to 1, the TPS55289 starts to ramp up the output voltage by ramping an  
internal reference voltage from 0 V to a voltage set in the internal registers 00h and 01h within 3.6 ms (typical).  
7.3.7 Shutdown and Load Discharge  
When the EN/UVLO pin voltage is pulled below 0.4 V, the TPS55289 is in shutdown mode, and all functions are  
disabled. All internal registers are reset to default values.  
When the EN/UVLO pin is at a high logic level and the OE bit is cleared to 0, the TPS55289 turns off the  
switching operation but keeps the I2C interface active. Simultaneously, if the DISCHG bit in the register 06h is  
set to 1, the TPS55289 discharges the output voltage below 0.8 V by an internal constant current.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS55289  
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
7.3.8 Switching Frequency  
The TPS55289 uses a fixed frequency average current control scheme. The switching frequency is between 200  
kHz and 2.2 MHz set by placing a resistor at the FSW pin. An internal amplifier holds this pin at a fixed voltage of  
1 V. The setting resistance is between maximum of 100 kand minimum of 8.4 k. Use 方程式 3 to calculate  
the resistance by a given switching frequency.  
1000  
f
=
(3)  
SW  
0.05 × R  
+ 35  
FSW  
where  
RFSW is the resistance at the FSW pin.  
For noise-sensitive applications, the TPS55289 can be synchronized to an external clock signal applied to the  
DITH/SYNC pin. The duty cycle of the external clock is recommended in the range of 30% to 70%. A resistor  
also must be connected to the FSW pin when the TPS55289 is switching by the external clock. The external  
clock frequency at the DITH/SYNC pin must have lower than 0.4-V low level voltage and must be within ±30% of  
the corresponding frequency set by the resistor. 7-3 is a recommended configuration.  
External Clock  
DITH/SYNC  
FSW  
RFSW  
7-3. External Clock Configuration  
7.3.9 Switching Frequency Dithering  
The TPS55289 provides an optional switching frequency dithering that is enabled by connecting a capacitor from  
the DITH/SYNC pin to ground. 7-4 illustrates the dithering circuit. By charging and discharging the capacitor, a  
triangular waveform centered at 1 V is generated at the DITH/SYNC pin. The triangular waveform modulates the  
oscillator frequency by ±7% of the nominal frequency set by the resistance at the FSW pin. The capacitance at  
the DITH/SYNC pin sets the modulation frequency. A small capacitance modulates the oscillator frequency at a  
faster rate than a large capacitance. For the dithering circuit to effectively reduce peak EMI, the modulation rate  
normally is below 1 kHz. 方程4 calculates the capacitance required to set the modulation frequency, FMOD  
.
1
%
=
(()  
&+6*  
2.8 × 4(59 × (/1&  
(4)  
where  
RFSW is the switching frequency setting resistance (Ω) at the FSW pin.  
FMOD is the modulation frequency (Hz) of the dithering.  
Connecting the DITH/SYNC pin below 0.4 V or above 1.2 V disables switching frequency dithering. The dithering  
function also is disabled when an external synchronous clock is used.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS55289  
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
1.07V  
1.0V  
0.93V  
DITH/SYNC  
CDITH  
FMOD  
FSW  
RFSW  
7-4. Switching Frequency Dithering  
7.3.10 Inductor Current Limit  
The TPS55289 implements both peak current and average inductor current limit. The average current mode  
control loop uses the current sense information at the high-side MOSFET of the boost leg to clamp the maximum  
average inductor current to 8 A (typical).  
Besides the average current limit, a peak current limit protection is implemented during transient to protect the  
device against overcurrent conditions beyond the capability of the device.  
7.3.11 Internal Charge Path  
Each of the two high-side MOSFET drivers is biased from its floating bootstrap capacitor, which is normally re-  
charged by VCC through internal bootstrap diodes when the low-side MOSFET is turned on. When the  
TPS55289 operates exclusively in the buck or boost regions, one of the high-side MOSFETs is constantly on. An  
internal charge path, from VOUT and BOOT2 to BOOT1 or from VIN and BOOT1 to BOOT2, charges the  
bootstrap capacitor to VCC so that the high-side MOSFET remains on.  
7.3.12 Output Voltage Setting  
There are two ways to set the output voltage: changing the feedback ratio and changing the reference voltage.  
The TPS55289 has a 11-bit DAC to program the reference voltage from 45 mV to 1.2 V. The TPS55289 can also  
select an internal feedback resistor divider or an external resistor divider by setting the FB bit in register 04h.  
When the FB bit is set to 0, the output voltage feedback ratio is set in internal register 04h. When the FB bit is  
set to 1, the output voltage feedback ratio is set by an external resistor divider.  
When using internal output voltage feedback settings, use 方程式 8 to calculate the output voltage. There are  
four feedback ratios programmable by writing the INTFB[1:0] bits of register 04h. With this function, the  
TPS55289 can limit the maximum output voltage to different values. In addition, the minimum step of the output  
voltage change is also programmed to 10 mV, 7.5 mV, 5 mV, and 2.5 mV, accordingly.  
When using an external output voltage feedback resistor divider as shown in 7-5, use 方程式 5 to calculate  
the output voltage with the reference voltage at the FB/INT pin.  
4($_72  
V176 = 8 × (1 +  
)
4'(  
4($_$6  
(5)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS55289  
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
RSNS  
VOUT  
VOUT  
ISP  
RFB_UP  
ISN  
FB/INT  
¯
RFB_BT  
7-5. Output Voltage Setting by External Resistor Divider  
TI recommends using 100 kfor the up resistor, RFB_UP. The reference voltage, VREF, at the FB/INT pin is  
programmable from 45 mV to 1.2 V by writing 11-bit data into registers 00h and 01h.  
7.3.13 Output Current Monitoring and Cable Voltage Droop Compensation  
The TPS55289 outputs a voltage at the CDC pin proportional to the sensed voltage across an output current  
sensing resistor between the ISP pin and the ISN pin. 方程式 6 shows the exact voltage at the CDC pin related  
to the sensed output current.  
V%&% = 20 × (8 F 8  
)
+52  
+50  
(6)  
To compensate the voltage droop across a cable from the output of the USB port to its powered device, the  
TPS55289 can lift its output voltage in proportion to the load current. There are two methods in the TPS55289 to  
implement the compensation: by setting internal register 05h or by placing a resistor between the CDC pin and  
AGND pin.  
When using internal output voltage feedback, use the internal compensation setting. When using an external  
resistor divider at the FB/INT pin to set the output voltage, use the external compensation setting by placing a  
resistor at the CDC pin.  
By default, the internal cable voltage droop compensation function is enabled with 0 V added to the output  
voltage. Write the value into the bit CDC [2:0] in register 05h to get the desired voltage compensation.  
When using external output voltage feedback, external compensation is better than the internal register for its  
high accuracy. The output voltage rises in proportion to the current sourcing from the CDC pin through the  
resistor at the CDC pin. Use 100-kresistance for the up resistor of the feedback resistor divider. 方程式 7  
shows the output voltage rise related to the sensed output current, the resistance at the CDC pin, and the up  
resistor of the output voltage feedback resistor divider.  
8
F 8  
+50  
+52  
V176_%&% = 3 × 4($_72 × (  
)
4%&%  
(7)  
where  
RFB_UP is the up resistor of the resistor divider between the output and the FB/INT pin.  
RCDC is the resistor at the CDC pin.  
7-6 shows the output voltage rise versus the sensed output current and the resistor at the CDC pin when  
RFB_UP is 100 k.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS55289  
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
VOUT_CDC(V)  
0.8  
RCDC=20K  
0.75V  
0.5V  
0.2V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
RCDC=30K  
RCDC=75K  
RCDC=150K  
RCDC=floating  
40  
0.1V  
VISP œ VISN  
(mV)  
10  
20  
30  
50  
7-6. Output Voltage Rise Versus Output Current  
7.3.14 Output Current Limit  
The output current limit is programmable from 0 A to 6.35 A by placing a 10-mcurrent sensing resistor  
between the ISP pin and the ISN pin. Smaller resistance results in a higher current limit and larger resistance  
results in a lower current limit. An internal register sets the current sense voltage across the ISP pin and the ISN  
pin. The programmable voltage step between the ISP pin and the ISN pin is 0.5 mV.  
Connecting the ISP and the ISN pin together to the VOUT pin disables the output current limit because the  
sensed voltage is always 0. The output current limit can also be disabled by resetting the Current_Limit_EN bit in  
the Current_Limit register to 0.  
7.3.15 Overvoltage Protection  
The TPS55289 has output overvoltage protection. When the output voltage at the VOUT pin is detected above  
23.5 V (typical), the TPS55289 turns off two high-side FETs and turns on two low-side FETs until its output  
voltage drops the hysteresis value lower than the output overvoltage protection threshold. This function prevents  
overvoltage on the output and secures the circuits connected to the output from excessive overvoltage.  
7.3.16 Output Short Circuit Protection  
In addition to the average inductor current limit, the TPS55289 implements output short-circuit protection by  
entering hiccup mode. To enable hiccup mode, the HICCUP bit in register 06h must be set. After a 3.6-ms soft-  
startup time, the TPS55289 monitors the average inductor current and output voltage. Whenever the output  
short circuit happens, causing the average inductor current to reach the set limit and the output voltage is below  
0.8 V, the TPS55289 shuts down the switching for 76 ms (typical) and then repeats the soft start for 3.6 ms. The  
hiccup mode helps reduce the total power dissipation on the TPS55289 in output short-circuit or overcurrent  
condition.  
7.3.17 Thermal Shutdown  
The TPS55289 is protected by a thermal shutdown circuit that shuts down the device when the internal junction  
temperature exceeds 175°C (typical). The internal soft-start circuit is reset but all internal registers values remain  
unchanged when thermal shutdown is triggered. The converter automatically restarts when the junction  
temperature drops below the thermal shutdown hysteresis of 20°C below the thermal shutdown threshold.  
7.4 Device Functional Modes  
In light load condition, the TPS55289 can work in PFM or forced PWM mode to meet different application  
requirements. PFM mode decreases switching frequency to reduce the switching loss, thus it gets high efficiency  
at light load condition. FPWM mode keeps the switching frequency unchanged to avoid undesired low switching  
frequency, but the efficiency becomes lower than that of PFM mode.  
By default, the TPS55289 works in PFM mode. To set the device in forced PWM mode, write the FPWM bit in  
the MODE register to 1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS55289  
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
7.4.1 PWM Mode  
In FPWM mode, the TPS55289 keeps the switching frequency unchanged in light load condition. When the load  
current decreases, the output of the internal error amplifier decreases as well to reduce the average inductor  
current down to deliver less power from input to output. When the output current further reduces, the current  
through the inductor decreases to zero during the switch-off time. The high-side N-MOSFET is not turned off  
even if the current through the MOSFET is zero. Thus, the inductor current changes its direction after it runs to  
zero. The power flow is from the output side to input side. The efficiency is low in light load condition. However,  
with the fixed switching frequency, there is no audible noise or other problems that can be caused by low  
switching frequency in light load condition.  
7.4.2 Power Save Mode  
The TPS55289 improves the efficiency at light load condition with PFM mode. By enabling the PFM function in  
the internal register, the TPS55289 can work in PFM mode at light load condition. When the TPS55289 operates  
at light load condition, the output of the internal error amplifier decreases to make the inductor peak current  
down to deliver less power to the load. When the output current further reduces, the current through the inductor  
will decrease to zero during the switch-off time. When the TPS55289 works in buck mode, once the inductor  
current becomes zero, the low-side switch of the buck side is turned off to prevent the reverse current from  
output to ground. When the TPS55289 works in boost mode, once the inductor current becomes zero, the high  
side-switch of the boost side is turned off to prevent the reverse current from output to input. The TPS55289  
resumes switching until the output voltage drops, so PFM mode reduces switching cycles and eliminates the  
power loss by the reverse inductor current to get high efficiency in light load condition.  
7.5 Programming  
The TPS55289 uses I2C interface for flexible converter parameter programming. I2C is a bi-directional 2-wire  
serial interface. Only two bus lines are required: a serial data line (SDA) and a serial clock line (SCL). I2C  
devices can be considered as controllers or targets when performing data transfers. A controller is the device  
that initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that time, any  
device addressed is considered a target.  
The TPS55289 operates as a target device with address 74h and 75h set by the MODE pin. Receiving control  
inputs from the controller device, like a microcontroller or a digital signal processor, reads and writes the internal  
registers 00h through 07h. The I2C interface of the TPS55289 supports both standard mode (up to 100 kbit/s)  
and fast mode plus (up to 1000 kbit/s). Both SDA and SCL must be connected to the positive supply voltage  
through current sources or pullup resistors. When the bus is free, both lines are in high voltage.  
7.5.1 Data Validity  
The data on the SDA line must be stable during the high level period of the clock. The high level or low level  
state of the data line can only change when the clock signal on the SCL line is low level. One clock pulse is  
generated for each data bit transferred.  
SDA  
SCL  
Data line stable  
Data valid  
Change of data  
allowed  
7-7. I2C Data Validity  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS55289  
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
7.5.2 START and STOP Conditions  
All transactions begin with a START (S) and can be terminated by a STOP (P). A high level to low level transition  
on the SDA line while SCL is at high level defines a START condition. A low level to high level transition on the  
SDA line when the SCL is at high level defines a STOP condition.  
START and STOP conditions are always generated by the controller. The bus is considered busy after the  
START condition, and free after the STOP condition.  
SDA  
SCL  
START (S)  
STOP (P)  
7-8. I2C START and STOP Conditions  
7.5.3 Byte Format  
Every byte on the SDA line must be eight bits long. The number of bytes to be transmitted per transfer is  
unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit  
(MSB) first. If a target cannot receive or transmit another complete byte of data until it has performed some other  
function, it can hold the clock line SCL low to force the controller into a wait state (clock stretching). Data transfer  
then continues when the target is ready for another byte of data and release the clock line SCL.  
Acknowledgement signal  
from receiver  
Acknowledgement signal  
from receiver  
MSB  
SDA  
SCL  
1
2
7
8
9
1
2
8
9
S or Sr  
P or Sr  
START or  
Repeated  
START  
STOP or  
Repeated  
START  
7-9. Byte Format  
7.5.4 Acknowledge (ACK) and Not Acknowledge (NACK)  
The acknowledge takes place after every byte. The acknowledge bit allows the receiver to signal the transmitter  
that the byte was successfully received and another byte can be sent. All clock pulses, including the  
acknowledge ninth clock pulse, are generated by the controller.  
The transmitter releases the SDA line during the acknowledge clock pulse so the receiver can pull the SDA line  
to low level and it remains stable low level during the high level period of this clock pulse.  
The Not Acknowledge signal is when SDA remains high level during the ninth clock pulse. The controller can  
then generate either a STOP to abort the transfer or a repeated START to start a new transfer.  
7.5.5 Target Address and Data Direction Bit  
After the START, a target address is sent. This address is seven bits long followed by the eighth bit as a data  
direction bit (bit R/W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS55289  
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
SDA  
SCL  
1 - 7  
8
9
1 - 7  
8
9
1 - 7  
8
9
S
P
START  
ADDRESS  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
7-10. Target Address and Data Direction  
7.5.6 Single Read and Write  
7-11 and 7-12 show the single-byte write and single-byte read format of the I2C communication.  
1
7
1
1
8
1
8
1
1
S
Target Address  
0
ACK  
Register Address  
ACK  
Data to Address  
ACK  
P
7-11. Single-Byte Write  
1
7
1
0
1
8
1
1
7
1
1
1
S
Target Address  
ACK  
Register Address  
ACK  
S
Target Address  
ACK  
From controller to target  
From target to controller  
8
1
1
Data from Address  
NACK  
P
7-12. Single-Byte Read  
If the register address is not defined, the TPS55289 sends back NACK and goes back to the idle state.  
7.5.7 Multiread and Multiwrite  
The TPS55289 supports multiread and multiwrite.  
1
7
1
0
1
8
1
S
Target Address  
ACK  
Register Address  
ACK  
8
1
8
1
8
1
1
Data to Address  
ACK Data to Address + 1 ACK  
······  
Data to Address + N ACK  
P
7-13. Multibyte Write  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS55289  
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
1
7
1
0
1
8
1
1
7
1
1
1
S
Target Address  
ACK  
Register Address  
ACK  
S
Target Address  
ACK  
8
1
8
1
8
1
1
NACK  
Data from Address  
ACK Data from Address + 1 ACK  
······  
Data from Address + N  
P
7-14. Multibyte Read  
7.6 Register Maps  
7-3 lists the memory-mapped registers for the device registers. All register offset addresses not listed in 表  
7-3 should be considered as reserved locations, and the register contents should not be modified.  
7-3. Device Registers  
Address  
0h, 1h  
2h  
Acronym  
REF  
Register Name  
Reference Voltage  
Current Limit Setting  
Slew Rate  
Section  
Go  
IOUT_LIMIT  
VOUT_SR  
VOUT_FS  
CDC  
Go  
3h  
Go  
4h  
Feedback Selection  
Cable Compensation  
Mode Control  
Go  
5h  
Go  
6h  
MODE  
Go  
7h  
STATUS  
Operating Status  
Go  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS55289  
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
7.6.1 REF Register (Address = 0h, 1h)  
REF is shown in 7-15 and 7-16 and described in 7-4.  
Return to Summary Table.  
REF sets the internal reference voltage of the TPS55289. The 01h register is the high byte and the 00h register  
is the low byte. One LSB of register 00h stands for 0.5645 mV of the internal reference voltage. When the  
register value is 00000000 00000000b, the reference voltage is 45 mV. When the register value is 00000111  
10000000b, the reference voltage is 1.129 V. The output voltage of the TPS55289 also depends on the output  
feedback ratio, which is either set by INTFB bit in register 04h or set by an external resistor divider. The default  
REF = 282 mV.  
When using internal output voltage feedback, the output voltage VOUT is calculated by 方程8.  
V
REF  
V
=
(8)  
OUT  
INTFB  
The REF register can be configured by an I2C controller before setting the OE bit in register 06h. For 5-V output  
voltage, set the REF register value to 00000001 10100100b. To set the internal reference voltage, write the  
register 00h first, then write the register 01h.  
7-15. REF_LSB  
7
6
5
4
3
2
1
0
VREF  
7-16. REF_MSB  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
VREF  
7-4. REF Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-11  
10-0  
Reserved  
VREF  
000000b  
Reserved  
001  
Sets the internal reference voltage  
10100100b  
000 00000000b = 45-mV reference voltage  
000 00000001b = 45.5645-mV reference voltage  
000 00000010b = 46.129-mV reference voltage  
...... = ......  
001 10100100b = 282-mV reference voltage  
...... = ......  
011 00110100b = 508-mV reference voltage  
...... = ......  
101 10001100b = 846-mV reference voltage  
...... = ......  
111 10000000b = 1129-mV reference voltage  
...... = ......  
111 11111110b = 1200-mV reference voltage  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS55289  
 
 
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
7.6.2 IOUT_LIMIT Register (Address = 2h) [reset = 11100100h]  
IOUT_LIMIT is shown in 7-17 and described in 7-5.  
Return to Summary Table.  
IOUT_LIMIT sets the current limit target voltage between the ISP pin and the ISN pin. The default value in the  
current limit register is 11100100b standing for 50 mV. One LSB stands for 0.5 mV. The bit7 enables the current  
limit or disables the current limit.  
7-17. IOUT_LIMIT Register  
7
6
5
4
3
2
1
0
Current_Limit_EN  
R/W-1b  
Current_Limit_Setting  
R/W-1100100b  
7-5. IOUT_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Current_Limit_EN  
R/W  
1b  
Enable or disable current limit.  
0b = Current limit disabled  
1b = Current limit enabled (Default)  
6-0  
Current_Limit_Setting  
R/W  
1100100b  
Sets the current limit target voltage between the ISP pin and the ISN  
pin  
0000000b = VISP-VISN = 0 (mV)  
0000001b = VISP-VISN = 0.5 (mV)  
0000010b = VISP-VISN = 1 (mV)  
0000011b = VISP-VISN = 1.5 (mV)  
0000100b = VISP-VISN = 2.0 (mV)  
...... = ......  
1100100b = VISP-VISN = 50.0 (mV) (Default)  
...... = ......  
1111111b = VISP-VISN = 63.5 (mV)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS55289  
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
7.6.3 VOUT_SR Register (Address = 3h) [reset = 00000001h]  
VOUT_SR is shown in 7-18 and described in 7-6.  
Return to Summary Table.  
Register 03h sets the slew rate of the output voltage change and the response delay time after the output  
current exceeds the setting output current limit.  
The OCP_DELAY [1:0] bits set the response time of the TPS55289 when the output overcurrent limit is hit. This  
allows the TPS55289 to output high current in a relative short duration time. The default setting is 128 µs so that  
the TPS55289 immediately limits the output current.  
The SR [1:0] bits set 1.25 mV/μs, 2.5 mV/μs, 5 mV/μs, and 10 mV/μs slew rate for output voltage change.  
7-18. VOUT_SR Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
OCP_DELAY  
R/W-00b  
RESERVED  
R/W-00b  
SR  
R/W-01b  
7-6. VOUT_SR Register Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
OCP_DELAY  
00b  
Reserved  
00b  
Sets the response time of the device when the output overcurrent  
limit is reached  
00b = 128 µs (Default)  
01b = Delay 1.024 × 3 ms  
10b = Delay 1.024 × 6 ms  
11b = Delay 1.024 × 12 ms  
3-2  
1-0  
RESERVED  
SR  
R/W  
R/W  
00b  
01b  
Reserved  
Sets slew rate for output voltage change  
00b = 1.25-mV/µs output change slew rate  
01b = 2.5-mV/µs output change slew rate (Default)  
10b = 5-mV/µs output change slew rate  
11b = 10-mV/µs output change slew rate  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS55289  
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
7.6.4 VOUT_FS Register (Address = 4h) [reset = 00000011h]  
VOUT_FS is shown in 7-19 and described in 7-7.  
Return to Summary Table.  
Register 04h sets the selection for the output feedback voltage, either by an internal resistor divider or external  
resistor divider, and sets the internal feedback ratio when using internal feedback resistor divider.  
7-19. VOUT_FS Register  
7
6
5
4
3
2
1
0
FB  
RESERVED  
R/W-00000b  
INTFB  
R/W-0b  
R/W-11b  
7-7. VOUT_FS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FB  
R/W  
0b  
Output feedback voltage  
0b = Use internal output voltage feedback. The FB/INT pin is the  
indicator for output short circuit protection, overcurrent status, and  
overvoltage status (Default).  
1b = Use external output voltage feedback. The FB/INT pin is the  
feedback input of the output voltage.  
6-2  
1-0  
RESERVED  
INTFB  
R
00000b  
11b  
Reserved  
R/W  
Internal feedback ratio  
00b = Set internal feedback ratio to 0.2256  
01b = Set internal feedback ratio to 0.1128  
10b = Set internal feedback ratio to 0.0752  
11b = Set internal feedback ratio to 0.0564 (Default)  
7-8. Output Voltage vs Internal Reference  
INTFB1 INTFB0  
REF=0000h  
REF=001Ah  
REF=0050h  
REF=00F0h  
REF=0780h  
5 V  
Output Voltage Step  
2.5 mV  
0
0
1
1
0
1
0
1
0.8 V  
0.8 V  
10 V  
5 mV  
0.8 V  
15 V  
7.5 mV  
0.8 V  
20 V  
10 mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS55289  
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
7.6.5 CDC Register (Address = 5h) [reset = 11100000h]  
CDC is shown in 7-20 and described in 7-9.  
Return to Summary Table.  
Register 05h sets masks for SC bit, OCP bit, and OVP bit in register 07h. In addition, register 05h sets the  
voltage rise added to the setting output voltage with respect to the sensed differential voltage between the ISP  
pin and the ISN pin.  
7-20. CDC Register  
7
6
5
4
3
2
1
0
SC_MASK  
R/W-1b  
OCP_MASK  
R/W-1b  
OVP_MASK  
R/W-1b  
RESERVED  
R/W-0b  
CDC_OPTION  
R/W-0b  
CDC  
R/W-000b  
7-9. CDC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
SC_MASK  
R/W  
1b  
Short circuit mask  
0b = Disabled SC indication  
1b = Enable SC indication (Default)  
OCP_MASK  
OVP_MASK  
R/W  
R/W  
1b  
1b  
Over current mask  
0b = Disabled OCP indication  
1b = Enable OCP indication (Default)  
Over voltage mask  
0b = Disabled OVP indication  
1b = Enable OVP indication (Default)  
4
3
RESERVED  
R/W  
R/W  
0b  
0b  
Reserved  
CDC_OPTION  
Select the cable voltage droop compensation approach.  
0b = Internal CDC compensation by the register 05H (Default)  
1b = External CDC compensation by a resistor at the CDC pin  
2-0  
CDC  
R/W  
000b  
Compensation for voltage droop over the cable  
000b = 0-V output voltage rise with 50 mV at VISP - VISN (Default)  
001b = 0.1-V output voltage rise with 50 mV at VISP - VISN  
010b = 0.2-V output voltage rise with 50 mV at VISP - VISN  
011b = 0.3-V output voltage rise with 50 mV at VISP - VISN  
100b = 0.4-V output voltage rise with 50 mV at VISP - VISN  
101b = 0.5-V output voltage rise with 50 mV at VISP - VISN  
110b = 0.6-V output voltage rise with 50 mV at VISP - VISN  
111b = 0.7-V output voltage rise with 50 mV at VISP - VISN  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS55289  
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
7.6.6 MODE Register (Address = 6h) [reset = 00100000h]  
MODE is shown in 7-21 and described in 7-10.  
Return to Summary Table.  
MODE controls the operating mode of the TPS55289.  
7-21. MODE Register  
7
6
5
4
3
2
1
0
OE  
FSW  
HICCUP  
R/W-1b  
DISCHG  
R/W-0b  
Reserved  
R/W-0b  
Reserved  
R/W-0b  
FPWM  
R/W-0b  
Reserved  
R/W-0b  
R/W-0b  
R/W-0b  
7-10. MODE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
OE  
R/W  
0b  
Output enable  
0b = Output disabled (Default)  
1b = Output enable  
6
FSWDBL  
R/W  
0b  
Switching frequency doubling in buck-boost mode  
TI does not recommend using double frequency function at switching  
frequency above 1.6 MHz.  
0b = Keep the switching frequency unchanged during buck-boost  
mode (Default)  
1b = Double the switching frequency during buck-boost mode  
5
4
HICCUP  
DISCHG  
R/W  
R/W  
1b  
0b  
Hiccup mode  
0b = Disable the hiccup during output short circuit protection.  
1b = Enable the hiccup during output short circuit protection (Default)  
Output discharge  
0b = Disabled VOUT discharge when the device is in shutdown  
mode (Default)  
1b = Enable VOUT discharge. VOUT is discharged to ground by an  
internal 100-mA current sink  
3
2
1
RESERVED  
RESERVED  
FPWM  
R
0b  
0b  
0b  
Reserved  
Reserved  
R
R/W  
Select operating mode at light load condition  
0b = PFM operating mode at light load condition (Default)  
1b = FPWM operating mode at light load condition  
0
RESERVED  
R
0b  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS55289  
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
7.6.7 STATUS Register (Address = 7h) [reset = 00000011h]  
STATUS is shown in 7-22 and described in 7-11.  
Return to Summary Table.  
The STATUS register stores the operating status of the TPS55289. When any of the SCP bit, the OCP bit, or the  
OVP bit are set, and the corresponding mask bit in register 05h is set as well, the FB/INT pin outputs low logic  
̅
level to indicate the situation. Reading register 07h clears the SCP bit, OCP bit, and OVP bit. After the SCP bit,  
OCP bit, or OVP bit is set, it does not reset until the register is read. If the situation still exists, the corresponding  
bit is set again.  
7-22. STATUS Register  
7
6
5
4
3
2
1
0
SCP  
R-0b  
OCP  
R-0b  
OVP  
R-0b  
Reserved  
R/W-0b  
Reserved  
R/W-0b  
Reserved  
R/W-0b  
STATUS  
R-11b  
7-11. STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SCP  
R
0b  
Short circuit protection  
0b = No short circuit  
1b = Short circuit happens. Does not reset until it is read.  
6
5
OCP  
OVP  
R
R
0b  
0b  
Overcurrent protection  
0b = No output overcurrent  
1b = Output current hits the current limit sensed at the ISP and the  
ISN pin. Does not reset until it is read.  
Overvoltage protection  
0b = No OVP  
1b = Output voltage exceeds the OVP threshold. Does not reset until  
it is read.  
4
RESERVED  
RESERVED  
RESERVED  
STATUS  
R
R
R
R
0b  
Reserved  
Reserved  
Reserved  
3
0b  
2
0b  
1-0  
11b  
Operating status  
00b = Boost  
01b = Buck  
10b = Buck-Boost  
11b = Reserved  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS55289  
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TPS55289 can operate over a wide range of 3.0-V to 30-V input voltage and output 0.8 V to 22 V. The  
device can transition among buck mode, buck-boost mode, and boost mode smoothly according to the input  
voltage and the setting output voltage. The TPS55289 operates in buck mode when the input voltage is greater  
than the output voltage and in boost mode when the input voltage is less than the output voltage. When the input  
voltage is close to the output voltage, the TPS55289 operates in one-cycle buck and one-cycle boost mode  
alternately. The switching frequency is set by an external resistor. To reduce the switching power loss in high  
power conditions, set the switching frequency below 500 kHz. If a system requires higher switching frequency  
above 500 kHz, set the lower switch current limit for better thermal performance.  
8.2 Typical Application  
The TPS55289 provides a small size solution for USB PD power supply application with the input voltage  
ranging from 9 V to 30 V.  
L1  
4.7µH  
C5  
C4  
SW1  
BOOT1  
SW2 BOOT2  
VIN = 9V to 30V  
R4  
VOUT = 3.3V to 21V  
VOUT  
VIN  
C1  
C2  
VCC  
PGND  
ISP  
4 x 22µF  
C3  
AGND  
ON  
ISN  
EN/UVLO  
SCL  
TPS55289  
OFF  
FB/INT  
COMP  
SDA  
Internal Vcc  
EXTVCC  
External Vcc  
74h  
DITH/SYNC  
FSW  
MODE  
CDC  
R3  
C7  
75h  
C8  
C6  
R2  
R1  
8-1. USB PD Power Supply With 9-V to 30-V Input Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS55289  
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
8.2.1 Design Requirements  
The design parameters are listed in 8-1:  
8-1. Design Parameters  
Parameters  
Input voltage  
Values  
9 V to 30 V  
3.3 V to 20 V  
2.25 A  
Output voltage  
Output current limit  
Output voltage ripple  
Operating mode at light load  
±50 mV  
FPWM  
8.2.2 Detailed Design Procedure  
8.2.2.1 Switching Frequency  
The switching frequency of the TPS55289 is set by a resistor at the FSW pin. Use 方程式 3 to calculate the  
resistance for the desired frequency. To reduce the switching power loss with such a high current application, a  
1% standard resistor of 49.9 kis selected for 400-kHz switching frequency for this application.  
8.2.2.2 Output Voltage Setting  
The TPS55289 has I2C interface to set the internal reference voltage. A microcontroller can easily set the  
desired output voltage by writing the proper data into the reference voltage registers through I2C bus.  
8.2.2.3 Inductor Selection  
Since the selection of the inductor affects steady state operation, transient behavior, and loop stability, the  
inductor is the most important component in power regulator design. There are three important inductor  
specifications: inductance, saturation current, and DC resistance.  
The TPS55289 is designed to work with inductor values between 1 µH and 10 µH. The inductor selection is  
based on consideration of both buck and boost modes of operation.  
For buck mode, the inductor selection is based on limiting the peak-to-peak current ripple to the maximum  
inductor current at the maximum input voltage. In CCM, Equation 9 shows the relationship between the  
inductance and the inductor ripple current.  
k
o
VIN(MAX)-VOUT ×VOUT  
L=  
IL(P-P)×fSW×VIN MAX  
:
;
(9)  
where  
VIN(MAX) is the maximum input voltage.  
VOUT is the output voltage.  
• ΔIL(P-P) is the peak to peak ripple current of the inductor.  
fSW is the switching frequency.  
For a certain inductor, the inductor ripple current achieves maximum value when VOUT equals half of the  
maximum input voltage. Choosing higher inductance gets smaller inductor current ripple while smaller  
inductance gets larger inductor current ripple.  
For boost mode, the inductor selection is based on limiting the peak-to-peak current ripple to the maximum  
inductor current at the maximum output voltage. In CCM, 程式 10 shows the relationship between the  
inductance and the inductor ripple current.  
k
VIN× VOUT(MAX)-VIN  
o
L=  
IL(P-P)×fSW×VOUT(MAX)  
(10)  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS55289  
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
where  
VIN is the input voltage.  
VOUT(MAX) is the maximum output voltage.  
• ΔIL(P-P) is the peak-to-peak ripple current of the inductor.  
fSW is the switching frequency.  
For a certain inductor, the inductor ripple current achieves maximum value when VIN equals to the half of the  
maximum output voltage. Choosing higher inductance gets smaller inductor current ripple while smaller  
inductance gets larger inductor current ripple.  
For this application example, a 4.7-µH inductor is selected, which produces approximate maximum inductor  
current ripple of 50% of the highest average inductor current in buck mode and 50% of the highest average  
inductor current in boost mode.  
In buck mode, the inductor DC current equals to the output current. In boost mode, the inductor DC current can  
be calculated with 方程11.  
VOUT×IOUT  
IL(DC)  
=
VIN×  
(11)  
where  
VOUT is the output voltage.  
IOUT is the output current.  
VIN is the input voltage.  
ηis the power conversion efficiency.  
For a given maximum output current of the TPS55289, the maximum inductor DC current happens at the  
minimum input voltage and maximum output voltage. Set the inductor current limit of the TPS55289 higher than  
the calculated maximum inductor DC current to make sure the TPS55289 has the desired output current  
capability.  
In boost mode, the inductor ripple current is calculated with 方程12.  
:
VIN× VOUT-VIN  
;
IL(P-P)  
=
L×fSW×VOUT  
(12)  
where  
• ΔIL(P-P) is the inductor ripple current.  
L is the inductor value.  
fSW is the switching frequency.  
VOUT is the output voltage.  
VIN is the input voltage.  
Therefore, the inductor peak current is calculated with 方程13.  
IL(P-P)  
IL(P) = IL(DC)  
+
2
(13)  
Normally, it is advisable to work with an inductor peak-to-peak current of less than 40% of the average inductor  
current for maximum output current. A smaller ripple from a larger valued inductor reduces the magnetic  
hysteresis losses in the inductor and EMI, but in the same way, load transient response time is increased. The  
selected inductor must have higher saturation current than the calculated peak current.  
The conversion efficiency is dependent on the resistance of its current path. The switching loss associated with  
the switching MOSFETs, and the inductor core loss. Therefore, the overall efficiency is affected by the inductor  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS55289  
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
DC resistance (DCR), equivalent series resistance (ESR) at the switching frequency, and the core loss. 8-2  
lists recommended inductors for the TPS55289. In this application example, the Coilcraft inductor XAL7070-472  
is selected for its small size, high saturation current, and small DCR.  
8-2. Recommended Inductors  
DCR  
(Maximum)  
Saturation Current/Heat  
Part Number  
L (µH)  
Size (L × W × H mm)  
Vendor(1)  
Rating Current (A)  
(mΩ)  
XAL7070-472ME  
VCHA085D-4R7MS6  
IHLP4040DZER4R7M01  
4.7  
4.7  
4.7  
14.3  
15.6  
16.5  
15.2/10.5  
16.0/8.8  
17/9.5  
7.5 × 7.2 × 7.0  
8.7 × 8.2 × 5.2  
10.2 × 10.2 × 4.0  
Coilcraft  
Cyntec  
Vishay  
(1) See the Third-party Products disclaimer.  
8.2.2.4 Input Capacitor  
In buck mode, the input capacitor supplies high ripple current. The RMS current in the input capacitors is given  
by 方程14.  
:
VOUT× VIN-VOUT  
;
¨
ICIN RMS; = I  
:
×
OUT  
VIN×VIN  
(14)  
where  
ICIN(RMS) is the RMS current through the input capacitor.  
IOUT is the output current.  
The maximum RMS current occurs at the output voltage is half of the input voltage, which gives ICIN(RMS) = IOUT  
/
2. Ceramic capacitors are recommended for their low ESR and high ripple current capability. A total of 20 µF  
effective capacitance is a good starting point for this application. Add a 0.1-µF/0402 package ceramic capacitor  
and place it close to VIN pin and GND pin to suppress high frequency noise.  
8.2.2.5 Output Capacitor  
In boost mode, the output capacitor conducts high ripple current. The output capacitor RMS ripple current is  
given by 方程式 15, where the minimum input voltage and the maximum output voltage correspond to the  
maximum capacitor current.  
VOUT  
¨
ICOUT RMS; = I  
:
×
-1  
OUT  
VIN  
(15)  
where  
ICOUT(RMS) is the RMS current through the output capacitor.  
IOUT is the output current.  
In this example, the maximum output ripple RMS current is 2.5 A.  
The ESR of the output capacitor causes an output voltage ripple given by 方程16 in boost mode.  
IOUT×VOUT  
VRIPPLE(ESR)  
=
×RCOUT  
VIN  
(16)  
where  
RCOUT is the ESR of the output capacitance.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS55289  
 
 
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
The capacitance also causes a capacitive output voltage ripple given by 方程式 17 in boost mode. When input  
voltage reaches the minimum value and the output voltage reaches the maximum value, there is the largest  
output voltage ripple caused by the capacitance.  
VIN  
VOUT  
l
IOUT× 1-  
p
VRIPPLE(CAP)  
=
COUT×fSW  
(17)  
Typically, a combination of ceramic capacitors and bulk electrolytic capacitors is needed to provide low ESR,  
high ripple current, and small output voltage ripple. From the required output voltage ripple, use 方程式 16 and  
方程17 to calculate the minimum required effective capacitance of the COUT  
.
Add a 0.1-μF/0402 package ceramic capacitor and place it close to VOUT pin and GND pin to suppress high  
frequency noise.  
8.2.2.6 Output Current Limit  
The output current limit is implemented by placing a current sense resistor between the ISP and ISN pins along  
with setting a limit voltage between the ISP pin and the ISN pin through register 02h. The maximum value of the  
limit voltage between the ISP and ISN pins is 63.5 mV. The default limit voltage is 50 mV. The current sense  
resistor between the ISP and ISN pins should be selected to ensure that the output current limit is set high  
enough for output. The output current limit setting resistor is given by 方程18.  
VSNS  
RSNS  
=
IOUT_LIMIT  
(18)  
where  
VSNS is the current limit setting voltage between the ISP and ISN pins.  
IOUT_LIMIT is the desired output current limit.  
Because the power dissipation is large, make sure the current sense resistor has enough power dissipation  
capability with a large package.  
8.2.2.7 Loop Stability  
The TPS55289 uses average current control scheme. The inner current loop uses internal compensation and  
requires the inductor value must be larger than 1.2/fSW. The outer voltage loop requires an external  
compensation. The COMP pin is the output of the internal voltage error amplifier. An external compensation  
network comprised of resistor and ceramic capacitors is connected to the COMP pin.  
The TPS55289 operates in buck mode or boost mode. Therefore, both buck and boost operating modes require  
loop compensations. The restrictive one of both compensations is selected as the overall compensation from a  
loop stability point of view. Typically for a converter designed either work in buck mode or boost mode, the boost  
mode compensation design is more restrictive due to the presence of a right half plane zero (RHPZ).  
The power stage in boost mode can be modeled by 方程18.  
s
s
l
p l  
× 1-  
p
1+  
:
RLOAD× 1-D  
;
2N×fESRZ  
2N×fRHPZ  
GPS(s) =  
×
s
2×RSENSE  
1+  
2N×fP  
(19)  
where  
RLOAD is the output load resistance.  
D is the switching duty cycle in boost mode.  
RSENSE is the equivalent internal current sense resistor, which is 0.055 .  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS55289  
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
The power stage has two zeros and one pole generated by the output capacitor and load resistance. Use 方程式  
20 to 方程22 to calculate them.  
2
fP =  
2N×RLOAD×COUT  
(20)  
(21)  
(22)  
1
fESRZ  
=
2N×RCOUT×COUT  
2
:
RLOAD× 1-D  
;
fRHPZ  
=
2N×L  
The internal transconductance amplifier together with the compensation network at the COMP pin constitutes the  
control portion of the loop. The transfer function of the control portion is shown by 方程23.  
s
l
p
1+  
GEA×REA×VREF  
VOUT  
2N×fCOMZ  
GC(s) =  
×
s
s
l
p
l
× 1 +  
p
1+  
2N×fCOMP1  
2N×fCOMP2  
(23)  
where  
GEA is the transconductance of the error amplifier.  
REA is the output resistance of the error amplifier.  
VREF is the reference voltage input to the error amplifier.  
VOUT is the output voltage.  
fCOMP1 and fCOMP2 are the poles frequency of the compensation network.  
fCOMZ is the zeros frequency of the compensation network.  
The total open-loop gain is the product of GPS(s) and GC(s). The next step is to choose the loop crossover  
frequency, fC, at which the total open-loop gain is 1, namely 0 dB. The higher in frequency that the loop gain  
stays above 0 dB before crossing over, the faster the loop response. It is generally accepted that the loop gain  
cross over 0 dB at the frequency no higher than the lower of either 1/10 of the switching frequency, fSW, or 1/5 of  
the RHPZ frequency, fRHPZ  
.
Then, set the value of RC, CC, and CP by 方程24 to 方程26.  
2N×VOUT×R  
×COUT×fC  
SENSE  
RC =  
: ;  
1-D ×VREF×GEA  
(24)  
where  
fC is the selected crossover frequency.  
RLOAD×COUT  
CC =  
2×RC  
(25)  
(26)  
RCOUT×COUT  
CP=  
RC  
If the calculated CP is less than 10 pF, it can be left open.  
Designing the loop for greater than 45° of phase margin and greater than 10-dB gain margin eliminates output  
voltage ringing during the line and load transient.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS55289  
 
 
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
8.2.3 Application Curves  
VOUT  
VOUT  
SW1  
SW2  
iL  
SW1  
SW2  
iL  
8-3. Switching Waveforms in VIN = 12 V, VOUT = 5  
8-2. Switching Waveforms in VIN = 12 V, VOUT = 5  
V, IO = 0 A, PFM  
V, IO = 5 A, FPWM  
VOUT  
VOUT  
SW1  
SW2  
iL  
SW1  
SW2  
iL  
8-4. Switching Waveforms in VIN = 12 V, VOUT = 8-5. Switching Waveforms in VIN = 12 V, VOUT  
12 V, IO = 3 A, FPWM 12 V, IO = 0 A, PFM  
=
VOUT  
VOUT  
SW1  
SW1  
SW2  
iL  
SW2  
iL  
8-6. Switching Waveforms in VIN = 12 V, VOUT = 8-7. Switching Waveforms in VIN = 12 V, VOUT  
=
20 V, IO = 2 A, FPWM  
20 V, IO = 0 A, PFM  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS55289  
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
VOUT  
VOUT  
iL  
iL  
8-8. Start-up Waveforms in VIN = 12 V, VOUT = 5 8-9. Shutdown Waveforms in VIN = 12 V, VOUT = 5  
V, RLOAD = 1.2 Ω, FPWM V, RLOAD = 1.2 Ω, FPWM  
VIN  
VOUT  
VOUT  
Io  
iL  
8-10. Line Transient Waveforms in VIN = 9 V to  
20 V, VOUT = 12 V, IO = 3 A with 200-μs Slew Rate,  
FPWM  
8-11. Load Transient Waveforms in VIN = 12 V,  
V
OUT = 5 V, IO = 2.5 A to 5 A with 20-μs Slew Rate,  
FPWM  
VOUT  
Io  
8-12. 3-A Output Current Limit Waveforms in VIN = 12 V,  
VOUT = 5 V, RLOAD = 1 Ω, RSNS = 10 mΩFPWM  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS55289  
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 3.0 V to 30 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk  
capacitance can be required in addition to the ceramic bypass capacitors. A typical choice is an aluminum  
electrolytic capacitor with a value of 100 μF.  
10 Layout  
10.1 Layout Guidelines  
As for all switching power supplies, especially those running at high switching frequency and high currents,  
layout is an important design step. If layout is not carefully done, the regulator can suffer from instability and  
noise problems.  
Place the 0.1-μF small package (0402) ceramic capacitors close to the VIN/VOUT pins to minimize high  
frequency current loops. This improves the radiation of high-frequency noise (EMI) and efficiency.  
Use multiple GND vias near PGND pin to connect the PGND to the internal ground plane. This also improves  
thermal performance.  
Minimize the SW1 and SW2 loop areas as these are high dv/dt nodes. Use a ground plane under the  
switching regulator to minimize interplane coupling.  
Use Kelvin connections to RSENSE for the current sense signals ISP and ISN and run lines in parallel from the  
RSENSE terminals to the IC pins. Place the filter capacitor for the current sense signal as close to the IC pins  
as possible.  
Place the BOOT1 bootstrap capacitor close to the IC and connect directly to the BOOT1 to SW1 pins. Place  
the BOOT2 bootstrap capacitor close to the IC and connect directly to the BOOT2 and SW2 pins.  
Place the VCC capacitor close to the IC with wide and short trace. The GND terminal of the VCC capacitor  
should be directly connected with PGND plane through three to four vias.  
Isolate the power ground from the analog ground. The PGND plane and AGND plane are connected at the  
terminal of the VCC capacitor. Thus the noise caused by the MOSFET driver and parasitic inductance does  
not interface with the AGND and internal control circuit.  
Place the compensation components as close to the COMP pin as possible. Keep the compensation  
components, feedback components, and other sensitive analog circuitry far away from the power  
components, switching nodes SW1 and SW2, and high-current trace to prevent noise coupling into the  
analog signals.  
To improve thermal performance, it is recommended to use thermal vias beneath the TPS55289 connecting  
the VIN pin to a large VIN area, and the VOUT pin to a large VOUT area separately.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS55289  
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
10.2 Layout Example  
PGND  
17  
16  
15  
14  
AGND  
1
2
3
4
VIN  
VOUT  
PGND  
trace on bottom layer  
AGND plane on an inner layer  
The first inner layer is the PGND plane  
10-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS55289  
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
HotRodand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS55289  
 
 
 
 
 
 
 
 
 
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
PACKAGE OUTLINE  
RYQ0021A  
VQFN - 1.0 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
3.1  
2.9  
PIN 1 INDEX AREA  
0.5  
0.3  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 4.08  
SYMM  
0.3  
16X  
0.2  
0.38  
0.28  
(0.1) TYP  
SEE TERMINAL  
DETAIL  
13  
5
18X 0.5  
4
14  
SYMM  
2X  
1.5  
(2.35)  
17  
1
18  
21  
19  
20  
0.55  
0.35  
0.1  
0.5  
0.3  
4X  
12X  
2X 0.54  
C A B  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
0.05  
5X  
0.05  
0.1  
0.05  
C A B  
4226658/A 04/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPS55289  
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
EXAMPLE BOARD LAYOUT  
RYQ0021A  
VQFN - 1.0 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
2X (0.54)  
(R0.05) TYP  
21  
18  
12X (0.6)  
1
21X (0.25)  
17  
5X  
(3.4)  
(2.8)  
(2.75)  
(2.35)  
SYMM  
18X (0.5)  
14  
4
4X (0.65)  
5
13  
(0.33)  
2X (4.08)  
4.8  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4226658/A 04/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS55289  
TPS55289  
www.ti.com.cn  
ZHCSNR7A MARCH 2022 REVISED AUGUST 2022  
EXAMPLE STENCIL DESIGN  
RYQ0021A  
VQFN - 1.0 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
2X (0.54)  
21  
18  
16X (0.6)  
1
30X (0.25)  
SYMM  
17  
(2.8)  
(2.75)  
(2.4)  
15X  
(1)  
18X (0.5)  
14  
METAL  
TYP  
4
4X (0.65)  
13  
5
(0.33)  
2X (4.08)  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PIN 7,8, 10 & 11 SOLDER COVERAGE = 88%  
PIN 9 SOLDER COVERAGE = 64%  
SCALE:20X  
4226658/A 04/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TPS55289  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS55289RYQR  
ACTIVE  
VQFN-HR  
RYQ  
21  
3000 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
-40 to 125  
S55289  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS55330

Integrated 5-A 24-V Boost/SEPIC/Flyback DC-DC Regulator
TI

TPS55330RTE

IC SWITCHING REGULATOR, Switching Regulator or Controller
TI

TPS55330RTER

Integrated 5-A 24-V Boost/SEPIC/Flyback DC-DC Regulator
TI

TPS55330RTET

Integrated 5-A 24-V Boost/SEPIC/Flyback DC-DC Regulator
TI

TPS55332-Q1

2.2-MHz, 60-V OUTPUT STEP UP DC/DC CONVERTER
TI

TPS55332QPWPRQ1

2.2-MHz, 60-V OUTPUT STEP UP DC/DC CONVERTER
TI

TPS55340

Integrated 5-A 40-V Wide Input Range Boost/SEPIC/Flyback DC-DC Regulator
TI

TPS55340-EP

TPS55340-EP Integrated 5-A, 40-V Wide Input Range Boost/SEPIC/Flyback DC-DC Regulator
TI

TPS55340-EP_15

TPS55340-EP Integrated 5-A, 40-V Wide Input Range Boost/SEPIC/Flyback DC-DC Regulator
TI

TPS55340-Q1

TPS55340-EP Integrated 5-A, 40-V Wide Input Range Boost/SEPIC/Flyback DC-DC Regulator
TI

TPS55340EVM-017

TPS55340EVM-017, 5-V to 12-V Input, 24-V Output Boost Evaluation Module
TI

TPS55340EVM-147

TPS55340EVM-147, 6V to 18V Input, 12V Output SEPIC Evaluation Module
TI