TPS56339DDCR [TI]

4.5V 至 24V 输入、3A 输出同步降压转换器 | DDC | 6 | -40 to 125;
TPS56339DDCR
型号: TPS56339DDCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4.5V 至 24V 输入、3A 输出同步降压转换器 | DDC | 6 | -40 to 125

转换器
文件: 总32页 (文件大小:1340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS56339  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
TPS56339 4.5V 24V 输入、3A 输出同步降压转换器  
1 特性  
3 说明  
1
输入电压范围:4.5V 24V  
TPS56339 是一款输入电压范围为 4.5V 24V 3A  
同步降压转换器。该器件包含两个集成开关  
输出电压范围:0.8V 16V  
3A 最大连续输出电流  
MOSFET、内部回路补偿和 5ms 内部软启动功能,可  
降低组件数。通过采用 SOT-23 (6) 封装,该器件实现  
了高功率密度,并且在 PCB 上的占用空间非常小。  
500kHz 固定开关频率  
支持高达 97% 的占空比  
集成式 70mΩ 35mΩ MOSFET  
关断电流典型值为 3μA  
TPS56339 采用高级仿真电流模式 (AECM) 控制,可  
实现固定频率快速瞬态响应。该器件具有内部自适应环  
路调节功能,因此在宽电压输出范围内无需进行外部补  
偿。  
静态电流典型值为 98μA  
内部 5ms 软启动  
方便易用的内部环路补偿  
用于高侧和低侧 MOSFET 的逐周期电流限制  
非锁存 UVPUVLO TSD 保护  
SOT-23 (6) 封装  
使用 TPS56339 并借助 WEBENCH® 电源设计器  
创建定制设计  
高侧逐周期电流限制可在电流过载情况下保护器件,并  
通过低侧拉电流限制防止电流失控,增强限制效果。在  
欠压和热关断保护情况下将触发断续保护。  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
TPS56339  
SOT-23 (6)  
1.60mm × 2.90mm  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
12V19V 分布式总线电源  
工业 应用  
视频监控和安全系统  
设备  
消费类应用  
数字电视和 LCD 监视器  
无线和智能扬声器  
TPS56339 效率  
简化原理图  
100  
95  
90  
85  
80  
75  
70  
65  
TPS56339  
Rboot  
Cboot  
3
1
5
6
2
VIN  
VIN  
BOOT  
SW  
Cin  
Lo  
GND  
VOUT  
Rfb1  
Rfb2  
4
EN  
EN  
FB  
Co  
60  
Vin=12V, Vout=5V  
55  
50  
45  
Vin=19V, Vout=5V  
Vin=12V, Vout=3.3V  
Vin=19V, Vout=3.3V  
0.001  
0.01  
0.1  
Load Current (A)  
1
5
Eff-  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEI2  
 
 
 
 
TPS56339  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 14  
7.5 Light-Load Operation .............................................. 14  
Application and Implementation ........................ 15  
8.1 Application Information............................................ 15  
8.2 Typical Application ................................................. 15  
Power Supply Recommendations...................... 21  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 5  
6.7 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 11  
8
9
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 22  
11 器件和文档支持 ..................................................... 24  
11.1 接收文档更新通知 ................................................. 24  
11.2 相关链接................................................................ 24  
11.3 社区资源................................................................ 24  
11.4 ....................................................................... 24  
11.5 静电放电警告......................................................... 24  
11.6 Glossary................................................................ 24  
12 机械、封装和可订购信息....................................... 24  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (November 2018) to Revision A  
Page  
已更改 将销售状态从预告信息更改为初始发行版........................................................................................................... 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TPS56339  
www.ti.com.cn  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
5 Pin Configuration and Functions  
DDC Package  
6-Pin SOT  
Top View  
GND  
1
2
3
6
5
4
BOOT  
EN  
SW  
VIN  
FB  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
A 30-Ω boot resistor and a 0.1-μF bootstrap cap are required between BOOT and SW. The  
voltage on this cap carries the gate drive voltage for the high-side MOSFET.  
BOOT  
6
O
EN  
FB  
5
4
I
I
Enable pin. Float to enable. Adjust the input undervoltage lockout with two resistors.  
Converter feedback input. Connect to output voltage with feedback resistor divider.  
Ground pin. Source terminal of low-side MOSFET as well as the ground terminal for  
controller circuit. Connect sensitive FB to this GND at a single point.  
GND  
1
G
SW  
VIN  
2
3
O
I
Switch node connection between high-side MOSFET and low-side MOSFET.  
Input voltage supply pin. The drain terminal of high-side MOSFET.  
(1) I = Input, O = Output, G = GND  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
TPS56339  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range of –40°C to +125°C (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–3  
MAX  
26  
UNIT  
VIN  
EN  
6
Input voltages  
V
BOOT  
SW+6  
6
FB  
BOOT-SW  
6
Output voltages  
SW  
26  
V
SW (<10 ns transient)  
Operating junction temperature(2)  
Storage temperature  
26  
TJ  
–40  
–65  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Operating at junction temperatures greater than 125°C, although possible, degrades the lifetime of the device.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per  
JEDEC specification JESD22-C101, all  
pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of –40°C to +125°C (unless otherwise noted)(1)  
MIN  
4.5  
NOM  
MAX  
24  
UNIT  
V
VIN  
Input voltage  
EN  
–0.1  
–0.1  
–0.1  
–0.1  
0
5.5  
5.5  
5.5  
24  
V
FB  
V
BOOT-SW  
V
Output voltage  
SW  
V
Ouput Current  
Temperature  
IOUT  
3
A
Operating junction temperature, TJ  
–40  
125  
°C  
(1) Conditions for which the device is intended to be functional, but do not ensure specific performance limits.  
6.4 Thermal Information  
TPS56339  
THERMAL METRIC(1)  
DDC (SOT23)  
6 PINS  
119.1  
UNIT  
(2)(3)  
RθJA  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
58.1  
36.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953  
(2) The value of RθJA given in this table is only valid for comparison with other packages and can not be used for design purposes. These  
values were simulated on a standard JEDEC board. They do not represent the performance obtained in an actual application.  
(3) The real RθJA on TPS56339EVM is about 62.4 /W, test condition: VIN = 19 V, VOUT = 5 V, IOUT = 3 A, TA = 25 .  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TPS56339  
www.ti.com.cn  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
Thermal Information (continued)  
TPS56339  
THERMAL METRIC(1)  
DDC (SOT23)  
6 PINS  
9.4  
UNIT  
ΨJT  
ΨJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
°C/W  
°C/W  
36.2  
6.5 Electrical Characteristics  
Limits apply over the recommended operating junction temperature (TJ ) range of –40°C to +125°C, unless otherwise stated.  
Minimum and maximum limits are specified through test, design or statistical correlation. Typical values represent the most  
likely parametric norm at TJ = 25 °C, and are provided for reference purposes only. Unless otherwise stated, the following  
conditions apply: VIN = 4.5 V to 24 V.  
PARAMETER  
POWER SUPPLY (VIN PIN)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Operation input voltage  
4.5  
24  
V
First power on with no load, then force  
VFB to 1.2 V, VIN = 12 V  
IQ  
Non switching quiescent current  
Shutdown supply current  
98  
µA  
ISHDN  
VIN = 12 V, VEN = 0 V  
VIN Rising threshold  
VIN Falling threshold  
3
4.2  
3.7  
µA  
V
VIN_UVLO  
VIN_UVLO  
3.9  
3.5  
4.4  
3.9  
Undervoltage lockout thresholds  
V
ENABLE (EN PIN)  
VEN_RISE  
EN rising threshold  
EN falling threshold  
VEN = 1.0 V  
1.18  
1.12  
1.2  
1.28  
V
V
Enable threshold  
VEN_FALL  
IEN_INPUT  
IEN_HYS  
1.08  
Input current  
µA  
µA  
Hysteresis current  
VEN = 1.5 V  
3.1  
VOLTAGE REFERENCE (FB PIN)  
TJ = 25 °C  
0.790  
0.782  
0.802  
0.802  
0.814  
0.822  
V
V
VREF Reference voltage  
TJ = -40 °C to 125 °C  
INTEGRATED MOSFETS  
RDS_ON_HS High-side MOSFET On-resistance  
RDS_ON_LS Low-side MOSFET On-resistance  
CURRENT LIMIT  
IHS_LIMIT High-side MOSFET current limit  
ILS_LIMIT Low-side MOSFET current limit  
TJ = 25 °C, VBOOT-SW = 5 V  
TJ = 25 °C, VIN = 12 V  
70  
35  
mΩ  
mΩ  
3.9  
2.7  
4.7  
3.6  
5.4  
4.7  
A
A
VIN = 12 V  
OUTPUT UNDERVOLTAGE PROTECTION  
Output UVP threshold  
Hiccup detect (HL)  
62.5  
5
%
%
VUVP_HYS  
Hysteresis  
BOOT UVLO  
VBOOT-SW  
OSCILLATOR  
fSW  
BOOT UVLO threshold  
Switching frequency  
2.2  
V
420  
500  
600  
KHz  
THERMAL SHUTDOWN  
(1)  
TSHDN  
Thermal shutdown threshold  
Hysteresis  
160  
20  
°C  
°C  
(1)  
THYS  
(1) Not production tested  
6.6 Timing Requirements  
Limits apply over the recommended operating junction temperature (TJ ) range of –40°C to +125°C, unless otherwise stated.  
Minimum and maximum limits are specified through test, design or statistical correlation. Typical values represent the most  
likely parametric norm at TJ = 25 °C, and are provided for reference purposes only. Unless otherwise stated, the following  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
TPS56339  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
Timing Requirements (continued)  
Limits apply over the recommended operating junction temperature (TJ ) range of –40°C to +125°C, unless otherwise stated.  
Minimum and maximum limits are specified through test, design or statistical correlation. Typical values represent the most  
likely parametric norm at TJ = 25 °C, and are provided for reference purposes only. Unless otherwise stated, the following  
conditions apply: VIN = 4.5 V to 24 V.  
conditions apply: VIN = 4.5 V to 24 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ON TIMER CONTROL  
(1)  
TON_MIN  
Minimum on time  
Maximum on time  
Minimum off time  
55  
5
ns  
µs  
ns  
TON_MAX  
TOFF_MIN  
SOFT START  
TSS  
115  
Internal soft-start time  
5
ms  
OUTPUT UNDERVOLTAGE PROTECTION  
THIC_WAIT  
THIC_RE  
Hiccup on time  
120  
38  
µs  
Hiccup time before restart  
ms  
(1) Not production tested  
6.7 Typical Characteristics  
VIN = 12 V (unless otherwise noted)  
110  
108  
106  
104  
102  
100  
98  
3.3  
3.25  
3.2  
3.15  
3.1  
3.05  
3
96  
94  
2.95  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ - Junction Temperature (èC)  
TJ - Junction Temperature (èC)  
D001  
D002  
1. Quiescent Current VS Junction Temperature  
2. Shutdown Current VS Junction Temperature  
6
版权 © 2018–2019, Texas Instruments Incorporated  
TPS56339  
www.ti.com.cn  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
Typical Characteristics (接下页)  
VIN = 12 V (unless otherwise noted)  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
47.5  
45  
42.5  
40  
37.5  
35  
32.5  
30  
27.5  
25  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ - Junction Temperature (èC)  
TJ - Junction Temperature (èC)  
D003  
D004  
3. High-side Rds-On VS Junction Temperature  
4. Low-side Rds-On VS Junction Temperature  
0.808  
534  
531  
528  
525  
522  
519  
516  
513  
510  
507  
504  
0.807  
0.806  
0.805  
0.804  
0.803  
0.802  
0.801  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ - Junction Temperature (èC)  
TJ - Junction Temperature (èC)  
D005  
D006  
5. Reference Voltage VS Junction Temperature  
6. Switching Frequency VS Junction Temperature  
4.6  
4.4  
4.2  
4
1.28  
1.24  
1.2  
L ç H  
H ç L  
L ç H  
H ç L  
1.16  
1.12  
1.08  
3.8  
3.6  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ - Junction Temperature (èC)  
TJ - Junction Temperature (èC)  
D007  
D008  
7. VIN UVLO Threshold VS Junction Temperature  
8. EN Threshold VS Junction Temperature  
版权 © 2018–2019, Texas Instruments Incorporated  
7
TPS56339  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
VIN = 12 V (unless otherwise noted)  
4.86  
4.84  
4.82  
4.8  
3.65  
3.64  
3.63  
3.62  
3.61  
3.6  
4.78  
4.76  
4.74  
4.72  
4.7  
3.59  
3.58  
3.57  
3.56  
4.68  
4.66  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ - Junction Temperature (èC)  
TJ - Junction Temperature (èC)  
D009  
D010  
9. High-side Current Limit Threshold VS Junction  
10. Low-side Current Limit Threshold VS Junction  
Temperature  
Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
Vin = 4.5 V  
Vin = 12 V  
Vin = 19 V  
Vin = 6.5 V  
Vin = 12 V  
Vin = 19 V  
0.001  
0.01  
0.1  
Load Current (A)  
1
5
0.001  
0.01  
0.1  
Load Current (A)  
1
5
Eff-  
Eff-  
11. VOUT=1.05 V Efficiency, L=1.5 µH  
12. VOUT=3.3 V Efficiency, L=4.7 µH  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
Vin = 6.5 V  
Vin = 12 V  
Vin = 19 V  
Vin = 15 V  
Vin = 19 V  
0.001  
0.01  
0.1  
Load Current (A)  
1
5
0.001  
0.01  
0.1  
Load Current (A)  
1
5
Eff-  
Eff-  
13. VOUT=5 V Efficiency, L=5.6 µH  
14. VOUT=12 V Efficiency, L=6.8 µH  
8
版权 © 2018–2019, Texas Instruments Incorporated  
TPS56339  
www.ti.com.cn  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
7 Detailed Description  
7.1 Overview  
The TPS56339 is a 24-V, 3-A, synchronous buck (step-down) converter with two integrated n-channel  
MOSFETs. The device implements an AECM control which can get fast transient response with fixed frequency.  
The fast transient response results in low voltage drop and the fixed frequency brings a better jitter permanence  
and predictable frequency for EMI design. The optimized internal compensation network minimizes the external  
component counts and simplifies the control loop design.  
The TPS56339 is designed for safe monotonic start-up into pre-biased loads. The default start-up is when VIN is  
typically 4.5 V. The EN pin has an internal pull-up current source that can be used to adjust the input voltage  
undervoltage lockout (UVLO) with two external resistors. In addition, the EN pin can be floating for the device to  
operate with the internal pull-up current. The total operating current for the device is approximately 98 μA when  
not switching and under no load. When the device is disabled, the supply current is approximately 3 μA. The  
integrated 70-mΩ high-side MOSFET and 35-mΩ allow for high efficiency power supply designs with continuous  
output currents up to 3 A.  
The TPS56339 reduces the external component count by integrating the boot recharge circuit. The bias voltage  
for the integrated high-side MOSFET is supplied by a capacitor between the BOOT and SW pins. The boot  
capacitor voltage is monitored by a BOOT to SW UVLO (BOOT-SW UVLO) circuit allowing SW pin to be pulled  
low to recharge the boot capacitor. The device has a on-time extension function with a maximum on time of 5 μs  
to keep the boot capacitor voltage higher than the preset BOOT-SW UVLO threshold which is typically 2.2 V.  
During low dropout operation, large duty cycle is needed. The high-side MOSFET could turn on up to 5 μs. Then  
the high-side MOSFET turns off and the low-side MOSFET turns on with a minimum off time of 115 ns,  
supporting a maximum duty cycle of 97%.  
The TPS56339 integrates output undervoltage protection. When the regulated output voltage is lower than 62.5%  
of the nominal voltage due to over current triggered, the undervoltage comparator is activated. 120 μs deglitch  
timer later, both the high-side and low-side MOSFET turn off, the device steps into hiccup mode.  
The TPS56339 has internal 5-ms soft-start time to minimize inrush currents.  
版权 © 2018–2019, Texas Instruments Incorporated  
9
TPS56339  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
7.2 Functional Block Diagram  
EN  
VIN  
Thermal  
Protection  
UVLO  
Ip  
Ih  
UV Protection  
-
Hiccup  
Shutdown  
Shutdown  
Logic  
+
EN Compatator  
Boot Charge  
HS Current  
Sense  
BOOT  
HS MOSFET  
Current Limit  
Boot UVLO  
FB  
Controller  
Power Stage  
And  
Dead time  
Control Logic  
SW  
VIN  
0.8V  
Voltage  
Reference  
Regulator  
Soft Start  
Oscillator  
LS Current  
Sense  
LS MOSFET  
Current Limit  
GND  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS56339  
www.ti.com.cn  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
7.3 Feature Description  
7.3.1 Advanced Emulated Current Mode Control  
The TPS56339 uses an Advanced Emulated Current Mode (AECM) control, which is an emulated current control  
topology. The TPS56339 uses an internal oscillator to generate clock to trigger high-side MOSFET turn on. Once  
the emulated inductor current ramp up trigger internal reference, the high-side MOSFET turns off and the low-  
side MOSFET turns on. Until the next clock coming, the low-side MOSFET turns off and the high-side MOSFET  
turns on again. The switching frequency is controlled by the oscillator clock and is fixed that provides ease of  
filter design to overcome EMI noise. The internal adaptive loop adjustment eliminates the need for external  
compensation over a wide voltage output range up to 16V. However, dynamic adjustment output voltage is not  
supported.  
7.3.2 Enable and Adjusting Undervoltage Lockout  
The EN pin provides electrical on and off control of the device. When the EN pin voltage exceeds the threshold  
voltage, the TPS56339 begins operation. If the EN pin voltage is pulled below the threshold voltage, the regulator  
stops switching and enters the shutdown mode.  
The EN pin has an internal pull-up current source which allows the user to float the EN pin to enable the device.  
If an application requires control of the EN pin, use open-drain or open-collector output logic to interface with the  
pin.  
The TPS56339 implements internal undervoltage-lockout (UVLO) circuitry on the VIN pin. The device is disabled  
when the VIN pin voltage falls below the internal VIN UVLO threshold. The internal VIN UVLO threshold has a  
hysteresis of 510 mV.  
If an application requires a higher UVLO threshold on the VIN pin, the EN pin can be configured as shown in  
15. When using the external UVLO function, setting the hysteresis at a value greater than 510 mV is  
recommended.  
The EN pin has a small pull-up current, Ip, which sets the default state of the EN pin to enable when no external  
components are connected. The pull-up current is also used to control the voltage hysteresis for the UVLO  
function because it increases by Ih when the EN pin crosses the enable threshold. Use 公式 1 , and 公式 2 to  
calculate the values of R1 and R2 for a specified UVLO threshold. Once R1, R2 were settled down, the VEN  
voltage can be calculated by 公式 3, which should be lower than 5.5V with max VIN.  
VIN  
Device  
R1  
R2  
Ip  
Ih  
EN  
15. Adjustable VIN Undervoltage Lockout  
- VSTOP  
VEN_FALL  
VEN_RISE  
VEN_FALL  
VEN_RISE  
VSATART  
R1 =  
Ip 1-  
+ I  
h
÷
÷
«
(1)  
11  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TPS56339  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
Feature Description (接下页)  
R1 VEN_FALL  
R2 =  
VSTOP - VEN_FALL + R I +I  
(
)
1
p
h
(2)  
R2 V +R1R2 I +I  
(
)
IN  
p
h
VEN  
=
R1+R2  
where  
Ip = 1.2 µA  
Ih = 3.1 µA  
VEN_FALL = 1.12 V  
VEN_RISE = 1.18 V  
VSATRT, the input voltage enabling the device  
VSTOP, the input voltage disabling the device  
(3)  
7.3.3 Soft Start and Pre-Biased Soft Start  
The TPS56339 has an internal 5-ms soft-start. When the EN pin becomes high, the internal soft-start function  
begins ramping up the reference voltage to the PWM comparator.  
The TPS56339 has been designed to prevent the low-side MOSFET from discharging a pre-biased output.  
During monotonic pre-biased startup, both high-side and low-side MOSFET are not allowed to be turned on until  
the internal soft-start voltage is higher than FB pin voltage. This scheme ensures that the converters ramp up  
smoothly into regulation point.  
7.3.4 Voltage Reference  
The voltage reference system produces a precise ±2.5% voltage reference over full temperature by scaling the  
output of a temperature stable bandgap circuit. The typical voltage reference is designed at 0.802 V.  
7.3.5 Minimum ON-time, Minimum OFF-time and Frequency Foldback at Dropout Conditions  
Minimum ON-time, TON_MIN, is the smallest duration of time that the high-side MOSFET can be on. TON_MIN is  
typically 55ns in the TPS56339. Minimum OFF-time, TOFF_MIN, is the smallest duration that the high-side  
MOSFET can be off. TOFF_MIN is typically 115 ns in the TPS56339. In CCM operation, TON_MIN and TOFF_MIN limit  
the voltage conversion range given a fixed switching frequency.  
The minimum duty cycle allowed is:  
DMIN = TON_MIN × fSW  
(4)  
And the maximum duty cycle allowed is:  
DMAX = 1 – TOFF_MIN × fSW  
(5)  
In the TPS56339, a frequency foldback scheme is employed to extend the maximum duty cycle when TOFF_MIN is  
reached. The switching frequency decreases once longer duty cycle is needed under low VIN conditions. With the  
duty increase, the on time will increase, until up to the Maximum ON-time, 5 μs. Wide range of frequency  
foldback allows the TPS56339 output voltage stay in regulation with a much lower supply voltage VIN. This leads  
to a lower effective dropout voltage.  
Given an output voltage, the maximum operation supply voltage can be found by:  
VOUT  
V
=
IN_MAX  
fSW TON_MIN  
(6)  
At lower supply voltage, the switching frequency decreases once TOFF_MIN is triggered. The minimum VIN without  
frequency foldback can be approximated by:  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TPS56339  
www.ti.com.cn  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
Feature Description (接下页)  
VOUT  
V
=
IN_MIN  
(1-fSW TOFF _MIN  
)
(7)  
Taking considerations of power losses in the system with heavy load operation, VIN_MAX is higher than the result  
calculated in 公式 6. With frequency foldback, VIN_MIN is lowered by decreased fSW, as shown in 16 .  
540  
Iout = 0.5 A  
Iout = 1.5 A  
Iout = 3 A  
510  
480  
450  
420  
390  
360  
330  
300  
270  
240  
210  
180  
4
4.25 4.5 4.75  
5 5.25 5.5 5.75  
Input Voltage (V)  
6
6.25 6.5  
Freq  
16. Frequency Foldback at Dropout (VOUT = 5 V)  
7.3.6 Overcurrent and Undervoltage Protection  
The TPS56339 is protected from overcurrent conditions by cycle-by-cycle current limiting on both the peak and  
valley of the inductor current.  
During the on time of the high-side MOSFET switch, the inductor current flow through high-side FET and  
increases at a linear rate determined by VIN, VOUT, the on-time and the output inductor value. The high-side  
switch current is sensed when the high-side is turned on after a set blanking time and then compared with the  
high-side MOSFET current limit every switching cycle. If the cross-limit event detected after the minimum On-  
time, the high-side MOSFET is turned off immediately and the high-side MOSFET current is limited by a clamped  
maximum peak current threshold IHS_LIMIT which is constant.  
The current going through low-side MOSFET is also sensed and monitored. When the low-side MOSFET turns  
on, the inductor current begins to ramp down. The low-side MOSFET is not turned OFF at the end of a switching  
cycle if its current is above the low-side current limit ILS_LIMIT. The low-side MOSFET is kept ON for the next cycle  
so that inductor current keeps ramping down, until the inductor current ramps below the low-side current limit  
ILS_LIMIT and the subsequent switching cycle comes, the low-side MOSFET is turned OFF, and the high-side  
MOSFET is turned on after a dead time.  
There are some important considerations for this type of overcurrent protection. The load current is higher than  
the overcurrent threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being  
limited, the output voltage tends to fall as the demanded load current may be higher than the current available  
from the converter. When the VFB voltage falls below the UVP threshold voltage, the UVP comparator detects it.  
The device will shut down after the UVP delay time (typically 120 μs) and re-start after the hiccup time (typically  
38 ms). The hiccup mode helps to reduce the device power dissipation under severe overcurrent conditions.  
When the over current condition is removed, the output voltage returns to the regulated value.  
7.3.7 Thermal Shutdown  
The internal thermal shutdown circuitry forces the TPS56339 to stop switching if the junction temperature  
exceeds 160°C typically. The device reinitiates the power-up sequence when the junction temperature drops  
below 140°C typically.  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
 
TPS56339  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode  
The EN pin provides electrical ON and OFF control for the device. When VEN is below 1.12 V (typical), the  
TPS56339 is in shutdown mode with a shutdown current of 3 μA (typical). The device also employs VIN UVLO  
protection. If VIN voltage is below their respective UVLO level, the regulator is turned off.  
7.4.2 Active Mode  
The TP56339 is in active mode when VEN is above the precision enable threshold, VIN is above its respective  
UVLO level. The simplest way to enable the device is to float the EN pin. This allows self startup when the input  
voltage is in the operating range 4.5 V to 24 V.  
In active mode, depending on the load current, the device is in one of there modes:  
1. Continuous Conduction Mode (CCM) with fixed switching frequency when load current is above half of the  
peak-to-peak inductor current ripple.  
2. Discontinuous Conduction Mode (DCM) with fixed switching frequency when load current is lower than half of  
the peak-to-peak inductor current ripple in CCM operation.  
3. Pulse Frequency Modulation Mode (PFM) when switching frequency is decreased at very light load.  
7.4.3 CCM Operation  
CCM operation is employed in the TPS56339 when the load current is higher than half of the peak-to-peak  
inductor current. In CCM operation, the frequency of operation is fixed, output voltage ripple is at a minimum in  
this mode, and the maximum continuous output current of 3 A can be supplied by the TPS56339.  
7.5 Light-Load Operation  
The light load running includes Discontinuous Conduction Mode (DCM) and Pulse Frequency Modulation Mode  
(PFM).  
As the output current decreases from heavy load condition, the inductor current is also reduced and eventually  
comes to point that its rippled valley touches zero level, which is the boundary between CCM and DCM. The low-  
side MOSFET is turned off when the zero inductor current is detected. As the load current further decreases, the  
converter runs into DCM.  
At even lighter current loads, PFM is activated to maintain high efficiency operation. The On-time is kept almost  
the same as it was in the CCM so that it takes longer time to discharge the output capacitor with smaller load  
current to the level of the reference voltage. This makes the switching frequency lower, proportional to the load  
current, and keeps the light load efficiency high. The transition point to the light load operation IOUT(LL) current can  
be calculated in 公式 8.  
0.752  
(VIN - VOUT )VOUT  
IOUT(LL)  
=
2L1 fsw  
V
IN  
(8)  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TPS56339  
www.ti.com.cn  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS56339 is a highly-integrated, synchronous, step-down, DC-DC converter. This device is used to convert  
a higher DC input voltage to a lower DC output voltage, with a maximum output current of 3 A.  
8.2 Typical Application  
The application schematic of 17 was developed to meet the requirements of the device. This circuit is  
available as the TPS56339EVM evaluation module. The design procedure is given in this section.  
VIN= 4.5V to 24V  
VOUT = 5V, 3A Max  
TP8 J3  
U1  
VIN  
L1  
J1  
TP1  
VIN  
TP6  
BST  
C4  
R3  
1
2
3
5
6
2
2
VOUT  
BOOT  
SW  
1
30.0  
5.6uH  
TP5  
SW  
0.1uF  
TP7  
LOOP  
R1  
174k  
R5  
49.9  
EN  
R4  
DNP  
0
J2  
R6  
52.3k  
3
2
1
4
1
FB  
C1  
10uF  
C2  
10uF  
C3  
0.1uF  
DNP C5  
C6  
22uF  
C7 DNP C8  
22uF 22uF  
10pF  
GND  
TP4  
EN  
TPS56339DDCR  
R2  
R7  
36.5k  
10.0k  
TP2  
GND  
TP3  
GND  
TP9  
GND  
GND  
Copyright © 2019, Texas Instruments Incorporated  
17. TPS56339 5-V, 3-A Reference Design  
8.2.1 Design Requirements  
1 shows the design parameters for this application.  
1. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
Input voltage  
12 V nominal, 5.5 V to 24 V  
Output voltage  
5 V  
3 A  
Output current rating  
Transient response, 2A load step  
Output ripple voltage  
ΔVOUT / VOUT = ±5%  
30 mV  
Input ripple voltage  
300 mV  
Start Input Voltage (Rising Vin)  
Stop Input Voltage (Falling Vin)  
Operating frequency  
6.6 V  
5.7 V  
500 kHz  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS56339 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
 
 
TPS56339  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the FB pin. TI recommends using 1%  
tolerance or better divider resistors. Referring to the application schematic of 17, start with a 10 kΩ for R7 and  
use 公式 9 to calculate R6. To improve efficiency at light loads consider using larger value resistors. If the values  
are too high the regulator is more susceptible to noise and voltage errors from the FB input current are  
noticeable.  
VOUT - VREF  
VREF  
R6 =  
R7  
(9)  
2 shows the recommended components value for common output voltages.  
8.2.2.3 Output Inductor Selection  
To calculate the value of the output inductor, use 公式 10. KIND is a coefficient that represents the amount of  
inductor ripple current relative to the maximum output current. The inductor ripple current is filtered by the output  
capacitor. Therefore, choosing high inductor ripple currents impact the selection of the output capacitor because  
the output capacitor must have a ripple current rating equal to or greater than the inductor ripple current. In  
general, the inductor ripple value is at the discretion of the designer. For this part, TI recommends the range of  
KIND from 30% to 50%.  
V
- VOUT  
VOUT  
IN_MAX  
LMIN  
=
V
KIND IOUT fSW  
IN_MAX  
where  
IOUT = 3 A, the rated output current of the device  
(10)  
For this design example, use KIND = 50% and the inductor value is calculated to be 5.28 μH. For this design, a  
nearest standard value was chosen: 5.6 μH. For the output filter inductor, it is important that the RMS current and  
saturation current ratings not be exceeded. The inductor peak-to-peak ripple current, peak current and RMS  
current are calculated using 公式 11, 公式 12, and 公式 13.  
V
- VOUT  
VOUT  
IN_MAX  
IRIPPLE  
=
V
L1 fSW  
IN_MAX  
(11)  
(12)  
IRIPPLE  
ILPEAK = IOUT  
+
2
1
2
2
ILRMS  
=
IOUT  
+
IRIPPLE  
12  
(13)  
For this design example, the calculated peak current is 4 A and the calculated RMS current is 3.03 A. The  
chosen inductor is a Vishay-Dale IHLP3232DZER5R6M11 5.6-μH. It has a saturation current rating of 7.6 A and  
a RMS current rating of 7.4 A.  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
TPS56339  
www.ti.com.cn  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
The current flowing through the inductor is the inductor ripple current plus the output current. During power up,  
faults or transient load conditions, the inductor current can increase above the calculated peak inductor current  
level calculated above. In transient conditions, the inductor current can increase up to the switch current limit of  
the device. For this reason, the most conservative approach is to specify an inductor with a saturation current  
rating equal to or greater than the switch current limit rather than the peak inductor current.  
8.2.2.4 Output Capacitor Selection  
After selecting the inductor, the output capacitor needs to be optimized. The LC filter used as the output filter has  
double pole at:  
1
fP =  
2p L1 COUT _E  
(14)  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the device. The low frequency phase is 180°. At the output filter pole frequency, the gain rolls off at a –40  
dB per decade rate and the phase drops rapidly. A high frequency zero introduced by internal circuit that reduces  
the gain roll off to –20 dB per decade and increases the phase to 90° one decade above the zero frequency. The  
inductor and capacitor for the output filter must be selected so that the double pole of 公式 14 is located below  
the high frequency zero but close enough that the phase boost provided be the high frequency zero provides  
adequate phase margin for a stable circuit. To meet this requirement, make sure that the L1·COUT_E value meets  
the range of L1·COUT_E value recommended in 2.  
2. Recommended Component Values  
Range of  
L1·COUT_E  
(μμF)  
OUTPUT VOLTAGE(1)  
(V)  
R6(2)  
(kΩ)  
R7  
(kΩ)  
L1(3)  
(µH)  
COUT  
(µF)  
(4)  
(5)  
1.05  
1.8  
2.5  
3.3  
5
3.16  
12.4  
21.5  
31.6  
52.3  
140  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
1.5  
2.2  
3.3  
4.7  
5.6  
6.8  
2×22  
2×22  
2×22  
2×22  
2×22  
3×22  
48 to 188  
64 to 250  
87 to 334  
107 to 404  
93 to 334  
45 to 137  
12  
(1) Please use the recommended L1 and COUT combination of the higher and closest output rail for the  
unlisted output rails.  
(2) R6 = 0 Ω for VOUT = 0.8 V.  
(3) Inductance values are calculated based on VIN=19V, but they can also be used for other input  
voltages. Users can calculate their preferred inductance value per 公式 10.  
(4) The COUT is the sum of nominal output capacitance. Two 22-uF, 0805, 16V capacitors are  
recommended for VOUT 5V, three 22-uF, 0805, 25VDC capacitors are recommended for VOUT > 5V.  
(5) The COUT_E is the effective value after derating, the value of L1·COUT_E should be within in the range.  
The capacitor value and ESR determines the amount of output voltage ripple. TheTPS56339 is intended for use  
with ceramic or other low ESR capacitors. Use 公式 15 to determine the required RMS current rating for the  
output capacitor.  
VOUT (V  
- VOUT )  
IN_MAX  
ICORMS  
=
12 VIN_MAX L1 fSW  
(15)  
For this design two Murata GRM21BR61C226ME44 22-uF, 0805, 16-V output capacitors are used. From the  
data sheet the estimated DC derating of 51.8% at room temperature with AC voltage of 0.2V. The total output  
effective capacitance is approximately 22.8 μF. The value of L1·COUT_E is 127.7 μμF, which is within the  
recommended range.  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
 
 
 
TPS56339  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
8.2.2.5 Input Capacitor Selection  
The TPS56339 requires an input decoupling capacitor and a bulk capacitor is needed depending on the  
application. TI recommends a ceramic capacitor over 10 µF for the decoupling capacitor. An additional 0.1-µF  
capacitor (C3) from VIN pin to ground is recommended to provide additional high frequency filtering. The  
capacitor voltage rating needs to be greater than the maximum input voltage. The capacitor must also have a  
ripple current rating greater than the maximum input current ripple of the TPS56339. The input ripple current can  
be calculated using 公式 16.  
V
IN_MIN - VOUT  
VOUT  
ICIRMS = IOUT  
V
V
IN_MIN  
IN_MIN  
(16)  
The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the  
capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that  
is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors  
because they have a high capacitance to volume ratio and are fairly stable over temperature. The output  
capacitor must also be selected with the DC bias taken into account. The capacitance value of a capacitor  
decreases as the DC bias across a capacitor increases. For this example design, a ceramic capacitor with at  
least a 35-V voltage rating is required to support the maximum input voltage. For this example, two Murata  
GRM21BR6YA106KE43L (10-μF, 35-V, 0805, X5R) capacitors have been selected. The effective capacitance  
under input voltage of 12 V for each one is 0.269 × 10 = 2.69 μF. The input capacitance value determines the  
input ripple voltage of the regulator. The input voltage ripple can be calculated using 公式 17. Using the design  
example values, IOUT_MAX = 3 A, CIN_E = 2 × 2.69 = 5.38 μF, fSW = 500 kHz, yields an input voltage ripple of 279  
mV and a RMS input ripple current of 1.48 A.  
IOUT _MAX 0.25  
DV  
=
+ (IOUT _MAX RESR _MAX )  
IN  
CIN fSW  
where  
RESR_MAX is the maximum series resistance of the input capacitor  
(17)  
8.2.2.6 Bootstrap Capacitor Selection  
A 0.1-µF ceramic capacitor must be connected between the BOOT to SW pin for proper operation. TI  
recommends to use a ceramic capacitor with X5R or better grade dielectric. The capacitor must have a 10-V or  
higher voltage rating. In addition, TI recommends in series one boot resistor to make the device more robust, so  
a 30-Ω of R3 are required to be used between BOOT to bootstrap capacitor, C4.  
8.2.3 Undervoltage Lockout Set Point  
The undervoltage lockout (UVLO) can be adjusted using the external voltage divider network of R1 and R2. R1 is  
connected between VIN and the EN pin of the TPS56339 and R2 is connected between EN and GND . The  
UVLO has two thresholds, one for power up when the input voltage is rising and one for power down or  
brownouts when the input voltage is falling. For the example design, the supply should turn on and start  
switching when the input voltage increases above 6.6 V (UVLO start or enable). After the regulator starts  
switching, it should continue to do so until the input voltage falls below 5.7 V (UVLO stop or disable). 公式 1 and  
公式 2 can be used to calculate the values for the upper and lower resistor values. For the stop voltages  
specified the nearest standard resistor value for R1 is 174 kΩ and for R2 is 36.5 kΩ.  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TPS56339  
www.ti.com.cn  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
8.2.4 Application Curves  
VIN = 12 V, L1= 5.6 µH, COUT = 44 µF, TA = 25 °C. (unless otherwise noted)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
5.3  
5.2  
5.1  
5
4.9  
4.8  
4.7  
Vin = 6.5 V  
Vin = 12 V  
Vin = 19 V  
Vin = 6.5 V  
Vin = 12 V  
Vin = 19 V  
0.001  
0.01  
0.1  
Load Current (A)  
1
5
0.001  
0.01  
0.1  
Load Current (A)  
1
5
Eff-  
Load  
18. Efficiency  
19. Load Regulation  
5.15  
5.1  
5.05  
5
5.2  
5
4.8  
4.6  
4.4  
4.2  
4
3.8  
3.6  
3.4  
4.95  
4.9  
Iout = 0.5 A  
Iout = 1.5 A  
Iout = 3 A  
Iout = 0.03 A  
Iout = 3 A  
6
8
10  
12  
14 16  
Input Voltage (V)  
18  
20  
22  
24  
4
4.25 4.5 4.75  
5 5.25 5.5 5.75  
Input Voltage (V)  
6
6.25 6.5  
Line  
Drop  
20. Line Regulation  
21. Dropout Curve  
70  
65  
60  
55  
50  
45  
40  
35  
30  
Vin(AC) = 200 mV/div  
Vout(AC) = 50 mV/div  
SW = 10 V/div  
IL = 1 A/div  
Vin = 12 V  
Vin = 19 V  
Time = 4 ms/div  
0.5 0.75  
1
1.25 1.5 1.75 2  
Load Current (A)  
2.25 2.5 2.75  
3
Case  
23. Steady State Waveforms, IOUT = 0 A  
22. Case Temperature Rise vs Load Current  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
TPS56339  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
VIN = 12 V, L1= 5.6 µH, COUT = 44 µF, TA = 25 °C. (unless otherwise noted)  
Vin(AC) = 200 mV/div  
Vout(AC) = 20 mV/div  
Vin(AC) = 200 mV/div  
Vout(AC) = 20 mV/div  
IL = 2 A/div  
IL = 1 A/div  
SW = 10 V/div  
SW = 10 V/div  
Time = 1 µs/div  
Time = 2 µs/div  
25. Steady State Waveforms, IOUT = 3 A  
24. Steady State Waveforms, IOUT = 0.3 A  
Vout(AC) = 100 mV/div  
Vout(AC) = 100 mV/div  
Iout = 2 A/div  
Iout = 2 A/div  
Time = 100 s/div  
Time = 100 s/div  
27. Transient Response 0.3 to 2.7 A  
26. Transient Response 1.5 to 3 A  
Vin = 10 V/div  
Vout = 5 V/div  
Vin = 10 V/div  
Vout = 5 V/div  
IL = 2 A/div  
IL = 2 A/div  
SW = 5 V/div  
SW = 5 V/div  
Time = 2 ms/div  
Time = 800 µs/div  
28. Startup Relative to VIN  
29. Shutdown Relative to VIN  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS56339  
www.ti.com.cn  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
VIN = 12 V, L1= 5.6 µH, COUT = 44 µF, TA = 25 °C. (unless otherwise noted)  
Ven = 5 V/div  
Vout = 5 V/div  
Ven = 5 V/div  
Vout = 5 V/div  
IL = 2 A/div  
IL = 2 A/div  
SW = 10 V/div  
SW = 10 V/div  
Time = 2 ms/div  
Time = 200 µs/div  
30. Enable Relative to EN  
31. Disable Relative to EN  
Vin = 10 V/div  
Vout = 5 V/div  
Vin = 10 V/div  
Vout = 5 V/div  
IL = 5 A/div  
IL = 5 A/div  
SW = 10 V/div  
SW = 10 V/div  
Time = 20 ms/div  
Time = 20 ms/div  
33. Short Recovery  
32. Short Protection  
9 Power Supply Recommendations  
The devices are designed to operate from an input voltage supply range between 4.5 V and 24 V. This input  
supply must be well regulated. If the input supply is located more than a few inches from the device or converter,  
additional bulk capacitance may be required in addition to the ceramic bypass capacitor. An electrolytic capacitor  
with a value of 47 μF is a typical choice. The 0.1-µF ceramic bypass capacitor should be as close as possible to  
VIN and GND pins.  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
TPS56339  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
1. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of  
advantage from the view point of heat dissipation.  
2. The input capacitor and output capacitor should be placed as close to the device as possible to minimize  
trace impedance.  
3. The 0.1-µF ceramic bypass capacitor should be as close as possible to VIN and GND pins.  
4. Provide sufficient vias for the input capacitor and output capacitor.  
5. Keep the SW trace as physically short and wide as practical to minimize radiated emissions.  
6. Do not allow switching current to flow under the device.  
7. A separate VOUT path should be connected to the upper feedback resistor.  
8. Make a Kelvin connection to the GND pin for the feedback path.  
9. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has  
ground shield.  
10. The trace of the VFB node should be as small as possible to avoid noise coupling.  
11. The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its  
trace impedance.  
10.2 Layout Example  
34. TPS56339 Top Layout Example  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS56339  
www.ti.com.cn  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
Layout Example (接下页)  
35. TPS56339 Bottom Layout Example  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
TPS56339  
ZHCSJ24A NOVEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS56339DDCR  
TPS56339DDCT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
6
6
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
T6339  
T6339  
Samples  
Samples  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Dec-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS56339DDCR  
TPS56339DDCT  
SOT-23-  
THIN  
DDC  
DDC  
6
6
3000  
250  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
SOT-23-  
THIN  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS56339DDCR  
TPS56339DDCT  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
6
6
3000  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS56339DDCT

4.5V 至 24V 输入、3A 输出同步降压转换器 | DDC | 6 | -40 to 125
TI

TPS5633CPWP

SWITCHING CONTROLLER, PDSO28, PLASTIC, TSSOP-28
TI

TPS5633CPWPR

Voltage-Mode SMPS Controller
ETC

TPS5633PWP

SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER
TI

TPS5633PWPR

SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER
TI

TPS563900

4.5-V To 18-V Input Voltage, 3.5-A/3.5-A Dual Synchronous Step-Down Converter With I2C Controlled VID
TI

TPS563900DAP

4.5-V To 18-V Input Voltage, 3.5-A/3.5-A Dual Synchronous Step-Down Converter With I2C Controlled VID
TI

TPS563900DAPR

4.5-V To 18-V Input Voltage, 3.5-A/3.5-A Dual Synchronous Step-Down Converter With I2C Controlled VID
TI

TPS563900_15

4.5-V To 18-V Input Voltage, 3.5-A/3.5-A Dual Synchronous Step-Down Converter With I2C Controlled VID
TI

TPS564201

具有 Eco-mode 的 4.5V 至 17V 输入电压、4A 输出电流、同步降压转换器
TI

TPS564201DDCR

具有 Eco-mode 的 4.5V 至 17V 输入电压、4A 输出电流、同步降压转换器 | DDC | 6 | -40 to 125
TI

TPS564201DDCT

具有 Eco-mode 的 4.5V 至 17V 输入电压、4A 输出电流、同步降压转换器 | DDC | 6 | -40 to 125
TI