TPS564252 [TI]

3-V to 17-V input voltage, 4-A ECO mode, synchronous buck converter;
TPS564252
型号: TPS564252
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3-V to 17-V input voltage, 4-A ECO mode, synchronous buck converter

文件: 总30页 (文件大小:1793K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
TPS56425x SOT-563 封装3V 17V 输入、4A 同步降压转换器  
1 特性  
2 应用  
• 专用于多种应用  
WLAN/Wi-Fi 接入点开关路由器  
专业音频监控无人机  
电视STB DVR智能扬声器  
固态硬盘  
3V 17V 输入电压范围  
0.6V 10V 输出电压范围  
0.6V 基准电压  
25°C 基准精度±1%  
-40°C 125°C 温度范围内基准精度为  
±1.5%  
电表  
3 说明  
TPS56425x 是一款简单、易用、高效率、高功率密度  
的同步降压转换器输入电压范围为 3V 17V在  
0.6V 10V 的输出电压范围内支持高达 4A 的持续  
输出电流。  
– 集55.0mΩ24.3mΩMOSFET  
100 µA 低静态电流  
600kHz 开关频率  
– 以最97% 的高占空比运行  
– 精EN 阈值电压  
TPS56425x 采用 D-CAP3 控制模式提供快速瞬态响应  
并支持低 ESR 输出电容器无需外部补偿。该器件支  
持高达 97% 占空比运行。 Integrated bootstrap  
capacitor helps achieve single layer PCB and can  
save total BOM cost.  
1.6 ms 固定软启动时间典型值)  
• 解决方案尺寸小巧且易于使用  
– 轻负载TPS564252 Eco-mode,  
TPS564257 FCCM 模式TPS564255 采  
OOA 模式  
TPS564252 Eco-mode 下运行可在轻负载时保持  
高效率。TPS564257 FCCM 模式下运行可在所有  
负载条件下保持相同的频率和较低的输出纹波。  
TPS564255 OOA 模式下运行可防止产生音频噪  
声。该器件集成了全面的断续模式 OVPOCP、  
UVLOOTP UVP 保护。  
D-CAP3控制模式  
– 通过集成自举电容器轻松布局  
– 支持带预偏置输出的启动  
– 开漏电源正常状态指示器  
– 非锁OVOT UVLO 保护  
UV 保护的断续模式  
– 逐周OC NOC 保护  
1.6mm × 1.6mm SOT-563 封装  
• 使TPS564252 并借WEBENCH® Power  
Designer 创建定制设计方案  
• 使TPS564255 并借WEBENCH® Power  
Designer 创建定制设计方案  
• 使TPS564257 并借WEBENCH® Power  
Designer 创建定制设计方案  
该器件采1.6mm x 1.6mm SOT-563 封装。额定结温  
范围-40°C 125°C。  
器件信息  
封装(1)  
器件型号  
模式  
TPS564252  
TPS564255  
TPS564257  
ECO  
DRLSOT-563,  
6)  
OOA  
FCCM  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
L
1
VIN  
SW  
2
VIN  
VOUT  
CIN  
EN  
VCC  
RFBT  
COUT  
5
3
EN  
PG  
FB  
4
6
RFBB  
Vout=1.05V  
Vout=3.3V  
GND  
30%  
20%  
10%  
0
Vout=5V  
Vout=10V  
简化版应用  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout(A)  
0.5  
1
2 3 4  
TPS564252 VIN = 12V 时的效率  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSEQ6  
 
 
 
 
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................14  
8 Application and Implementation..................................16  
8.1 Application Information............................................. 16  
8.2 Typical Application.................................................... 16  
8.3 Power Supply Recommendations.............................22  
8.4 Layout....................................................................... 22  
9 Device and Documentation Support............................24  
9.1 Device Support......................................................... 24  
9.2 接收文档更新通知..................................................... 24  
9.3 支持资源....................................................................24  
9.4 Trademarks...............................................................24  
9.5 静电放电警告............................................................ 24  
9.6 术语表....................................................................... 24  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................11  
7.1 Overview................................................................... 11  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................12  
Information.................................................................... 24  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2022) to Revision A (May 2023)  
Page  
• 将状态从“预告信息”更改为“量产数据”....................................................................................................... 1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ6  
2
Submit Document Feedback  
Product Folder Links: TPS564252 TPS564255 TPS564257  
 
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
2
3
VIN  
SW  
6
5
4
FB  
EN  
PG  
GND  
5-1. 6-Pin SOT563 DRL Package (Top View)  
5-1. Pin Functions  
Pin  
Type(1)  
Description  
Name  
VIN  
SW  
GND  
PG  
NO.  
1
P
P
G
A
A
A
Input voltage supply pin. Connect the input decoupling capacitors between VIN and GND.  
Switch node pin. Connect the output inductor to this pin.  
2
3
GND pin for the controller circuit and the internal circuitry.  
4
Open-drain power-good indicator.  
EN  
5
Enable control input. Driving EN high enables the converter.  
Converter feedback input. Connect to output voltage with a feedback resistor divider.  
FB  
6
(1) A = Analog, P = Power, G = Ground  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS564252 TPS564255 TPS564257  
English Data Sheet: SLUSEQ6  
 
 
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
2  
MAX  
18  
UNIT  
VIN  
FB, EN, PG  
6
Pin voltage(2)  
GND  
0.3  
18  
V
SW  
SW (transient < 20 ns)  
20  
5.5  
40  
55  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to the network ground pin.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1), all pins  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX UNIT  
VIN  
17  
FB, EN, PG  
5.5  
0.1  
0.1  
1  
GND  
0.1  
17  
Pin voltage  
V
SW  
SW (transient < 20 ns)  
IOUT  
18  
5  
Output current  
Temperature  
0
4
A
Operating junction temperature, TJ  
Storage temperature, Tstg  
125  
150  
40  
40  
°C  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ6  
4
Submit Document Feedback  
Product Folder Links: TPS564252 TPS564255 TPS564257  
 
 
 
 
 
 
 
 
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.4 Thermal Information  
DRL (SOT-563)  
UNIT  
THERMAL METRIC(1)  
6 PINS  
(2)  
RθJA  
Junction-to-ambient thermal resistance  
137.4  
74  
°C/W  
°C/W  
RθJA_effective  
Junction-to-ambient thermal resistance on EVM board  
(3)  
RθJC(top)  
RθJB  
ψJT  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
58.8  
29.8  
1.3  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
29.4  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The value of RθJA given in this table is only valid for comparison with other packages and can not be used for design purposes. These  
values were simulated on a standard JEDEC board. These values do not represent the performance obtained in an actual application.  
(3) This RθJA_effective is tested on TPS564252EVM board (2 layer, copper thickness is 2-oz) at VIN = 12 V, VOUT =5 V, IOUT = 4A, TA  
25°C.  
=
6.5 Electrical Characteristics  
TJ = 40°C to 125°C, VIN = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INPUT SUPPLY VOLTAGE  
VIN  
Input voltage range  
VIN  
3
17  
V
No load, VEN = 5 V, VFB = 0.65 V, non-switching, ECO  
version  
100  
370  
µA  
No load, VEN = 5 V, VFB = 0.65 V, non-switching,  
FCCM version  
IVIN  
VIN supply current  
µA  
No load, VEN = 5 V, VFB = 0.65 V, non-switching, OOA  
version  
370  
2
µA  
µA  
IINSDN  
VIN shutdown current  
No load, VEN = 0 V  
UVLO  
Rising threshold  
Falling threshold  
Hysteresis  
2.80  
2.60  
2.92  
2.72  
200  
3.00  
2.80  
V
V
Input undervoltage lockout  
threshold  
VIN_UVLO  
mV  
FEEDBACK VOLTAGE  
VREF FB voltage  
TJ = 25°C  
594  
591  
600  
600  
606  
609  
mV  
mV  
TJ = 40°C to 125°C  
INTEGRATED POWER MOSFETS  
55.0  
67.5  
24.3  
30.2  
TJ = 25°C, VIN 5 V  
TJ = 25°C, VIN = 3 V (1)  
TJ = 25°C, VIN 5 V  
TJ = 25°C, VIN = 3 V  
mΩ  
mΩ  
mΩ  
mΩ  
High-side MOSFET on-  
RDSON_HS  
resistance  
Low-side MOSFET on-  
RDSON_LS  
resistance  
SWITCHING FREQUENCY  
fsw  
Switching frequency  
Minimum on time  
Minimum off time  
TJ = 25°C, VOUT = 3.3 V  
TJ = 25°C  
600  
60  
kHz  
ns  
(1)  
tON(MIN)  
(1)  
tOFF(MIN)  
VFB = 0.5 V  
110  
ns  
LOGIC THRESHOLD  
VENH  
VENL  
EN threshold high level  
EN threshold low level  
Rising enable threshold  
Falling disable threshold  
1.15  
0.90  
1.19  
1.00  
1.25  
1.10  
V
V
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS564252 TPS564255 TPS564257  
English Data Sheet: SLUSEQ6  
 
 
 
 
 
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to 125°C, VIN = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
190  
2
MAX UNIT  
mV  
VENHYS  
REN  
EN hystersis  
Hysteresis  
EN pulldown resistor  
MΩ  
CURRENT LIMIT  
IOCL_LS Overcurrent threshold  
Valley current set point  
4.1  
1.7  
5.5  
2.4  
6.7  
2.8  
A
A
Negative overcurrent  
threshold  
INOC  
SOFT START  
tSS  
Internal soft start time  
1.6  
ms  
OUTPUT OVERVOLTAGE AND UNDERVOLTAGE PROTECTION  
VOVP  
OVP trip threshold  
OVP prop deglitch  
UVP trip threshold  
UVP prop deglitch  
Hiccup enable delay time  
VFB rising  
VFB falling  
UVP detect  
110%  
55%  
115%  
24  
120%  
65%  
tOVPDLY  
VUVP  
tUVPDLY  
tUVPEN  
POWER GOOD  
μs  
60%  
220  
14  
μs  
ms  
FB falling, PG from high to low  
FB rising, PG from low to high  
FB falling, PG from low to high  
FB rising, PG from high to low  
80%  
85%  
85%  
90%  
90%  
95%  
VPGTH  
Power good threshold  
105%  
110%  
110%  
115%  
115%  
120%  
PG pin output low-level  
voltage  
VPG(OL)  
IPG(LKG)  
tPG(R)  
IOL = 4 mA  
VPG = 5.5 V  
0.4  
1
V
PG pin leakage current when  
open drain output is high  
μA  
ms  
μs  
PG delay going from low to  
high  
1
PG delay going from high to  
low  
tPG(F)  
28  
THERMAL SHUTDOWN  
(1)  
TSDN  
Shutdown temperature  
Hysteresis  
155  
20  
Thermal shutdown threshold  
°C  
(1)  
TOTPHSY  
(1) Specified by design  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ6  
6
Submit Document Feedback  
Product Folder Links: TPS564252 TPS564255 TPS564257  
 
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics  
TJ = 40°C to 125°C, VIN = 12 V (unless otherwise noted)  
120  
480  
440  
400  
360  
320  
280  
240  
110  
100  
90  
80  
70  
60  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (oC)  
Junction Temperature (oC)  
6-1. TPS564252 Quiescent Current  
6-2. TPS564257 Quiescent Current  
480  
1.22  
1.21  
1.2  
440  
400  
360  
320  
280  
240  
1.19  
1.18  
1.17  
1.16  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (oC)  
Junction Temperature (oC)  
6-3. TPS564255 Quiescent Current  
6-4. Enable On Threshold Voltage  
1.11  
1.08  
1.05  
1.02  
0.99  
0.96  
0.93  
34  
32  
30  
28  
26  
24  
22  
20  
18  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (oC)  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (C)  
6-5. Enable Off Threshold Voltage  
6-6. Low-Side RDS(ON)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS564252 TPS564255 TPS564257  
English Data Sheet: SLUSEQ6  
 
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
TJ = 40°C to 125°C, VIN = 12 V (unless otherwise noted)  
80  
75  
70  
65  
60  
55  
50  
45  
40  
0.603  
0.602  
0.601  
0.6  
0.599  
0.598  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (oC)  
Junction Temperature (C)  
6-8. VREF Voltage  
6-7. High-Side RDS(ON)  
700  
800  
720  
640  
560  
480  
400  
320  
240  
160  
80  
650  
600  
550  
500  
450  
400  
350  
300  
250  
Vout=1.05V  
Vout=3.3V  
Vout=5V  
Vout=1.05V  
Vout=3.3V  
Vout=5V  
0
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout(A)  
0.5  
1
2 3 4  
Vin(V)  
6-9. Frequency vs Input Voltage,  
6-10. TPS564252 Frequency vs Loading,  
IOUT = 4 A  
VIN = 12 V  
700  
650  
600  
550  
500  
450  
400  
350  
300  
1000  
700  
500  
300  
200  
100  
70  
Vout=1.05V  
Vout=3.3V  
Vout=5V  
Vout=1.05V  
Vout=3.3V  
Vout=5V  
50  
30  
20  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout(A)  
0.5  
1
2 3 4  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Iout(A)  
6-12. TPS564255 Frequency vs Loading,  
6-11. TPS564257 Frequency vs Loading,  
VIN = 12 V  
VIN = 12 V  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ6  
8
Submit Document Feedback  
Product Folder Links: TPS564252 TPS564255 TPS564257  
 
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
TJ = 40°C to 125°C, VIN = 12 V (unless otherwise noted)  
100%  
90%  
80%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
70%  
60%  
50%  
40%  
30%  
Vin=3V  
Vin=6V  
Vin=12V  
Vin=3V  
Vin=6V  
Vin=12V  
20%  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout(A)  
0.5  
1
2
3 4  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout(A)  
0.5  
1
2 3 4  
6-13. TPS564252 Efficiency at 1.05 VOUT with a 1.5-μH  
6-14. TPS564257 Efficiency at 1.05 VOUT with a 1.5-μH  
Inductor  
Inductor  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
30%  
Vin=3V  
Vin=6V  
20%  
20%  
Vin=6V  
Vin=12V  
Vin=12V  
10%  
0
10%  
0
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout(A)  
0.5  
1
2
3 4  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout(A)  
0.5  
1
2 3 4  
6-15. TPS564255 Efficiency at 1.05 VOUT with a 1.5-μH  
6-16. TPS564252 Efficiency at 3.3 VOUT with a 3.3-μH  
Inductor  
Inductor  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
20%  
Vin=6V  
Vin=12V  
Vin=6V  
Vin=12V  
10%  
0
10%  
0
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout(A)  
0.5  
1
2
3 4  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout(A)  
0.5  
1
2 3 4  
6-17. TPS564257 Efficiency at 3.3 VOUT with a 3.3-μH  
6-18. TPS564255 Efficiency at 3.3 VOUT with a 3.3-μH  
Inductor  
Inductor  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS564252 TPS564255 TPS564257  
English Data Sheet: SLUSEQ6  
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
TJ = 40°C to 125°C, VIN = 12 V (unless otherwise noted)  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
Vin=6V  
Vin=12V  
10%  
0
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout(A)  
0.5  
1
2
3 4  
6-19. TPS564252 Efficiency at 5 VOUT with a 4.7-μH Inductor 6-20. TPS564257 Efficiency at 5 VOUT with a 4.7-μH Inductor  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
Vin=6V  
Vin=12V  
Vin=12V  
Vin=17V  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout(A)  
0.5  
1
2
3 4  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout(A)  
0.5  
1
2 3 4  
6-21. TPS564255 Efficiency at 5 VOUT with a 4.7-μH Inductor 6-22. TPS564252 Efficiency at 10 VOUT with a 6.8-μH Inductor  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
Vin=12V  
Vin=17V  
Vin=12V  
Vin=17V  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout(A)  
0.5  
1
2
3 4  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout(A)  
0.5  
1
2 3 4  
6-23. TPS564257 Efficiency at 10 VOUT with a 6.8-μH Inductor 6-24. TPS564255 Efficiency at 10 VOUT with a 6.8-μH Inductor  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ6  
10  
Submit Document Feedback  
Product Folder Links: TPS564252 TPS564255 TPS564257  
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS56425x is a 4-A integrated FET synchronous buck converter that operates from 3-V to 17-V input  
voltage and 0.6-V to 10-V output voltage. This device also integrates the bootstrap capacitor in an internal IC,  
which is helpful for easy layout. The device employs a D-CAP3 control mode that provides fast transient  
response with no external compensation components and an accurate feedback voltage. The proprietary D-  
CAP3 control mode enables low external component count, ease of design, and optimization of the power  
design for cost, size and efficiency. The topology provides a seamless transition between CCM operating mode  
at higher load condition and DCM operation mode at lighter load condition.  
The Eco-mode version allows the TPS564252 to maintain high efficiency at light load. The FCCM version allows  
the TPS564257 to maintain a fixed switching frequency and lower voltage output ripple. The OOA version allows  
the TPS564255 to prevent audio noise generation. The TPS56425x is able to adapt to both low equivalent series  
resistance (ESR) output capacitors such as POSCAP or SP-CAP, and ultra-low ESR ceramic capacitors.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS564252 TPS564255 TPS564257  
English Data Sheet: SLUSEQ6  
 
 
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
7.2 Functional Block Diagram  
UV threshold  
+
UV  
OV  
+
VIN  
OV threshold  
6
FB  
+
LDO  
VREF  
VREGOK  
2.92 V /  
2.72 V  
+
Internal  
VCC  
+
PWM  
+
+
Control Logic  
Internal  
BST  
SS  
1
VIN  
Internal  
Compensation  
Internal SS  
2
3
SW  
Internal VCC  
XCON  
· On/Off time  
· Minimum On/Off  
· Light load  
· OCP/OVP/UVP/TSD  
· Soft-Start  
Clock  
GND  
· PG  
EN  
5
+
EN Threshold  
+
OCL  
+
THOK  
+
+
155°C /20°C  
ZC  
4
PG  
NOCL  
7.3 Feature Description  
7.3.1 PWM Operation and D-CAP3Control Mode  
The main control loop of the buck is an adaptive on-time pulse width modulation (PWM) controller that supports  
a proprietary D-CAP3 control mode. The D-CAP3 control mode combines adaptive on-time control with an  
internal compensation circuit for pseudo-fixed frequency and low external component count configuration with  
both low-ESR and ceramic output capacitors. The device is stable even with virtually no ripple at the output. The  
TPS56425x also includes an error amplifier that makes the output voltage very accurate.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after an internal  
one-shot timer expires. This one-shot duration is set proportional to the output voltage, VOUT, and is inversely  
proportional to the converter input voltage, VIN, to maintain a pseudo-fixed frequency over the input voltage  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS564252 TPS564255 TPS564257  
English Data Sheet: SLUSEQ6  
 
 
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
range, hence, it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is  
turned on again when the feedback voltage falls below the reference voltage. An internal ripple generation circuit  
is added to reference voltage to emulate the output ripple, enabling the use of very low-ESR output capacitors  
such as multi-layered ceramic caps (MLCC). No external current sense network or loop compensation is  
required for D-CAP3 control mode.  
7.3.2 Eco-mode Control  
The TPS564252 is designed with advanced Eco-mode to maintain high light-load efficiency. As the output  
current decreases from heavy load condition, the inductor current is also reduced and eventually comes to point  
that its ripple valley touches zero level, which is the boundary between continuous conduction and discontinuous  
conduction mode. The rectifying MOSFET is turned off when the zero inductor current is detected. As the load  
current further decreases, the converter runs into discontinuous conduction mode. The on time is kept almost the  
same as it was in continuous conduction mode so that it takes longer time to discharge the output capacitor with  
smaller load current to the level of the reference voltage. This makes the switching frequency lower, proportional  
to the load current, and keeps the light load efficiency high. Use the below equation to calculate the transition  
point to the light load operation IOUT(LL) current.  
(V - VOUT ) ì VOUT  
1
IN  
IOUT(LL)  
=
ì
2 ì L ì fSW  
V
IN  
(1)  
7.3.3 Soft Start and Prebiased Soft Start  
The TPS56425x has an internal fixed 1.6-ms soft-start time. The EN default status is low. When the EN pin  
becomes high, the internal soft-start function begins ramping up the reference voltage to the PWM comparator.  
If the output capacitor is prebiased at start-up, the devices initiate switching and start ramping up only after the  
internal reference voltage becomes higher than the feedback voltage, VFB. This scheme makes sure that the  
converter ramps up smoothly into the regulation point.  
7.3.4 Overvoltage Protection  
The TPS56425x has the overvoltage protection feature. When the output voltage becomes higher than the OVP  
threshold, the OVP is triggered with a 24-μs deglitch time. Both the high-side MOSFET and the low-side  
MOSFET drivers are turned off. When the overvoltage condition is removed, the device returns to switching.  
7.3.5 Large Duty Operation  
The TPS56425x can support large duty operations up to 97% by smoothly dropping down the switching  
frequency. When VIN / VOUT < 1.6 and VFB is lower than internal VREF, the switching frequency is allowed to  
smoothly drop to make tON extended to implement the large duty operation and improve the performance of the  
load transient. Please refer frequency test waveform in 6-9. The minimum switching frequency is limited to  
approximately 200 kHz.  
7.3.6 Current Protection and Undervoltage Protection  
The output overcurrent limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch  
current is monitored during the off state by measuring the low-side FET drain-to-source voltage. This voltage is  
proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.  
During the on time of the high-side FET switch, the switch current increases at a linear rate determined by the  
following:  
VIN  
VOUT  
On-time  
Output inductor value  
During the on time of the low-side FET switch, this current decreases linearly. The average value of the switch  
current is the load current, IOUT. If the monitored valley current is above the OCL level, the converter maintains a  
low-side FET on and delays the creation of a new set pulse, even the voltage feedback loop requires one, until  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS564252 TPS564255 TPS564257  
English Data Sheet: SLUSEQ6  
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
the current level becomes OCL level or lower. In subsequent switching cycles, the on time is set to a fixed value  
and the current is monitored in the same manner.  
There are some important considerations for this type of overcurrent protection. The load current is higher than  
the overcurrent threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being  
limited, the output voltage tends to fall as the demanded load current can be higher than the current available  
from the converter, which can cause the output voltage to fall. When the FB voltage falls below the UVP  
threshold voltage, the UVP comparator detects it and the device shuts down after the UVP delay time (typically  
220 µs) and restarts after the hiccup wait time (typically 14 ms). After the device enters the hiccup cycling, the  
hiccup on time is typically 2.2ms.  
When the overcurrent condition is removed, the output voltage returns to the regulated value.  
The TPS564257 is a FCCM mode part. In this mode, the device has negative inductor current at light loading.  
The device has NOC (negative overcurrent) protection to avoid too large negative current. NOC protection  
detects the valley of inductor current. When the valley value of inductor current exceeds the NOC threshold, the  
device turns off the low-side FET then turns on the high-side FET. When the NOC condition is removed, the  
device returns to normal switching.  
Because the TPS564257 is a FCCM mode port, if the inductance is so small that the device trigger NOC, it  
causes the output voltage to be higher than target value. The minimum inductance is identified as 方程2.  
V
OUT  
V
× 1 −  
OUT  
V
IN  
2 × Frequency × NOC  
L =  
(2)  
min  
7.3.7 Undervoltage Lockout (UVLO) Protection  
UVLO protection monitors the internal regulator voltage. When the voltage is lower than UVLO threshold voltage,  
the device is shut off. This protection is a non-latch protection.  
7.3.8 Thermal Shutdown  
The device monitors the temperature of itself. If the temperature exceeds the threshold value, the device is shut  
off. This protection is a non-latch protection.  
7.4 Device Functional Modes  
7.4.1 Eco-mode Operation  
The TPS564252 operates in Eco-mode, which maintains high efficiency at light loading. As the output current  
decreases from heavy load conditions, the inductor current is also reduced and eventually comes to a point  
where the rippled valley touches zero level, which is the boundary between continuous conduction and  
discontinuous conduction mode. The rectifying MOSFET is turned off when the zero inductor current is detected.  
As the load current further decreases, the converter runs into discontinuous conduction mode. The on time is  
kept almost the same as it was in continuous conduction mode so that it takes longer time to discharge the  
output capacitor with smaller load current to the level of the reference voltage. This action makes the switching  
frequency lower, proportional to the load current, and keeps the light load efficiency high.  
7.4.2 FCCM Mode Operation  
The TPS564257 operates in forced CCM (FCCM) mode, which keeps the converter operating in continuous  
current mode during light load conditions and allows the inductor current to become negative. During FCCM  
mode, the switching frequency is maintained at an almost constant level over the entire load range, which is  
suitable for applications requiring tight control of the switching frequency and output voltage ripple at the cost of  
lower efficiency under light load.  
7.4.3 OOA Mode Operation  
The TPS564255 is designed with Out-of-Audio™ (OOA) feature that keeps switching frequency above the  
audible frequency region at light load or no load conditions. Once the converter determines that there is no  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ6  
14  
Submit Document Feedback  
Product Folder Links: TPS564252 TPS564255 TPS564257  
 
 
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
switching for longer than 30us, it turns on the low-side MOSFET which brings VFB lower than internal VREF and  
initiates a new Ton cycle. This ensures that the switching frequency doesnt go lower than 25kHz typical.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS564252 TPS564255 TPS564257  
English Data Sheet: SLUSEQ6  
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The device is a typical buck DC/DC converter that is typically used to convert a higher DC voltage to a lower DC  
voltage with a maximum available output current of 4 A. The following design procedure can be used to select  
component values for TPS56425x. Alternately, the WEBENCH Power Designer software can be used to  
generate a complete design. The WEBENCH Power Designer software uses an iterative design procedure and  
accesses a comprehensive database of components when generating a design. This section presents a  
simplified discussion of the design process.  
8.2 Typical Application  
The application schematic in 8-1 was developed to meet the requirements in 8-1. This circuit is available  
as the evaluation module (EVM). The sections provide the design procedure.  
8-1 shows the TPS56425x 5-V to 17-V input, 1.05-V output converter schematic.  
8-1. Schematic  
8.2.1 Design Requirements  
8-1 shows the design parameters for this application.  
8-1. Design Parameters  
Parameter  
Output voltage  
Output current  
Conditions  
MIN  
TYP  
1.05  
4
MAX  
Unit  
V
VOUT  
IOUT  
A
0.4-A 3.6-A load step, 0.8-A/μs  
slew rate  
Transient response  
±3% × VOUT  
V
ΔVOUT  
VIN  
Input voltage  
5
12  
10  
17  
V
VOUT(ripple)  
FSW  
Output voltage ripple  
Switching frequency  
Ambient temperature  
CCM condition  
mV  
MHz  
°C  
0.6  
25  
TA  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design with WEBENCH® Tools  
Click here to create a custom design using the TPS564252 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS564257 device with the WEBENCH® Power Designer.  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS564252 TPS564255 TPS564257  
English Data Sheet: SLUSEQ6  
 
 
 
 
 
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
Click here to create a custom design using the TPS564255 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the FB pin. TI recommends using 1%  
tolerance or better divider resistors. Start by using 方程3 to calculate VOUT  
.
To improve efficiency at very light loads, consider using larger value resistors. If the values are too high, the  
regulator is more susceptible to noise and voltage errors from the FB input current are noticeable. Use a 10-kΩ  
resistor for R5 to start the design.  
R
4
V
= 0 . 6 × 1 +  
(3)  
OUT  
R
5
8.2.2.3 Output Filter Selection  
The LC filter used as the output filter has a double pole at 方程式 4. In this equation, COUT uses its effective  
value after derating, not its nominal value.  
1
fP  
=
2p LOUT ì COUT  
(4)  
For any control topology that is compensated internally, there is a range of the output filter it can support. At low  
frequency, the overall loop gain is set by the output set-point resistor divider network and the internal gain of the  
device. The low frequency phase is 180°. At the output filter pole frequency, the gain rolls off at a 40 dB per  
decade rate and the phase drops has a 180 degree drop. The internal ripple generation network introduces a  
high-frequency zero that reduces the gain roll off from 40 dB to 20 dB per decade and leads the 90 degree  
phase boost. The internal ripple injection high-frequency zero is about 66kHz. The inductor and capacitor  
selected for the output filter is recommended such that the double pole is located approximately 20kHz, so that  
the phase boost provided by this high-frequency zero provides adequate phase margin for the stability  
requirement. The crossover frequency of the overall system is usually targeted to be less than one-third of the  
switching frequency (fSW). For high output voltage condition, TI recommends to use 10-100pF feedforward  
capacitor(C7 in 8-1) for enough phase margin.  
8-2. Recommended Component Values  
Recomme  
nded  
COUT  
Typical COUT  
Category  
Output Voltage  
(V)  
Typical C7  
(pF)  
Typical COUT (μF)  
Nominal Value Range  
R4 (kΩ)  
R5 (kΩ)  
Typical L1 (μH)  
(μF)  
0.6  
1.05  
2.2  
0
10.0  
10.0  
10.0  
1.2  
1.5  
2.2  
66-154  
44-66  
22-88  
66  
44  
44  
MLCC, 0805, 10V  
MLCC, 0805, 10V  
MLCC, 0805, 10V  
90  
7.5  
26.0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS564252 TPS564255 TPS564257  
English Data Sheet: SLUSEQ6  
 
 
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
8-2. Recommended Component Values (continued)  
Recomme  
nded  
COUT  
Typical COUT  
Category  
Output Voltage  
(V)  
Typical C7  
(pF)  
Typical COUT (μF)  
Nominal Value Range  
R4 (kΩ)  
R5 (kΩ)  
Typical L1 (μH)  
(μF)  
3.3  
5
45.0  
220.0  
470  
10.0  
30.0  
30.0  
3.3  
4.7  
6.8  
22-88  
22-88  
44-88  
44  
44  
44  
MLCC, 0805, 10V  
MLCC, 0805, 10V  
MLCC, 0805, 16V  
30  
30  
36  
10  
The inductor peak-to-peak ripple current, peak current, and RMS current are calculated using 方程式 5, 方程式  
6, and 方程式 7. Generally, TI recommends the peak-to-peak ripple current to be 20% 50% of output average  
current for a comprehensive benefit of efficiency and inductor volume. The inductor saturation current rating  
must be greater than the calculated peak current and the RMS or heating current rating must be greater than the  
calculated RMS current.  
V
- VOUT  
VOUT  
IN(MAX)  
IlP-P  
=
ì
V
LO ì fSW  
IN(MAX)  
(5)  
(6)  
IlP-P  
IlPEAK = IO  
+
2
1
2
2
ILO(RMS)  
=
IO  
+
IlP-P  
12  
(7)  
For this design example, the calculated peak current is 4.545 A and the calculated RMS current is 4.146 A. The  
inductor used is 74437349015 with 8-A rated current and 14.5-A saturation current.  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS56425x are intended for  
use with ceramic or other low-ESR capacitors. Use 方程8 to determine the required RMS current rating for the  
output capacitor.  
VOUT ì V - VOUT  
(
)
IN  
ICO(RMS)  
=
12 ì V ì LO ì fSW  
IN  
(8)  
For this design, two MuRata GRM21BR61A226ME44L 22-µF output capacitors are used. The typical ESR is 2  
mΩeach. The calculated RMS current is 0.32 A and each output capacitor is rated for 4 A.  
8.2.2.4 Input Capacitor Selection  
The TPS56425x requires an input decoupling capacitor and a bulk capacitor is needed depending on the  
application. TI recommends a ceramic capacitor over 10 µF for the decoupling capacitor. TI recommends an  
additional 0.1-µF capacitor from the VIN pin to ground to provide high frequency filtering. The capacitor voltage  
rating must be greater than the maximum input voltage.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ6  
18  
Submit Document Feedback  
Product Folder Links: TPS564252 TPS564255 TPS564257  
 
 
 
 
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
8.2.3 Application Curves  
The following data is tested with VIN = 12 V, VOUT = 1.05 V, TA = 25°C, unless otherwise specified.  
800  
760  
720  
680  
640  
600  
560  
520  
480  
440  
400  
Vin=3V  
Vin=6V  
Vin=12V  
Vin=17V  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
Iout(A)  
8-2. TPS564252 Frequency vs Loading  
8-3. TPS564257 Frequency vs Loading  
1000  
1%  
0.8%  
0.6%  
0.4%  
0.2%  
0
700  
500  
300  
200  
100  
70  
-0.2%  
Vin=3V  
Vin=6V  
Vin=12V  
Vin=17V  
-0.4%  
Vin=3V  
Vin=6V  
Vin=12V  
Vin=17V  
50  
-0.6%  
-0.8%  
-1%  
30  
20  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout(A)  
0.5  
1
2
3 4  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout(A)  
0.5  
1
2 3 4  
8-5. TPS564252 Load Regulation vs Loading  
8-4. TPS564255 Frequency vs Loading  
1%  
0.8%  
0.6%  
0.4%  
0.2%  
0
1%  
0.8%  
0.6%  
0.4%  
0.2%  
0
-0.2%  
-0.2%  
-0.4%  
-0.6%  
-0.8%  
-1%  
-0.4%  
-0.6%  
-0.8%  
-1%  
Vin=3V  
Vin=6V  
Vin=12V  
Vin=17V  
Vin=3V  
Vin=6V  
Vin=12V  
Vin=17V  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout(A)  
0.5  
1
2
3 4  
0.001  
0.005  
0.02 0.05 0.1 0.2  
Iout(A)  
0.5  
1
2 3 4  
8-6. TPS564257 Load Regulation vs Loading  
8-7. TPS564255 Load Regulation vs Loading  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS564252 TPS564255 TPS564257  
English Data Sheet: SLUSEQ6  
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
1%  
0.8%  
0.6%  
0.4%  
0.2%  
0
1%  
0.8%  
0.6%  
0.4%  
0.2%  
0
Iout=0A  
Iout=4A  
-0.2%  
-0.4%  
-0.6%  
-0.8%  
-1%  
-0.2%  
-0.4%  
-0.6%  
-0.8%  
-1%  
Iout=0A  
Iout=4A  
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Vin(V)  
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Vin(V)  
8-8. TPS564252 Line Regulation vs VIN  
8-9. TPS564257 Line Regulation vs VIN  
1%  
Iout=0A  
Iout=4A  
0.8%  
0.6%  
0.4%  
0.2%  
0
Vout=20mV/div (AC coupled)  
-0.2%  
-0.4%  
-0.6%  
-0.8%  
-1%  
SW=5V/div  
40us/div  
8-11. TPS564252 Output Voltage Ripple with  
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Vin(V)  
0.01-A Loading  
8-10. TPS564255 Line Regulation vs VIN  
Vout=20mV/div (AC coupled)  
SW=5V/div  
Vout=20mV/div (AC coupled)  
SW=5V/div  
2us/div  
40us/div  
8-12. TPS564257 Output Voltage Ripple with  
8-13. TPS564255 Output Voltage Ripple with  
0.01-A Loading  
0.01-A Loading  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS564252 TPS564255 TPS564257  
English Data Sheet: SLUSEQ6  
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
Vout=20mV/div (AC coupled)  
Vout=50mV/div (AC coupled)  
Iout=2A/div  
SW=5V/div  
200us/div  
2us/div  
8-15. TPS564252 Transient Response with 0.4 A  
8-14. Output Voltage Ripple with 4-A Loading  
to 3.6 A  
Vout=50mV/div (AC coupled)  
Vout=50mV/div (AC coupled)  
Iout=2A/div  
Iout=2A/div  
200us/div  
200us/div  
8-16. TPS564257 Transient Response with 0.4 A 8-17. TPS564255 Transient Response with 0.4 A  
to 3.6 A  
to 3.6 A  
Vin=5V/div  
Vin=5V/div  
EN=2V/div  
EN=2V/div  
Vout=500mV/div  
Vout=500mV/div  
2ms/div  
2ms/div  
8-19. Shutdown Through EN, IOUT = 4 A  
8-18. Start-Up Through EN, IOUT = 4 A  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS564252 TPS564255 TPS564257  
English Data Sheet: SLUSEQ6  
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
Vin=5V/div  
Vin=5V/div  
EN=5V/div  
EN=5V/div  
Vout=500mV/div  
Vout=500mV/div  
2ms/div  
4ms/div  
8-20. Start-Up with VIN Rising, IOUT = 4 A  
8-21. Shutdown with VIN Falling, IOUT = 4 A  
Vout=500mV/div  
SW=10V/div  
Vout=500mV/div  
SW=10V/div  
IL=5A/div  
IL=5A/div  
100us/div  
100us/div  
8-23. TPS564257 Normal Operation to Output  
8-22. TPS564252 Normal Operation to Output  
Hard Short  
Hard Short  
Vout=500mV/div  
SW=10V/div  
Vout=500mV/div  
SW=10V/div  
IL=5A/div  
IL=5A/div  
100us/div  
4ms/div  
8-24. TPS564255 Normal Operation to Output  
8-25. Output Hard Short Hiccup  
Hard Short  
8.3 Power Supply Recommendations  
The TPS56425x are designed to operate from input supply voltages in the range of 3 V to 17 V. Buck converters  
require the input voltage to be higher than the output voltage for proper operation.  
8.4 Layout  
8.4.1 Layout Guidelines  
Keep VIN and GND traces as wide as possible to reduce trace impedance. The wide areas are also an  
advantage from the view point of heat dissipation.  
Place the input capacitor and output capacitor as close to the device as possible to minimize trace  
impedance.  
Provide sufficient vias for the input capacitor and output capacitor.  
Keep the SW trace as physically short and wide as practical to minimize radiated emissions.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ6  
22  
Submit Document Feedback  
Product Folder Links: TPS564252 TPS564255 TPS564257  
 
 
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
Do not allow switching current to flow under the device.  
Connect a separate VOUT path to the upper feedback resistor.  
Make a Kelvin connection to the GND pin for the feedback path.  
Place a voltage feedback loop away from the high-voltage switching trace, and preferably has ground shield.  
Make the trace of the FB node as small as possible to avoid noise coupling.  
Make the GND trace between the output capacitor and the GND pin as wide as possible to minimize its trace  
impedance.  
8.4.2 Layout Example  
GND  
VIN  
CIN  
RFBB  
RFBT  
FB  
EN  
PG  
VIN  
SW  
EN  
Control  
SW  
GND  
COUT  
GND  
VOUT  
VIA (Connected to GND plane at bottom layer)  
8-26. Suggested Layout  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS564252 TPS564255 TPS564257  
English Data Sheet: SLUSEQ6  
TPS564252, TPS564255, TPS564257  
ZHCSP84A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
9.1.1.1 Custom Design with WEBENCH® Tools  
Click here to create a custom design using the TPS564252 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS564257 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS564255 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
D-CAP3and TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS564252 TPS564255 TPS564257  
English Data Sheet: SLUSEQ6  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS564252DRLR  
TPS564255DRLR  
TPS564257DRLR  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-5X3  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
DRL  
6
6
6
4000 RoHS & Green  
4000 RoHS & Green  
4000 RoHS & Green  
Call TI | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
4252  
4255  
4257  
Samples  
Samples  
Samples  
Call TI | SN  
Call TI | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jun-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
DRL0006A  
SOT - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.7  
1.5  
PIN 1  
ID AREA  
A
1
6
4X 0.5  
1.7  
1.5  
2X 1  
NOTE 3  
4
3
1.3  
1.1  
0.3  
6X  
0.05  
TYP  
0.00  
B
0.1  
0.6 MAX  
C
SEATING PLANE  
0.05 C  
0.18  
0.08  
6X  
SYMM  
SYMM  
0.27  
0.15  
6X  
0.1  
0.05  
C A B  
0.4  
0.2  
6X  
4223266/C 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-293 Variation UAAD  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4223266/C 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4223266/C 12/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS564252DRLR

3-V to 17-V input voltage, 4-A ECO mode, synchronous buck converter | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS564255

3-V to 17-V input voltage, 4-A OOA mode, synchronous buck converter with PG

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS564255DRLR

3-V to 17-V input voltage, 4-A OOA mode, synchronous buck converter with PG | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS564257

3-V to 17-V input voltage, 4-A FCCM mode, synchronous buck converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS564257DRLR

3-V to 17-V input voltage, 4-A FCCM mode, synchronous buck converter | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56428

4.5V to 18 V Input, 4-A Synchronous Step-Down Converter with Advanced Eco-mode™

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56428DDA

4.5V to 18 V Input, 4-A Synchronous Step-Down Converter with Advanced Eco-mode™

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56428DDAR

4.5V to 18 V Input, 4-A Synchronous Step-Down Converter with Advanced Eco-mode™

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56428RHLR

具有高级 Eco-Mode™ 的 4.5V 至 18V 输入,4A 同步降压转换器 | RHL | 14 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56428RHLT

具有高级 Eco-Mode™ 的 4.5V 至 18V 输入,4A 同步降压转换器 | RHL | 14 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56520

可进行电压调节的 17V 输入、5A 同步降压稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS565201

采用 SOT23 封装的 4.5V 至 17V 5A 同步降压稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI