TPS565201DDCT [TI]

采用 SOT23 封装的 4.5V 至 17V 5A 同步降压稳压器 | DDC | 6 | -40 to 125;
TPS565201DDCT
型号: TPS565201DDCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 SOT23 封装的 4.5V 至 17V 5A 同步降压稳压器 | DDC | 6 | -40 to 125

PC 开关 光电二极管 输出元件 稳压器
文件: 总27页 (文件大小:3708K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS565201  
ZHCSGS9 SEPTEMBER 2017  
TPS565201 4.5V 17V 输入、5A 同步降压稳压器  
1 特性  
3 说明  
1
5A 最大输出电流  
TPS565201 是一款简单易用的 5A 同步降压转换器。  
集成 31mΩ 16mΩ FET  
该器件经过优化,最大限度地减少了运行所需的外部组  
件并可实现低待机电流。  
D-CAP2™模式控制,具有快速动态响应特性  
输入电压范围:4.5V 17V  
此开关模式电源 (SMPS) 器件采用 D-CAP2™控制,  
此控制方式无需外部补偿组件即可实现快速瞬态响应。  
D-CAP2 还支持使用低等效串联电阻 (ESR) 专用聚合  
物电容器和陶瓷输出电容器。  
输出电压范围:0.76V 7V  
可在轻负载条件下利用跳脉冲的方式实现高效率  
Eco-mode™  
500kHz 开关频率  
关断电流 1µA  
TPS565201 能够以脉冲跳跃模式运行,从而能在轻负  
载运行期间保持高效率。  
1% 反馈电压精度  
从预偏置输出电压启动  
逐周期电流限制  
TPS565201 器件采用 6 引脚 1.6mm × 2.9mm SOT  
(DDC) 封装,可在 –40°C 125°C 的结温范围下运  
行。  
断续模式过流保护  
非锁存 UVPUVLO TSD 保护  
器件信息(1)  
2 应用  
器件型号  
TPS565201  
封装  
DDC (6)  
封装尺寸(标称值)  
数字电视电源  
1.60mm x 2.90mm  
高清 蓝光光盘播放器  
网络家庭终端设备  
数字机顶盒 (STB)  
安全监控  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
空白  
空白  
简化电路原理图  
TPS565201 效率  
CBST  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
TPS565201  
1
2
6
5
GND  
SW  
VBST  
EN  
LO  
EN  
VOUT  
CO  
3
4
VOUT  
VIN  
VFB  
VIN  
RFB1  
RFB2  
CIN  
Copyright © 2016, Texas Instruments Incorporated  
30%  
20%  
10%  
0
VOUT = 1.05 V  
VOUT = 1.5 V  
VOUT = 1.8 V  
VOUT = 3.3 V  
VOUT = 5 V  
0.001  
0.01  
0.1  
1
5
Output Current (A)  
D017  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSE71  
 
 
TPS565201  
ZHCSGS9 SEPTEMBER 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
8.1 Application Information............................................ 12  
8.2 Typical Application ................................................. 12  
Power Supply Recommendations...................... 17  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................. 10  
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example .................................................... 18  
11 器件和文档支持 ..................................................... 19  
11.1 接收文档更新通知 ................................................. 19  
11.2 社区资源................................................................ 19  
11.3 ....................................................................... 19  
11.4 静电放电警告......................................................... 19  
11.5 Glossary................................................................ 19  
12 机械、封装和可订购信息....................................... 19  
7
4 修订历史记录  
日期  
修订版本  
说明  
2017 9 月  
*
初始发行版。  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TPS565201  
www.ti.com.cn  
ZHCSGS9 SEPTEMBER 2017  
5 Pin Configuration and Functions  
DDC Package  
6-Pin SOT  
Top View  
GND  
1
2
3
6
5
4
VBST  
EN  
SW  
VIN  
VFB  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Ground pin. Source terminal of low-side power NFET as well as the ground terminal for  
controller circuit. Connect sensitive VFB to this GND at a single point.  
GND  
1
SW  
VIN  
VFB  
EN  
2
3
4
5
O
I
Switch node connection between high-side NFET and low-side NFET.  
Input voltage supply pin. The drain terminal of high-side power NFET.  
Converter feedback input. Connect to output voltage with feedback resistor divider.  
Enable input control. Active high and must be pulled up to enable the device.  
I
I
Supply input for the high-side NFET gate drive circuit. Connect 0.1 µF capacitor between  
VBST and SW pins.  
VBST  
6
O
Copyright © 2017, Texas Instruments Incorporated  
3
TPS565201  
ZHCSGS9 SEPTEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–2  
MAX  
19  
UNIT  
V
VIN, EN  
VBST  
25  
V
VBST (10 ns transient)  
27  
V
Input voltage  
VBST (vs SW)  
6.5  
6.5  
19  
V
VFB  
V
SW  
V
SW (10 ns transient)  
–3.5  
–40  
–55  
21  
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
17  
UNIT  
VIN  
Supply input voltage range  
V
VBST  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–1.8  
–3.5  
–40  
23  
VBST (10 ns transient)  
26  
VBST (vs SW)  
6.0  
17  
VI  
Input voltage range  
EN  
V
VFB  
5.5  
17  
SW  
SW (10 ns transient)  
20  
TJ  
Operating junction temperature  
125  
°C  
6.4 Thermal Information  
TPS565201  
DDC (SOT)  
6 PINS  
95.9  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
35.6  
16.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.4  
ψJB  
16.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2017, Texas Instruments Incorporated  
TPS565201  
www.ti.com.cn  
ZHCSGS9 SEPTEMBER 2017  
6.5 Electrical Characteristics  
TJ = –40°C to 125°C, VIN = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY CURRENT  
Operating – non-switching  
supply current  
IVIN  
VIN current, EN = 5 V, VFB = 1 V  
VIN current, EN = 0 V  
320  
0.8  
510  
5
µA  
µA  
IVINSDN  
Shutdown supply current  
LOGIC THRESHOLD  
VENH  
VENL  
REN  
EN high-level input voltage  
1.6  
120  
753  
V
V
EN low-level input voltage  
EN pin resistance to GND  
0.8  
VEN = 12 V  
245  
400  
kΩ  
VFB VOLTAGE AND DISCHARGE RESISTANCE  
VFBTH  
VFB threshold voltage  
VFB input current  
760  
0
767  
mV  
µA  
IVFB  
VFB = 0.8 V. TA = 25°C  
±0.1  
MOSFET  
RDS(on)h  
RDS(on)l  
High-side switch resistance  
Low-side switch resistance  
TA = 25°C, VBST – VSW = 5.5 V  
TA = 25°C  
31  
16  
mΩ  
mΩ  
CURRENT LIMIT  
IOCL  
Current limit  
5.3  
6.7  
8
A
THERMAL SHUTDOWN  
Shutdown temperature  
Hysteresis  
172  
38  
Thermal shutdown  
threshold(1)  
TSDN  
°C  
ON-TIME TIMER CONTROL  
tOFF(MIN)  
SOFT START  
tSS  
Minimum off time  
VFB = 0.61 V  
236  
1.0  
280  
ns  
ms  
Soft-start time  
Internal soft-start time  
VIN = 12 V, VO = 5 V, CCM mode  
FREQUENCY  
Fsw  
Switching frequency  
500  
kHz  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
VUVP  
Output UVP threshold  
Hiccup detect (H > L)  
65  
1.8  
%
THICCUP_WAIT Hiccup on time  
ms  
ms  
THICCUP_RE  
Hiccup time before restart  
14.9  
UVLO  
Wake up VIN voltage  
Shutdown VIN voltage  
Hysteresis VIN voltage(1)  
4.0  
3.6  
0.4  
4.3  
UVLO  
UVLO threshold  
3.3  
V
(1) Not production tested.  
Copyright © 2017, Texas Instruments Incorporated  
5
TPS565201  
ZHCSGS9 SEPTEMBER 2017  
www.ti.com.cn  
6.6 Typical Characteristics  
VIN = 12 V (unless otherwise noted)  
0.763  
0.762  
0.761  
0.76  
0.45  
0.4  
0.35  
0.3  
0.25  
0.759  
0.2  
0.758  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D001  
D002  
Figure 1. TPS565201 Supply Current vs Junction  
Temperature  
Figure 2. VFB Voltage vs Junction Temperature  
1.23  
1.2  
1.45  
1.42  
1.39  
1.36  
1.33  
1.3  
1.17  
1.14  
1.11  
1.08  
1.05  
1.02  
-50  
-20  
10  
40  
70  
100  
130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D004  
D003  
Figure 3. EN Pin UVLO Low Voltage vs Junction  
Temperature  
Figure 4. TPS565201 EN Pin UVLO High Voltage vs Junction  
Temperature  
60  
55  
50  
45  
40  
35  
30  
25  
20  
28  
24  
20  
16  
12  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
-50  
-20  
10  
40  
70  
100  
130  
Junction Temperature (èC)  
Junction Temperature (èC)  
D042  
D006  
Figure 5. TPS565201 High-Side Rds-On vs Junction  
Temperature  
Figure 6. Low-Side Rds-On vs Junction Temperature  
6
Copyright © 2017, Texas Instruments Incorporated  
TPS565201  
www.ti.com.cn  
ZHCSGS9 SEPTEMBER 2017  
Typical Characteristics (continued)  
VIN = 12 V (unless otherwise noted)  
600  
600  
500  
400  
300  
200  
100  
0
VOUT = 1.8 V  
VOUT = 3.3 V  
VOUT = 5 V  
580  
560  
540  
520  
500  
480  
VOUT = 1.05V  
VOUT = 3.3V  
VOUT = 5V  
4
6
8
10  
12  
14  
16  
18  
0.001  
0.01  
0.1  
1
5
Input Voltage (V)  
Output Current (A)  
D018  
D046  
Figure 7. TPS565201 Switching Frequency  
vs Input Voltage  
Figure 8. TPS565201 Switching Frequency  
vs Output Current  
100%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
0.001  
0.01  
0.1  
1
5
0.001  
0.01  
0.1  
1
5
Output Current (A)  
Output Current (A)  
D040  
D019  
VOUT = 1.05 V  
L = 2.2 µH  
VOUT = 1.5 V  
L = 2.2 µH  
Figure 9. TPS565201 Efficiency vs Output Current  
Figure 10. TPS565201 Efficiency vs Output Current  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
0.001  
0.01  
0.1  
1
5
0.001  
0.01  
0.1  
1
5
Output Current (A)  
Output Current (A)  
D020  
D041  
VOUT = 1.8 V  
L = 2.2 µH  
VOUT = 3.3 V  
L = 2.2 µH  
Figure 11. TPS565201 Efficiency vs Output Current  
Figure 12. TPS565201 Efficiency vs Output Current  
Copyright © 2017, Texas Instruments Incorporated  
7
TPS565201  
ZHCSGS9 SEPTEMBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
VIN = 12 V (unless otherwise noted)  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
0
0.001  
0.01  
0.1  
1
5
Output Current (A)  
D021  
VOUT = 5 V  
L = 3.3 µH  
Figure 13. TPS565201 Efficiency vs Output Current  
8
Copyright © 2017, Texas Instruments Incorporated  
TPS565201  
www.ti.com.cn  
ZHCSGS9 SEPTEMBER 2017  
7 Detailed Description  
7.1 Overview  
The TPS565201 is a 5-A synchronous step-down converter. The proprietary D-CAP2™ mode control supports  
low ESR output capacitors such as specialty polymer capacitors and multi-layer ceramic capacitors without  
complex external compensation circuits. The fast transient response of D-CAP2™ mode control can reduce the  
output capacitance required to meet a specific level of performance.  
7.2 Functional Block Diagram  
EN  
5
3
VIN  
VUVP  
+
Hiccup  
VREG5  
UVP  
Control Logic  
Regulator  
UVLO  
+
OVP  
VOVP  
4
VFB  
VBST  
SW  
6
2
+
+
PWM  
Voltage  
Reference  
+
SS  
Soft Start  
HS  
+
Internal Ramp  
One-Shot  
TSD  
XCON  
VREG5  
LS  
Ripple Injection  
OCL  
threshold  
OCL  
+
1
GND  
+
ZC  
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2017, Texas Instruments Incorporated  
9
TPS565201  
ZHCSGS9 SEPTEMBER 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Adaptive On-Time Control and PWM Operation  
The main control loop of the TPS565201 is adaptive on-time pulse width modulation (PWM) controller that  
supports a proprietary D-CAP2™ mode control. The D-CAP2™ mode control combines adaptive on-time control  
with an internal compensation circuit for pseudo-fixed frequency and low external component count configuration  
with low-ESR ceramic output capacitors. It is stable even with virtually no ripple at the output.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal  
one-shot timer expires. This one shot duration is set inversely proportional to the converter input voltage, VIN,  
and proportional to the output voltage VO, to maintain a pseudo-fixed frequency over the input voltage range,  
hence it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is turned on  
again when the feedback voltage falls below the reference voltage. An ripple is added to reference voltage to  
simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP2TM mode control.  
7.3.2 Pulse Skip Mode  
The TPS565201 is designed with Eco-mode™ to maintain high light load efficiency. As the output current  
decreases from heavy load condition, the inductor current is also reduced and eventually comes to point that its  
rippled valley touches zero level, which is the boundary between continuous conduction and discontinuous  
conduction modes. The rectifying MOSFET is turned off when the zero inductor current is detected. As the load  
current further decreases the converter runs into discontinuous conduction mode. The on-time is kept almost the  
same as it was in the continuous conduction mode so that it takes longer time to discharge the output capacitor  
with smaller load current to the level of the reference voltage. This makes the switching frequency lower,  
proportional to the load current, and keeps the light load efficiency high. The transition point to the light load  
operation IOUT(LL) current can be calculated in Equation 1.  
(VIN - VOUT )´ VOUT  
1
IOUT(LL)  
=
´
2´L ´ ¦SW  
V
IN  
(1)  
7.3.3 Soft Start and Pre-Biased Soft Start  
The TPS565201 has an internal 1.0-ms soft-start. When the EN pin becomes high, the internal soft-start function  
begins ramping up the reference voltage to the PWM comparator.  
If the output capacitor is pre-biased at startup, the device initiates switching and starts ramping up only after the  
internal reference voltage becomes greater than the feedback voltage VFB. This scheme ensures that the  
converter ramps up smoothly into regulation point.  
10  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS565201  
www.ti.com.cn  
ZHCSGS9 SEPTEMBER 2017  
Feature Description (continued)  
7.3.4 Current Protection  
The output over-current limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The  
inductor current is monitored during the OFF state by measuring the low-side FET drain to source voltage, which  
is proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.  
During the on time of the high-side FET switch, the switch current increases at a linear rate determined by VIN,  
VOUT, and the output inductor value. During the on time of the low-side FET switch, this current decreases  
linearly. The average value of the switch current is the load current IOUT. If the monitored current is above the  
OCL level, the converter maintains low-side FET on and delays the creation of a new set pulse, even the voltage  
feedback loop requires one, until the current level becomes OCL level or lower. In subsequent switching cycles,  
the on-time is set to a fixed value and the current is monitored in the same manner.  
There are some important considerations for this type of over-current protection. The load current is higher than  
the over-current threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being  
limited, the output voltage tends to fall as the demanded load current may be higher than the current available  
from the converter. This may cause the output voltage to fall. When the VFB voltage falls below the UVP  
threshold voltage, the UVP comparator detects it. And then, the device shuts down after the UVP delay time  
(typically 24 µs) and re-starts after the hiccup time (typically 14.9 ms).  
When the over current condition is removed, the output voltage returns to the regulated value.  
7.3.5 Undervoltage Lockout (UVLO) Protection  
UVLO protection monitors input voltage. When the voltage is lower than UVLO threshold voltage, the device is  
shut off. This protection is non-latching.  
7.3.6 Thermal Shutdown  
The device monitors the temperature of itself. If the temperature exceeds the threshold value (typically 172°C),  
the device is shut off. This is a non-latch protection.  
7.4 Device Functional Modes  
7.4.1 Normal Operation  
When the input voltage is above the UVLO threshold and the EN voltage is above the enable threshold, the  
TPS565201 operates in the normal switching mode. Normal continuous conduction mode (CCM) occurs when  
the minimum switch current is above 0 A. In CCM, the TPS565201 operates at a quasi-fixed frequency of 500  
kHz.  
7.4.2 Eco-mode™ Operation  
When the TPS565201 is in the normal CCM operating mode and the switch current falls to 0 A, the TPS565201  
begins operating in pulse skipping eco-mode. Each switching cycle is followed by a period of energy saving sleep  
time. The sleep time ends when the VFB voltage falls below the eco-mode threshold voltage. As the output  
current decreases, the perceived time between switching pulses increases.  
7.4.3 Standby Operation  
When the TPS565201 is operating in either normal CCM or Eco-mode™, it may be placed in standby by  
asserting the EN pin low.  
Copyright © 2017, Texas Instruments Incorporated  
11  
TPS565201  
ZHCSGS9 SEPTEMBER 2017  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The device is a typical step-down DC-DC converter for converting a higher dc voltage to a lower dc voltage with  
a maximum available output current of 5 A. The following design procedure can be used to select component  
values for the TPS565201. Alternately, the WEBENCH® software may be used to generate a complete design.  
The WEBENCH software uses an iterative design procedure and accesses a comprehensive database of  
components when generating a design. This section presents a simplified discussion of the design process.  
8.2 Typical Application  
The application schematic in Figure 14 shows the TPS565201 4.5-V to 17-V input, 1.05-V output converter  
design meeting the requirements for 5-A output. This circuit is available as the evaluation module (EVM). The  
sections provide the design procedure.  
C7 0.1 F  
TPS565201  
1
2
6
5
GND  
SW  
VBST  
EN  
VOUT = 1.05 V / 5  
A
L1  
R3 10 kꢀ  
EN  
VOUT  
2.2 H  
C9  
22 F  
C8  
22 F  
3
4
VIN  
VFB  
VOUT  
R1 3.74 kꢀ  
R2  
10 kꢀ  
C4  
1
C1  
C2  
C3  
10 F  
10 F 0.1 F  
1
Not Installed  
VIN  
VIN = 4.5 V to 17 V  
Copyright © 2016, Texas Instruments Incorporated  
Figure 14. TPS565201 1.05-V, 5-A Reference Design  
12  
Copyright © 2017, Texas Instruments Incorporated  
 
TPS565201  
www.ti.com.cn  
ZHCSGS9 SEPTEMBER 2017  
Typical Application (continued)  
8.2.1 Design Requirements  
Table 1 shows the design parameters for this application.  
Table 1. Design Parameters  
PARAMETER  
Input voltage range  
EXAMPLE VALUE  
4.5 to 17 V  
1.05 V  
Output voltage  
Transient response, 1-A/us slew rate  
Input ripple voltage  
ΔVout = ±5%  
400 mV  
Output ripple voltage  
Output current rating  
Operating frequency  
20 mV  
5 A  
550 kHz  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the VFB pin. TI recommends to use 1%  
tolerance or better divider resistors. Start by using Equation 2 to calculate VOUT  
.
To improve efficiency at very light loads consider using larger value resistors. However, using too high of  
resistance causes the circuit to be more susceptible to noise; and, voltage errors from the VFB input current will  
be more noticeable.  
R1  
æ
ö
VOUT = 0.760 ´ 1 +  
ç
÷
R2  
è
ø
(2)  
8.2.2.2 Output Filter Selection  
The LC filter used as the output filter has double pole at:  
1
fP  
=
2p LOUT ì COUT  
(3)  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the device. The low frequency phase is 180°. At the output filter pole frequency, the gain rolls off at a –40  
dB per decade rate and the phase drops rapidly. D-CAP2 introduces a high frequency zero that reduces the gain  
roll off to –20 dB per decade and increases the phase to 90° one decade above the zero frequency. The inductor  
and capacitor for the output filter must be selected so that the double pole of Equation 3 is located below the  
high frequency zero but close enough that the phase boost provided be the high frequency zero provides  
adequate phase margin for a stable circuit. To meet this requirement use the values recommended in Table 2.  
Table 2. Recommended Component Values  
L1 (µH)  
TYP  
2.2  
OUTPUT  
VOLTAGE (V)  
R1 (kΩ)  
R2 (kΩ)  
C8 + C9 (µF)  
MIN  
1.0  
1.0  
1.0  
1.5  
1.5  
2.2  
2.2  
3.3  
3.3  
MAX  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
1
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5
3.09  
3.74  
5.76  
9.53  
13.7  
22.6  
33.2  
54.9  
75  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
3.3  
6.5  
3.3  
Copyright © 2017, Texas Instruments Incorporated  
13  
 
 
 
 
TPS565201  
ZHCSGS9 SEPTEMBER 2017  
www.ti.com.cn  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using Equation 4,  
Equation 5, and Equation 6. The inductor saturation current rating must be greater than the calculated peak  
current and the RMS or heating current rating must be greater than the calculated RMS current.  
Use 550 kHz for ƒSW. Make sure the chosen inductor is rated for the peak current of Equation 5 and the RMS  
current of Equation 7.  
V
IN(MAX)- VOUT  
VOUT  
IP-P  
IPEAK = IO +  
ILO(RMS)  
=
ì
V
LO ì fSW  
IN(MAX)  
(4)  
(5)  
IIP-P  
2
1
2
2
=
IO  
+
IlP-P  
12  
(6)  
For this design example, the calculated peak current is 5.4 A and the calculated RMS current is 5 A. The  
inductor used is a WE 744311220 with a peak current rating of 13 A and an RMS current rating of 9 A.  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS565201 is intended for  
use with ceramic or other low ESR capacitors. Recommended values range from 20 µF to 68 µF. Use Equation 7  
to determine the required RMS current rating for the output capacitor.  
VOUT ì V - VOUT  
(
)
IN  
ICO(RMS)  
=
12 ì V ì LO ì fSW  
IN  
(7)  
For this design two TDK C3216X5R0J226M 22-µF output capacitors are used. The typical ESR is 2 mΩ each.  
The calculated RMS current is 0.229 A.  
8.2.2.3 Input Capacitor Selection  
The TPS565201 requires an input decoupling capacitor and a bulk capacitor is needed depending on the  
application. TI recommends a ceramic capacitor over 10 µF for the decoupling capacitor. An additional 0.1-µF  
capacitor (C3) from pin 3 to ground is optional to provide additional high frequency filtering. The capacitor voltage  
rating needs to be greater than the maximum input voltage.  
8.2.2.4 Bootstrap Capacitor Selection  
A 0.1-µF ceramic capacitor must be connected between the VBST to SW pin for proper operation. TI  
recommends to use a ceramic capacitor.  
14  
Copyright © 2017, Texas Instruments Incorporated  
 
 
 
 
TPS565201  
www.ti.com.cn  
ZHCSGS9 SEPTEMBER 2017  
8.2.3 Application Curves  
3%  
2%  
1%  
0
3%  
2%  
1%  
0
-1%  
-2%  
-3%  
-1%  
-2%  
-3%  
0
1
2
3
4
5
0
1
2
3
4
5
Output Current (A)  
Output Current (A)  
D050  
D051  
VIN = 5 V  
VOUT = 1.05 V  
VIN = 12 V  
VOUT = 1.05 V  
Figure 15. Load Regulation, VIN = 5 V  
Figure 16. Load Regulation, VIN = 12 V  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
1.05  
1.048  
1.046  
1.044  
1.042  
1.04  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
1.038  
1.036  
4
6
8
10  
12  
14  
16  
18  
0.001  
0.01  
0.1  
1
5
Input Voltage (V)  
Output Current (A)  
D045  
D040  
VOUT = 1.05 V  
Figure 17. Line Regulation  
Figure 18. Efficiency vs Output Current  
1 µs/div  
1 µs/div  
Figure 19. TPS565201 Input Voltage Ripple  
Figure 20. TPS565201 Output Voltage Ripple, No Load  
Copyright © 2017, Texas Instruments Incorporated  
15  
TPS565201  
ZHCSGS9 SEPTEMBER 2017  
www.ti.com.cn  
1 µs/div  
1 µs/div  
Figure 22. TPS565201 Output Voltage Ripple, IOUT 5 A  
Figure 21. TPS565201 Output Voltage Ripple, IOUT 2.5 A  
100 µs/div  
100 µs/div  
Figure 23. TPS565201 Transient Response 0.1 to 2.5 A  
Figure 24. TPS565201 Transient Response, 1.25 to 3.75 A  
100 µs/div  
2 ms/div  
Figure 25. TPS565201 Transient Response, 2.5 to 5 A  
Figure 26. TPS565201 Startup Relative to VIN  
16  
Copyright © 2017, Texas Instruments Incorporated  
TPS565201  
www.ti.com.cn  
ZHCSGS9 SEPTEMBER 2017  
20 ms/div  
400 µs/div  
Figure 28. TPS565201 Shutdown Relative to VIN  
Figure 27. TPS565201 Startup Relative to EN  
400 µs/div  
Figure 29. TPS565201 Shutdown Relative to EN  
9 Power Supply Recommendations  
The TPS565201 is designed to operate from input supply voltage in the range of 4.5 V to 17 V. Buck converters  
require the input voltage to be higher than the output voltage for proper operation. The maximum recommended  
operating duty cycle is 83%. Using that criteria, the minimum recommended input voltage is VO / 0.83.  
Copyright © 2017, Texas Instruments Incorporated  
17  
TPS565201  
ZHCSGS9 SEPTEMBER 2017  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
1. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of  
advantage from the view point of heat dissipation.  
2. The input capacitor and output capacitor should be placed as close to the device as possible to minimize  
trace impedance.  
3. Provide sufficient vias for the input capacitor and output capacitor.  
4. Keep the SW trace as physically short and wide as practical to minimize radiated emissions.  
5. Do not allow switching current to flow under the device.  
6. A separate VOUT path should be connected to the upper feedback resistor.  
7. Make a Kelvin connection to the GND pin for the feedback path.  
8. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has  
ground shield.  
9. The trace of the VFB node should be as small as possible to avoid noise coupling.  
10. The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its  
trace impedance.  
10.2 Layout Example  
Trace on the  
GND  
bottom layer  
VOUT  
Additional  
Vias to the  
GND plane  
OUTPUT  
CAPACITOR  
BOOST  
CAPACITOR  
GND  
SW  
VBST  
FEEDBACK  
RESISTORS  
TO ENABLE  
CONTROL  
EN  
OUTPUT  
INDUCTOR  
VFB  
VIN  
VIN  
GND trace under IC  
On top layer  
INPUT BYPASS  
CAPACITOR  
GND  
Figure 30. TPS565201 Layout Example  
18  
版权 © 2017, Texas Instruments Incorporated  
TPS565201  
www.ti.com.cn  
ZHCSGS9 SEPTEMBER 2017  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
D-CAP2, Eco-mode, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
蓝光 is a trademark of Blu-ray Disc Association.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2017, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS565201DDCR  
TPS565201DDCT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
6
6
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
5201  
5201  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS565201DDCR  
TPS565201DDCT  
SOT-  
23-THIN  
DDC  
DDC  
6
6
3000  
250  
180.0  
9.5  
3.17  
3.1  
1.1  
4.0  
8.0  
Q3  
SOT-  
180.0  
9.5  
3.17  
3.1  
1.1  
4.0  
8.0  
Q3  
23-THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS565201DDCR  
TPS565201DDCT  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
6
6
3000  
250  
184.0  
184.0  
184.0  
184.0  
19.0  
19.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS565208

采用 SOT23 封装的 4.5V 至 17V 5A 同步降压稳压器
TI

TPS565208DDCR

采用 SOT23 封装的 4.5V 至 17V 5A 同步降压稳压器 | DDC | 6 | -40 to 125
TI

TPS565208DDCT

采用 SOT23 封装的 4.5V 至 17V 5A 同步降压稳压器 | DDC | 6 | -40 to 125
TI

TPS56520PWP

可进行电压调节的 17V 输入、5A 同步降压稳压器 | PWP | 20 | -40 to 85
TI

TPS56520PWPR

可进行电压调节的 17V 输入、5A 同步降压稳压器 | PWP | 20 | -40 to 85
TI

TPS565242

采用 SOT-563 封装的 3V 至 16V 输入电压、5A ECO 模式同步降压转换器
TI

TPS565242DRLR

采用 SOT-563 封装的 3V 至 16V 输入电压、5A ECO 模式同步降压转换器 | DRL | 6 | -40 to 125
TI

TPS565247

采用 SOT-563 封装的 3V 至 16V 输入电压、5A FCCM 模式同步降压转换器
TI

TPS565247DRLR

采用 SOT-563 封装的 3V 至 16V 输入电压、5A FCCM 模式同步降压转换器 | DRL | 6 | -40 to 125
TI

TPS56528

4.5V to 18V Input, 5-A Synchronous Step-Down Converter with Advanced Eco-mode™
TI

TPS56528DDA

4.5V to 18V Input, 5-A Synchronous Step-Down Converter with Advanced Eco-mode™
TI

TPS56528DDAR

4.5V to 18V Input, 5-A Synchronous Step-Down Converter with Advanced Eco-mode™
TI