TPS56C215 [TI]

具有 D-CAP3 控制功能的 3.8V 至 17V、12A 同步 SWIFT™ 降压转换器;
TPS56C215
型号: TPS56C215
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 D-CAP3 控制功能的 3.8V 至 17V、12A 同步 SWIFT™ 降压转换器

转换器
文件: 总39页 (文件大小:2008K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
TPS56C215 3.8V 17V 输入、12A 同步降SWIFT™ 转换器  
1 特性  
2 应用  
• 集成13.5mΩ4.5mΩMOSFET  
• 支12A IOUT  
4.5V 启动5.0V 外部偏置)  
• 整个温度范围内的基准电压0.6V ±1%  
0.6V 5.5V 输出电压范围  
服务器、云计算、存储  
电信和网络、负载(POL)  
IPC工厂自动化、PLC测试测量  
DTV  
3 说明  
• 支持陶瓷输出电容器  
D-CAP3控制模式用于快速瞬态响应  
• 可选强制持续导通模(FCCM)用于实现窄输出  
电压纹波或自动跳Eco-Mode用于实现高轻  
负载效率  
400kHz800kHz 1.2MHz 的可FSW  
• 单调启动至预偏置输出  
• 具有断续重启功能的两个可调节电流限制设置  
• 可5V 外部偏置可提升效率  
• 可调节软启动默认软启动时间1ms  
• –40°C 150°C 的工作结温范围  
• 小3.5mm x 3.5mm HotRodQFN 封装  
WEBENCH® 设计工具中受支持  
TPS56C215 TI 旗下最小的一款单片 12A 同步降压  
转换器具有自适应导通时间 D-CAP3 控制模式。该  
器件集成了低 RDS(on) 功率 MOSFET简单易用且高  
只需极少的外部组件适合空间受限的电源系统。  
具有竞争力的特性包括非常精确的基准电压、快速负载  
瞬态响应、自动跳跃模式运行以实现轻负载效率、可调  
节的电流限制和无需外部补偿。强制持续导通模式有助  
于满足高性能 DSP FPGA 的严格电压调节精度要  
求。TPS56C215 采用热增强型 18 引脚 HotRod QFN  
封装并且设计为在 -40°C 150°C 的结温范围内运  
行。  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPS56C215  
VQFN (18)  
3.5mm x 3.5mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
95  
90  
85  
80  
75  
VREG5  
RM_H  
VIN  
MODE  
VREG5  
VIN  
RM_L  
CIN  
PGOOD  
BOOT  
SW  
PGOOD  
TPS56C215  
LOUT  
VOUT  
EN  
SS  
COUT  
RUPPER  
FB  
CSS  
AGND  
PGND  
RLOWER  
VIN=4.5V,VOUT=1.2V,400kHz  
70  
V =12V, VOUT=1.2V, 400kHz  
IN  
V =17V, VOUT=1.2V, 400kHz  
IN  
典型应用  
65  
0
1
2
3
4
5
6
7
8
9
10 11 12  
Output Current(A)  
C001  
效率与输出电流间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSD05  
 
 
 
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
Table of Contents  
8 Application and Implementation..................................20  
8.1 Application Information............................................. 20  
8.2 Typical Application.................................................... 20  
9 Power Supply Recommendations................................25  
10 Layout...........................................................................26  
10.1 Layout Guidelines................................................... 26  
10.2 Layout Example...................................................... 26  
11 Device and Documentation Support..........................29  
11.1 Device Support........................................................29  
11.2 接收文档更新通知................................................... 30  
11.3 支持资源..................................................................30  
11.4 Trademarks............................................................. 30  
11.5 静电放电警告...........................................................30  
11.6 术语表..................................................................... 30  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Timing Requirements..................................................6  
6.7 Typical Characteristics................................................7  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................13  
7.3 Feature Description...................................................13  
7.4 Device Functional Modes..........................................19  
Information.................................................................... 31  
12.1 Package Marking.................................................... 31  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (November 2017) to Revision D (February 2021)  
Page  
• 更新了整个文档的表、图和交叉参考的编号格式。.............................................................................................1  
• 更正了整个文档中的拼写和语法错误.................................................................................................................. 1  
Added VIN-SW, VIN-SW, and BOOT SW (10-ns transient)..............................................................................4  
Changed SW (10-ns transient) min value from -3 V to -5 V............................................................................... 4  
Changes from Revision B (July 2016) to Revision C (November 2017)  
Page  
• 添加了特性项“4.5V 启动5.0V 外部偏置......................................................................................... 1  
• 添加了特性项“4.5V 启动5.0V 外部偏置......................................................................................... 1  
• 更改典型应图像中VREG5 引脚处的接地符号。....................................................................................1  
Changed from "5% resistors" to "1% resistors" in the 7.3.4 description ......................................................15  
Changed Power-Up Sequence image for 7-2.............................................................................................. 15  
Changed Adjustable VIN Undervoltage Lock Out image for 7-3. ................................................................17  
Added Ih term to 方程5 Definition List ......................................................................................................... 17  
Added 12.1 information................................................................................................................................31  
Changes from Revision A (March 2016) to Revision B (May 2016)  
Page  
1 从“支14A IOUT”更改为“支12A IOUT......................................................................1  
• 向典型应用原理图添加了组件名称......................................................................................................................1  
Deleted IOCL spec for "ILIM+1 option, Valley Current" condition.........................................................................5  
Changed From: "...up to 14 A" To: "...up to 12 A" in first sentence of 7.1.................................................... 12  
Deleted four rows in Mode Pin Resistor Settings table for IOUT of 14 A........................................................... 15  
Changes from Revision * (March 2016) to Revision A (March 2016)  
Page  
• 添加了完整量产数据表的内容.............................................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS56C215  
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
BOTTOM VIEW  
TOP VIEW  
AGND 12  
VIN 11  
1 BOOT  
2 VIN  
BOOT 1  
VIN 2  
12 AGND  
11 VIN  
PGND 10  
PGND 9  
PGND 8  
3 PGND  
4 PGND  
5 PGND  
PGND 3  
PGND 4  
PGND 5  
10 PGND  
9 PGND  
8 PGND  
7
6
6
7
SW  
SW  
5-1. RNN Package 18-Pin VQFN  
5-1. Pin Functions  
PIN  
I/O DESCRIPTION  
NAME  
NO.  
Supply input for the gate drive voltage of the high-side MOSFET. Connect the bootstrap capacitor between  
BOOT and SW.  
BOOT  
1
I
Input voltage supply pin for the control circuitry. Connect the input decoupling capacitors between VIN and  
PGND.  
VIN  
2,11  
P
G
3, 4, 5,  
8, 9, 10  
PGND  
Power GND terminal for the controller circuit and the internal circuitry. Connect to AGND with a short trace.  
SW  
6, 7  
12  
O
G
I
Switch node terminal. Connect the output inductor to this pin.  
AGND  
FB  
Ground of internal analog circuitry. Connect AGND to PGND plane with a short trace.  
Converter feedback input. Connect to the center tap of the resistor divider between output voltage and AGND.  
13  
Soft-Start time selection pin. Connecting an external capacitor sets the soft-start time and if no external  
capacitor is connected, the converter starts up in 1 ms.  
SS  
14  
15  
16  
17  
18  
O
I
Enable input control, leaving this pin floating enables the converter. It can also be used to adjust the input  
UVLO by connecting to the center tap of the resistor divider between VIN and EN.  
EN  
Open-drain power good indicator, it is asserted low if output voltage is out of PGOOD threshold, overvoltage,  
or if the device is under thermal shutdown, EN shutdown or during soft start.  
PGOOD  
VREG5  
MODE  
O
I/O  
I
4.7-V internal LDO output which can also be driven externally with a 5-V input. This pin supplies voltage to the  
internal circuitry and gate driver. Bypass this pin with a 4.7-µF capacitor.  
Switching frequency, current limit selection and light load operation mode selection pin. Connect this pin to a  
resistor divider from VREG5 and AGND for different MODE options shown in 7-3.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS56C215  
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.3  
2  
MAX  
20  
UNIT  
VIN  
SW  
19  
SW (10-ns transient)  
VIN-SW  
25  
5  
22  
VIN-SW (10-ns transient)  
25  
6.5  
6.5  
7.5  
Input Voltage  
V
EN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
BOOT SW  
BOOT SW (10 ns transient)  
BOOT  
25.5  
6.5  
6
SS, MODE, FB  
VREG5  
Output Voltage  
PGOOD  
6.5  
14  
V
A
Output Current(2) IOUT  
TJ  
Operating junction temperature  
Storage temperature  
150  
150  
°C  
°C  
40  
55  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) In order to be consistent with the TI reliability requirement of 100k Power-On-Hours at 105°C junction temperature, the output current  
should not exceed 14A continuously under 100% duty operation as to prevent electromigration failure in the solder. Higher junction  
temperature or longer power-on hours are achievable at lower than 14A continuos output current.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.8  
NOM  
MAX  
17  
UNIT  
VIN  
V
V
V
V
A
SW  
17  
1.8  
0.1  
0.1  
0
Input Voltage  
BOOT  
VREG5  
ILOAD  
23.5  
5.2  
12  
Output Current  
Operating junction  
temperature  
TJ  
-40  
150  
°C  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS56C215  
 
 
 
 
 
 
 
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
6.4 Thermal Information  
RNN PACKAGE  
UNIT  
THERMAL METRIC(1)  
18 PINS  
RθJA  
Junction-to-ambient thermal resistance  
29.5  
17.0  
8.6  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJT  
8.6  
ψJB  
RθJC(bot)  
0.5  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6.5 Electrical Characteristics  
TJ = 40°C to 150°C, VIN=12V (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY CURRENT  
IIN  
VIN supply current  
TJ = 25°C, VEN=5 V, non switching  
TJ = 25°C, VEN=0 V  
600  
7
700  
µA  
µA  
IVINSDN  
VIN shutdown current  
LOGIC THRESHOLD  
VENH  
VENL  
EN H-level threshold voltage  
1.175  
1.025  
1.225  
1.104  
0.121  
1.91  
1.3  
V
V
EN L-level threshold voltage  
1.15  
VENHYS  
IENp1  
V
VEN = 1.0 V  
VEN = 1.3 V  
0.35  
3
2.95  
5.5  
µA  
µA  
EN pull-up current  
IENp2  
4.197  
FEEDBACK VOLTAGE  
TJ = 25°C  
598  
597.5  
594  
600  
600  
600  
600  
602  
602.5  
602.5  
606  
mV  
mV  
mV  
mV  
TJ = 0°C to 85°C  
TJ = 40°C to 85°C  
TJ = 40°C to 150°C  
VFB  
FB voltage  
594  
LDO VOLTAGE  
VREG5  
LDO Output voltage  
4.58  
100  
4.7  
4.83  
200  
V
TJ = 40°C to 150°C  
TJ = 40°C to 150°C  
ILIM5  
LDO Output Current limit  
150  
mA  
MOSFET  
RDS(on)H  
RDS(on)L  
High side switch resistance  
Low side switch resistance  
TJ = 25°C, VVREG5 = 4.7 V  
TJ = 25°C, VVREG5 = 4.7 V  
13.5  
4.5  
mΩ  
mΩ  
SOFT START  
Iss  
Soft start charge current  
TJ = -40°C to 150°C  
4.9  
6
7.1  
µA  
CURRENT LIMIT  
ILIM-1 option, Valley Current  
ILIM option, Valley Current  
Valley Current  
9.775  
11.73  
11.5  
13.8  
4
13.225  
15.87  
A
A
A
IOCL  
Current Limit (Low side sourcing)  
Current Limit (Low side negative)  
PGOOD threshold  
POWER GOOD  
VPGOODTH  
VFB falling (fault)  
VFB rising (good)  
VFB rising (fault)  
VFB falling (good)  
84%  
93%  
116%  
107%  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS56C215  
 
 
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
MAX UNIT  
TJ = 40°C to 150°C, VIN=12V (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
121% x  
VFB  
VOVP  
VUVP  
Output OVP threshold  
Output UVP threshold  
OVP detect  
68% x  
VFB  
Hiccup detect  
THERMAL SHUTDOWN  
Shutdown temperature  
Hysteresis  
160  
15  
°C  
°C  
°C  
°C  
TSDN  
Thermal shutdown threshold  
TSDN VREG5  
VREG5 thermal shutdown threshold  
Shutdown temperature  
Hysteresis  
171  
18  
UVLO  
VREG5 rising voltage  
4.3  
3.57  
730  
3.32  
3.26  
60  
V
V
UVLO  
UVLO threshold  
VREG5 falling voltage  
VREG5 hysteresis  
mV  
V
VIN rising voltage, VREG5=4.7V  
VIN falling voltage, VREG5=4.7V  
VIN hysteresis, VREG5=4.7V  
UVLO,  
VREG5=4.7V  
UVLO threshold, VREG5=4.7V  
V
mV  
6.6 Timing Requirements  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNIT  
ON-TIME TIMER CONTROL  
tON  
SW On Time  
VIN = 12 V, VOUT=3.3 V, FSW = 800 kHz  
VIN = 17 V, VOUT=0.6 V, FSW= 1200 kHz  
25°C, VFB=0.5 V  
310  
340  
54  
380  
310  
ns  
ns  
ns  
tON min  
tOFF  
SOFT START  
tSS Soft start time  
SW Minimum on time  
SW Minimum off time  
Internal soft-start time  
1.045  
ms  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
tUVPDEL  
tUVPEN  
Output Hiccup delay relative to SS time  
UVP detect  
UVP detect  
1
7
cycle  
cycle  
Output Hiccup enable delay relative to  
SS time  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS56C215  
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
6.7 Typical Characteristics  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
20  
18  
16  
14  
12  
10  
8
6
4
VIN =12V  
2
VIN =12V  
0
-50  
0
50  
100  
150  
0
50  
100  
150  
œ50  
TJ - Junction Temperature(°C)  
TJ - Junction Temperature(°C)  
C002  
C003  
6-1. Quiescent Current vs Temperature  
6-2. Shutdown Current vs Temperature  
0.606  
30  
0.604  
0.602  
0.6  
25  
20  
15  
0.598  
0.596  
V
=12V  
V
=12V  
IN  
IN  
0.594  
10  
-50  
0
50  
100  
150  
0
50  
100  
150  
œ50  
TJ - Junction Temperature(°C)  
TJ - Junction Temperature(°C)  
C004  
C005  
6-3. Feedback Voltage vs Temperature  
6-4. High-side RDS(on) vs Temperature  
10  
9
8
8
7
6
5
7
6
5
4
3
2
V
=12V  
1
0
IN  
V
IN  
=12V  
4
-50  
0
50  
100  
150  
0
50  
100  
150  
œ50  
TJ - Junction Temperature(°C)  
TJ - Junction Temperature(°C)  
C006  
C008  
6-5. Low-side RDS(on) vs Temperature  
6-6. Soft-Start Charge Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS56C215  
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
3
2.5  
2
6
5.5  
5
4.5  
4
1.5  
1
3.5  
3
V
IN  
=12V  
V =12V  
IN  
0
50  
100  
150  
0
50  
100  
150  
œ50  
œ50  
TJ - Junction Temperature(°C)  
TJ - Junction Temperature(°C)  
C009  
C010  
6-7. Enable Pullup Current, VEN = 1.0 V  
6-8. Enable Pullup Current, VEN = 1.3 V  
120  
115  
110  
105  
18  
ILIM option  
17  
ILIM-1 option  
16  
15  
14  
13  
12  
11  
10  
V
FB rising  
100  
95  
V
falling  
rising  
falling  
FB  
V
FB  
V
FB  
90  
85  
80  
1
2
3
4
5
6
7
8
9
10  
0
50  
100  
150  
œ50  
TJ - Junction Temperature(°C)  
TJ - Junction Temperature(°C)  
C011  
C012  
6-9. PGOOD Threshold vs Temperature  
6-10. Current Limit vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
OUT =1.2V,FSW= 400kHz  
OUT=1.2V,FSW = 800kHz  
OUT=1.2V,FSW = 1200kHz  
VOUT=1.2V,FSW= 400kHz  
=1.2V,FSW= 800kHz  
20  
10  
0
V
V
OUT  
V
VOUT=1.2V,FSW= 1200kHz  
10  
0
0
0
1
10  
0.001  
0.01  
0.1  
1
Output Current(A)  
Output Current(A)  
C013  
C014  
6-11. Efficiency with Internal VREG5 = 4.7 V, VIN 6-12. Efficiency with External VREG5 = 5 V, VIN  
= 12 V 12 V  
=
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS56C215  
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN =12V,VOUT=1.2V  
VIN =12V,VOUT=3.3V  
VIN =12V,VOUT=5.5V  
V
=12V,VOUT=1.2V  
IN  
VIN =12V,VOUT=3.3V  
VIN =12V,VOUT=5.5V  
0.001  
0.01  
0.1  
1
10  
0
1
2
3
4
5
6
7
8
9
10 11 12  
Output Current(A)  
Output Current(A)  
C015  
C016  
6-13. Efficiency, Mode = DCM, FSW = 400 kHz  
6-14. Efficiency, Mode = FCCM, FSW = 400 kHz  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
VIN =12V,VOUT=1.2V  
20  
10  
0
VIN =12V,VOUT =1.2V  
VIN =12V,VOUT=3.3V  
20  
VIN =12V,VOUT=3.3V  
10  
VIN =12V,VOUT =5.5V  
V
=12V,VOUT=5.5V  
IN  
0
0.001  
0.01  
0.1  
1
10  
0
1
2
3
4
5
6
7
8
9
10 11 12  
Output Current(A)  
Output Current(A)  
C017  
C018  
6-15. Efficiency, Mode = DCM, FSW = 1200 kHz  
6-16. Efficiency, Mode = FCCM, FSW = 1200 kHz  
1.206  
500  
450  
400  
350  
300  
250  
VIN =4.5V,VOUT=1.2V  
V
=12V,VOUT=1.2V  
IN  
1.203  
1.2  
VIN =17V, VOUT=1.2V  
1.197  
1.194  
200  
VIN =4.5V,VOUT =1.2V  
150  
100  
V
=7V,VOUT=1.2V  
=17V,VOUT =1.2V  
IN  
V
IN  
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
6
7
8
9
10 11 12  
Output Current(A)  
Output Current(A)  
C019  
C021  
6-17. Load Regulation, FSW = 800 kHz  
6-18. FSW Load Regulation, Mode = DCM, FSW =  
400 kHz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS56C215  
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
900  
800  
700  
600  
500  
1400  
1300  
1200  
1100  
1000  
900  
800  
V
=4.5V,VOUT=1.2V  
IN  
VIN =4.5V, VOUT=1.2V  
VIN =7V,VOUT=1.2V  
=17V, VOUT=1.2V  
400  
300  
700  
V
=7V,VOUT=1.2V  
=17V,VOUT=1.2V  
IN  
V
V
IN  
IN  
600  
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
6
7
8
9
10 11 12  
Output Current(A)  
Output Current  
C022  
C023  
6-19. FSW Load Regulation, Mode = DCM, FSW = 6-20. FSW Load Regulation, Mode = DCM, FSW  
800 kHz 1200 kHz  
=
600  
500  
400  
300  
200  
1000  
900  
800  
700  
600  
500  
400  
V
=4.5V, VOUT=1.2V  
VIN =4.5V,VOUT=1.2V  
VIN =12V,VOUT =1.2V  
IN  
VIN =12V, VOUT=1.2V  
VIN =17V,VOUT=1.2V  
V
=17V,VOUT =1.2V  
IN  
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
6
7
8
9
10 11 12  
Output Current(A)  
Output Current(A)  
C024  
C025  
6-21. FSW Load Regulation, Mode = FCCM, FSW = 6-22. FSW Load Regulation, Mode = FCCM, FSW  
400 kHz 800 kHz  
=
1400  
1300  
1200  
1100  
1000  
900  
600  
500  
400  
300  
200  
V
=4.5V,V =1.2V  
V
=12V, VOUT=1.2V  
=12V, VOUT=3.3V  
=12V,VOUT=5.5V  
IN  
IN  
OUT  
IN  
V
=12V,VOUT=1.2V  
=17V,VOUT=1.2V  
V
IN  
IN  
V
V
IN  
800  
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
6
7
8
9
10 11 12  
Output Current(A)  
Output Current(A)  
C026  
C027  
6-23. FSW Load Regulation, Mode = FCCM, FSW = 6-24. FSW Load Regulation, Mode = FCCM, FSW  
1200 kHz 400 kHz  
=
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS56C215  
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
1400  
1300  
1200  
1100  
1000  
900  
V
=12V,VOUT=1.2V  
IN  
VIN =12V,V =3.3V  
OUT  
VIN =12V,VOUT=5.5V  
800  
0
1
2
3
4
5
6
7
8
9
10 11 12  
Output Current(A)  
C028  
6-25. FSW Load Regulation, Mode = FCCM, FSW = 1200 kHz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS56C215  
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS56C215 is a high density synchronous step down buck converter which can operate from 3.8-V to 17-V  
input voltage (VIN). It has 13.5-mΩand 4.5-mΩintegrated MOSFETs that enable high efficiency up to 12 A. The  
device employs D-CAP3 mode control that provides fast transient response with no external compensation  
components and an accurate feedback voltage. The control topology provides seamless transition between  
FCCM operating mode at higher load condition and DCM/Eco-mode operation at lighter load condition. DCM/  
Eco-mode allows the TPS56C215 to maintain high efficiency at light load. The TPS56C215 is able to adapt to  
both low equivalent series resistance (ESR) output capacitors such as POSCAP or SP-CAP, and ultra-low ESR  
ceramic capacitors.  
The TPS56C215 has three selectable switching frequencies (FSW) (400 kHz, 800 kHz, and 1200 kHz), which  
gives the flexibility to optimize the design for higher efficiency or smaller size. There are two selectable current  
limits. All these options are configured by choosing the right voltage on the MODE pin.  
The TPS56C215 has a 4.7-V internal LDO that creates bias for all internal circuitry. There is a feature to  
overdrive this internal LDO with an external voltage on the VREG5 pin which improves the efficiency of the  
converter. The undervoltage lockout (UVLO) circuit monitors the VREG5 pin voltage to protect the internal  
circuitry from low input voltages. The device has an internal pullup current source on the EN pin which can  
enable the device even with the pin floating.  
Soft-start time can be selected by connecting a capacitor to the SS pin. The device is protected from output  
short, undervoltage, and overtemperature conditions.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS56C215  
 
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
7.2 Functional Block Diagram  
PG rising threshold  
TPS56C215  
+
PGOOD  
PGOOD Logic  
UV  
UV  
threshold  
+
+
Delay  
VREG5  
UVP / OVP Logic  
PG falling threshold  
+
OV threshold  
OV  
LDO  
VIN  
UVLO  
BOOT  
Internal Ramp  
+
BOOT  
t
VREF  
t
+
Error Amp  
Control Logic  
+
+
FB  
t
SW  
SW  
ñ
ñ
ñ
ñ
ñ
ñ
ñ
On Time  
Min On Time/Off Time  
FCCM/SKIP  
Soft-Start  
XCON  
Internal SS  
Power Good  
Internal/External VREG5  
UVP/TSD  
One shot  
VREG5  
SS  
PGND  
Light Load Operation/  
Current Limit/Switching  
Frequency  
MODE  
TSD 160C/171C  
SW  
OCL  
+
Ip1  
Ip2  
EN  
+
ZC  
+
Enable Threshold  
NOCL  
+
7.3 Feature Description  
7.3.1 PWM Operation and D-CAP3 Control  
The TPS56C215 operates using the adaptive on-time PWM control with a proprietary D-CAP3 control which  
enables low external component count with a fast load transient response while maintaining a good output  
voltage accuracy. At the beginning of each switching cycle, the high-side MOSFET is turned on for an on-time  
set by an internal one shot timer. This on-time is set based on the input voltage of the conveter, output voltage of  
the converter, and the pseudo-fixed frequency, hence this type of control topology is called an adaptive on-time  
control. The one-shot timer resets and turns on again once the feedback voltage (VFB) falls below the internal  
reference voltage (VREF). An internal ramp is generated which is fed to the FB pin to simulate the output voltage  
ripple. This enables the use of very low-ESR output capacitors such as multi-layered ceramic caps (MLCC). No  
external current sense network or loop compensation is required for DCAP3 control topology.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS56C215  
 
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
The TPS56C215 includes an error amplifier that makes the output voltage very accurate. This error amplifier is  
absent in other flavors of DCAP3. For any control topology that is compensated internally, there is a range of the  
output filter it can support. The output filter used with the TPS56C215 is a low-pass L-C circuit. This L-C filter has  
double pole that is described in 方程1.  
1
¦
=
P
2´ p´ LOUT ´ COUT  
(1)  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the TPS56C215. The low frequency L-C double pole has a 180 degree in-phase. At the output filter  
frequency, the gain rolls off at a 40-dB per decade rate and the phase drops rapidly. The internal ripple  
generation network introduces a high-frequency zero that reduces the gain roll off from 40-dB to 20-dB per  
decade and increases the phase to 90 degree one decade above the zero frequency. The internal ripple injection  
high frequency zero is changed according to the switching frequency selected as shown in 7-1. The inductor  
and capacitor selected for the output filter must be such that the double pole is located close enough to the high-  
frequency zero so that the phase boost provided by this high-frequency zero provides adequate phase margin  
for the stability requirement. The crossover frequency of the overall system should usually be targeted to be less  
than one-fifth of the switching frequency (FSW).  
7-1. Ripple Injection Zero  
SWITCHING FREQUENCY (kHz)  
ZERO LOCATION (kHz)  
400  
800  
7.1  
14.3  
21.4  
1200  
7-2 lists the inductor values and part numbers that are used to plot the efficiency curves in 6.7.  
7-2. Inductor Values  
WÜRTH PART  
VOUT(V)  
FSW(kHz)  
LOUT(μH)  
NUMBER(1)  
744325120  
744311068  
744314047  
744325240  
7443552150  
744325120  
744325330  
744325240  
7443552150  
400  
800  
1.2  
0.68  
0.47  
2.4  
1.2  
1200  
400  
3.3  
5.5  
800  
1.5  
1200  
400  
1.2  
3.3  
800  
2.4  
1200  
1.5  
(1) See Third-Party Products disclaimer.  
7.3.2 Eco-mode Control  
The TPS56C215 is designed with Eco-mode control to increase efficiency at light loads. This option can be  
chosen using the MODE pin as shown in 7-3. As the output current decreases from heavy load condition, the  
inductor current is also reduced. If the output current is reduced enough, the valley of the inductor current  
reaches the zero level, which is the boundary between continuous conduction and discontinuous conduction  
modes. The low-side MOSFET is turned off when a zero inductor current is detected. As the load current further  
decreases the converter runs into discontinuous conduction mode. The on-time is kept approximately the same  
as it is in continuous conduction mode. The off-time increases as it takes more time to discharge the output with  
a smaller load current. The light load current where the transition to Eco-mode operation happens (IOUT(LL)) can  
be calculated from 方程2.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS56C215  
 
 
 
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
(V -VOUT ) × VOUT  
1
IN  
IOUT(LL)  
=
×
2 × LOUT × FSW  
V
IN  
(2)  
After identifying the application requirements, design the output inductance (LOUT) so that the inductor peak-to-  
peak ripple current is approximately between 20% and 30% of the IOUT(ma×) (peak current in the application). It is  
also important to size the inductor properly so that the valley current does not hit the negative low-side current  
limit.  
7.3.3 4.7-V LDO  
The VREG5 pin is the output of the internal 4.7-V linear regulator that creates the bias for all the internal circuitry  
and MOSFET gate drivers. The VREG5 pin needs to be bypassed with a 4.7-µF capacitor. An external voltage  
that is above the internal output voltage of the LDO can override the internal LDO, switching it to the external rail  
once a higher voltage is detected. This enhances the efficiency of the converter because the quiescent current  
now runs off this external rail instead of the input power supply. The UVLO circuit monitors the VREG5 pin  
voltage and disables the output when VREG5 falls below the UVLO threshold. When using an external bias on  
the VREG5 rail, any power-up and power-down sequencing can be applied but it is important to understand that  
if there is a discharge path on the VREG5 rail that can pull a current higher than the internal current limit of the  
LDO (ILIM5) from the VREG5, then the VREG5 LDO turns off thereby shutting down the output of TPS56C215.  
If such condition does not exist and if the external VREG5 rail is turned off, the VREG5 voltage switches over to  
the internal LDO voltage which is 4.7 V typically in a few nanoseconds. 7-1 shows this transition of the  
VREG5 voltage from an external bias of 5.5 V to the internal LDO output of 4.7 V when the external bias to  
VREG5 is disabled while the output of TPS56C215 remains unchanged.  
VREG5  
VOUT  
7-1. VREG5 Transition  
7.3.4 MODE Selection  
The TPS56C215 has a MODE pin that can offer 12 different states of operation as a combination of current limit,  
switching frequency, and light load operation. The device can operate at two different current limits ILIM-1 and  
ILIM to support an output continuous current of 10 A and 12 A, respectively. The TPS56C215 is designed to  
compare the valley current of the inductor against the current limit thresholds so it is important to understand that  
the output current will be half the ripple current higher than the valley current. For example, with the ILIM current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS56C215  
 
 
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
limit selection, the OCL threshold is 11.73 A minimum which means that a pk-pk inductor ripple current of 0.54 A  
minimum is needed to be able to draw 12 A out of the converter without entering an overcurrent condition. The  
TPS56C215 can operate at three different frequencies of 400 kHz, 800 kHz, and 1200 kHz and also can choose  
between Eco-mode and FCCM mode. The device reads the voltage on the MODE pin during start-up and  
latches onto one of the MODE options listed in 7-3. The voltage on the MODE pin can be set by connecting  
this pin to the center tap of a resistor divider connected between VREG5 and AGND. A guideline for the top  
resistor (RM_H) and the bottom resistor (RM_L) in 1% resistors is shown in 7-3. It is important that the voltage  
for the MODE pin is derived from the VREG5 rail only since internally this voltage is referenced to detect the  
MODE option. The MODE pin setting can be reset only by a VIN power cycling.  
7-3. MODE Pin Resistor Settings  
LIGHT LOAD  
OPERATION  
CURRENT LIMIT  
FREQUENCY  
(kHz)  
RM_L (kΩ)  
RM_H (kΩ)  
5.1  
10  
20  
20  
51  
51  
51  
51  
51  
51  
51  
51  
300  
200  
160  
120  
200  
180  
150  
120  
91  
FCCM  
FCCM  
FCCM  
FCCM  
FCCM  
FCCM  
DCM  
ILIM-1  
ILIM  
400  
400  
ILIM-1  
ILIM  
800  
800  
ILIM-1  
ILIM  
1200  
1200  
400  
ILIM-1  
ILIM  
DCM  
400  
DCM  
ILIM-1  
ILIM  
800  
82  
DCM  
800  
62  
DCM  
ILIM-1  
ILIM  
1200  
1200  
51  
DCM  
7-2 shows the typical start-up sequence of the device once the EN pin voltage crosses the EN turnon  
threshold. After the voltage on VREG5 pin crosses the rising UVLO threshold, it takes 100 μs to read the first  
MODE setting and approximately 100 μs from there to finish the last MODE setting. The output voltage starts  
ramping after the MODE setting reading is completed.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS56C215  
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
EN threshold  
1.2 V  
EN  
VREG5 UVLO  
4.3 V  
VREG5  
MODE  
MODE16  
MODE1  
200 µs  
tss(1ms)  
100 µs  
SS  
7-2. Power-Up Sequence  
7.3.5 Soft Start and Pre-biased Soft Start  
The TPS56C215 has an adjustable soft start time that can be set by connecting a capacitor on SS pin. When the  
EN pin becomes high, the soft-start charge current (ISS) begins charging the external capacitor (CSS) connected  
between SS and AGND. The devices tracks the lower of the internal soft-start voltage or the external soft-start  
voltage as the reference. The equation for the soft-start time (TSS) is shown in 方程3:  
CSS × VREF  
TSS(S)  
=
ISS  
(3)  
where  
VREF is 0.6 V and ISS is 6 µA  
If the output capacitor is pre-biased at start-up, the device initiates switching and starts ramping up only after the  
internal reference voltage becomes greater than the feedback voltage VFB. This scheme ensures that the  
converters ramp up smoothly into regulation point.  
7.3.6 Enable and Adjustable UVLO  
The EN pin controls the turnon and turnoff of the device. When EN pin voltage is above the turnon threshold  
which is around 1.2 V, the device starts switching and when the EN pin voltage falls below the turnoff threshold,  
which is around 1.1 V, it stops switching. If the user application requires a different turnon (VSTART) and turnoff  
thresholds (VSTOP) respectively, the EN pin can be configured as shown in 7-3 by connecting a resistor divider  
between VIN and EN. The EN pin has a pullup current Ip1 that sets the default state of the pin when it is floating.  
This current increases to Ip2 when the EN pin voltage crosses the turnon threshold. The UVLO thresholds can be  
set by using 方程4 and 方程5.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS56C215  
 
 
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
TPS56C215  
Ih  
VIN  
EN  
Ip1  
R1  
R2  
7-3. Adjustable VIN Undervoltage Lock Out  
æ
ç
è
ö
VENFALLING  
VSTART  
- VSTOP  
÷
VENRISING  
ø
R1 =  
æ
ö
÷
ø
VENFALLING  
I
1-  
+ I  
p1 ç  
h
VENRISING  
è
(4)  
(5)  
R1´ VENFALLING  
STOP - VENFALLING +R1 Ip2  
R2 =  
V
where  
Ip2 = 4.197 μA  
Ip1 = 1.91 μA  
Ih = 2.287 μA  
VENRISING = 1.225 V  
VENFALLING = 1.104 V  
7.3.7 Power Good  
The Power Good (PGOOD) pin is an open-drain output. Once the FB pin voltage is between 93% and 107% of  
the internal reference voltage (VREF), the PGOOD is de-asserted and floats after a 200-µs de-glitch time. A  
pullup resistor of 10 kΩ is recommended to pull it up to VREG5. The PGOOD pin is pulled low when the FB pin  
voltage is lower than VUVP or greater than VOVP threshold, in an event of thermal shutdown, or during the soft-  
start period  
7.3.8 Overcurrent Protection and Undervoltage Protection  
The output overcurrent limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch  
current is monitored during the OFF state by measuring the low-side FET drain to source voltage. This voltage is  
proportional to the switch current. During the on-time of the high-side FET switch, the switch current increases at  
a linear rate determined by input voltage, output voltage, the on-time, and the output inductor value. During the  
on-time of the low-side FET switch, this current decreases linearly. The average value of the switch current is the  
load current IOUT. If the measured drain-to-source voltage of the low-side FET is above the voltage proportional  
to current limit, the low-side FET stays on until the current level becomes lower than the OCL level which  
reduces the output current available. When the current is limited the output voltage tends to drop because the  
load demand is higher than what the converter can support. When the output voltage falls below 68% of the  
target voltage, the UVP comparator detects it and shuts down the device after a wait time of 1 ms, the device re-  
starts after a hiccup time of 7 ms. In this type of valley detect control, the load current is higher than the OCL  
threshold by one half of the peak-to-peak inductor ripple current. When the overcurrent condition is removed, the  
output voltage returns to the regulated value. If an OCL condition happens during start-up, then the device  
enters hiccup-mode immediately without a wait time of 1 ms.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS56C215  
 
 
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
7.3.9 Out-of-Bounds Operation  
The device has an out-of-bounds (OOB) overvoltage protection that protects the output load at a much lower  
overvoltage threshold of 8% above the target voltage. OOB protection does not trigger an overvoltage fault.  
OOB protection operates as an early no-fault overvoltage protection mechanism. During the OOB operation, the  
controller operates in forced PWM mode only by turning on the low-side FET. Turning on the low-side FET  
beyond the zero inductor current quickly discharges the output capacitor thus causing the output voltage to fall  
quickly toward the setpoint. During the operation, the cycle-by cycle negative current limit is also activated to  
ensure the safe operation of the internal FETs.  
7.3.10 UVLO Protection  
Undervoltage lockout protection (UVLO) monitors the internal VREG5 regulator voltage. When the VREG5  
voltage is lower than UVLO threshold voltage, the device is shut off. This protection is non-latching.  
7.3.11 Thermal Shutdown  
The device monitors the internal die temperature. If this temperature exceeds the thermal shutdown threshold  
value (TSDN typically 160°C), the device shuts off. This is a non-latch protection. During start-up, if the device  
temperature is higher than 160°C, the device does not start switching and does not load the MODE settings. If  
the device temp goes higher than TSDN threshold after start-up, it stops switching with SS reset to ground and an  
internal discharge switch turns on to quickly discharge the output voltage. The device re-starts switching when  
the temperature goes below the thermal shutdown threshold but the MODE settings are not re-loaded again.  
There is a second higher thermal protection on the device TSDN VREG5 which protects it from overtemperature  
conditions not caused by the switching of the device itself. This threshold is at typically 170°C. Even under non-  
switching condition of the device after exceeding TSDN threshold, if it still continues to heat up the VREG5 output  
shuts off once temperature goes beyond TSDN VREG5, thereby shutting down the device completely.  
7.3.12 Output Voltage Discharge  
The device has a 500-discharge switch that discharges the output VOUT through SW node during any event of  
fault like output overvoltage, output undervoltage, TSD, if VREG5 voltage below the UVLO and when the EN pin  
voltage (VEN) is below the turnon threshold.  
7.4 Device Functional Modes  
7.4.1 Light Load Operation  
When the MODE pin is selected to operate in FCCM mode, the converter operates in continuous conduction  
mode (FCCM) during light-load conditions. During FCCM, the switching frequency (FSW) is maintained at an  
almost constant level over the entire load range which is suitable for applications requiring tight control of the  
switching frequency and output voltage ripple at the cost of lower efficiency under light load. If the MODE pin is  
selected to operate in DCM/Eco-mode, the device enters pulse skip mode after the valley of the inductor ripple  
current crosses zero. The Eco-mode maintains higher efficiency at light load with a lower switching frequency.  
7.4.2 Standby Operation  
The TPS56C215 can be placed in standby mode by pulling the EN pin low. The device operates with a shut-  
down current of 7 μA when in standby condition.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS56C215  
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The schematic of 8-1 shows a typical application for TPS56C215. This design converts an input voltage range  
of 4.5 V to 17 V down to 1.2 V with a maximum output current of 12 A.  
8.2 Typical Application  
VIN = 4.5 V - 17 V  
V
IN  
U1  
TPS56C215  
C1  
0.1µF  
C2  
0.1µF  
C3  
22µF  
C4  
22µF  
C5  
22µF  
C6  
22µF  
L
OUT  
C9  
V
= 1.2 V, 12 A  
OUT  
2
1
VIN  
VIN  
BOOT  
VOUT  
C14  
11  
470nH  
R4 10.0k  
0.1µF  
6
SW  
SW  
FB  
C11  
47µF  
C12  
47µF  
C13  
47µF  
7
13  
47µF  
14  
15  
16  
17  
18  
SS  
EN  
C7  
0.047µF  
3
C10  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
EN  
4
PGOOD  
R1  
5
PGOOD  
VREG5  
MODE  
56pF  
8
10.0k  
9
R5  
10.0k  
10  
R2  
52.3k  
C8  
4.7µF  
12  
AGND  
R3  
49.9k  
8-1. Application Schematic  
8.2.1 Design Requirements  
8-1. Design Parameters  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VOUT  
Output voltage  
Output current  
1.2  
12  
40  
12  
20  
IOUT  
A
Transient response  
Input voltage  
9-A load step  
mV  
V
ΔVOUT  
VIN  
4.5  
17  
VOUT(ripple)  
Output voltage ripple  
mV(P-P)  
V
Internal  
UVLO  
Start input voltage  
Input voltage rising  
Input voltage falling  
Internal  
UVLO  
Stop input voltage  
V
FSW  
Switching frequency  
1.2  
DCM  
25  
MHz  
Operating Mode  
TA  
Ambient temperature  
°C  
8.2.2 Detailed Design Procedure  
8.2.2.1 External Component Selection  
8.2.2.1.1 Output Voltage Set Point  
To change the output voltage of the application, it is necessary to change the value of the upper feedback  
resistor. By changing this resistor the user can change the output voltage above 0.6 V. See 方程6.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS56C215  
 
 
 
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
æ
ö
RUPPER  
VOUT = 0.6´ 1+  
ç
÷
RLOWER ø  
è
(6)  
8.2.2.1.2 Switching Frequency and MODE Selection  
Switching Frequency, current limit, and switching mode (DCM or FCCM) are set by a voltage divider from  
VREG5 to GND connected to the MODE pin. See 7-3 for possible MODE pin configurations. Switching  
frequency selection is a tradeoff between higher efficiency and smaller system solution size. Lower switching  
frequency yields higher overall efficiency but relatively bigger external components. Higher switching frequencies  
cause additional switching losses which impact efficiency and thermal performance. For this design, 1.2 MHz is  
chosen as the switching frequency, the switching mode is DCM and the output current is 12 A.  
8.2.2.1.3 Inductor Selection  
The inductor ripple current is filtered by the output capacitor. A higher inductor ripple current means the output  
capacitor should have a ripple current rating higher than the inductor ripple current. See 8-2 for recommended  
inductor values.  
The RMS and peak currents through the inductor can be calculated using 方程式 7 and 方程式 8. It is important  
that the inductor is rated to handle these currents.  
æ
2 ö  
÷
÷
÷
ø
æ
ç
ö
÷
VOUT × V  
- VOUT  
(
× LOUT × FSW  
IN(max)  
)
1
IN(max)  
ç 2  
I
IL(rms)=  
+
×
OUT  
ç
ç
è
÷
ø
12  
V
ç
è
(7)  
(8)  
IOUT(ripple)  
I
= IOUT  
+
L(peak)  
2
During transient/short circuit conditions the inductor current can increase up to the current limit of the device so it  
is safe to choose an inductor with a saturation current higher than the peak current under current limit condition.  
8.2.2.1.4 Output Capacitor Selection  
After selecting the inductor, the output capacitor needs to be optimized. In DCAP3, the regulator reacts within  
one cycle to the change in the duty cycle so the good transient performance can be achieved without needing  
large amounts of output capacitance. The recommended output capacitance range is given in 8-2  
Ceramic capacitors have very low ESR, otherwise the maximum ESR of the capacitor should be less than  
VOUT(ripple)/IOUT(ripple)  
.
8-2. Recommended Component Values  
VOUT (V)  
FSW (kHz)  
LOUT (µH)  
0.68  
0.47  
0.33  
1.2  
COUT(min) (µF)  
COUT(max) (µF)  
500  
CFF (pF)  
RLOWER (kΩ)  
RUPPER (kΩ)  
400  
300  
100  
88  
0.6  
10  
0
800  
500  
1200  
400  
500  
100  
88  
500  
1.2  
3.3  
10  
800  
0.68  
0.47  
2.4  
500  
1200  
400  
88  
500  
88  
500  
100220  
100220  
100220  
100220  
100220  
100220  
45.3  
800  
1.5  
88  
500  
1200  
400  
1.2  
88  
500  
3.3  
88  
500  
5.5  
82.5  
800  
2.4  
88  
500  
1200  
1.5  
88  
700  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS56C215  
 
 
 
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
8.2.2.1.5 Input Capacitor Selection  
The minimum input capacitance required is given in 方程9.  
IOUT×VOUT  
CIN(min)  
=
V
INripple×V ×FSW  
IN  
(9)  
TI recommends using a high quality X5R or X7R input decoupling capacitors of 40 µF on the input voltage pin.  
The voltage rating on the input capacitor must be greater than the maximum input voltage. The capacitor must  
also have a ripple current rating greater than the maximum input current ripple of the application. The input ripple  
current is calculated by 方程10:  
VIN(min)-VOUT  
(
)
VOUT  
ICIN(rms) = IOUT ×  
×
VIN(min)  
VIN(min)  
(10)  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS56C215  
 
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
8.2.3 Application Curves  
Efficiency through Transient Response apply to the circuit of 8-1. VIN = 12 V. Ta = 25°C unless otherwise  
specified.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5V  
VIN = 12V  
VIN = 5V  
VIN = 12V  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Output Current (A)  
1
2 3 45 7 1015  
0
1
2
3
4
5
6
7
Output Current (A)  
8
9
10 11 12  
D102  
D101  
8-3. Light Load Efficiency  
8-2. Efficiency  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
1
2
3
4
5
Output Current (A)  
6
7
8
9
10 11 12  
0
1
2
3
4
5
Output Current (A)  
6
7
8
9
10 11 12  
D103  
D104  
8-4. Load Regulation, VIN = 5 V  
8-5. Load Regulation, VIN = 12 V  
60  
50  
180  
150  
120  
90  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
40  
30  
20  
60  
10  
30  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-30  
-60  
-90  
-120  
-150  
-180  
Gain (dB)  
Phase (Deg)  
100 200 500 1000  
10000  
Frequency (Hz)  
100000  
500000  
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
Input Voltage (V)  
D106  
D105  
8-7. Loop Response, IOUT = 6 A  
8-6. Line Regulation, IOUT = 6 A  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS56C215  
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
VIN = 100 mV / div (ac coupled)  
VIN = 100 mV / div (ac coupled)  
SW = 5 V / div  
SW = 5 V / div  
Time = 50 µsec / div  
Time = 500 nsec / div  
8-9. Input Voltage Ripple, IOUT = 800 mA  
8-8. Input Voltage Ripple, IOUT = 10 mA  
VOUT = 20 mV / div (ac coupled)  
VIN = 100 mV / div (ac coupled)  
SW = 5 V / div  
SW = 5 V / div  
Time = 500 nsec / div  
Time = 50 µsec / div  
8-10. Input Voltage Ripple, IOUT = 12 A  
8-11. Output Voltage Ripple, IOUT = 10 mA  
VOUT = 20 mV / div (ac coupled)  
VOUT = 20 mV / div (ac coupled)  
SW = 5 V / div  
SW = 5 V / div  
Time = 500 nsec / div  
Time = 500 nsec / div  
8-12. Output Voltage Ripple, IOUT = 800 mA  
8-13. Output Voltage Ripple, IOUT = 12 A  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS56C215  
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
VIN = 10 V / div  
VIN = 10 V / div  
EN = 5 V / div  
EN = 5 V / div  
VOUT = 500 mV / div  
PGOOD = 5 V / div  
VOUT = 500 mV / div  
PGOOD = 5 V / div  
Time = 2 msec / div  
Time = 2 msec / div  
8-14. Start Up Relative to VIN Rising  
8-15. Start Up Relative to EN Rising  
VIN = 10 V / div  
VIN = 10 V / div  
EN = 5 V / div  
EN = 5 V / div  
VOUT = 500 mV / div  
VOUT = 500 mV / div  
PGOOD = 5 V / div  
PGOOD = 5 V / div  
Time = 2 msec / div  
Time = 2 msec / div  
8-16. Shut Down Relative to VIN Falling  
8-17. Shut Down Relative to EN Falling  
VOUT = 50 mV / div (ac coupled)  
IOUT = 2 A / div  
Load step = 3 A - 9 A, slew rate = 1 A / µsec  
Time = 200 µsec / div  
8-18. Transient Response  
9 Power Supply Recommendations  
The TPS56C215 is intended to be powered by a well regulated dc voltage. The input voltage range is 3.8 to 17  
V. TPS56C215 is a buck converter. The input supply voltage must be greater than the desired output voltage for  
proper operation. Input supply current must be appropriate for the desired output current. If the input voltage  
supply is located far from the TPS56215 circuit, some additional input bulk capacitance is recommended. Typical  
values are 100 µF to 470 µF.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS56C215  
 
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Recommend a four-layer or six-layer PCB for good thermal performance and with maximum ground plane. 3"  
x 3", four-layer PCB with 2-oz. copper used as example.  
Recommend having equal caps on each side of the IC. Place them right across VIN as close as possible.  
Inner layer 1 will be ground with the PGND to AGND net tie  
Inner layer2 has VIN copper pour that has vias to the top layer VIN. Place multiple vias under the device  
near VIN and PGND and near input capacitors to reduce parasitic inductance and improve thermal  
performance  
Bottom later is GND with the BOOT trace routing.  
Feedback should be referenced to the quite AGND and routed away from the switch node.  
VIN trace must be wide to reduce the trace impedance.  
10.2 Layout Example  
10-1 shows the recommended top side layout. Component reference designators are the same as the circuit  
shown in 8-1. Resistor divider for EN is not used in the circuit of 8-1, but are shown in the layout for  
reference.  
PGOOD  
OUTPUT  
R1  
BOOT  
VIN  
AGND  
VIN  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
C1  
C2  
C3  
C4  
C5  
C6  
L1  
C11  
C12  
C13  
C14  
10-1. Top Side Layout  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS56C215  
 
 
 
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
10-2 shows the recommended layout for the first internal layer. It is comprised of a large PGND plane and a  
smaller ANGD island. AGND and PGND are connected at a single point to reduce circulating currents.  
AGND  
SINGLE POINT  
AGND TO PGND  
CONNECTION  
PGND PLANE  
10-2. Mid Layer 1 Layout  
10-3 shows the recommended layout for the second internal layer. It is comprised of a large PGND plane, a  
smaller copper fill area to connect the two top side VIN copper areas and a second VOUT copper fill area.  
VIN  
PGND PLANE  
VOUT  
10-3. Mid Layer 2 Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS56C215  
 
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
10-4 shows the recommended layout for the bottom layer. It is comprised of a large PGND plane and a trace  
to connect the BOOT capacitor to the SW node.  
PGND PLANE  
10-4. Bottom Layer Layout  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS56C215  
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.1.2 Development Support  
The evaluation module for system validation in shown in 11-1.  
11-1. System Validation EVM Board  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS56C215  
 
 
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
D-CAP3, HotRod, and TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS56C215  
 
 
 
 
 
TPS56C215  
ZHCSEU8D MARCH 2016 REVISED FEBRUARY 2021  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
12.1 Package Marking  
TI =  
YM =  
S =  
TI Letters  
Year Month Date Code  
Assembly Site Code  
Assembly Lot Code  
LLLL =  
56C215  
TI YMS  
LLLL  
Y : Year Code (1, 2, 3, 4, 5, 6, 7, 8, 9, 0)  
M : Month Code (1, 2, 3, 4, 5, 6, 7, 8, 9, 0, A, B, C)  
12-1. Symbolization  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS56C215  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS56C215RNNR  
TPS56C215RNNT  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
RNN  
RNN  
18  
18  
3000 RoHS & Green Call TI | SN | NIPDAU Level-2-260C-1 YEAR  
250 RoHS & Green NIPDAU | SN Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
56C215  
56C215  
Samples  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Mar-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS56C215RNNR  
TPS56C215RNNT  
TPS56C215RNNT  
VQFN-  
HR  
RNN  
RNN  
RNN  
18  
18  
18  
3000  
250  
330.0  
180.0  
180.0  
12.4  
12.4  
12.4  
3.75  
3.75  
3.75  
3.75  
3.75  
3.75  
1.15  
1.15  
1.15  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
VQFN-  
HR  
VQFN-  
HR  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS56C215RNNR  
TPS56C215RNNT  
TPS56C215RNNT  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RNN  
RNN  
RNN  
18  
18  
18  
3000  
250  
346.0  
210.0  
213.0  
346.0  
185.0  
191.0  
33.0  
35.0  
35.0  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RNN0018A  
VQFN-HR - 1 mm max height  
SCALE 3.200  
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
B
A
PIN 1 INDEX AREA  
3.6  
3.4  
30.000  
ALTERNATE PIN 1 ID SHAPE  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
0.6  
1.0  
0.9  
8X  
0.35  
0.25  
2X  
(0.2) TYP  
7
6
8
5
4X 0.55  
0.3  
0.2  
6X  
2.5  
2X  
2X 0.65  
2.3  
PKG  
2X  
0.925  
0.45  
0.35  
12  
8X  
2X  
1
2X 0.575  
SEE ALTERNATE  
PIN 1 ID DETAIL  
18  
13  
0.3  
0.2  
SYMM  
0.45  
0.35  
7X  
0.1  
0.05  
C B A  
5X 0.5  
2.5  
0.45  
0.35  
C
ALL PADS  
4222688/E 03/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNN0018A  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.5)  
2X (1.65)  
5X (0.5)  
SYMM  
18  
13  
8X (0.6)  
(1.65)  
8X (0.25)  
(R0.05) TYP  
1
EXPOSED METAL  
TYP  
12  
2X (0.925)  
2X (0.4)  
11  
2X (0.35)  
2
PKG  
0.000  
2X  
(2.6)  
2X (0.3)  
(0.65)  
2X (0.85)  
8
2X (1.4)  
5
6X (0.25)  
8X (1.15)  
6
7
2X (0.3)  
2X (0.3)  
8X (1.375)  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
EXPOSED METAL SHOWN  
SCALE:25X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
SOLDER MASK DETAILS  
(PREFERRED)  
4222688/E 03/2021  
NOTES: (continued)  
3. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNN0018A  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.5)  
(1.65)  
5X (0.5)  
SYMM  
13  
18  
8X (0.6)  
(1.65)  
8X (0.25)  
1
EXPOSED  
METAL, TYP  
2X (0.925)  
2X (0.36)  
12  
6X (0.3)  
2
11  
2X (0.35)  
(0.2825)  
PKG  
0.000  
6X  
(0.733)  
2X (0.3)  
(0.651)  
2X (0.85)  
2X (1.4)  
8
5
(1.585)  
6X (0.25)  
8X (1.15)  
EXPOSED METAL  
TYP  
EXPOSED METAL  
TYP  
7
6
8X (1.375)  
(R0.05) TYP  
(0.3) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 6 & 7: 83% - PADS 2 & 11: 90%  
SCALE:30X  
4222688/E 03/2021  
NOTES: (continued)  
5. For alternate stencil design recommendations, see IPC-7525 or board assembly site preference.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS56C215RNNR

具有 D-CAP3 控制功能的 3.8V 至 17V、12A 同步 SWIFT™ 降压转换器 | RNN | 18 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56C215RNNT

具有 D-CAP3 控制功能的 3.8V 至 17V、12A 同步 SWIFT™ 降压转换器 | RNN | 18 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56C230

针对解决方案成本进行了优化的 4.5V 至 18V、12A 同步 SWIFT™ 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56C230RJER

针对解决方案成本进行了优化的 4.5V 至 18V、12A 同步 SWIFT™ 降压转换器 | RJE | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56C231

具有 D-CAP3 控制功能的 3.8V 至 17V、12A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56C231LRNNR

具有 D-CAP3 控制功能的 3.8V 至 17V、12A 同步降压转换器 | RNN | 18 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS56C231RNNR

具有 D-CAP3 控制功能的 3.8V 至 17V、12A 同步降压转换器 | RNN | 18 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS57040-Q1

0.5-A 42-V STEP-DOWN SWIFT™ DC/DC CONVERTER WITH Eco-mode™

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS57040QDGQRQ1

0.5-A 42-V STEP-DOWN SWIFT™ DC/DC CONVERTER WITH Eco-mode™

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS57040QDRCRQ1

0.5-A 42-V STEP-DOWN SWIFT™ DC/DC CONVERTER WITH Eco-mode™

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS57060-Q1

具有 Eco-Mode™ 的汽车类 3.5V 至 60V、500mA 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS57060QDGQRQ1

具有 Eco-Mode™ 的汽车类 3.5V 至 60V、500mA 降压转换器 | DGQ | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI