TPS59603QDSGRQ1 [TI]

适用于汽车应用中高频 CPU 内核电源的同步降压 FET 驱动器 | DSG | 8 | -40 to 125;
TPS59603QDSGRQ1
型号: TPS59603QDSGRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于汽车应用中高频 CPU 内核电源的同步降压 FET 驱动器 | DSG | 8 | -40 to 125

驱动 光电二极管 接口集成电路 驱动器
文件: 总22页 (文件大小:1695K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS59603-Q1  
ZHCSKR9A JANUARY 2020REVISED MARCH 2020  
适用于汽车应用高频 CPU 内核电源的 TPS59603-Q1 同步降压 FET  
驱动器  
1 特性  
3 说明  
1
符合面向汽车应用的 AEC-Q100 标准  
TPS59603-Q1 驱动器针对高频 CPU VCORE 应用进行  
了优化,具有 降低 死区时间驱动和自动零交越等高级  
特性,可用于在整个负载范围内优化效率。  
器件温度等级 1-40°C 125°C  
器件人体放电模式静电放电 (ESD) 分类等级 H2  
器件的组件充电模式 ESD 分类等级 C3B  
SKIP 引脚提供 CCM 操作选项,以支持输出电压的受  
控管理。此外,TPS59603-Q1 支持两种低功耗模式。  
借助于脉宽调制 (PWM) 输入三态,静态电流被减少至  
130µA,并支持立即响应。当 SKIP 被保持在三态时,  
电流被减少至 8µA(恢复切换通常需要 20µs)。此驱  
动器与合适的德州仪器 (TI) 控制器配对使用,能够成  
为出色的高性能电源系统。  
针对已优化连续传导模式 (CCM) 的精简死区时间  
驱动电路  
针对已优化断续传导模式 (DCM) 效率的自动零交  
叉检测  
针对已优化轻负载效率的多个低功耗模式  
为了实现高效运行的经优化信号路径延迟  
集成 BST 开关驱动强度针对低 RdsON FET 进行  
了优化  
TPS59603-Q1 器件采用节省空间的耐热增强型 8 引  
脚、2mm x 2mm 可湿性侧面 WSON 封装,工作温度  
范围为 -40°C 125°C。  
针对 5V FET 驱动器进行了优化  
转换输入电压范围 (VIN)2.5V 28V  
具有可湿性侧面和散热焊盘的 2mm × 2mm8 引  
脚、WSON 封装  
器件信息(1)  
器件型号  
封装  
WSON (8)  
封装尺寸(标称值)  
TPS59603-Q1  
2.00mm × 2.00mm  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
使用高频 CPU 的汽车后座娱乐 (RSE) 平板电脑  
汽车 ADAS 处理器内核电源  
简化应用  
VIN  
R1  
C3  
TPS59603-Q1  
L1  
Q1  
1
2
3
4
BST  
DRVH  
SW  
8
7
6
5
PWM  
SKIP  
VDD  
PWM  
SKIP  
VDD  
GND  
DRVL  
Q2  
C1  
C2  
C4  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDL0  
 
 
 
TPS59603-Q1  
ZHCSKR9A JANUARY 2020REVISED MARCH 2020  
www.ti.com.cn  
目录  
7.3 Feature Description................................................... 9  
7.4 Device Functional Modes........................................ 12  
Power Supply Recommendations...................... 13  
Layout ................................................................... 13  
9.1 Layout Guidelines ................................................... 13  
9.2 Layout Recommendation ........................................ 13  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
8
9
10 器件和文档支持 ..................................................... 14  
10.1 器件支持................................................................ 14  
10.2 文档支持................................................................ 14  
10.3 社区资源................................................................ 14  
10.4 ....................................................................... 14  
10.5 静电放电警告......................................................... 14  
10.6 Glossary................................................................ 14  
11 机械、封装和可订购信息....................................... 14  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (January 2020) to Revision A  
Page  
已更改 更改了相关文档部分的超链接................................................................................................................................. 14  
2
Copyright © 2020, Texas Instruments Incorporated  
 
TPS59603-Q1  
www.ti.com.cn  
ZHCSKR9A JANUARY 2020REVISED MARCH 2020  
5 Pin Configuration and Functions  
DSG Package  
8-Pin WSON  
Top View  
1
8
7
6
5
BST  
DRVH  
PWM  
2
3
4
SW  
SKIP  
VDD  
GND  
DRVL  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
BST  
NO.  
1
I
High-side N-channel FET bootstrap voltage input; power supply for high-side driver  
High-side N-channel gate drive output  
DRVH  
DRVL  
GND  
8
O
O
G
5
Synchronous low-side N-channel gate drive output  
6
Synchronous low-side N-channel gate drive return and device reference  
PWM input. A tri-state voltage on this pin turns off both the high-side (DRVH) and low-side drivers  
(DRVL)  
PWM  
2
3
I
When SKIP is LO, the zero crossing comparator is active. The power chain enters discontinuous  
conduction mode when the inductor current reaches zero. When SKIP is HI, the zero crossing  
comparator is disabled, and the driver outputs follow the PWM input. A tri-state voltage on SKIP puts  
the driver into a very-low power state.  
SKIP  
I
SW  
7
4
I/O  
I
High-side N-channel gate drive return. Also, zero-crossing sense input  
5-V power supply input; decouple to GND with a ceramic capacitor with a value of 1 µF or greater  
Tie to system GND plane with multiple vias  
VDD  
Thermal Pad  
G
(1) I = Input, O = Output, G = Ground  
Copyright © 2020, Texas Instruments Incorporated  
3
TPS59603-Q1  
ZHCSKR9A JANUARY 2020REVISED MARCH 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1) (2)  
over operating free-air temperature (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–2  
MAX  
6
UNIT  
VDD  
Input voltage  
V
PWM, SKIP  
6
BST  
35  
38  
6
BST (transient <20 ns)  
BST to SW; DRVH to SW  
Output voltage  
SW  
V
30  
38  
6
DRVH, SW (transient <20 ns)  
DRVL  
–5  
–0.3  
–0.3  
–40  
–55  
Ground pins  
GND to PAD  
0.3  
125  
150  
V
Operating junction temperature, TJ  
Storage temperature range, Tstg  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal unless otherwise noted.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
5.5  
5.5  
34  
UNIT  
VDD  
5
Input voltage  
V
PWM, SKIP  
–0.1  
–0.1  
–0.1  
–1  
BST  
BST to SW; DRVH to SW  
5.5  
28  
Output voltage  
Ground pins  
V
SW  
DRVL  
–0.1  
–0.1  
–40  
5.5  
0.1  
125  
GND to PAD  
V
Operating junction temperature, TJ  
°C  
6.4 Thermal Information  
TPS59603-Q1  
THERMAL METRIC(1)  
WSON (DSG)  
8 PINS  
63.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
74.1  
34.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.0  
ψJB  
34.9  
RθJC(bot)  
11.7  
(1) 有关传统和新热指标的更多信息,请参见应用报告《半导体和 IC 封装热指标》(文献编号:SPRA953)。  
4
版权 © 2020, Texas Instruments Incorporated  
TPS59603-Q1  
www.ti.com.cn  
ZHCSKR9A JANUARY 2020REVISED MARCH 2020  
6.5 Electrical Characteristics  
These specifications apply for –40°C TJ 125°C, and VVDD = 5 V unless otherwise specified.  
PARAMETER  
VDD INPUT SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VSKIP = VVDD or VSKIP = 0 V,  
PWM = High  
160  
250  
600  
VSKIP = VVDD or VSKIP = 0 V,  
PWM = Low  
ICC  
Supply current (operating)  
µA  
VSKIP = VVDD or VSKIP = 0 V,  
PWM = Float  
130  
8
VSKIP = Float  
VDD UNDERVOLTAGE LOCKOUT (UVLO)  
Rising threshold  
Falling threshold  
4.19  
VUVLO  
UVLO threshold  
UVLO hysteresis  
V
V
3.65  
VUVHYS  
0.2  
PWM AND SKIP I/O SPECIFICATIONS  
Pullup to VDD  
1.7  
MΩ  
kΩ  
V
RI  
Input impedance  
Pulldown (to GND)  
800  
VIL  
Low-level input voltage  
High-level input voltage  
Hysteresis  
0.6  
2.0  
VIH  
2.70  
1.3  
V
VIHH  
VTS  
0.2  
V
Tri-state voltage  
V
Tri-state activation time (falling)  
PWM  
tTHOLD(off1)  
tTHOLD(off2)  
tTSKF  
60  
60  
1
ns  
ns  
µs  
µs  
Tri-state activation time (rising)  
PWM  
Tri-state activation time (falling)  
SKIP  
Tri-state activation time (rising)  
SKIP  
tTSKR  
1
t3RD(PWM)  
t3RD(SKIP)  
Tri-state exit time PWM  
Tri-state exit time SKIP  
100  
50  
ns  
µs  
HIGH-SIDE GATE DRIVER (DRVH)  
DRVH rising, CDRVH = 3.3 nF; 20%  
to 80%  
tR(DRVH)  
Rise time  
30  
40  
ns  
ns  
tRPD(DRVH)  
Rise time propogation delay  
CDRVH = 3.3 nF  
Source resistance,  
RSRC  
Source resistance  
(VBST– VSW) = 5 V,  
2
4
Ω
high state, (VBST – VDRVH) = 0.1 V  
tF(DRVH)  
Fall time  
DRVH falling, CDRVH = 3.3 nF  
CDRVH = 3.3 nF  
8
ns  
ns  
tFPD(DRVH)  
Fall-time propagation delay  
25  
Sink resistance,  
RSNK  
Sink resistance  
(VBST – VSW) forced to 5 V,  
low state (VDRVH – VSW) = 0.1 V  
0.5  
1.6  
Ω
RDRVH  
DRVH to SW resistance(1)  
100  
kΩ  
(1) Specified by design. Not production tested.  
版权 © 2020, Texas Instruments Incorporated  
5
TPS59603-Q1  
ZHCSKR9A JANUARY 2020REVISED MARCH 2020  
www.ti.com.cn  
Electrical Characteristics (接下页)  
These specifications apply for –40°C TJ 125°C, and VVDD = 5 V unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LOW-SIDE GATE DRIVER (DRVL)  
DRVL rising, CDRVL = 3.3 nF; 20% to  
80%  
tR(DRVL)  
Rise time  
15  
35  
ns  
ns  
tRPD(DRVL)  
Rise time propagation delay  
CDRVL = 3.3 nF  
Source resistance, (VVDD–GND) = 5  
V,  
RSRC  
Source resistance  
1.5  
3
Ω
high state, (VVDD – VDRVL) = 0.1 V  
tF(DRVL)  
Fall time  
DRVL falling, CDRVL = 3.3 nF  
CDRVL= 3.3 nF  
10  
15  
ns  
ns  
tFPD(DRVL)  
Fall-time propagation delay  
Sink resistance, (VVDD– GND) = 5 V,  
low state, (VDRVL – GND) = 0.1 V  
RSNK  
Sink resistance  
0.4  
1.6  
Ω
RDRVL  
DRVL to GND resistance(1)  
100  
kΩ  
GATE DRIVER DEAD-TIME  
tR(DT)  
tF(DT)  
Rising edge  
Falling edge  
0
0
20  
10  
40  
25  
ns  
ns  
ZERO CROSSING COMPARATOR  
VZX Zero crossing offset  
BOOTSTRAP SWITCH  
SW voltage rising  
–2.25  
0
120  
12  
2.00  
mV  
VFBST  
IRLEAK  
RDS(on)  
Forward voltage  
IF = 10 mA  
240  
2
mV  
µA  
Ω
Reverse leakage  
On-resistance  
(VBST – VVDD) = 25 V  
24  
6
版权 © 2020, Texas Instruments Incorporated  
TPS59603-Q1  
www.ti.com.cn  
ZHCSKR9A JANUARY 2020REVISED MARCH 2020  
6.6 Typical Characteristics  
1. PWM High to DRVL Low  
2. PWM Low to DRVH Low  
3. DRVL Low to DRVH High  
4. DRVH Low to DRVL High  
5. PWM Low to Tri-State  
6. PWM Tri-State to Low  
版权 © 2020, Texas Instruments Incorporated  
7
TPS59603-Q1  
ZHCSKR9A JANUARY 2020REVISED MARCH 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
7. SKIP Mode Entry  
8. SKIP Mode Exit  
9. Very-Low-Power Mode Entry  
10. Very-Low-Power Mode Exit  
VIN = 8 V  
VIN = 20 V  
11. SW Node-Ringing  
12. SW Node-Ringing  
8
版权 © 2020, Texas Instruments Incorporated  
TPS59603-Q1  
www.ti.com.cn  
ZHCSKR9A JANUARY 2020REVISED MARCH 2020  
7 Detailed Description  
7.1 Overview  
The TPS59603-Q1 device is a synchronous-buck MOSFET driver designed to drive both high-side and low-side  
MOSFETs. It allows high-frequency operation with current driving capability matched to the application. The  
integrated boost switch is internal. The TPS59603-Q1 device employs dead-time reduction control and shoot-  
through protection, which helps avoid simultaneous conduction of high-side and low-side MOSFETs. Also, the  
drivers improve light-load efficiency with integrated DCM-mode operation using adaptive crossing detection.  
Typical applications yield a steady-state duty cycle of 60% or less. For high steady-state duty cycle applications,  
including a small external Schottky diode may help to ensure sufficient charging of the bootstrap capacitor.  
7.2 Functional Block Diagram  
VDD  
+
DRVL  
1
8
BST  
+
Level Shift  
DRVH  
VUVLO  
+
+
+
VDD  
7
SW  
1 V  
1.7 MW  
Tri-State  
Logic  
SKIP  
3
800 kW  
VDD  
+
1 V  
1.7 MW  
4
5
VDD  
Tri-State  
Logic  
PWM  
2
DRVL  
800 kW  
6
GND  
7.3 Feature Description  
7.3.1 UVLO Protection  
The UVLO comparator evaluates the VDD voltage level. As VVDD rises, both DRVH and DRVL hold actively low  
at all times until VVDD reaches the higher UVLO threshold (VUVLO_H). Then, the driver becomes operational and  
responds to PWM and SKIP commands. If VDD falls below the lower UVLO threshold (VUVLO_L = VUVLO_H  
Hysteresis), the device disables the driver and drives the outputs of DRVH and DRVL actively low. 13 shows  
this function.  
CAUTION  
Do not start the driver in the very low power mode (SKIP = Tri-state).  
版权 © 2020, Texas Instruments Incorporated  
9
TPS59603-Q1  
ZHCSKR9A JANUARY 2020REVISED MARCH 2020  
www.ti.com.cn  
Feature Description (接下页)  
V
UVLO_H  
V
UVLO_L  
V
VDD  
Driver On  
UDG-12218  
13. UVLO Operation  
7.3.2 PWM Pin  
The PWM pin incorporates an input tri-state function. The device forces the gate driver outputs to low when  
PWM is driven into the tri-state window and the driver enters a low power state with zero exit latency. The pin  
incorporates a weak pullup to maintain the voltage within the tri-state window during low-power modes.  
Operation into and out of a tri-state condition follows the timing diagram outlined in 14.  
When VDD reaches the UVLO_H level, a tri-state voltage range (window) is set for the PWM input voltage. The  
window is defined as the PWM voltage range between PWM logic high (VIH) and logic low (VIL) thresholds. The  
device sets high-level input voltage and low-level input voltage threshold levels to accommodate both 3.3-V  
(typical) and 5-V (typical) PWM drive signals.  
When the PWM exits the tri-state condition, the driver enters CCM for a period of 4 µs, regardless of the state of  
the SKIP pin. Typical operation requires this time period in order for the auto-zero comparator to resume.  
VIH  
High-Z Window  
High-Z Window  
VIL  
PWM  
HDR  
LDR  
t3RD1  
tFPD-DRVH  
tHOLD_OFF1  
tHOLD_OFF2  
t3RD2  
tFPD-DRVL  
tR-DT  
tF-DT  
UDG-12225  
Time  
14. PWM Tri-State Timing Diagram  
10  
版权 © 2020, Texas Instruments Incorporated  
 
TPS59603-Q1  
www.ti.com.cn  
ZHCSKR9A JANUARY 2020REVISED MARCH 2020  
Feature Description (接下页)  
7.3.3 SKIP Pin  
The SKIP pin incorporates the input tri-state buffer as PWM. The function is somewhat different. When SKIP is  
low, the zero crossing (ZX) detection comparator is enabled, and DCM mode operation occurs if the load current  
is less than the critical current. When SKIP is high, the ZX comparator disables, and the converter enters FCCM  
mode. When the SKIP pin is in a tri-state condition, typical operation forces the gate driver outputs low and the  
driver enters a very-low-power state. In the low-power state, the UVLO comparator remains off to reduce  
quiescent current. When the SKIP pin voltage is pulled either low or high, the driver wakes up and is able to  
accept PWM pulses in less than 50 µs.  
1 shows the logic functions of UVLO, PWM, SKIP, DRVH, and DRVL.  
1. Logic Functions  
UVLO  
Active  
PWM  
SKIP  
DRVL  
Low  
High(1)  
High  
Low  
DRVH  
Low  
Low  
Low  
High  
Low  
Low  
MODE  
Disabled  
DCM(1)  
FCCM  
Inactive  
Inactive  
Inactive  
Inactive  
Inactive  
Low  
Low  
Low  
High  
High  
Tri-state  
H or L  
H or L  
Tri-state  
Low  
Low power  
Low  
Very-low power  
(1) Until zero crossing protection occurs.  
7.3.3.1 Zero Crossing (ZX) Operation  
The zero crossing comparator is adaptive for improved accuracy. As the output current decreases from a heavy  
load condition, the inductor current also reduces and eventually arrives at a valley, where it touches zero current,  
which is the boundary between continuous conduction and discontinuous conduction modes. The SW pin detects  
the zero-current condition. When this zero inductor current condition occurs, the ZX comparator turns off the  
rectifying MOSFET.  
7.3.4 Adaptive Dead-Time Control and Shoot-Through Protection  
The driver utilizes an anti-shoot-through and adaptive dead-time control to minimize low-side body diode  
conduction time and maintain high efficiency. When the PWM input voltage becomes high, the low-side MOSFET  
gate voltage begins to fall after a propagation delay. At the same time, DRVL voltage is sensed, and high-side  
driving voltage starts to increase after DRVL voltage is lower than a proper threshold.  
2.65 V  
0.6 V  
PWM  
t
R-DRVL  
t
RPD-DRVL  
90%  
4.0 V  
DRVL  
4.0 V  
t
FPD-DRVL  
1.0 V  
10%  
1.0 V  
t
F-DRVL  
90%  
4.0 V  
t
R-DRVL  
4.0 V  
t
t
F-DRVH  
FPD-DRVH  
t
RPD-DRVH  
1.0 V  
10%  
1.0 V  
DRVH  
UDG-12226  
Time  
15. Rise and Fall Timing and Propagation Delay Definitions  
版权 © 2020, Texas Instruments Incorporated  
11  
 
TPS59603-Q1  
ZHCSKR9A JANUARY 2020REVISED MARCH 2020  
www.ti.com.cn  
Typical operation manages to near zero the dead-time between the low-side gate turn-off to high-side gate  
voltage turn-on, and high-side gate turn-off to low-side gate turn-on, in order to avoid simultaneous conduction of  
both MOSFETs, as well as to reduce body diode conduction and recovery losses. This operation also reduces  
ringing on the leading edge of the SW waveform.  
PWM  
DRVL  
1.0 V  
1.0 V  
t
R-DT  
t
F-DT  
1.0V  
DRVH  
Time  
UDG-12227  
16. Dead-Time Definitions  
7.3.5 Integrated Boost-Switch  
To maintain a BST-SW voltage close to VDD (to get lower conduction losses on the high-side FET), the  
conventional diode between the VDD pin and BST pin is replaced by a FET, which is gated by the DRVL signal.  
7.4 Device Functional Modes  
The TPS59603-Q1 device operates in CCM mode when the SKIP pin is high, and it enters DCM mode when the  
SKIP pin is low. When both the SKIP pin and the PWM pin are in a tri-state condition, it forces the gate driver  
outputs low and the driver enters a very-low-power state.  
12  
版权 © 2020, Texas Instruments Incorporated  
TPS59603-Q1  
www.ti.com.cn  
ZHCSKR9A JANUARY 2020REVISED MARCH 2020  
8 Power Supply Recommendations  
The voltage range for the VDD pin is between 4.5 V and 5.5 V. A 5-V power supply is recommended for the VDD  
pin of the TPS59603-Q1 device.  
9 Layout  
9.1 Layout Guidelines  
To improve the switching characteristics and design efficiency, these layout rules must be considered:  
Locate the driver as close as possible to the MOSFETs.  
Locate the VDD and bootstrap capacitors as close as possible to the driver.  
Pay special attention to the GND trace. Use the thermal pad of the package as the GND by connecting it to  
the GND pin. The GND trace or pad from the driver goes directly to the source of the MOSFET, but should  
not include the high current path of the main current flowing through the drain and source of the MOSFET.  
Use a similar rule for the switch-node as for the GND.  
Use wide traces for DRVH and DRVL closely following the related SW and GND traces. A width of between  
80 and 100 mils is preferable where possible.  
Place the bypass capacitors as close as possible to the driver.  
Avoid PWM and enable traces going close to the SW and pad where high dV/dT voltage can induce  
significant noise into the relatively high-impedance leads.  
A poor layout can decrease the reliability of the entire system.  
9.2 Layout Recommendation  
17 above shows the primary current loops in each phase, numbered in order of importance.  
The most important loop to minimize the area of is loop 1, the path from the input capacitor through the high and  
low-side FETs, and back to the capacitor through ground.  
Loop 2 is from the inductor through the output capacitor, ground, and Q2. The layout of the low-side gate drive  
(Loops 3a and 3b) is important. The guidelines for the gate drive layout are:  
Make the low-side gate drive length as short as possible (1 inch or less preferred).  
Make the DRVL width to length ratio of 1:10, wider (1:5) if possible.  
If changing layers is necessary, use at least two vias.  
VBAT  
CB  
CIN  
1
Q1  
4b  
DRVH  
4a  
L
VCORE  
LL  
2
Q2  
CD  
DRVL  
3a  
COUT  
3b  
PGND  
UDG-12191  
17. Layout recommendations to minimize major Current loops  
版权 © 2020, Texas Instruments Incorporated  
13  
 
TPS59603-Q1  
ZHCSKR9A JANUARY 2020REVISED MARCH 2020  
www.ti.com.cn  
10 器件和文档支持  
10.1 器件支持  
10.1.1 开发支持  
有关 Power Stage Designer,请转到常用开关模式电源的 Power Stage Designertm 工具  
10.2 文档支持  
10.2.1 相关文档  
《适用于汽车 ADAS 应用的 TPS59632-Q1 2.5V 24V、三相/两相/单相降压无驱动器控制器》数据表  
10.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
10.4 商标  
E2E is a trademark of Texas Instruments.  
10.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
10.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
11 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
14  
版权 © 2020, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS59603QDSGRQ1  
TPS59603QDSGTQ1  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSG  
DSG  
8
8
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
603Q  
603Q  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008B  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.1 MIN  
(0.05)  
PIN 1 INDEX AREA  
S
C
A
 L
 E
3
0
.
A
2.1  
1.9  
SECTION A-A  
TYPICAL  
0.3  
0.2  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
0.9 0.1  
5
4
6X 0.5  
A
A
2X  
1.5  
9
1.6 0.1  
8
1
0.3  
8X  
0.2  
0.4  
0.2  
PIN 1 ID  
8X  
0.1  
0.05  
C A B  
C
4222124/E 05/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222124/E 05/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4222124/E 05/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS59603QDSGTQ1

适用于汽车应用中高频 CPU 内核电源的同步降压 FET 驱动器 | DSG | 8 | -40 to 125
TI

TPS59610

适用于嵌入式计算 IMVP6+ CPU 和 GPU 的单相 D-CAP+™ 同步降压控制器
TI

TPS59610RHBR

适用于嵌入式计算 IMVP6+ CPU 和 GPU 的单相 D-CAP+™ 同步降压控制器 | RHB | 32 | -40 to 105
TI

TPS59610RHBT

适用于嵌入式计算 IMVP6+ CPU 和 GPU 的单相 D-CAP+™ 同步降压控制器 | RHB | 32 | -40 to 105
TI

TPS59611

PACKAGE MATERIALS INFORMATION
TI

TPS59611RHBR

PACKAGE MATERIALS INFORMATION
TI

TPS59611RHBT

PACKAGE MATERIALS INFORMATION
TI

TPS59620

用于 IMVP6+ CPU/GPU Vcore 嵌入式计算的双相 D-CAP+™ 模式降压控制器
TI

TPS59620RHAR

用于 IMVP6+ CPU/GPU Vcore 嵌入式计算的双相 D-CAP+™ 模式降压控制器 | RHA | 40 | -40 to 105
TI

TPS59620RHAT

用于 IMVP6+ CPU/GPU Vcore 嵌入式计算的双相 D-CAP+™ 模式降压控制器 | RHA | 40 | -40 to 105
TI

TPS59621

用于 IMVP6.5 CPU/GPU Vcore 嵌入式计算的双相 D-CAP+™ 模式降压控制器
TI

TPS59621RHAR

用于 IMVP6.5 CPU/GPU Vcore 嵌入式计算的双相 D-CAP+™ 模式降压控制器 | RHA | 40 | -40 to 105
TI